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High-order harmonic generation (HHG) in atomic systems by the highly nonlinear response to an intense laser
field is a prominent pathway to the synthesis of ever shorter laser pulses at increasingly higher photon energies.
Extensions of this process to molecules add to the complexity but also offer novel opportunities as multicenter
effects and the coupling to nuclear degrees of freedom can influence HHG. In this paper, we theoretically explore
the impact of coherent vibrational excitations of diatomic molecules on the HHG spectrum within the framework
of time-dependent density-functional theory. We observe the appearance of interference structures in the HHG
spectra controlled by resonances between the driving field and the vibrational wave packet.
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I. INTRODUCTION

High-order harmonic generation (HHG) represents one of
the major gateways towards obtaining spatially and tempo-
rally coherent extreme ultraviolet radiation light sources with
unique properties for a wide range of applications [1–7].
HHG has enabled the study of structural and dynamical in-
formation of matter and control of nuclear and electronic
dynamics on their natural time scales [8–10]. The nonlinear
process of HHG from atoms is well understood in terms
of the three-step model [11,12] in which electrons are first
released from the ground state of the atom to the contin-
uum by tunneling, are then accelerated by the laser electric
field, and finally recombine with the parent ion. Numerical
simulations for this process have been performed by a large
variety of theoretical methods for solving the time-dependent
Schrödinger equation (TDSE) including the single-active
electron (SAE) approximation [13,14], the grid-based ex-
act numerical solution of the two-electron TDSE for helium
[15–17], time-dependent density-functional theory (TDDFT)
[18] applied to multielectron atoms on the mean-field level
[19], the multiconfiguration time-dependent Hartree-Fock ap-
proach [20] including correlation effects beyond TDDFT, and,
more recently, the time-dependent two-particle reduced den-
sity matrix method [21] bypassing the need for representing
the N-electron wave function.

Extensions to molecular systems pose new challenges as
the coupling between electronic and nuclear degrees of free-
dom and multicenter interference effects have to be included.
The extension of the three-step or Lewenstein model [22]
to include nuclear degrees of freedom provides a helpful
guide and physical insight into the influence of the nuclear
motion on the HHG process [23]. Early numerical simu-
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lations of HHG in molecular systems have employed the
Born-Oppenheimer (BO) approximation, specifically in the
fixed-ion approximation with the nuclei placed at the minima
of the ground-state BO potential surface. Initially, the effect of
nuclear motion on the HHG process was theoretically studied
only for small systems employing either the SAE approxima-
tion or reduced-dimension models for two-electron molecules
(H2, D2) [23–29]. These theoretical studies predict that the
nuclear motion leads to a reduction of the harmonics yield
[23,25]. The signature of nuclear motion has been seen in the
time profiles of high-order harmonics from H2 by Bandrauk
et al. [26]. For high laser intensities (I ≈ 1 PW/cm2) where
multielectron processes become important the nuclear motion
shortens the part of the attosecond pulse train that originates
from ionization of the first electron and facilitates the onset
of the contribution from the release of the second electron for
longer pulses. For lower laser intensities (I ≈ 0.1 PW/cm2),
electron excitation due to recollision of the returning elec-
tron was observed in the time profile of the attosecond pulse
[27,30]. Comparing the experimental HHG signals from H2

with those from heavier molecules (N2) as well as the atomic
HHG signal from Ar, all three systems of which feature very
similar ionization potentials, has demonstrated that, indeed,
the nuclear motion between the ionization and recombination
steps leads to an effective suppression of the HHG yield and to
a broadening of the harmonic signal [31]. Moreover, in addi-
tion to the amplitude reduction a frequency modulation, most
prominently a redshift of the HHG peaks, has been observed
for longer pulses [32,33]. A reduction of the harmonic yield
has also been observed in the calculation by Chu and Groe-
nenboom [34] when accounting for the spread of the wave
function of the unperturbed vibrational ground state. This
approach could reproduce the isotope effect on the HHG spec-
trum even without explicitly including the motion of nuclei.
Moreover, retrieving the nuclear motion of H2 and D2 from the
harmonic spectra with sub-fs time resolution has been demon-
strated theoretically [23] and experimentally [10,35]. Nuclear
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motion reconstruction from experimental HHG signals can be
achieved by recording either the ratio of harmonic intensities
[35] or the observed frequency shift in HHG signals induced
by nuclear motion [10]. TDDFT allows the simulation of
HHG for large multielectron molecules [36–41]. While most
earlier applications used the fixed-ion approximation, more
recent implementations have accounted for nuclear motion by
solving concurrently the classical equations of motion for the
ions within the framework of Ehrenfest dynamics [42–47].

In a pioneering experimental study, Li et al. [48] explored
in a pump-probe setting the role of molecular motion in HHG
in the presence of vibrational excitations rather than in the
ground state. Exciting the N–N stretch mode of the N2O4

molecule they could identify the dependence of the HHG on
the phase of vibration with a peak of HHG emission occurring
near the outer turning point of the vibration. Motivated by this
advance, we theoretically study in the present paper the effects
of the excitation of quasiclassical vibrational wave packets on
the HHG spectrum of several diatomic molecules (H2, N2,
F2, and HF). We treat the problem in its full dimensionality
and include multielectron effects on the level of TDDFT for
molecules with up to 14 active electrons. We include the
coupling between the electronic and the vibrational degrees
of freedom of the nuclei by solving the Kohn-Sham equa-
tions of TDDFT in the presence of the classical motion of
nuclei determined by the time-dependent mean field. We go
beyond this standard Ehrenfest-TDDFT by including quantum
effects of the moving and spreading vibrational wave packet
on the induced high-order harmonic radiation field. One of our
key findings is that resonance structures appear in the HHG
spectra of molecules when the frequencies of vibrational mo-
tion and of the infrared (IR) laser field driving the electronic
dynamics are commensurate to each other.

In Sec. II we review the theoretical background and
computational methods employed in our simulations. A com-
parison between HHG spectra with and without accounting
for the nuclear degrees of freedom is given in Sec. III. The
case of resonant driving by commensurate frequencies be-
tween laser field and coherently excited vibrational wave
packets is investigated in Sec. IV. Conclusions drawn from
our results are discussed in Sec. V. Atomic units (e = me =
h̄ = 1 a.u.) are used throughout the paper unless stated other-
wise.

II. THEORETICAL BACKGROUND
AND SIMULATION METHODS

In this section, we briefly review the theoretical back-
ground and the implementation of the present simulation
of high-order harmonic spectra for multielectron diatomic
molecules with the aim to approximately account for the cou-
pling between the electronic and nuclear degrees of freedom.
The starting point of the present approach is the well-
established Ehrenfest-TDDFT within which the ionic motion
follows the classical equations of motion with forces self-
consistently determined from the time-dependent electronic
density propagated by TDDFT. We go beyond the purely
classical description of the ionic motion by accounting for
the influence of the motion and shape of the vibrational wave
packet on the high-order harmonic generation. We present

first applications of this approach to HHG in the presence
of the excitation of near-minimum uncertainty Schrödinger
(or Glauber) wave packets which closely follow the classical
vibrational motion.

A. HHG in diatomic multielectron molecules

We consider diatomic molecules subject to the interaction
of strong and short few-cycle laser pulses aligned parallel to
the molecular axis (ẑ) and defined by

�E (t ) = E0 fenv(t ) sin[ωLt] êz (1)

with E0 the peak electric field, fenv(t ) the normalized pulse-
envelope function, and ωL the laser frequency. We use pulses
with a trapezoidal envelope with one cycle ramp on, 4 to
12 cycles constant amplitude, and one cycle ramp off. We
consider in the following moderate laser intensities with peak
values I0 � 1014 W/cm2 (peak amplitude E0 = 0.053 a.u.)
such that the total ionization probability during the interaction
with the ultrashort pulses remains small (<0.01%). We vary
the infrared wavelength λL to probe for resonance effects.

The Hamiltonian of the molecule in the external field is
given by

H ( �R, �r, t ) = Tn( �R) + Vnn( �R) + Hel( �R, �r) + Vext (�r, t ) (2)

with �r = (�r1, . . . , �rN ) denoting all electronic coordinates, �R =
( �R1, �R2) the nuclear (or ionic core) coordinates, and

Vext (�r, t ) =
N∑

i=1

�ri · �E (t ) (3)

the interaction with the laser field in dipole approximation
and length gauge. Hel( �R, �r) represents the Hamiltonian of the
molecular N-electron system including the electron-nucleus
interactions Vne( �R, �r), Vnn( �R) denotes the nucleus-nucleus (or
core-core) interactions, and Tn( �R) abbreviates the nuclear
kinetic energy. In the special case of a diatomic molecule
considered in the following, neglecting the rotational degrees
of freedom (i.e., for total nuclear angular momentum �N = 0),
and focusing on the vibrational degree of freedom, the kinetic
energy depends, after separating the center-of-mass motion,
only on the relative coordinate R = | �R1 − �R2|, T (R). The
exact solution to the time-dependent Schrödinger equation of
the molecule

i
∂

∂t
�( �R, �r, t ) = H ( �R, �r, t )�( �R, �r, t ) (4)

depends, in general, on all nuclear ( �R) and electronic (�r) coor-
dinates. In the present case, the dependence on coordinates is
reduced to �(R, �r, t ).

Using the classical Larmor formula for radiation emitted
by accelerated charges well justified for strong-field driven
electron dynamics, the high-harmonic spectrum is calculated
from the dipole acceleration a(t ) = d̈ (t ) of the electrons:

S(ω) = 3

2πc3
|�a(ω)|2. (5)

The time-dependent dipole moment (TDDM) �d (t ) is given in
terms of the diagonal matrix elements of the electronic dipole
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operator by

�d (t ) = 〈�(t )|
N∑

i=1

�ri|�(t )〉. (6)

The frequency dependence of �d (t ) follows from the Fourier
transform

�d (ω) = 1

T

∫ T

0
dt e−iωt �d (t ) (7)

and the acceleration entering Eq. (5) from

�a(ω) = −ω2 �d (ω). (8)

For later reference, we note that the application of this classi-
cal Larmor formula is expected to fail in the perturbative limit
and for spontaneous emission accompanied by the radiative
decay of excited states [49].

B. Ehrenfest-TDDFT for HHG

The starting point of our approximate treatment of
the coupled electronic and nuclear dynamics in the laser-
driven diatomic molecule is the exact factorization of the
time-dependent wave function demonstrated by Gross and
coworkers [50,51]:

�(R, �r, t ) = χ (R, t )�R(�r, t ). (9)

Despite the complete factorization at any instance of time
reminiscent of the Born-Oppenheimer separation, the time
evolution of the nuclear wave function χ (R, t ) and of the
electronic wave function �R(�r, t ) are fully coupled as these
wave functions obey a system of coupled effective time-
dependent Schrödinger-like equations containing generalized
time-dependent potential-energy surfaces and the Berry con-
nection [50,51]. A direct solution of this complicated system
of equations has, to our knowledge, not yet been achieved
for any realistic multielectron system in three dimensions.
The recently introduced time-dependent Born-Oppenheimer
(TDBO) approximation [52] also uses a similar factoriza-
tion [Eq. (9)]. However, while the resulting approximate
effective Schrödinger equation for the nuclear wave func-
tion χTDBO(R, t ) incorporates information on the motion
of the electronic wave packet, the electronic wave function
�TDBO

R (�r, t ) is calculated for a given R treated as a fixed
parameter in line with the Born-Oppenheimer assumption
that the fast electronic dynamics is approximately decoupled
from the much slower nuclear motion. Accordingly, the back
coupling of the motion of the nucleus onto the electronic
dynamics is neglected.

Using the factorization Eq. (9) the exact TDDM reads

�d (t ) =
∫

dR |χ (R, t )|2(�R(�r, t )

∣∣∣∣∣
N∑

i=1

�ri

∣∣∣∣∣�R(�r, t )). (10)

Here and in the following, we use rounded brackets to indicate
matrix elements in which only the electronic coordinates are
integrated over. Note that the exact TDDM [Eq. (10)] can be
viewed as the average of the electronic dipole matrix element
weighted by the nuclear probability density.

In our simulations we approximate the electronic wave
packet in terms of a TDDFT solution, i.e., �R(�r, t ) �

�TDDFT
R (�r, t ). Accordingly, the electronic wave function is

represented by a Slater determinant of time-dependent single-
particle Kohn-Sham (TDKS) orbitals φi(�r, t ). The latter are
the solutions of the single-particle TDKS equations

i
∂

∂t
φi(�r, t ) = [− 1

2∇2 + VH(�r, t ) + Vxc(�r, t )

+ Vne(�r, �R1, �R2, t ) + Vext (�r, t )
]
φi(�r, t ). (11)

In Eqs. (11), VH(�r, t ) and Vxc(�r, t ) are the Hartree
and exchange-correlation potentials, respectively, self-
consistently determined by the time-dependent electronic
density n(�r, t ) which for a system containing N electrons is
given by

n(�r, t ) =
N∑

i=1

|φi(�r, t )|2. (12)

For Vne we use the Hartwigsen-Goedecker-Hutter pseu-
dopotentials in local-density approximation (LDA) for H2,
N2, and HF [53] and for F2 an optimized norm-conserving
Vanderbilt pseudopotential in the Perdew-Burke-Ernzerhof
generalized gradient approximation (GGA) [54,55]. As de-
scribed in more detail below, self-interaction corrections
(SICs) are included in most of the cases considered. The
interaction of the electron with the external field Vext (�r, t )
is given by Eq. (3). The present TDDFT implementation
employs the software package OCTOPUS [56,57]. In order to
prevent unphysical reflections of the liberated electron from
the boundary of the computing box, the Kohn-Sham orbitals
φi(�r, t ) are multiplied with a masking function which is unity
in the inner simulation region and is gradually switched off
approaching zero at the borders. The width of the masking
function is set to 40 a.u. in the direction of the laser polar-
ization and 10 a.u. for the perpendicular directions; the total
box size is 300 a.u. along and 80 a.u. perpendicular to the
molecular axis. Convergence of the calculations with respect
to grid parameters, range of the masking function, and time
step has been thoroughly tested and verified.

Approximating the vibrational wave packet χ (R, t ) by the
stationary vibrational ground state χ0(R) of the molecule
reduces Eq. (10) to

�d (t ) =
∫

dR |χ0(R)|2
N∑

i=1

(
φTDDFT

i,R (�r, t )|�r|φTDDFT
i,R (�r, t )

)
(13)

where i labels the TDKS orbital and R indicates the depen-
dence on the nuclear coordinate. This expression agrees with
the result given by Chu and Groenenboom [34]. It accounts for
the spread in R of the vibrational wave function while it ne-
glects the influence of the motion of the nuclear wave packet
on the electronic dynamics. One salient feature of Eq. (13)
is that the amplitude of the resulting harmonic radiation field
is constructed by a coherent superposition of the electronic
dipole response evaluated for different R representing the
vibrational quantum state. Therefore, the effect of position
and shape of the vibrational wave function on the HHG is
approximately accounted for, as evidenced by the ability to
reproduce the isotope effect on HHG [34]. As pointed out
there, this approach can be viewed as the description of HHG
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in terms of independent quantum dynamics of electronic and
nuclear degrees of freedom applicable in the regime of weak
coupling between the two.

Inclusion of the coupling between nuclear and electronic
degrees of freedom on a classical level can be accounted for by
Ehrenfest-TDDFT. This approximation to the TDDM follows
from Eq. (10) by the substitution

|χ (R, t )|2 � δ[R − Rc(t )], (14)

i.e., by approximating the nuclear wave packet by a δ-peaked
distribution centered at the classical trajectory Rc(t ). The
resulting TDDM now reads

�d (t ) =
N∑

i=1

(
φTDDFT

i,Rc (t ) (�r, t )|�r|φTDDFT
i,Rc (t ) (�r, t )

)
. (15)

The classical vibrational motion Rc(t ) = | �R1(t ) − �R2(t )| is
determined by solving Newton’s equation of motion for the
nuclei

Mβ �̈Rβ = −
∫

n(�r, t )
∂Vne(�r, �R1, �R2, t )

∂Rβ

d�r

− ∂Vnn( �R1, �R2)

∂Rβ

+ Qβ �E (t ) (16)

in the presence of the ion-electron potential Vne, the shielded
internuclear Coulomb repulsion Vnn, and the interaction of
the nuclei with the external field. The coupled system of
equations of motions for the electronic [Eq. (11)] and the
nuclear degrees of freedom [Eq. (16)] is solved concurrently
and self-consistently. We employ nuclear pseudopotentials
[53,55] to calculate Vnn. In Eq. (16), �Rβ , Mβ , and Qβ are
the positions, masses, and effective core charges of the nuclei
(β = 1, 2), respectively. The time dependence of the TDDM
[Eq. (15)] incorporates, on a classical level, the influence
of the nuclear motion on the electronic dynamics and, thus,
non–Born-Oppenheimer effects but neglects the spread of the
nuclear wave packet. Conversely, back action of the driven
electronic dynamics on the ionic motion is taken into account
on the mean-field level [∼n(�r, t ) ∂

∂RVne] but not on the level of
state-specific potential surfaces. The latter appears to be well
justified for the present scenario as the overall depopulation of
the electronic ground state by the short pulse remains small.
Moreover, the excursion of the small fraction of electrons that
are tunnel ionized, subsequently accelerated by the laser field,
and finally recombine to the electronic ground state proceeds
on an ultrashort time scale ≈0.7 T0 (T0: period of the optical
field) as estimated for the so-called short trajectories by the
semiclassical three-step model [11,12,22]. This time scale
corresponds to only a small fraction of a typical ground-state
vibrational period T� with � the vibrational frequency. During
this short time window, ionic cores travel only distances small
compared to the spatial spread of the vibrational wave func-
tion (see below). Consequently, uncertainty in the potential
curves the ions move on has little impact on the nuclear
motion on such short time scales, with the possible exception
of the lightest molecule H2 where the deviation between the
motion of the protons on the H2 and H+

2 potential curves can
be larger.

C. HHG in the presence of coherent vibrational excitations

In the following, we extend the description of HHG by
Ehrenfest-TDDFT to the case of a molecule prepared in a
coherently excited state. We focus in particular on a class of
nondispersive (near) minimum-uncertainty wave packets first
proposed by Schrödinger for the harmonic oscillator [58] and
subsequently extensively employed in the field of quantum
optics [59]:

χα(t )(R) = e−i�t/2e−|α|2/2
∞∑

ν=0

α(t )ν√
ν!

χν (R) (17)

with � the vibrational frequency, α(t ) = |α|e−i(�t+φ), |α| =
|δR(t )|max/σ the amplitude of excitation in units of the width
σ of the wave packet, |δR(t )|max the maximum of |Rc(t ) −
Req|, and χν the stationary excited vibrational state ν. The
amplitude |α| fulfills the inequality |α| = √〈E〉/� � 1√

2
. The

states Eq. (17) are often referred to as Glauber states or coher-
ent states. It should be noted that coherence in the vibrational
degree of freedom encoded in Eq. (17) is a priori unrelated
to the coherence of the superposition of dipole accelerations
forming the HHG spectrum. The expression Eq. (17), appli-
cable close to the bottom of the potential-energy curve, can
be generalized to anharmonic Morse potentials approximat-
ing the BO potential surface for higher excitations [60–63]
with increasing |α| probing effects of the anharmonicity of
the potential. The motivation for investigating this particular
class of wave packets is twofold: On the methodological level,
Glauber states represent quantum wave packets bearing the
closest resemblance to classical vibrations. Since Ehrenfest-
TDDFT [Eq. (16)] accounts only for classical vibrational
motion, Glauber states are best suited to preserve classical-
quantum correspondence for the interplay between electronic
and nuclear motion in these simulations. Moreover, Glauber
states are expected to provide a reasonable approximation
to impulsively excited vibrational wave packets generated
by ultrashort collisional or laser excitation. Vibrational wave
packets have been excited by an ultrashort femtosecond pump
pulse [64], by R-dependent depletion [65], bond softening
[66,67], or stimulated Raman scattering [48]. In such sce-
narios, the initial (near) Gaussian vibrational ground state is
impulsively mapped onto a coherent superposition of a broad
distribution of vibrational states on (mostly) excited electronic
potential surfaces. In such a (near) vertical sudden Franck-
Condon transition the shape of the initial vibrational wave
function is approximately conserved. The resulting vibrational
wave packet can thus mimic quasiclassical vibrations and,
thus, Glauber states as first demonstrated in a pioneering
experiment by Dantus et al. [64]. Quantitative deviations
from the detailed form of Glauber states are, of course,
present but are of minor importance on the ultrafast time scale
(�T0) relevant for HHG. The first experimental investigation
of HHG in the presence of a quasiclassical vibrational wave
packet generated in a pump-probe setting recently presented
by Li et al. [48] stimulated in part the present investigation.

An example of such a (near) minimum uncertainty vi-
brational wave packet as employed in our calculations is
shown in Fig. 1. To first order, anharmonic corrections
can be accounted for by a time-dependent width σ (t ) =
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FIG. 1. (a) Morse-type molecular potential curve for F2 (thick black line) and coherent vibrational wave packet at turning points (dotted
and solid blue/dark gray lines). Temporal evolution of expectation value 〈R(t )〉 [or Ehrenfest trajectory Rc(t ), orange/light gray solid line;
time in fs on right axis]. (b) Trajectories R j (t ) (thin dashed orange lines) close to the Ehrenfest trajectory Rc(t ) (thick solid orange/light gray
line) sampling the wave function of the vibrational wave packet, schematically.

σ [1 + c sin(�t + φ)] of the quantum wave packet. The
change of σ (t ) is obviously synchronized with the vibration.
We have performed wave-packet-propagation simulations in
the internuclear potential to extract the values for σ (t ), c, and
φ for the molecules studied here.

The influence of the coherently excited nuclear wave
packet on the HHG can now be accounted for by inserting
Eq. (17) into Eq. (10):

�d (t ) =
∫

dR |χRc (t )(R, t )|2
N∑

i=1

× (
φTDDFT

i,R (�r, t )|�r|φTDDFT
i,R (�r, t )

)
(18)

with α(t ) ∝ Rc(t ) = 〈R(t )〉 the expectation value of the wave
packet. The time dependence of the nuclear probability den-
sity |χRc (t )(R, t )|2 incorporates both the motion of the center
of mass, Rc(t ), of these Glauber states closely following the
quasiclassical oscillations of the vibrational degree of freedom
as well as their varying width σ (t ) (Fig. 1). Equation (18) can
be viewed as an extension of Ehrenfest-TDDFT that includes
now quantum properties of the nuclear wave packet. While
the center of the wave packet Rc(t ) follows the concurrently
determined classical trajectory in the field of the moving
electronic charge cloud, the time-varying distribution of the
nuclear probability density is now included, similar to the
stationary case [Eq. (13)]. We emphasize that the present
extension of Ehrenfest-TDDFT to vibrational wave packets
[Eq. (18)] is not limited to Glauber states.

In the numerical implementation of Eq. (18) we sample
the time-dependent probability distribution contributing to the
dipole moment by a discrete set of M = 2k + 1 trajectories
R j (t ) [Fig. 1(b)]:

�d (t ) =
∑

j

�R(t ) |χRc (t )(R j (t ), t )|2
N∑
i

× (
φTDDFT

i,R j (t ) (�r, t )|�r|φTDDFT
i,R j (t ) (�r, t )

)
(19)

with

R j (t ) = Rc(t ) + �R j (t ), j = −k, . . . , k (20)

the displacement relative to the center (or classical) coordinate
Rc(t ) of the wave packet,

�R j (t ) = �R(t ) j. (21)

In our calculations the vibrational wave function was scanned
in steps of �R(t ) = σ (t )/2 or (for small k � 3) σ (t ). For
each trajectory R j (t ) we determine the electronic response
in terms of n[�r, t] by solving the TDKS equations [Eq. (11)]
and calculate the TDDM from which the frequency-dependent
dipole acceleration a(ω) can be extracted via Eqs. (7) and (8).
The dependence of the resulting harmonic radiation [Eq. (5)]
on the number of M = 2k + 1 sampled trajectories will be
investigated below.

For gaining more detailed insights into the timing of the
spectral response and the influence of electronic and vibra-
tional dynamics on it, we also perform a time-frequency
analysis computing the Gabor transform (windowed Fourier
transform) of the dipole acceleration [68,69],

�A(t, ω) =
∫ ∞

−∞
�̈d (t ′) exp(−iωt ′) exp

[
(t ′ − t )2

2σ 2
τ

]
dt ′, (22)

with the temporal width στ of the window function (full width
at half maximum duration 2στ

√
2 ln 2 ≈ 2.35 στ ).

III. COMPARISON BETWEEN FIXED
AND MOVING NUCLEI

In this section we present the results of our simulations
performed for the homonuclear molecules H2, N2, and F2

and the heteronuclear molecule HF. We start with examining
the self-consistently determined ground-state parameters and
discuss the generation of high-order harmonics in molecules
with fixed and moving nuclei. While TDDFT is appropriate
for multielectron molecules, its applications to H2 primarily
serve as a test case for the interplay between the electronic
and ionic dynamics in the presence of fast and large-amplitude
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TABLE I. Comparison between calculated and measured values for equilibrium distances, vibrational frequencies, and binding energies of
the highest occupied molecular orbitals (HOMO) for the diatomic molecules used in this paper.

Req (a.u.) � (a.u.) HOMO (a.u.) HOMO-1 (a.u.) HOMO-2 (a.u.)

H2

Expt. 1.400 2.01 × 10−2 0.5669
SIC-LDA 1.311 2.26 × 10−2 0.6834

N2

Expt. 2.075 1.06 × 10−2 0.5726 0.6233 0.6883
SIC-LDA 1.948 1.33 × 10−2 0.6058 0.6918 0.6992

F2

Expt. 2.668 4.18 × 10−3 0.5832 0.6910 0.7750
SIC-LDA 2.152 7.2 × 10−3 0.5428 0.8275 0.9682
GGA 2.68 4.38 × 10−3 0.3471 0.4697 0.5696
GGA/SIC-GGA 0.5681 0.7034 0.8139

HF
Expt. 1.732 1.88 × 10−2 0.5898 0.7284 1.4545
SIC-LDA 1.667 1.99 × 10−2 0.6212 0.7613 1.3665

vibrations with, compared to the other molecules, higher fre-
quency and larger amplitude.

A. Equilibrium conditions

We have first tested the accuracy of the stationary DFT
predictions for ground-state properties of the investigated
molecules before using the same functionals in the subsequent
TDDFT simulations. A geometry-optimization calculation
was performed to obtain the relaxed coordinates or, equiva-
lently, the equilibrium internuclear distance Req for the cores
which are then used to determine the electronic ground state
as well as the effective internuclear Morse-like potential.
As can be seen from Table I experimental binding ener-
gies, equilibrium distances, and vibrational frequencies are
in most cases reasonably well reproduced using the SIC-
LDA exchange-correlation potential. Calculated equilibrium
distances Req are found to be slightly smaller and, cor-
respondingly, vibrational frequencies � slightly larger than
measured in experiment in agreement with previous calcula-
tions [46]. However, significant deviations are found for the
F2 molecule when using SIC-LDA. Moreover, we did not
succeed in finding a single Vxc which simultaneously and
satisfactorily reproduces electronic and vibrational proper-
ties of this molecule. Good agreement between experimental
and simulated vibrational properties was found for a GGA
potential, while electronic properties were well reproduced
using a GGA when including the self-interaction corrections.
We therefore dropped the requirement of self-consistency
between electronic and ionic potentials built into Ehrenfest-
TDDFT for the F2 molecule. Instead, we first perform a GGA
calculation to obtain Req and � (Table I). Next, we deter-
mine Rc(t ) by solving Eq. (16) using the time-dependent
potentials generated by a TDDFT calculation employing the
GGA functional. Finally, the TDKS equations [Eq. (11)] are
solved using the GGA-SIC potential and Vne derived from
Rc(t ) recorded in the previous step. This drop of the self-
consistency condition on the potentials involved appears to
be well justified for the calculation of the HHG for heavier
molecules since, on the one hand, the influence of the error in

the time-dependent electronic density on the ionic motion via
Eq. (16) on such short time scales is small while, on the other
hand, the time-dependent change of the ionization potential
due to changes of R(t ) has a large influence on the ionization
probability and, thus, on the intensity of HHG. It is therefore
advantageous to represent R(t ) as accurately as possible. This
iteration termed in the following GGA/SIC-GGA resulted in
an accuracy of better than 5% for all nuclear and electronic
observables (Table I).

The predictions for the internuclear distance R(t ) for H2

as a function of time with and without including the driving
laser field are shown in Fig. 2. For this light molecule, the
vibrational oscillation amplitude and the influence of the laser
field are the largest. For the heavier molecules investigated in
this paper, these effects are considerably smaller. The results
of Figs. 2(a) and 2(b) are calculated by Ehrenfest TDDFT, i.e.,
by self-consistently solving the TDKS equations [Eq. (11)]
for the electronic degrees of freedom and Newton’s equa-
tions of motion [Eq. (16)] for the nuclear degree of freedom.
The interaction with the laser field only slightly increases
the vibrational amplitude and, correspondingly, decreases the
oscillation frequency [Fig. 2(a)]. The latter is an immedi-
ate consequence of the anharmonicity explored for increased
initial excitation amplitudes R(t = 0) − Req = |α|σ . The in-
creasing anharmonicity is accompanied by an increase of the
mean 〈R〉, the temporal average over R(t ) over one oscilla-
tion period.

In order to estimate possible uncertainties introduced by
the mean-field potential of Ehrenfest-TDDFT on the simu-
lation of HHG, we have performed a classical simulation of
the nuclear trajectory which follows state-specific potential
curves. Implementing the scenario of the three-step model
for HHG [11,12], the trajectory initially follows the mean-
field force [Eq. (16)] until ionization near the field maximum
occurs. At this instant, the trajectory switches to the force
field of F+

2 (mimicking Tully hopping [70]) for about 3/4
of an optical cycle [shaded area in Fig. 2(c)] after which
recombination and return to the F2 potential surface occur.
Ionization does, indeed, modify the trajectory, however the
displacement in R(t ) relative to the mean-field trajectory by
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FIG. 2. (a) Comparison between the time-dependent internuclear distance R(t ) of H2 in the presence (red dash-dotted line) and absence
(blue solid line) of the IR laser field (λL = 800 nm, I0 = 1014 W/cm2) as a function of time in units of optical cycles (o.c.). For illustrative
purposes, the amplitude of the laser field is also displayed (in arbitrary units, orange dashed line). For later reference, we note that the
frequencies are approximately commensurate, ωL/� ≈ 5/2. The equilibrium distance Req = 1.31 a.u. predicted by SIC-LDA is also shown
for reference. (b) Time-dependent R(t ) for field-free evolution predicted by Ehrenfest-TDDFT for varying initial excitation amplitude R(0) −
Req = |α|σ to probe for effects of anharmonicity. The legend in the inset denotes the changes of the vibration period. (c) Example of a
trajectory Rc(t ) for F2 in the laser field when Rc(t ) initially follows the mean field but intermittently propagates on the F+

2 potential curve
(Tully hopping [70]) during the excursion of the electron following tunnel ionization at t = 2.75 optical cycles, acceleration, and recombination
at t = 3.5 optical cycles (in red/dark gray). The black line indicates the Ehrenfest trajectory for molecular vibration on the F2 potential-energy
surface without Tully hopping.

the time of recombination is negligibly small compared to the
width of the nuclear wave packet [for the example in Fig. 2(c)
the displacement is about 1/100 a.u.; cf. Fig. 1]. Later parts of
the nuclear trajectory where the displacement gets larger do
not affect the HHG spectrum as the probability for multiple
ionization within one laser pulse is very small (≈10−5).

B. Convergence of wave-packet sampling

The spectral amplitude of high-order harmonic radiation
S(ω) [Eq. (5)] is governed by a coherent superposition of
dipole accelerations for different trajectories R j (t ) sampling
the vibrational wave packet [Eq. (19)]. Since for computa-
tional reasons only a limited number of trajectories can be
sampled in the simulation we have tested for the convergence
of the final HHG spectrum as a function of the number of
sampled trajectories representing the vibrational wave func-
tion. We focus in this test on results for the lightest molecule
H2 with the largest vibration frequency for which the HHG
spectrum is expected to be most sensitive to the sampling
error. For the heavier molecules faster convergence is realized.

Figure 3 displays the harmonic spectra for H2 as a function
of the number M = 2k + 1 of coordinates and trajectories
sampled both for the vibrational ground state (left) and for
a quasiclassical vibration (right), respectively. As reference
we show spectra for Req (left) and Rc(t ) (right) each with-
out sampling the vibrational wave function [corresponding
to M = 1 (k = 0)]. With increasing M (up to M = 13) we
observe a clear reduction of the harmonic intensity with in-
creasing number of sampling points. This is related to the
rapidly varying phase of a given single harmonic as a function
of the internuclear distance shown in Fig. 4 for the case of
fixed nuclei. The phase variations strongly increase with
harmonic order covering almost the full interval [0, 2π ] for
harmonic 13 when R is varied over one σ of the width of
the ground state. The convergence for the yield of different
harmonic orders is presented in Fig. 5 for both fixed (left)
and moving nuclei (right). Typically, for M � 5 a reasonable
level of convergence is reached. Convergence is faster for
moving nuclei (right) than for fixed nuclei (left) since the
time variation R(t ) of individual trajectories effectively aids
in the sampling of the R distribution [Fig. 1(b)]. As the main
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FIG. 3. Harmonic spectra of H2 driven by a six-cycle laser pulse (λL = 742 nm, I0 = 1014 W/cm2). (a) Comparison between spectra for
fixed nuclei at R = Req and for sampling of the vibrational ground-state wave function with 5 (blue/dark gray) and 13 (orange/light gray)
sampling points Ri. (b) Comparison between single Ehrenfest trajectory Rc(t ) starting at the outer turning point Rc(t = 0) = Req + |α|σ
with |α| = 0.9 and sampling over a Schrödinger minimum uncertainty wave packet with 5 (blue) and 13 (orange) sampling trajectories R j (t ).

results of the present paper are not sensitively dependent on
the precise value of the harmonic yield, the spectra presented
below are mostly calculated for M = 5 (k = 2).

C. High-order harmonic spectra

Changes in the high-order harmonic spectra of F2 when the
nuclear degrees of freedom are taken into account at various
levels of approximation are illustrated in Fig. 6. Remarkably,
for this somewhat heavier molecule the HHG spectra resulting
from three different approximations closely agree with each
other, indicating that, overall, the modulus and phase of the
dipole acceleration amplitude a(ω) [Eq. (8)] vary relatively
little with R over the extent of the vibrational ground-state
wave function or, alternatively, over the range of R covered by
the classical vibration. We note that the peak near 8ωL is not
directly associated with the strong-field driven HHG process,
the focus of the present paper. Instead, this spectral feature
is associated with the energy spacing of the HOMO to an
unoccupied molecular DFT orbital in F2 with a nonvanishing
transition dipole moment. Because of the Fourier broadening
of the neighboring harmonic peaks by the ultrashort pulse
this spectral region becomes accessible. The distinction to the
standard HHG spectrum becomes directly visible in the time-

FIG. 4. Variation of the phase ϕ = arg[aR(ω)] of harmonics H13
and H19 as a function of the fixed internuclear distance R over a
large range of R values covering ±3σ of the width of the wave
packet.

frequency spectrum (Gabor transform). The HHG peaks can
be identified by their characteristic ω-τ relation (dashed white
lines for “short” trajectories). The latter is a hallmark of elec-
tron emission, acceleration, and recombination every ≈3/4
of an optical cycle after a field maximum as incorporated in
the semiclassical three-step model for HHG [11,12,22]. By
contrast, the peak at 8ωL features no pronounced sub-(optical)
cycle structure [Figs. 6(c) and 6(d)] but extends more or
less uniformly over the entire pulse duration. As mentioned
above, the classical Larmor expression [Eq. (5)] employed in
the present HHG simulation is not well suited to accurately
describe spontaneous or stimulated bound-bound transitions.
Therefore, the quantitative significance of the observed peak
near 8ωL is limited.

For the lightest molecule, H2, the influence of the nu-
clear motion on the electronic dynamics is expected to be
most pronounced. Indeed, sampling the stationary vibra-
tional ground-state wave function [Eq. (13)] reduces the
harmonic spectrum considerably compared to the fixed-ion
result with R = Req [Fig. 3(a)]. This reduction becomes
more pronounced with increasing harmonic order in agree-
ment with the results of Ref. [34]. Comparing the spectrum
for the Ehrenfest trajectory Rc(t ) with Rc(t = 0) = Req +
|α|σ with the spectrum that includes the sampling over a
Schrödinger minimum uncertainty vibrational wave packet
[Eqs. (18) and (19)] shows that the reduction of the HHG
spectrum with increasing harmonic order persists [Fig. 3(b)].
Comparison between Figs. 3(a) and 3(b) also indicates that
this effect does not strongly depend on the particular wave
function to be sampled.

IV. SPECTRA FOR COMMENSURATE FREQUENCIES

When the oscillation frequency � of the coherent vibra-
tional wave packet [Eq. (17)] becomes commensurate with
the frequency ωL of the laser driving the electronic dynamics,
the coupling between the ionic and electronic dynamics is
expected to be enhanced. This does not only apply to the
case of a 1 : 1 resonance, i.e., � = ωL, which would require
midinfrared driving fields but also higher-order resonances
of commensurate frequencies, ωL/� = m/n (m, n: Integers).
For H2 and λL = 800 nm, this frequency ratio happens to be
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FIG. 5. Normalized intensity [∼S(ω), linear scale] of selected harmonics between H11 and H25 as a function of the number of sampled R
coordinates (left) and sampled trajectories R j (t ) (right).

close to the 5 : 2 resonance. For N2 and λL = 1147 nm, a
3 : 1 resonance can be reached which also appears for HF at
λL = 800 nm. At first glance, such a sensitivity to commen-
surate frequency ratios appears surprising as the electronic
process of ionization and recombination occurs on an ultra-
fast time scale very short compared to the vibrational period
T� = 2π/�. It is, however, the superposition of these con-
tributions from emission processes every optical half cycle
over a time interval of several optical cycles that renders the
spectrum sensitive to the frequency ratio �/ωL. We explore
in the following the impact of driving with commensurate

frequencies on the high-order harmonic spectrum for the N2,
H2, and HF molecules. For this simulation, we have increased
the pulse length from six cycles to 14 cycles in order to
narrow the spectral distribution of the pulse. For such longer
laser-pulse interaction also the spectral width of the harmonic
peaks becomes narrower and can be clearly identified up to the
cutoff region of the spectrum. For commensurate frequencies
the harmonic spectrum is fundamentally altered (Fig. 7). As
the emission of harmonics from recollision events distributed
over several optical cycles adds up coherently the information
on the motion of the vibrational wave packet leaves a mark on
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FIG. 6. Harmonic spectrum of F2 driven by a six-cycle laser pulse (λL = 800 nm, I0 = 1014 W/cm2). (a) Comparison between fixed nuclei
at R = Req and sampling over the stationary ground-state wave function [Eq. (13)]. (b) Comparison between R = Req and a single Ehrenfest
trajectory starting at the outer turning point R0(t = 0) = Req + |α|σ with scaled amplitude |α| = 0.7. (c), (d) Time-frequency analysis of
HHG from F2 for (c) fixed nuclei [black line in panel (a)] and (d) the sampling over the ground-state wave function [blue/gray dashed line in
panel (a)]. The temporal width of the Gaussian window function in the Gabor transform is στ = 0.5 fs (≈0.19 o.c.).
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FIG. 7. Harmonics for laser driving frequencies ωL (wavelength λL) commensurate with the frequency � of the vibrational wave packet:
(a)–(c) H2, (d) N2, and (e) HF. In panels (c)–(e) we compare the HHG spectrum for fixed internuclear distance R = Req with the result for the
vibrational wave packet with sampling over the width of the vibrational wave function [five trajectories R j (t )]. (a) Comparison of complete
spectra of H2 irradiated with λL = 800 nm, I0 = 1014 W/cm2, and |α| = 1.8. Black line, fixed-ion calculation for R = Req; blue/dark gray
line, vibrational ground state [Eq. (13)]. (b) As panel (a) but using Ehrenfest-TDDFT for single trajectory (black line) and for a vibrational
wave-packet sampling by five trajectories R j (t ) [Eq. (19), orange/light gray line]. (c) Zoom-in of panels (a) and (b) for high-order harmonics
of H2. (d) N2 with λL = 1147 nm, I0 = 1014 W/cm2, and |α| = 2.8. (e) HF with λL = 800 nm, I0 = 1014 W/cm2, and |α| = 3.25.

the spectrum. The energy spacing of 2h̄ωL between successive
HHG peaks is now filled by additional peaks spaced by h̄�.
The appearance of additional peaks becomes clearly visible
for all molecules investigated [Figs. 7(c)–7(e)] when com-
pared with the spectrum in the fixed-ion approximation with
R = Req. These additional peaks can be understood in terms
of sidebands to the high-order harmonic peaks generated by
the coupling between vibrational and electronic motion. It is
important to note that a moderate anharmonicity resulting in a
deviation from equispaced vibrational levels does not destroy
the resonance effect as long as the spectral mismatch due
to the anharmonicity lies within the linewidth of the driving
pulse. The sampling over a minimum-uncertainty vibrational
wave packet modifies the height of these resonant harmon-
ics compared to that for a single Ehrenfest trajectory but
qualitatively leaves the structure of the spectrum unchanged
[Fig. 7(b)]. Obviously, the resonance is primarily governed
by the classical vibrational nuclear motion while the spread
of the quantum wave packet only influences the peak height
of the sidebands, mostly causing a reduction. The appear-
ance of these peaks at commensurate frequencies is a fairly
robust classical resonance effect. Quantum coherence enters
primarily through the requirement that the resonances are
not suppressed by decoherence caused by random phases of
the emission bursts accumulated in between subsequent half
cycles. For F2, quantum effects included via sampling over

the wave function of the vibrational wave packet lead, unlike
for H2, only to a small change in the spectrum due to its
small vibrational frequency (not shown). Pronounced resonant
harmonics can be also observed for the (3:1) resonance of the
strongly polar molecule HF [Fig. 7(e)]. Realization of such
a resonance in this molecule is facilitated by the fact that the
vibrational wave packet could be optically excited and steered.
More generally, such vibrational wave packets can be excited
by a variety of techniques including impulsive collisional ex-
citation, Franck-Condon transitions, or impulsive stimulated
Raman scattering [48]. The experimental observation of the
commensurability effect on HHG appears thus feasible. Even
when the subpeaks cannot be individually resolved, this res-
onance effect may facilitate an overall increase in the HHG
yield in certain regions of the spectrum, e.g., between har-
monics 35 and 45 in N2 [Fig. 7(d)].

V. CONCLUSIONS

We have investigated the influence of vibrational motion
on the HHG in several small molecules. The starting point
is an Ehrenfest-TDDFT simulation within which the ionic
motion follows the classical equations of motion with forces
self-consistently determined from the time-dependent elec-
tronic density propagated by TDDFT. The influence of the
shape and spread of the vibrational wave function on
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the HHG is accounted for by the coherent superposition of the
harmonic amplitudes of a distribution of trajectories sam-
pling the wave function. One application addresses the HHG
resulting from the excitation of node-free near-minimum
uncertainty Schrödinger (or Glauber) wave packets which
closely follow the classical vibrational motion. As expected,
the influence of the vibrational degree of freedom is, in
general, reduced with increasing mass of the molecular con-
stituents. However, prominent resonance effects have been
identified for commensurate frequencies the appearance of
which is insensitive to the atomic masses involved. When a
multiple of the frequency ωL of the laser driving the strong-
field ionization and recombination of the electron in the
molecule is in resonance with a multiple of the vibrational
frequency, i.e., ωL/� = m/n, the standard harmonic spectra
with spacing 2h̄ωL between adjacent peaks is drastically al-
tered. In case of such a resonance additional peaks spaced by
∼h̄� ≈ n

m ωL appear between harmonics which can lead, over-
all, to an increase of the HHG intensity in extended regions

of the spectrum. A moderate anharmonicity of the vibrational
spectrum does not destroy these resonance effects as long
as the frequency mismatch lies within the Fourier width of
the few-cycle infrared driving pulse. Experimental realization
employing, for example, the impulse excitation of vibrational
wave packets [48] appears within reach.
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[69] C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein,
Emission times in high-order harmonic generation, Phys. Rev.
A 81, 033412 (2010).

[70] J. C. Tully, Molecular dynamics with electronic transitions,
J. Chem. Phys. 93, 1061 (1990).

053108-13

https://doi.org/10.1063/1.5142502
https://doi.org/10.1007/BF01507634
https://doi.org/10.1103/PhysRevLett.10.84
https://doi.org/10.1016/j.physleta.2020.126553
https://doi.org/10.1016/j.aop.2020.168331
https://doi.org/10.1103/PhysRevA.41.2301
https://doi.org/10.1088/1751-8113/41/30/304016
https://doi.org/10.1038/343737a0
https://doi.org/10.1103/PhysRevLett.97.103003
https://doi.org/10.1103/PhysRevA.61.051402
https://doi.org/10.1038/s41467-017-00848-2
https://doi.org/10.1049/ji-3-2.1946.0074
https://doi.org/10.1103/PhysRevA.81.033412
https://doi.org/10.1063/1.459170

