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The strong-field approximation (SFA) is a widely used theoretical framework that describes the process of
high-order harmonic generation of atoms and molecules. Here, we propose a generalization of the dipole SFA
towards weakly relativistic contributions to the laser-electron interaction. These weakly relativistic contributions
are closely related to the spatial structure of the light field and imply a correction of the relativistic order 1/c.
Within this generalized nondipole SFA (GN-SFA), we demonstrate how to obtain explicit results and discuss
their physical aspects. This approach enables one to investigate the nondipole effects of linear polarized plane
waves as well as the influence of structured light fields, such as twisted light, that have not yet been captured
by the currently available models. In order to utilize our generalized nondipole SFA, we consider a linearly
polarized plane wave and demonstrate the decrease of the harmonic yield that is directly related to the nondipole
effects of the laser field. Furthermore, we discuss the GN-SFA with regard to other nondipole SFA approaches by
determining their physical and mathematical context. Finally, the GN-SFA is a powerful theoretical framework
that extends the nonrelativistic SFA rigorously to the weakly relativistic regime and therefore will be a useful
model for further theoretical investigations.
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I. INTRODUCTION

In the past decades, atomic processes in strong laser fields
have attracted much attention. In particular, strong-field ion-
ization [1–3] and high-order harmonic generation (HHG)
[4–9] have led to insights into the electron dynamics in
such light fields. Several applications like pump-probe experi-
ments have benefited from extremely short pulses. These short
pulses have a large spectral width which, in the context of
high-order harmonic generation, is associated with very high-
order harmonic orders q [10]. However, in order to understand
and utilize such high orders, the present nonrelativistic mod-
els need to be extended toward weakly relativistic electron
dynamics.

From a theoretical perspective, ongoing research in the
topic of strong-field physics led to different approaches
to solve the time-dependent Schrödinger equation (TDSE).
Apart from numerical solutions, nowadays, one of the most
successful approaches to solve the TDSE is the strong-field
approximation (SFA [11,12]). The standard form of the SFA
requires analytic solutions of continuum states of an electron
in the intense driving laser field that neglects the comparably
weak atomic potential. Under this assumption, the contin-
uum solutions to the TDSE are the well-known Volkov states
which initially were constructed as the solution of the fully
relativistic Dirac equation [13]. The nonrelativistic version
of the Volkov state is also called the dipole Volkov state.
This dipole Volkov state is mathematically defined to have
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the form of a plane wave with an additional purely time-
dependent phase briefly referred to as the Volkov phase. The
resulting dipole or nonrelativistic SFA has been thoroughly
compared to HHG experiments and found valid for a broad
range of parameters. Nevertheless, driving laser fields have
recently approached the limits of such nonrelativistic models.
Thus it is necessary to extend these models also towards the
(weak) relativistic regime of the electron dynamics. In partic-
ular, such an extension of the dipole SFA is also known as
a nondipole SFA. Recent theoretical models [14,15] include
weakly relativistic contributions by expanding the potential
of the respective laser fields in the Hamiltonian. While a
perturbative approach seems to be useful, where the laser field
is approximated already in the Hamiltonian, such a treatment
is limited to purely monochromatic driving laser beams. Fur-
thermore, twisted laser fields like Laguerre Gaussian beams or
Bessel beams cannot be studied without proper consideration
of their spatial structure.

Therefore, in this work, we generalize the nondipole
strong-field approximation by incorporating analytically ac-
curate Volkov states that include all relevant weakly relativis-
tic contributions of the laser field. In contrast to previous
approaches, the developed nondipole SFA allows one to con-
sider also more complicated beam arrangements and is not
limited to single plane waves. Therefore, we cannot only
incorporate an arbitrary number of laser fields but also account
for the corresponding individual weakly relativistic contri-
butions. The nondipole SFA developed in this work is valid
for the same set of laser field configurations that can be
treated within the dipole SFA. Accordingly, it constitutes a
generalization of the dipole SFA into the weakly relativistic
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FIG. 1. Physical configurations that can be described by the dipole SFA (red ellipse), nondipole SFA (yellow ellipse), and the generalized
nondipole SFA (blue ellipse). The terms which appear twice differ only in their interval of validity concerning non- and weakly relativistic
effects.

regime, See Fig. 1. Henceforth, we refer to it as the gener-
alized nondipole SFA (GN-SFA). As in the standard dipole
SFA, several microscopic and macroscopic effects like phase
matching or ground-state depletion are not explicitly consid-
ered in this work. While further investigations are necessary to
incorporate these effects into the GN-SFA, the general results
presented in this work will not be altered.

This paper is structured as follows. In Sec. II we derive the
general formalism and final results of the GN-SFA. In more
detail, Sec. II A considers a gauge covariant formulation of
the nondipole strong-field amplitude and Sec. II B decouples
and reformulates the analytic solution of the nondipole Volkov
state. Subsequently, in Sec. II C we derive the general formula
for the dipole moment and in Sec. II D the developed model is
applied to an elliptically polarized plane wave. Furthermore,
in Sec. III A we discuss the GN-SFA by comparing it to a
standard variant of the nondipole SFA. In order to utilize the
GN-SFA, we apply it to a linearly polarized plane wave and
discuss the decrease of the harmonic yield in relation to the
dipole SFA. Finally, we conclude our findings in Sec. IV.

In the following, we use atomic units (h̄ = e = me =
4πε0 = 1) unless stated otherwise.

II. THEORETICAL MODEL

To derive a generalized nondipole SFA (GN-SFA), we
begin with the general Coulomb-gauge Hamiltonian of an
electron in the combined potential of an atomic core and an in-
tense laser field. The associated time-dependent Schrödinger
equation (TDSE) is written as

i∂̂t�(r, t ) = Ĥ�(r, t ), (1)

where ∂̂t denotes the partial derivative with respect to t . The
Hamiltonian reads

Ĥ = [ p̂ − qA(r, t )]2

2
+ V̂ (r) + q�(r, t ), (2)

with the atomic binding potential V̂ (r), the momentum oper-
ator of the electron p̂, and its charge q = −1 for electrons.
A(r, t ) and �(r, t ) are the vector and scalar potentials of
the laser field, respectively. To follow the internal logic of
Sec. II A it is beneficial to review the basic concept of the
dipole SFA.

The dipole SFA is an approximation which is widely used
in strong-field physics and can be summarized by a few stan-
dard assumptions [16] as follows.

(1) The strong laser field does not couple with any bound
state beyond the ground state.

(2) The amplitude of the ground state, a(t ), is considered
to be known.

(3) The continuum states are described by Volkov states
which neglect contributions of the atomic potential.

These assumptions simplify the model extensively and al-
low for analytical treatment. On the other hand, they directly
affect the gauge freedom in such a way that the resulting
physical observable of interest, the atomic dipole moment,
is not necessarily gauge covariant anymore [17]. Especially
the ionization and recombination amplitude from the bound
state into the dressed continuum and vice versa are gauge
dependent, which induces the breakdown of the gauge co-
variance. Fortunately, the gauge covariance in the dipole SFA
can be guaranteed by a careful treatment of the Hamiltonian
and its associated time-evolution operators [18]. Since the
nondipole SFA requires similar assumptions as the dipole SFA
we demonstrate that the associated nondipole amplitudes are
also gauge covariant within such treatment.

A. Gauge covariance of the nondipole SFA

The standard form of the dipole SFA is formulated in
the so-called length gauge where the gauge freedom allows
a vanishing vector potential A(t ) ≡ 0. In accordance with
the dipole SFA, many of the standard nondipole SFA theo-
ries [14,15,19] are formulated in length gauge. This choice
of gauge is reasonable since the electromagnetic potentials in
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the Hamiltonian A(r, t ) and �(r, t ) can be simply expanded
up to the first relativistic order |k|

ωk
= 1

c . Here k = |k|ek is the
momentum vector of the electromagnetic potentials, ωk the
frequency, and c the speed of light. Unfortunately, it is not
possible to treat the laser field in length gauge if its concrete
(spatial) shape is taken to be arbitrary, since it is necessary
to develop a corresponding theoretical framework in the so-
called velocity gauge which is characterized by the gauge
condition �(r, t ) ≡ 0. To provide a gauge covariant theory,
we follow the idea of Klaiber et al. [20] and later from Becker
and Milosevic [18,21] in the dipole regime and extend the
formalism to weakly relativistic (nondipole) laser fields.

One of the crucial steps to define a proper gauge covariant
nondipole SFA is the definition of the time-evolution operator

|�(t )〉 = Û (t, t0) |�(t0)〉 ,

where Û (t, t0) evolves the wave function � from time t0 to
t , with t0 � t . As a consequence (of this definition), the time-
evolution operator of a general Hamiltonian H j (t ) follows the
Schrödinger equation

i∂̂tÛ j (t, t0) = Ĥ j (t )Ûj (t, t0).

To actually calculate the time-evolution operator of the Hamil-
tonian (2), it is convenient to split the Hamiltonian into two
parts

Ĥ = ĤA + ĤB,

and use a Dyson series such that

Û (t, t0) = ÛA(t, t0) − i
∫ t

t0

dt ′Û (t, t ′)ĤB(t ′)ÛA(t ′, t0), (3)

where ÛA(t, t0) is the time-evolution operator associated
with the Hamiltonian ĤA(t ). To achieve a gauge-covariant
nondipole SFA, we set ĤA and ĤB to

ĤA = ξ̂ − qr · ∂̂t A(r, t ), (4a)

ĤB = q
[
�(r, t ) + r · ∂̂t A(r, t )

]
, (4b)

where the energy operator ξ̂ is defined as

ξ̂ = [ p̂ − qA(r, t )]2

2
+ V̂ (r),

i∂̂tÛξ (t, t0) = ξ̂ (t )Ûξ (t, t0), ⇒ Ĥ = ξ̂ + q�(r, t ). (5)

Note that Eq. (5) is only correct in Coulomb gauge ∇̂ ·
A(r, t ) = 0, which is incorporated by the Coulomb gauge
Hamiltonian (2). Inserting the Hamiltonian (4b) into the
Dyson series (3) leads to an explicit expression for the full
time-evolution operator

Û (t, t0) = ÛA(t, t0) − i
∫ t

t0

dt ′Û (t, t ′)

× q[�(t ′) + r · ∂̂t ′A(r, t ′)]ÛA(t ′, t0),

with

i∂̂tÛA(t, t0) = [ξ̂ − qr · ∂̂t A(r, t )]ÛA(t, t0)

as the operator corresponding to the Hamiltonian Eq. (4a).

The gauge covariance can best be understood in the con-
text of above-threshold ionization. There, in particular, the
so-called direct SFA transition amplitude is given by

Mp = lim
t→∞, t0→−∞ 〈�p(t )| Û (t, t0) |�g(t0)〉 .

The final gauge-covariant ionization amplitude is defined by

Mp = −i
∫ ∞

−∞
dt ′ 〈χp(r, t ′)| e−iqr·A(r,t ′ )

× q[�(r, t ′) + r · ∂̂t ′A(r, t ′)] |�g(t ′)〉 , (6)

with the Volkov states χp(r, t ) [22,23]. The gauge covariance
in the dipole regime is seen immediately if we choose either
length gauge �(t ) = 0 or velocity gauge A(t ) = 0. The miss-
ing phase term qrA(t ) in the velocity-gauge Volkov state is
compensated by the exponential factor in front of the Volkov
state in Eq. (6). However, in velocity gauge, the scalar po-
tential vanishes in the absence of free charges, such that the
ionization amplitude reads

Mp = iq
∫ ∞

∞
dt ′ 〈χp(r, t ′)| e−iqr·A(r,t ′ )r · E(r, t ′) |�g(t ′)〉 .

The high-order harmonic process, described within the SFA,
is based on the ionization amplitudes and its complex conju-
gation discussed in this section. Therefore, we can make use
of this gauge invariance of the direct ionization amplitudes to
also apply to high-order harmonic generation.

B. Nondipole Volkov states

In this subsection we will discuss the spatially structured
nondipole Volkov state χp(r, t ) [22,23] and derive an adaption
with which we can formulate a generalization of the nondipole
SFA.

In general the Volkov state is the solution of the TDSE for
a charged particle in an external electromagnetic field,

Ĥle = [ p̂ − qA(r, t )]2

2
. (7)

For electrons with q = −1 the Hamiltonian is referred to as
the laser-electron Hamiltonian. In the context of the SFA, the
atomic binding potential V (r) is omitted since the interaction
with the electron in the continuum results in a minor correc-
tion [16]. The resulting TDSE reads

i∂̂tχp(r, t ) = [ p̂ + A(r, t )]2

2
χp(r, t )

= 1

2
[∇̂2 − 2iA(r, t ) · ∇̂ + A2(r, t )]χp(r, t ), (8)

with a quite general vector potential defined by [23]

A(r, t ) =
∫

d3k AR
k (t ) =

∫
d3k Re[akeiuk ]. (9)

In this expression, the radial and temporal dependencies of the
vector potential are imprinted in the phase uk = k · r − ωkt .
Finally, the continuum states are given by [23]

χp(r, t ) = 1

(2π )3/2
e−i(Ept−p·r)−i
(r,t ), (10)
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with Ep = p2/2 and the nondipole Volkov phase 
(r, t ),
which is explicitly given by Eq. (A2) in Appendix A. The
precise form of the nondipole Volkov phase depends on the
explicit structure of the vector potential, defined in terms of
ak, and needs to be evaluated for any specific case of interest.

A key technique to evaluate SFA amplitudes is the so-
called saddle-point approximation (see Sec. II C below). This
requires the separation of the spatial and temporal contribu-
tions k · r and ωkt , which is still possible for arbitrary laser
field geometries. In the following, we demonstrate the de-
composition for a general term of the nondipole Volkov phase
Eq. (A2) that can be expressed as


i(r, t ) =
∫

d3k′ν (i)
kk′ sin

(
uk′ + �

(i)
kk′

)
, (11)

where ν
(i)
kk′ and �

(i)
kk′ do not depend on r or t . Equation (11) can

be rewritten as


i(r, t ) =
∫

d3k′ν (i)
kk′ cos

(
ωk′t − �

(i)
kk′

)
sin(k′r)

−
∫

d3k′ν (i)
kk′ sin

(
ωk′t − �

(i)
kk′

)
cos(k′r). (12)

Here, we can Taylor expand the trigonometric functions
around zero with regard to k′ · r. This expansion can either be
done before or after the momentum integration without loss of
accuracy. After expanding the trigonometric functions, k′ · r
can always be written as |r||k′| cos(φrk′ ). Shifting |r| j out of
the integral allows one to assign to each term of the expansion
a specific fixed value that depends on the power j. Since this
representation is still exact and the integrand is independent of
r, the result for each order needs to agree with the scenario in
which the integration was done before the Taylor expansion.
However, we want to demonstrate the general procedure of
the decomposition, which is done explicitly for the first term
in Eq. (12):∫

d3k′νkk′ cos(ωk′t − �kk′ ) sin(k′ · r)

=
∞∑
j=0

(−1) j

(2 j + 1)!

(
1

c

)2 j+1

×
∫

d3k′νkk′ω
2 j+1
k′ cos(ωk′t − �kk′ )(ek′ · r)2 j+1.

Since we work within the framework of the (nonrelativistic)
Schrödinger equation, the contributions of terms in the Taylor
expansion decrease quickly with increasing order j. This rapid
decrease allows one to neglect all contributions beyond the
linear order (1/c ⇔ k′ · r). With that in mind, the approxima-
tion of Eq. (12) reads


i(r, t ) ≈ r · �
(r)
i (t ) + 


(t )
i (t )

= r ·
∫

d3k′ν (i)
kk′ cos

(
ωk′t − �

(i)
kk′

)
k′

−
∫

d3k′ν (i)
kk′ sin

(
ωk′t − �

(i)
kk′

)
=

∫
d3k′ν (i)

kk′

(
k′ · r + 1

ωk′
∂̂t

)
cos

(
ωk′t − �

(i)
kk′

)
.

Nevertheless, it can be seen clearly that the only r independent
part is associated with the Taylor expansion of the cosine term
( j = 0). This explicitly demonstrates that only terms of the
form cos(k′ · r) assign an r independent contribution.

Following the above logic, every term in the nondipole
Volkov phase Eq. (A2) can be approximated. Therefore, this
procedure can be applied to any physical laser field within the
limitations of the model itself. As a result, the full nondipole
Volkov phase can be written in the form


(r, t ) ≈
∑

i

r · �
(r)
i (t ) + 


(t )
i (t ) = r · �(r)(t ) + 
(t )(t ).

Moreover, it is convenient to reformulate 
(t )(t ) to perform a
saddle-point approximation


(t )(t ) = p · �p(t ) + 
A(t ), (13)

where the subscript p denotes a particle-field contribution and
the subscript A a field-field contribution.

C. High harmonic generation in the nondipole SFA

Harmonic radiation is the dipole radiation emitted by a
recombining electron with its parent ion. It is defined by its
dipole moment

D(t ) = 〈�(t )| r̂ |�(t )〉 , (14)

with the wave function

|�(t )〉 = ˆ̄Uξ (t, t0) |�g(t0)〉

− i
∫ t

t0

dt ′Û (t, t ′)V̂ξ (t ′) ˆ̄Uξ (t ′, t0) |�g(t0)〉

= eiqr·A(r,t ) |�g(t )〉

− i
∫ t

t0

dt ′Û (t, t ′)V̂ξ (t ′)eiqr·A(r,t ′ ) |�g(t ′)〉 . (15)

The explicit form and definition of the components in this
equation were discussed in Sec. II A. Inserting this wave func-
tion into the dipole moment (14) yields

D(t ) = −i
∫ t

t0

dt ′ 〈�g(t )| eir·A(r,t )rÛ (t, t ′)V̂ξ (t ′)

× e−ir·A(r,t ′ ) |�g(t ′)〉 ,

where continuum-continuum transitions (process of higher or-
der) are neglected. Furthermore, the interaction operator V̂ξ (t ′)
can be written in velocity gauge as

V̂ξ (t ′) = −[�(t ′) + r · ∂̂t ′A(r, t ′)]
�(t ′ )≡0⇒ V̂ξ (t ′) = −r · ∂̂t ′A(r, t ′)

= r · E(r, t ′).

Similar to the dipole SFA, we neglected the atomic core poten-
tial in the continuum which reduces the general time-evolution
operator Û (t, t0) to the time-evolution operator of the dressed
electron

Ûle(t, t0) =
∫

d3 p |χp(r, t )〉 〈χp(r, t0)| . (16)
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Note that the time-evolution operator in Eq. (16) is con-
structed from the spatially structured nondipole Volkov states
in Eq. (10). With this in mind the dipole moment reads

D(t ) = −i
∫ t

−∞
dt ′

∫
d3 p 〈�g(t )| eir·A(r,t )r |χp(r, t )〉

× 〈χp(r, t ′)| r · E(r, t ′)e−ir·A(r,t ′ ) |�g(t ′)〉

= −i
∫ t

−∞
dt ′

∫
d3 p 〈�g(t )| r |π(p, r, t )〉

× 〈π(p, r, t ′)| r · E(r, t ′) |�g(t ′)〉

× e−i
∫ t

t ′ dτ[Ep+∂̂τ 

(t ) (τ )], (17)

with π(p, r, t ) = p + A(r, t ) − �(r)(t ). This always holds for
eigenstates of the atomic Hamiltonian, not only for hydrogen-
like ones. However, to analytically proceed further we restrict
the atomic species to be hydrogenlike such that |�g(t )〉 =
|�g〉 eiIpt holds and the ground state is known. This assumption
allows one to calculate the matrix elements in Eq. (17) analyt-
ically. We define the nondipole matrix element in Eq. (17) as

ϒ(π(p, t )) = 〈π(p, r, t )| r |�g〉
= {

i∂̂β ∂̂γ

[
d
(
π

(R)
βγ (p, t )

) − d
(
π

(I )
βγ (p, t )

)]
+ d(π(p, t ))

}
β=γ=0 + O(1/c2), (18)

with

A(t ) = A(r, t )|k·r=0,

π
(i)
βγ (p, t ) = p + A(t ) − �(r)(t ) + ai

0β + κi(t )γ ,

π(p, t ) = π
(i)
00 (p, t ).

Note that in the standard nondipole SFA π(p, t ) is usu-
ally referred to as the kinetic momentum of the electron,
while ∂̂β ∂̂γ d(π(R)

βγ (p, t )) can be found in Eq. (B7) in Ap-
pendix B with the dummy variables β and γ . Furthermore, a0

is the zeroth-order (nonrelativistic) contribution of the Taylor
expansion of ak with respect to k and δk denotes the nonpoly-
nomial contributions like delta distributions. The superscripts
I and R represent the imaginary and real parts, respectively,
and (i) ∈ {(R), (I )} is an index of π

(i)
βγ (p, t ). Note that A(t ) ≡

A(r, t )|k·r=0 is equal to the dipole vector potential. We define

A(r, t ) = AR(t ) + Re[a0(r · κ(t ))] + O(1/c2)

≈ A(t ) + aR
0 (r · κR(t )) − aI

0(r · κI (t )),

κ(t ) = i
∫

d3k δkk e−iωkt ,

where κ(t ) contributes only if the spectral bandwidth of the
laser field is small. The nondipole ionization amplitude in

the dipole moment (17) can be calculated within a similar
approach to be

〈π(p, r, t ′)| r · E(r, t ′) |�g〉 = [E(t ′) · ϒ(π(p, t ′)) − �(p, t ′)]

+ O(1/c2), (21)

�(p, t ′) = ∂̂β

(
[∂̂t ′κR(t ′)] · d

(
π

(R)
βγ (p, t ′)

)

− [∂̂t ′κI (t ′)] · d
(
π

(I )
βγ (p, t ′)

))∣∣
β=γ=0, (22)

where ∂̂βd(π(i)
βγ (p, t ′)) is defined in Eq. (B6) in Appendix B.

Note that, in �(p, t ′) as defined in Eq. (22), we get an ad-
ditional term in the ionization amplitude compared to the
dipole regime which is associated with the spatial dependent
contribution of the electric field E(r, t ′). However, inserting
Eqs. (18) and (21) into the dipole moment (17) yields

D(t ) = −i
∫ t

−∞
dt ′

∫
d3 pϒ∗(π(p, t ))

× [E(t ′) · ϒ(π(p, t ′)) − �(p, t ′)]e−iS(p,t ′,t ), (23)

S(p, t ′, t ) =
∫ t

t ′
dτ [Ep + ∂̂τ


(t )(τ ) + Ip]. (24)

Using Eq. (13), the argument of the action S reads

Ep + ∂̂τ

(t )(τ ) + Ip = p2

2 + p · ∂̂τ�p(τ ) + ∂̂τ 
̃A(τ ) + Ip.

To evaluate the crucial contributions to the momentum inte-
gral in Eq. (23), we perform a saddle-point approximation of
the momentum integral. The momentum needs to obey the
saddle-point condition such that

0 = ∇̂pS = ∇̂p

∫ t

t ′
dτ [Ep + ∂̂τ


(t )(τ ) + Ip],

0 =
∫ t

t ′
dτ ps[1 + ∂̂τ (∇p · �p)] + ∂̂τ (�p + ∇̂p · 
A), (25)

where �p and 
A defined in Eq. (13) can be decomposed as

p · �p = 

(t )
1 + 


(t )
3 , 
A = 


(t )
2 + 


(t )
4 + 


(t )
5 .

In the dipole SFA 

(t )
1 and 


(t )
2 are associated with the

physical contributions p · A(t ) and A(t )2, respectively. The
contributions 


(t )
i for i ∈ {3, 4, 5} are the respective weakly

relativistic corrections in the nondipole SFA. Since �p and

A are still momentum dependent due to the factor ηk, the
solution of the saddle-point equation (25) is nontrivial. Taylor
expanding ηk allows one to iteratively solve Eq. (25) to an
arbitrary order of accuracy with the ansatz p = ∑∞

i=0 pi and
pi ∝ 1/ci. However, since our model only accounts for correc-
tions up to 1/c in Eq. (25) the general saddle-point momentum
ps results as

ps(t, t ′) ≡ ps = p0 + 1

t − t ′

[∫
d3k k

[
p0 · AI

k(τ )
]

ω2
k

+ AI
k(τ )

(p0 · k)

ωk
− I(τ )

]t

τ=t ′
, (27a)

I(t ) =
∫

d3k
∫

d3k′
(

ωk′AR
k (t )

[
k · AI

k′ (t )
] − ωkAI

k(t )
[
k · AR

k′ (t )
]

ωk(ω2
k − ω2

k′ )
+

[
2ωkωk′k′ − (ω2

k + ω2
k′ )k

][
AR

k (t ) · AI
k′ (t )

]
(ω2

k − ω2
k′ )2

)
, (27b)
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with the nonrelativistic saddle-point momentum

p0(t, t ′) ≡ p0 = 1

t − t ′

∫
d3k

AI
k(τ )

ωk

∣∣∣∣
t

τ=t ′

= − 1

t − t ′

∫ t

t ′
dτ AR(τ ). (28)

Note that both denominators in Eq. (27b) can induce singular-
ities. For specific laser field configurations it is beneficial to
reformulate the real and imaginary parts of the vector potential
similarly to Eq. (A2) and integrate the remaining k and k′

dependent expression.
After performing the saddle-point approximation the

dipole momentum reads

D(t ) = −i
∫ t

−∞
dt ′

√
(2π i)3

|H p(S)|
p=ps

× [E(t ′) · ϒ(π(ps, t ′)) − �(ps, t ′)]

× ϒ∗(π(ps, t ))e−iS(ps,t
′,t ), (29)

where H p(S) is the Hessian matrix of the action S Eq. (24)
with respect to the momentum p. Fourier transforming
Eq. (29) yields the induced atomic dipole momentum of the
harmonic order q

D(ωq) = −i
∫ ∞

−∞
dt

∫ t

−∞
dt ′

√
(2π i)3

|H p(S)|
p=ps

× [E(t ′) · ϒ(π(ps, t ′)) − �(ps, t ′)]

× ϒ∗(π(ps, t ))e−i�(ps,t
′,t ), (30)

with �(ps, t ′, t ) = ∫ t
t ′ dτ [Eps

+ ∂̂τ

(t )(τ ) + Ip] − ωqt . The

remaining temporal integrals can again be evaluated using
saddle-point approximations, where t and t ′ obey the saddle-
point equations

∂̂t/t ′�(ps, t ′, t ) = 0, ⇒ Eps
+ ∂̂t


(t )(ts) = ωq − Ip,

⇒ Eps
+ ∂̂t ′
(t )(t ′

s ) = −Ip.

The final expression of the dipole moment D(ωq) then
reads

D(ωq) = −i
∑

s

√
(2π i)5

|H t,t ′ (S)||H p(S)|
(p,t ′,t )=s

× [ER(t ′
s ) · ϒ(π(ps, t ′

s )) − �(ps, t ′
s )]

× ϒ∗(π(ps, ts))e−i�(ps,t
′
s,ts ), (32)

with the saddle points s = (ps, t ′
s, ts). Equations (29) and (32)

denote the main results of this work. With these equations,
one can calculate the atomic dipole moment for any beam
alignment up to the first relativistic correction, which is a
unique feature of the GN-SFA.

D. GN-SFA for elliptically polarized plane waves

In this subsection, we will explicitly apply the derived
theoretical framework to an elliptically polarized plane wave
which is denoted by sub- or superscript e. The respective

complex amplitude ak of the vector potential (9) is defined
as

ae
k = a0δ(k − k0) = A0√

1 − ε2
(ex + iεey)δ(k − k0),

κe(t ) = ik0e−iωk0 t .

The momentum vector k0 of the resulting laser field is
orthogonal to the polarization plane, such that terms that are
proportional to k0Ak0 vanish in the nondipole Volkov phase.
Explicitly the full nondipole Volkov phase (A2) can be re-
duced to


(r, t ) = 
e
1(r, t ) + 
e

2(r, t )

≈ r · [
�

e,(r)
1 (t ) + �

e,(r)
2 (t )

] + p · �e,(t )
p (t ) + 


e,(t )
A (t ),

with p · �e
p = 


e,(t )
1 and 
A = 


e,(t )
2 . Furthermore, the specific

terms 

e,(r/t )
i of the nondipole Volkov phase can be explicitly

written as



e,(t )
1 (t ) = −

∫ t

dτ
ωk0

ηk0

[
p · AR

k0
(τ )

]
,



e,(t )
2 (t ) = −

∫ t

dτ
ωk0

ηk0

[
AR

k0
(τ )

]2

2
,

�
e,(r)
1 (t ) = k0

ηk0

[
p · AR

k0
(τ )

]
,

�
e,(r)
2 (t ) = k0

ηk0

[
AR

k0
(τ )

]2

2
.

With that in mind, we can express the saddle-point momen-
tum pe

s as

pe
s = p0 − ek0

c

∫ t

t ′
dτ

(
p0 · AR

k0
(τ ) + 1

2

[
AR

k0
(τ )

]2

(t − t ′)

)
, (35)

with ek0 as the unit vector of momentum k0 and
the saddle-point momentum in the dipole regime pe

0 =
− 1

t−t ′
∫ t

t ′ dτ AR
k0

(τ ). Note that the Hessian matrices can be
calculated by any computer algebra software and are not fur-
ther discussed in this work. The remaining variables of the
atomic dipole moment can be found in Appendix C. The final
expression of the dipole moment for an elliptical polarized
monochromatic plane wave is defined as

De(ωq) = −i
∑

s

√
(2π i)5

|He
t,t ′ (S)||He

p(S)|
(p,t ′,t )=s

× ϒ∗
e

(
πe

(
pe

s, ts
))[

ER
k0

(t ′
s ) · ϒe

(
πe(pe

s, t ′
s )

)]
× e−i�e(pe

s ,t
′
s,ts ). (36)

III. DISCUSSION

In the section above, we motivated and introduced a
generalized SFA for high-order harmonic generation which
incorporates weakly relativistic effects of arbitrarily spatially
structured light fields. The GN-SFA includes relativistic cor-
rections up to 1/c such that higher-order terms are neglected.
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This section reviews the formal difference between the GN-
SFA to the standard nondipole SFA along with an explicit
example of a linearly polarized plane wave.

The weakly relativistic regime yields a significant contribu-
tion for high intensities and long wavelengths compared to the
standard conditions of I0 = 1014 W/cm2 and Ip = 15.75 eV
(Ar). For such high intensities and long wavelengths, the
effect of ground-state depletion can cause essential deviations.
The parameters chosen in this work are selected such that
the ground-state depletion can be neglected. Nevertheless, in
general, the depletion of the ground state cannot be neglected
and needs to be considered.

A. Formal discussion of the GN-SFA

In order to discuss the GN-SFA in general, we com-
pare the specific mathematical structure of this model with
other nondipole SFA theories and discuss the newly occur-
ring contributions and the modified ones with regard to their
physical interpretation. Even though other nondipole theories
exist, we will compare our approach to the model of Kylstra
et al. [14,15] and refer to it as standard nondipole SFA. In
the following we highlight the four major differences in the
mathematical formulation of the atomic dipole moment (32).

(i) The term �(p, t ) is a unique feature of the GN-SFA
and denotes a weakly relativistic correction [κ(i)(t ) ∝ 1/c].
�(p, t ) is only nonzero for either noncollinear multibeam
alignments or spatially structured beams. From a mathemat-
ical perspective this can be interpreted as follows: �(p, t )
vanishes if κ(t ) is orthogonal to d(π(i)

β0(p, t )), where only

the nonrelativistic contributions of d(π(i)
β0(p, t )) need to be

considered.
(ii) Instead of the nonrelativistic dipole moment d(p +

A(t )) the GN-SFA generalizes the transition matrix element
to a nondipole or weakly relativistic dipole matrix element
ϒ(π(p, t )), which is defined in Eq. (18). Therefore, the gen-
eral structure remains the same apart from the redefinition of
the associated matrix element.

(iii) A remarkable difference with respect to the stan-
dard nondipole SFA can be found in the action S(p, t ′, t ) in
Eq. (24). As seen from the integrand in Eq. (24) the action
cannot be rewritten as the square of the respective kinetical
momentum since the square of the relativistic correction of
the kinetical momentum that is proportional to 1/c2 is not
included. The reason for this surprising behavior lies in the
initial approach of the GN-SFA where we approximated the
full solution of the TDSE for the minimal coupling Hamilto-
nian (7) to the first relativistic order. In contrast, the standard
nondipole SFA constructs the solution of their respective
Volkov states by approximating the kinetical momentum up to
the first relativistic order which after squaring reveals a contri-
bution in the action that is proportional to 1/c2. Especially this
contribution seems to be essential for very high wavelengths
and field intensities. One approach to solve this issue is to
calculate the nondipole Volkov phase up to the second order
to include the contributions of the order 1/c2. Nevertheless,
further investigations in this direction are beyond the scope of
this work and offer interesting tasks and questions for further
theoretical investigations.

(iv) Perhaps the most important difference between the
GN-SFA and the standard nondipole SFA is the spatial struc-
ture of the laser field. The standard nondipole SFA restricts the
laser field geometry to a specific setup, whereas the GN-SFA
does not. Thus our theoretical framework holds for any type
of light field. Explicitly this means that the standard nondipole
SFA is not able to consider multiple noncollinear laser fields
and also does not incorporate twisted light fields. The latter,
in particular, are interesting due to their topological charge
which may induce interesting features like the violation of the
selection rules for even and odd harmonics as demonstrated
in [24].

B. Explicit application of the GN-SFA

The weakly relativistic correction to the dipole Volkov
state in strong-field physics can be interpreted as a finite
photon momentum [25] or as the occurrence of a nonvanish-
ing magnetic field that induces a Lorentz force perpendicular
to the propagation direction [26]. Overall, these nondipole
contributions lead to a decrease in the recombination rate
for high-order harmonic generation and therefore a decrease
in the harmonic yield. This decrease can also be detected
in the high-order harmonic spectrum, where the x component
of the GN-SFA dipole moment DND

x (green dash-dotted) is
suppressed compared to the dipole moment of the SFA DD

x
(blue dotted); see Fig. 2. DND

z (red dashed) refers to the
component of the atomic dipole moment in the propagation di-
rection which is directly linked to the nondipole contributions
of the laser field. The two global peaks in the components
DND

x and DND
z at q = 13000 and q = 5500 are remarkable

since they do not occur in the dipole theory. A further feature
can be seen when we focus on the high-order harmonic cutoff
region in the inset of Fig. 2. One can see that the cutoff is
marginally shifted towards lower energy. The standard cutoff
law with the maximum photon energy of Emax = Ip + 3.2Up

is nevertheless still valid since the energetic shift is small
compared to the cutoff energy itself.

The decrease of the atomic dipole momentum with respect
to the intensity I0 of the laser field and the associated wave-
length λ is demonstrated in Fig. 3. Here, we show the ratio R
between the coherent sum of the dipole moments calculated
from the dipole SFA and the GN-SFA with

R =
∣∣ ∫ qmax

qmin
dq DND(q)

∣∣∣∣ ∫ qmax

qmin
dq DD(q)

∣∣ , (37)

where DD(q) denotes the atomic dipole momentum in the
standard SFA theory and DND(q) the corresponding atomic
dipole moment from the GN-SFA of Eq. (32). In Fig. 3(a)
we set the laser field intensity I0 = 2 × 1014 W/cm2 for a
neon target with ionization potential Ip = 21.56 eV, while
we consider in Fig. 3(b) the wavelength to be λ = 800 nm
with a doubly ionized lithium target Ip = 122.45 eV (Li2+).
Note that the ADK ionization rates in both setups are lower
than 0.1%. These low ionization rates validate our assump-
tion to neglect the ground-state depletion. The insets show
the harmonic spectrum close to the cutoff region for the re-
spective parameters (I0 = 4 × 1016 W/cm2, λ = 800 nm and
I0 = 2 × 1014 W/cm2, λ = 6800 nm) denoted by the purple
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D
D
x

D
ND

z

Dx
ND

|D
|2

(a
.u

.)

Harmonic order q

Harmonic order q

|D
|2

(a
.u

.)
FIG. 2. High harmonic spectrum of a linearly polarized laser field with a rectangular peak envelope I0 = 2 × 1014 W/cm2 over one

fundamental period T0, a wavelength of λ = 7400 nm, and the ionization potential Ip = 21.56 eV (Ne). The atomic dipole moment in the
x and y direction is calculated within the GN-SFA and denoted by DND

x/z , where the atomic dipole moment from the dipole SFA is defined as
DD

x .

star. In both subfigures, we can see the decrease in the ratio
R either by the orange curve or in the inset by the decrease in
the atomic dipole spectrum.

IV. CONCLUSION

In this work, a generalized version of the well-known
nondipole SFA [14] was introduced in order to formally ex-
tend high-order harmonic generation to the weakly relativistic
regime. To do so, we set up a new framework to define a
generalized formula of the atomic dipole moment. In our
derivation, the spatial and temporal structure of the laser field

is not explicitly specified. This general treatment of the laser
field allows one, in contrast to previous approaches, to in-
clude noncollinear arbitrarily spatially structured multibeam
alignments. The generalized nondipole SFA (GN-SFA) is a
rigorously derived theoretical framework and is analytically
exact up to the first relativistic order. The atomic dipole mo-
ment in the GN-SFA is analogous to the formulation in the
standard SFA which allows one to work and think about physi-
cal processes and phenomena in a similar way in both theories.
As an application, we used the GN-SFA to explicitly discuss
the decrease in the high-order harmonic yield for weakly
relativistic laser field parameters and compare the results with

FIG. 3. Visualization of the decrease in the atomic dipole moment with regard to the laser field wavelength λ and the intensity I0,
respectively. We consider a rectangular pulse envelope of the driving beam and a pulse duration of one fundamental period T0. (a) Wavelength
dependent ratio (orange solid) of the coherent sum in Eq. (37) with ionization potential Ip = 21.56 eV (Ne). The atomic dipole and nondipole
momenta are calculated within the SFA and the GN-SFA [Eq. (36)], respectively. The inset shows the harmonic spectrum close to the respective
cutoff region with fixed intensity I0 = 2 × 1014 W/cm2 and wavelength λ = 6800 nm (purple star). DND

x (green dash-dotted) and DND
z (red

dashed) are associated with the atomic dipole moment calculated within the GN-SFA for the x and z directions, respectively. The atomic
dipole moment in the usual dipole SFA is denoted by DD

x (blue dotted). (b) Atomic dipole moment as a function of the beam intensity I0 for a
wavelength of λ = 800 nm and the ionization potential Ip = 122.45 eV (Li2+). The laser field parameters in the inset are I0 = 4 × 1016 W/cm2

and λ = 800 nm (purple star).
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the dipole SFA. Here, we chose the simple case of a linearly
polarized plane wave even though more complicated beam
geometries can be considered. The results are discussed and
compared with regard to the standard nondipole SFA and the
dipole SFA.

This work contributes an important step towards a more
detailed theoretical understanding of nondipole effects con-
sidering the strong-field approximation of high-order har-
monic generation. In particular, the decomposition method
of the continuum nondipole Volkov states can be generically

extended by further correction terms of the nondipole Volkov
phase to potentially incorporate crucial contributions that may
extend the supported parameter interval.
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APPENDIX A: NONDIPOLE VOLKOV PHASE

The nondipole Volkov phase 
(r, t ) is defined in terms of several k-dependent functions, which are implicitly defined by the
following equations:

p · AR
k (t ) = λk cos(uk + θk), (A1a)

−k · AR
k′ (t ) = σkk′ cos(uk′ + ξkk′ ), (A1b)

1

4
ak · ak′ = �+

kk′ exp(iθ+
kk′ ), (A1c)

1

4
ak · a∗

k′ = �−
kk′ exp(iθ−

kk′ ), (A1d)

ηk = p · k − ωk, (A1e)

α±
kk′ = �±

kk′

ηk ± ηk′
, (A1f)

ρk = λk

ηk
. (A1g)

In Eq. (A1a) the product of p and the momentum dependent vector potential AR
k is expressed as a scalar. The same follows in

Eq. (A1b) for k · AR
k′ , while Eqs. (A1c) and (A1d) together are associated with the product AR

k · AR
k′ . Equation (A1e) introduces a

factor which is unique to the GN-SFA and arises in the solution of the TDSE from the nondipole Volkov states, while Eqs. (A1f)
and (A1g), on the other hand, are short hand notations.

In terms of these expressions, the complete nondipole Volkov phase has the form


(r, t ) =
5∑

i=1


i, 
1(r, t ) =
∫

d3k ρk sin(uk + θk), (A2a)


2(r, t ) =
∫

d3k
∫

d3k′[α+
kk′ sin(uk + uk′ + θ+

kk′ ) + α−
kk′ sin(uk − uk′ + θ−

kk′ )], (A2b)


3(r, t ) =
∑
±

1

2

∫
d3k

∫
d3k′σkk′ρk

sin(uk ± uk′ + θk ± ζkk′ )

ηk ± ηk′
, (A2c)


4(r, t ) =
∑
±

∫
d3k

∫
d3k′

∫
d3k′′σkk′α+

kk′′

(
sin(uk ± uk′ + uk′′ + θ+

kk′′ ± ξkk′ )

ηk ± ηk′ + ηk′′

)
, (A2d)


5(r, t ) =
∑
±

∫
d3k

∫
d3k′

∫
d3k′′σkk′α−

kk′′

(
sin(uk ± uk′ − uk′′ + θ−

kk′′ ± ξkk′ )

ηk ± ηk′ − ηk′′

)
, (A2e)

where Eqs. (A2a) and (A2b) are associated with the standard dipole contributions p · AR
k and AR

k · AR
k′ . Moreover, Eqs. (A2c)–

(A2e) are the nondipole contributions since the σkk′ in Eq. (A1b) is proportional to 1/c.

APPENDIX B: NONDIPOLE SFA

In the following, we give a short derivation of the nondipole matrix element ϒ(π(p, t )) and the dipole matrix element
d(π(p, t )). Both follow directly from the definition of the vector potential:

A(r, t ) = A(r, t )|kr=0 + aR
0 (r · κR) − aI

0(r · κI ) + O(1/c2), (B1)
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ϒ(π(p, t )) = C
∫

d3r e−|r|
√

2Ipr e−ir·[p+A(r,t )−�(r)]

= C
∫

d3r e−|r|
√

2Ipr e−ir·[p+A(r,t )|k·r=0+aR
0 (r·κR )−aI

0(r·κI )−�(r)] + O(1/c2)

= C
∫

d3r e−|r|
√

2Ipr e−ir·[p+A(t )−�(r)]
[
1 − i(r · aR

0 )
(
r · κR

) + i
(
r · aI

0

)
(r · κI )

] + O(1/c2), (B2)

⇒ d(π(p, t )) = C
∫

d3r e−|r|
√

2Ipr e−ir·π(p,t ). (B3)

In Eq. (B1) the definition of the weakly relativistic vector potential is given and inserted in Eq. (B2) followed by an expansion
of the exponential which is proportional to 1/c. Moreover, d(π(p, t )) is the dipole matrix element of hydrogenlike atoms and is
defined in Eq. (B3). With this in mind, we can rewrite the nondipole matrix element as

ϒ(π(p, t )) = d(π(p, t )) − iC
∫

d3r e−|r|
√

2Ipr e−ir·π(p,t )
[(

r · aR
0

)
(r · κR) − (

r · aI
0

)
(r · κI )] + O(1/c2) (B4)

⇒ ±(−i)C
∫

d3r e−|r|
√

2Ipr e−ir·π(p,t )e−iβr·aR/I
0 e−iγ r·κR/I (

r · aR/I
0

)
(r · κR/I )

∣∣
β=γ=0

= ±i∂β∂γC
∫

d3r e−|r|
√

2Ipr e−ir·π(p,t )e−iβr·aR/I
0 e−iγ r·κR/I ∣∣

β=γ=0

= ±i∂β∂γ d
(
π(p, t ) + βr · aR/I

0 + γ r · κR/I)∣∣
β=γ=0

= ±i∂β∂γ d
(
π

R/I
βγ (p, t )

)∣∣
β=γ=0

⇒ ϒ(π(p, t )) = d(π(p, t )) + i∂β∂γ

[
d
(
πR

βγ (p, t )
) − d

(
πI

βγ (p, t )
)] + O(1/c2). (B5)

In the calculation step from Eq. (B4) to Eq. (B5), we introduced the dummy variables β and γ in the argument of a complex
exponential to express the second factor of Eq. (B2) as the derivative of the complex exponential with regard to the dummy
variables. Due to this reformulation, we can define the nondipole matrix element as done in Eq. (B5):

∂̂βd
(
π

(i)
βγ

)∣∣
β=γ=0 = 219/4I5/4

p

π

(
ai

0

(π2 + 2Ip)3 − 6
π
(
π · ai

0

)
(π2 + 2Ip)4

)
, (B6)

∂̂β ∂̂γ d
(
π

(i)
βγ

)∣∣
β=γ=0 = −219/4I5/4

p

π

(
6
κi

(
π · ai

0

) + ai
0(π · κi ) + π

(
κi · ai

0

)
(π2 + 2Ip)4 − 48

π(π · κi )
(
π · ai

0

)
(π2 + 2Ip)5

)
. (B7)

In these two equations, we explicitly derived the terms that occur in the nondipole matrix element (18) and the nondipole
component of the electric field (22) from the nondipole ionization amplitude (21) with π ≡ π00.

APPENDIX C: NONDIPOLE SFA FOR ELLIPTICAL POLARIZED PLANE WAVES

The remaining variables for an elliptically polarized plane wave are easily calculated from their general definition as

AR
k0

(t ) = A0√
1 + ε2

⎛
⎝ cos(ωt )

ε sin(ωt )
0

⎞
⎠, (C1)

ER
k0

(t ) = −∂̂t AR
k0

(t ), (C2)

π(p, t ) = p + AR
k0

(t ) − k0

ηk0

([
p · AR

k0
(t )

] +
[
AR

k0
(t )

]2

2

)
, (C3)

ϒ(π(p, t )) = d(π(p, t )) − 6
ek0

c

[
d(π(p, t )) · ER

k0
(t )

]
π(p, t )2 + 2Ip

, (C4)

�(p, t ′) = 0, (C5)

�(ps, t ′, t ) =
∫ t

t ′
dτ

[
p2

s

2
− ωk0

ηk0

([
ps · AR

k0
(τ )

] +
[
AR

k0
(τ )

]2

2

)
+ Ip

]
− ωqt, (C6)
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where Eqs. (C1) and (B2) denote the real part of the momentum-dependent vector potential and electric field, respectively.
Equation (C3) can be interpreted as the kinetic momentum of the continuum electron. Where in Eq. (C4) the explicit form of
the nondipole matrix element is defined, the weakly relativistic correction to the nondipole ionization amplitude in Eq. (C5)
vanishes. Finally the complex exponential incorporating the action in Eq. (24) can be read off in Eq. (C6).
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