PHYSICAL REVIEW A 106, 053103 (2022)

Reconstruction of attosecond beating by interference of two-photon interband transitions in solids
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The reconstruction of attosecond beating by interference of two-photon transitions is one of the most widely
used techniques for obtaining both the relative phases of harmonics forming an attosecond pulse train and
the phase of atomic radiative transitions. If the latter is computed by theory, it allows one to reconstruct the
attosecond pulse train; if the former is known experimentally, it allows for reconstruction of the electronic
dynamics of photoionization in atomic and molecular systems with attosecond temporal resolution. As it relies on
the interference of photoelectrons in vacuum, similar interference has never been contemplated inside crystals.
Here we explore the applicability of this scheme to solid-state systems using a one-dimensional model and
a density-functional theory—calculated structure of two-dimensional hexagonal boron nitride. We discuss the
possibility of (i) reconstructing the relative phases between harmonics with trivial influence of the “atomic
phase” and (ii) retrieving the relative phases of two-photon transitions through different bands, which are
generally challenging to obtain both experimentally and numerically. These phases are recorded in the beating
of the population signal arising from interfering two-photon pathways, and can be read out with angle-resolved
photoemission spectroscopy. Furthermore, the amplitude of the population beating decays as the pump and
probe pulses are separated in time due to electron-hole decoherence, providing a simple interferometric method

to extract dephasing times.
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I. INTRODUCTION

Advances in ultrafast laser technology during the past
two decades have given rise to the field of attosecond
science—the study and control of electron dynamics at their
natural (attosecond) timescale [1,2]. Among the experimen-
tal techniques that made this possible, the reconstruction of
attosecond beating by interference of two photon transitions
(RABBIT) stands out [3-8]. Since it uses weak electric fields,
it allows one to monitor coherent electronic dynamics that are
barely modified by the laser. RABBIT relies on the controlled
interference of quantum paths in a pump-probe scheme. It
can be implemented with any combination of four frequen-
cies provided the two-photon paths created by the sequential
absorption and stimulated emission of the frequencies reach
the same final energy.

In its usual implementation, the quantum paths are created
by two harmonics (2N =+ 1)w of a frequency comb (the pump)
that photoionize an initial bound electronic state [Fig. 1(a)].
The harmonic comb is generated using a strong fundamental
field of frequency w on an inversion symmetric target, thus
guaranteeing that no even (2Nw) harmonics are present. The
interference of the paths containing the (2N % 1)w photons
is controlled by time delaying a weak, phase-locked replica
of the generating w field (the probe) that creates sidebands at

*jimenez @mbi-berlin.de

2469-9926/2022/106(5)/053103(8)

053103-1

2 = 2Nw energies whose intensity oscillates as a function of
the pump-probe time delay t [3,5,9],

Isg 2Nw) o cosRwt + Oay). (D)

The equation above is the characteristic equation of RABBIT,
computed using second-order perturbation theory (see Ap-
pendix C). We use atomic units throughout unless otherwise
stated. Equation (1) relates the measured observable, i.e., the
sideband beating phase 6,y = Agoy + Aoy, to the phase
difference between adjacent harmonics in the comb, A¢yy =
Ponv—1 — $an+1, and the so-called atomic phase Ag,y. For
long pulses, the latter corresponds to the relative phase of the
two-photon matrix elements [9,10],

Aoy = Qan+1 — Pan—1

= arg{Mnm[(ZN + l)a)] + Mnm(_w)}
— arg{M,[2N — o] + M, ()}, (2)

where M, (0) = Zj 0,jOjm/(Ey +w — Ej) is the two-
photon matrix element, O,,, is minus the dipole moment in
the length gauge, and E,, is the energy of the initial state.
Initially, RABBIT was applied to characterize the relative
phases of harmonics in attosecond pulse trains by assuming
that the atomic phase is a smooth function of energy [5].
Later, its application shifted towards the reconstruction of
the relative amplitudes and phases of photoionization ma-
trix elements from different orbitals, including transitions
through autoionizing states [6,10—14]. This has allowed one to
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FIG. 1. (a) Energy dispersion of hBN. The vertical axis is in units of the fundamental frequency w = 0.167 a.u. Blue and purple arrows
indicate absorption of a pump photon 7w and 9w, while red arrows indicate absorption and stimulated emission of a probe photon w, which
is delayed by a time 7. The RABBIT beating is measured at kgg. (b),(c) Electron momentum distribution of the sideband [orange curve in
(a)] along the K-M (k) direction for a pump-probe time delay of (b) T = 0 and (c) 7 = 0.25 w cycles and for a relative harmonic phase of
A¢ = m. The ksg momenta is enclosed by white circles and the red-dashed line indicates the edges of the first Brillouin zone. The top left
inset shows the hBN lattice with the black arrow indicating the polarization of the laser fields (|| direction). (d) Amplitude (blue, left axis) and
phase (red, right axis) of the two-photon Berry connections (see text for details). The black dotted lines indicate kgsg. (e) Sideband population
normalized to the average for four choices of harmonic phase A¢ = 0, 7 /2, 7, 37 /2 (light to dark red). The average sideband population

Psp = Zn pse(T,)/n, with n being the number of time delays considered.

extract photoionization time delays and reconstruct the tem-
poral evolution of correlated electronic wave packets [7,15]—
two hallmarks of attosecond science.

In the past decade, attosecond science has advanced
from atomic and molecular targets towards condensed matter
systems [16]. Techniques such as high harmonic spec-
troscopy [17], high sideband generation [18], attosecond
streaking [19,20], and x-ray absorption spectroscopy [21,22]
have been implemented in solids, allowing, e.g., to image
valence potentials with picometer resolution [23], track metal-
to-insulator [24] and topological phase transitions [25,26],
characterize inelastic scattering time in dielectrics [27], or
control and measure the valley degree of freedom [18,28]. The
RABBIT technique has been used to perform time-resolved
photoemission experiments from solid surfaces, i.e., surface
RABBIT [29,30], where the time delay of electrons emitted
from noble gas surfaces to the photoionization continuum was
extracted.

The RABBIT technique relies on the interference of the
two-photon paths in the photoelectron continuum and there-
fore has not yet been applied to study the dynamics inside
solids, i.e., transitions between bands. Here, we show that the
electron momentum distribution of a band populated through
two-photon resonant interband transitions displays the charac-
teristic RABBIT beating and allows one to record information
on the relative phase of the harmonics forming the attosecond

pulse train and the Berry connections between the bands.
This observable can be extracted with standard angle-resolved
photoemission spectroscopy (ARPES). Since ARPES is a
one-photon process, the relative phase of the interband tran-
sitions, i.e., the RABBIT beating signal, remains unaffected
by the measurement. Akin to transitions between autoion-
izing resonances in atoms [7,9,31], the RABBIT beating in
interband transitions remains even when the pump and probe
pulses do not overlap in time. As a function of the pump-probe
time delay, the beating amplitude decays as a consequence
of electronic decoherence and can thus be used to measure
dephasing times.

II. RESULTS

In this work we will concentrate on extracting dynamical
information of transitions between bands that are close to the
gap of semiconductor materials. The energy separation be-
tween these bands is usually on the order of few electronvolts,
so that it is in principle possible to use the scheme we propose
below using typical laser wavelengths.

A. Reconstruction of the relative harmonic phase

We first illustrate the standard RABBIT scheme for the ex-
traction of the relative harmonic phase. This scheme involves
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the frequencies (2N =+ 1)w and w, which requires three con-
duction bands separated by w at a given sideband momentum
ksp [see Fig. 1(a)].

Figure 1(a) shows the band structure of monolayer hexag-
onal boron nitride (hBN) along the K-M direction, where we
have included the two p, orbitals and the six sp, orbitals
(see Appendix A for details). We choose this direction be-
cause it is inversion symmetric and thus the dipole moments
are real. This automatically eliminates the “atomic phase”
contribution to the RABBIT beating (apart from an overall
Nm phase, with N an integer) and allows one to extract
the relative phase of the harmonics in a clean way. At the
crystal momentum kgg, where the blue and red arrows are
located in Fig. 1(a), the sp, conduction bands are separated
by roughly the third harmonic of an 800 nm Ti:sapphire
laser, A ~ 270 nm. To perform the RABBIT scheme, we use
the fundamental frequency w = 0.167 a.u. (A = 270 nm) and
its seventh (21st of 800 nm) and ninth (27th of 800 nm)
harmonic. The harmonics are resonant with the lowest and
highest sp, conduction bands from the lowest sp, valence
band at ksg [blue and purple arrows in Fig. 1(a)]. The time-
delayed probe, carried at w, is resonant with the intermediate
sp> band [the sideband, orange curve in Fig. 1(a)] from the
other two sp, conduction bands at ksg. Since all the valence
bands are fully occupied before the pump photon arrives,
the sideband is populated predominantly via two quantum
paths: (i) by the absorption of a 7w photon, followed by the
absorption of an w photon, and (ii) by the absorption of a 9w
photon, followed by the stimulated emission of an @ photon
[Fig. 1(a)]. The pump fields have a strength of F;, = Fy,, =
0.01 V/A and the probe pulse has a strength F,, = 0.02 V/A.
All fields are 15 fs long and linearly polarized along the K-M
direction.

In Figs. 1(b) and 1(c) we show the k-resolved electron
population of the sideband in a slice of the first Brillouin zone
along the K-M direction for two time delays separated by
half the RABBIT period and for a relative harmonic phase
of ¢9,, — P7, = 7. The sideband momentum kgg is encircled
by the white line and shows maximum electron population for
panel (b) and a minimum for panel (c). Figure 1(e) shows the
oscillating population, obtained from averaging the k-resolved
populations over a circle centered at kgg and with 0.005
a.u. radius. Several choices of the relative harmonic phase
A¢ are shown. As a function of the pump-probe time delay,
the populations oscillate following the characteristic RABBIT
frequency. Since the “atomic” phase A¢ = m, regardless of
which frequency we choose [see Fig. 1(d)], the RABBIT
beating signal reconstructs directly A¢ with the offset of .
This should be contrasted to the atomic case, where A must
be approximated or calculated theoretically to retrieve Ag,
since the former varies with frequency and atomic species [5].

B. Reconstruction of the interband phase

Next we illustrate the case where the relative harmonic
phase is known in advance and one is interested in extract-
ing the phase information of interband transitions [10]. The
matrix element between the Bloch state of band m and that of
band n at the crystal momentum k can be written in terms of

the position operator,
= i0k0,m + Aunk- 3)

The first term in the right-hand side can be neglected for weak
fields, since it accounts for the “streaking” of electrons by the
vector potential, which is weak in the RABBIT method. The
second term, A,k = I (4yk|VkUnx) 1S the Berry connection,
with u,x the periodic part of the Bloch state of band n. Then,
the two-photon matrix element between an initial state in band
m and a final state in sideband # at the crystal momentum K is
the two-photon Berry connection (TPBC),

A (@) = ZAn A/ [En(K) + @ — £5(K)], (4)

J
where | indicates the component parallel to the laser po-
larization (we assume all fields linearly polarized along the
same direction). The “atomic” phase recorded by RABBIT in
interband transitions is the relative phase between the TPBC,
Apine? = arg {AD) [N + Dol + AL, (—o)}

nmk m

—arg {AD) [N — Dol + A5, (@)}, (5)

nmk, || nm

The analogy to the atomic case shows that it is possible to ex-
tract information on interband dynamics in solids in the same
way as photoionization dynamics in atoms. We will refer to
the “atomic phase” in solids [Eq. (5)] as the interband phase.
Retrieving this phase is of interest in materials with broken
inversion symmetry and along non-inversion-symmetric di-
rections, where it will not simply be a multiple of = as we
have seen before.

To illustrate this, we consider a one-dimensional chain
made up of four different atoms (A,B,C,D) placed consec-
utively, each with one atomic orbital, such that the system
has broken inversion symmetry [Fig. 2(a)]. We choose the
distances between atoms to be 2, 4, 6, and 8 a.u. for A-B,
A-C, A-D, and A-A, respectively. We consider first and sec-
ond neighbor hoppings (|¢;| = 3 eV, || = 1 eV), and on-site
energies A = —8, 0, 5, and 8 eV for atoms A, B, C, and
D, respectively. The band structure is shown in Fig. 2(b).
Since we are interested in exploring the phase of the material
throughout the Brillouin zone, in this case it is necessary to
assume that we have access to four different phase-locked
tunable frequencies. While this is technically challenging, it
is in principle possible to achieve through high harmonic
generation of both a signal and an idler wavelength.

The scheme thus assumes the general case in which for
each momentum kgp, we have two pump frequencies w
and ] and two probe frequencies w, and ), such that at
the sideband energy Q = o] — w) = w; + w; [see Fig. 2(b)
and Appendix C]. Figures 2(c)-2(e) show the populations
of the three conduction bands as a function of the time de-
lay between pump and probe frequencies, for the choice of
frequencies depicted in panel (b), i.e., resonant at kgz. The
signal is measured for k > 0, i.e., along the I'-X direction.
A momentum-resolved measurement is required because, due
to the absence of inversion symmetry, A(p]((i;:er) = —A(pfr]’::).
The energy range covered by the panels (c)—(e) corresponds
to the bandwidth of each of the conduction bands. The bands
are populated at the energy corresponding to the crystal mo-
mentum Kgp. The sideband [panel (d)] shows the characteristic
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FIG. 2. (a) Pictorial representation of the 1D model system (see text for details). (b) Band structure of the 1D model system with the arrows
indicating the general RABBIT mechanism with four different frequencies: the pump w; and w| and the probe w, and wj. (c)—(e) Population
as a function of the pump and probe time delay at the energy of the upper conduction band (c), the sideband (d, RABBIT beating), and the

lower conduction band (e).

RABBIT beating, while a third-order process modulation is
also visible in the upper band [panel (c)]. Provided the relative
harmonic phase A¢ is known, the phase of the sideband beat-
ing allows one to extract the interband phase at kg3, A(pf(';;er) .

Figure 3(a) demonstrates the interband phase reconstruc-
tion along the full Brillouin zone. To obtain this, we performed
a RABBIT measurement at each crystal momenta by tuning
the four frequencies w;, w}, w,, and w) in Fig. 2(b). For
each measurement, we extracted the phase of the oscilla-
tion [Fig. 2(d)]. These phases are shown as black points in
Fig. 3(a) and faithfully reproduce the theoretical values com-
puted through Eq. (5) (red curve).

C. Influence of harmonic-band detuning in the RABBIT phase

One of the most striking examples of the link between
the RABBIT beating phase and the phase of the two-photon
matrix elements in atoms and molecules is that in which one of
the harmonics traverses a bound state [7,31-35]. In this case,
the intermediate step in the two-photon process is dominated
by a single resonant state with energy E., so that the two-
photon matrix element M,,,(w) = O,;Ojp/(Ep + © — Eres)
displays a phase shift of 7 as a function of the detuning of the
frequency w from the resonance [32].

To test this process in solids, we consider again the one-
dimensional (1D) chain system in Fig. 2. We change the
frequency of w;, while keeping all other field parameters the
same; in particular, the frequencies w], w>, and ) remain

unchanged. Such conditions are chosen to illustrate the effect.
However, we note that the different curvature that each band
has as a function of k could give rise to this scenario as the
generating frequency w is changed.

Figure 3(b) shows the RABBIT beating and phase for
various detunings between w; and the first conduction band
at kgg = X. Far from resonance (dark red and dark blue),
the RABBIT beating is small, but one can clearly distin-
guish a 7 shift in the oscillation between negatively detuned
(dark blue) and positively detuned (dark red) frequencies. To
visualize it more clearly, we fit the oscillations to Eq. (1)
and extract the RABBIT phase. Figure 3(c) shows the result,
where one can observe the m shift as w; crosses the reso-
nance, in agreement with Eq. (5). Note that higher and lower
detunings than those shown will not generate a RABBIT
oscillation.

D. Extraction of electron-hole dephasing times by
nonoverlapping pump and probe pulses

So far, we have demonstrated how the RABBIT technique
can be applied to solids, allowing one to extract the same
dynamical observables as in atoms or molecules. There is,
however, a fundamental difference with respect to the tra-
ditional RABBIT implementation in atoms. In atoms, if the
pump and the probe pulses do not temporally overlap, radia-
tive transitions between unstructured continuum states, i.e.,
absent of resonances, are forbidden. In solids, the interband
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FIG. 3. (a) Amplitude of the two-photon Berry connection (blue curve, left axis) and interband phase (red curve, right axis) of the model in
Fig. 2. The black points indicate the phase reconstructed with the RABBIT method at each crystal momenta. (b) Sideband population beating
atkgp = X for various frequency detunings between w; and the energy of the first conduction band at X [see Fig. 2(b)]: —0.05 eV in dark blue,
—0.025 eV in light blue, on resonance in gray, 0.025 eV in light red, and 0.05 eV in dark red. (¢) RABBIT phase of the beatings in panel (b)

as a function of the detuning, extracted from fitting to Eq. (1).

transitions are resonant and thus always allowed: there will be
a RABBIT beating for nonoverlapping pulses as long as there
is coherence between the bands.

When dephasing can be well approximated by a constant
exponential decay of the coherence, the RABBIT beating
amplitude will simply follow the function

f(t)=Ae "' cos[2wt + 0]+ B, (6)

where A, B, 6, and T, are fitting parameters (many of which
can be strongly bounded). For more complex decoherence
mechanisms, the fitting function may need to include more
parameters, but the general approach still remains valid.

To study the dependence of the RABBIT beating on elec-
tron decoherence, we introduce a dephasing time in the 1D
chain model (Fig. 2). As it is commonly done in other
works [36], we do so with a phenomenological parameter
T, that exponentially suppresses the nondiagonal elements
of the density matrix (see Appendix B for further details).
Figure 4 shows the RABBIT beating in the 1D chain model
with 7, = 12 fs for a wide range of pump-probe time delays.
For t = 0 (not shown), the pulses are perfectly overlapping
and they start to fully separate for v > 22 fs. The RABBIT
signal is computed at kgg = X, but other momenta show
the same results. To reduce computational cost, the duration
of the pulses in this case was limited to 8 fs full width at
halfc maximum. The field sErengths were F,, = F, = 0.01
V/A, Fy, = F,, = 0.02 V/A. The beating amplitude when
the fields are not fully overlapping follows an exponential
decay as a consequence of electronic decoherence. Fitting the
beating to Eq. (6) yields a value of the dephasing parameter
of Tz(ﬁt) = 12.09 fs, in perfect agreement with the numerical
input value of 7, = 12 fs. For these simulations we have
neglected the effect of population relaxation (which will lead

to a similar decay of the RABBIT signal) since its timescale
is generally much larger than that of dephasing.

III. CONCLUSION

To summarize, we have explored application of the RAB-
BIT technique to interband transitions in solids by measuring
the momentum-resolved sideband population, which is possi-
ble through ARPES. Similar to its application in atoms, this
may open the way to obtain relative amplitudes and phases
of two-photon dipole couplings, which are hard to obtain
even through numerical methods in most condensed-matter

1.4+

1.2 4

0sa(T)/Pss
[
)

0.8
0.6 A EZNu
—— curve fit
15 20 25 30 35

T (fs)

FIG. 4. In orange, the RABBIT signal at kg = X for different
pump-probe time delays t (nonoverlapping starts at T > 22 fs). The
dephasing time is 7, = 12 fs. In black, the fitting to Eq. (6), which
yields 7," = 12.09 fs.
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systems [37,38], thus giving a window into the dynamics of
interband excitations. Using a toy model, we have shown that
the relative phase of the harmonics can be retrieved directly
from the sideband population beating in inversion-symmetric
systems (or along inversion-symmetric directions), without
the influence of the interband (“atomic”) phase, in contrast
to atoms. Finally, we have shown that the RABBIT signal
in solids is extremely sensitive to decoherence mechanisms,
providing a simple interferometric way to extract dephasing
times.
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APPENDIX A: hBN FIELD-FREE DFT CALCULATION

To obtain the field-free band structure and dipole cou-
plings (Berry connections) of hBN we first perform a
density-functional theory (DFT) calculation with QUANTUM
ESPRESSO [39]. We use a HSE functional with a 10 x 10 x 4
Monkhorst-Pack grid. This gives a minimum band gap of
~6 eV, in line with previous works. To achieve a fixed phase
relation of the dipole couplings at different k, we transform
our basis to the maximally localized Wannier basis with the
WANNIERIO suite [37]. For this, we project onto the p, and
sp» orbitals of boron and nitride. In this way, we obtain a
tight-binding representation of field-free hBN, which is then
propagated using the code [38], briefly described below.

APPENDIX B: PROPAGATION IN PRESENCE OF
THE FIELD

We solve the density-matrix equation in the dipole approx-
imation and in the length gauge,

(1 - (Snm)pnm(kv t)
T '

& oum(K, 1) = —i[H(K, 1), DK, )]m —

(B1)
The Hamiltonian of our system is H (K, t) = Hy(k) + [e|E(?) -
r, where Hj is the periodic field-free tight-binding Hamil-
tonian constructed as indicated above and E(¢) is the
time-dependent field. The representation of the position oper-
ator is that given by Blount [40], ¥ = idx + A(k), where A (k)
is the Berry connection. Dephasing is introduced in a phe-
nomenological way via the constant dephasing time parameter
T,, which exponentially suppresses the coherences between
the bands. The initial state is a mixed state, with no coherence
between the bands, where the valence band is fully occupied
and the conduction bands are empty. The final populations are
obtained from the diagonal elements of the density matrix at
a time when the pulse is over. For the 1D chain model, we
used a grid of N, = 600 points and a step size of dt = 0.1
a.u. For monolayer hBN, we used a grid of Ny = N, = 400

points and a dt = 0.1 a.u. Further details of the code can be
found in [38].

APPENDIX C: RABBIT EXPRESSION

The RABBIT protocol is an interference of four time-
ordered two-photon paths that reach the same final energy
2. Since we consider transitions from a low-lying state to a
high-lying state, e.g., ground electronic state to continuum or
deep valence band to conduction band, we assume that the
paths are formed by the absorption of a high-frequency pump
photon and the absorption or stimulated emission of a probe
photon. Let us denote the pump photons by w; and ) and the
probe photons by w, and ). The paths interfere at the energy
Q. To reproduce the usual RABBIT implementation, where
there are two paths contributing “from above” and two “from
below” [Fig. 2(b)], we take Q = w; + w) = w| — v}, Where
+ corresponds to photon absorption and — to stimulated
photon emission; any other combination of frequencies will
not contribute to this energy, e.g., w; + ) # Q. Therefore,
the paths containing w; < 2 contribute “from below” and are
associated to w, probe photon absorption, while the paths con-
taining | > Q contribute “from above” and are associated
to w) probe photon emission. We write the four paths as (i)
+wi + wy, (i) +0| — ), (iii) +wr + w1, and (iv) —w) + o}.
The first frequency is absorbed or emitted first.

Let us consider path (i), where we first absorb the pump
photon w;, and then absorb the probe photon w,. We assume
monochromatic pulses, so that for the pump field we have

FO,w|

F, (1) = =2 (916" + e P "). (C1)

The probe field is delayed by a time t, so that
(ei(¢m2 +wgr)eiwzt + 67i(¢“’2 +wzr)efiw2t). (C2)

The second-order amplitude in the Dyson expansion is

t
A}Zl) = —ZijOj,‘ dn eiEfjt]F(tl)
j fo

n
X / dty €Ei F (1), (C3)
fo

where the O, are the transition matrix elements, e.g., in
length gauge Oy, = (b|r|a). For monochromatic pulses, we
can compute the amplitude taking #) — —oo and t — +-00.
Then,

F e i@y tant) p =i,
A(2) _ 0,7 0,w; Zofloll
J

i) = ) )

[} 3]
x / d e"<Ef-f—w2>f'/ dn e Fim®b - (C4)

o0 —0Q

where subscript (i) indicates which path we consider. The
second integral in Eq. (C4) can be solved by introducing a
decaying exponential in the limit of ¥ — oo,

t . t . . ela}f
/ dt " — lim dtj @ —j——___ (C5)

00 v—>0t J_ o —w +i0t’
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where (x +i0%)~! is a distribution. Using Eq. (C5) in the
second integral of Eq. (C4),

@ __Fo,w2€_i(¢“’2+w2r) FO,wle_i(bm‘
iy = 7 2 2
. .. S
« Z OfJOJl / dt ei(Efi—wl _U)Z)fl.
Ei+a)1—Ej~|—iO+ —o0

J

(Co)

We identify the integral with the delta distribution, i.e.,
[22, dt '@ = 27 §(w — wp), so that

i Fo.u, Fo.0, o1 (@uy T0nT) p—ithe
fi)y — T 2

Or,;0ji
X : S(E¢ — — .
ZEi+a)1—Ej+iO+ B — o =)

i
(C7)

For compactness, let us write the two-photon transition matrix
element as
OO0
Mi(wr) = ] . C8
sil@r) ZEi+a)1—Ej+i0+ (C8)

J

Then, the transition amplitude reads

i FO, FO, e (buy T +@27)
" - _ (2] ] 2 Mfl(a)l)

x 8(Ef — 2), (C9)

@)
Az

where Q = w; + w» = 0| — w) is the sideband energy. The
other three paths contributing to the RABBIT signal follow:
. (b, =P, +@HT)
O T R
fiti) = 2

M (@) 8(Efi — ),
(C10)

i FO @ FO o e*i(lﬁmz +¢u, +027)

2
Al ity = 3 Myi(w2)
x 8(Efi — ), (C11)
. (B, — B, +yT)
2 124 FO,a)’ZFO,a)’ e 2 1 ,
A( i,)(iv) = — ]2 Mfi(_wz)
x 8(Ei — Q). (C12)

We group paths (i) and (iii) on the one hand and paths (ii) and
(iv) on the other, which correspond, respectively, to absorption
of an w, photon and stimulated emission of an ) probe
photon,

i1 Fo., Fo.00, e~ (Do, T +027)

2)
‘A i,em = 2
X [Myi(o1) + Mpi(0)]8(Ep; — ), (C13)
L
fi,abs 2
X [Myi(@)) + Mypi(—)8(Ef — ). (C14)

The total intensity at the sideband energy is the coherent sum
of Eq. (C13) and Eq. (C14),

2 2

Isp = ’A.(fi,)abs + 'A.;‘”)

‘2
i,em

o coS[AP — (P, + Bu) + A — (02 + @))T], (C15)
where we have defined the relative harmonic phase, A¢ =
b, — oy » and the interband (“atomic”) phase:

@abs = arg[M si(w1) + Myi(w2)],
(C16)

For the case in which the probe frequencies are the same w, =
w) = w and the pump frequencies are odd harmonics of the
probe, w; = (2N — 1)w and | = 2N + D)o, Eq. (C15) and
Eq. (C16) reduce to Eq. (1) and Eq. (2).

A(p = Qabs — Pem>
@em = arg[Msi(@)) + Myi(—w))].
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