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Phase and time delays of atomic above-threshold ionization were recently experimentally explored in an
ω − 2ω setting [Zipp et al., Optica 1, 361 (2014)]. The phases of wave packets ejected from argon by a strong
2ω pulse were probed as a function of the relative phase of a weaker ω probe pulse. Numerical simulations
solving the time-dependent Schrödinger equation (TDSE) displayed a sensitive dependence of the doubly
differential momentum distribution on the relative phase between the ω and 2ω fields. Moreover, a surprisingly
strong variation of the extracted phase delays on the intensity of the probe pulse was found. We present a
semiclassical strong-field description of the phase delays in the emission of electrons in an ω − 2ω setting
and apply it to atomic hydrogen. Nonperturbative effects in both the 2ω pump and the ω probe field are
included. The semiclassical description allows tracing phase delays to path interferences between emission
during different points in time of emission within the temporal unit cell of the two-color laser field. We find good
agreement between the semiclassical saddle-point approximation, the full strong-field approximation (SFA), and
previous results applicable in the perturbative limit of probe fields. We show that the RABBIT-like perturbative
description of phase delays breaks down for stronger fields and higher-energy electron emission. In this regime,
characterization of the ionization signal requires an entire ensemble of phase delays δi(E ) with i = 1, 2, . . . the
difference in photon numbers of the strong 2ω field involved in the interfering paths. Comparison between SFA
and TDSE calculations reveals the influence of the Coulomb field even in this strong-field scenario.
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I. INTRODUCTION

Attosecond chronoscopy of atomic processes has become
accessible through pump-probe techniques such as attosecond
streaking [1–3] and reconstruction of attosecond harmonic
beating by interference of two-photon transitions (RABBIT)
[4–6]. These techniques typically involve lasers of two very
different frequencies: electrons emitted by the absorption
of an XUV photon are probed by a laser pulse in the
near-infrared region of the electromagnetic spectrum. The
high sensitivity of the emission spectrum on the relative
phase between the two well-controlled fields has enabled the
measurement of the timing of electronic processes on the
attosecond scale, in particular of the time zero of the photoion-
ization, and corresponding Eisenbud-Wigner-Smith (EWS)
time delays in atoms [7–11], molecules [12,13], and surfaces
[14–16]. In attosecond streaking, the oscillating probing field
causes classically periodic gains and losses of the final ki-
netic energy of the emitted electron thereby mapping time
information onto energy [1,11]. In RABBIT, ionization by
two consecutive high harmonics of the XUV pulse followed
by absorption and emission of a photon of the fundamental
frequency opens up two interfering paths to the same final
state in the continuum. The relative phase between these
two ionization paths permits the interferometric extraction of
phase shifts and time delays from the asymptotic behavior of
the scattered electron wave packet. Accurate phase and time

information can be directly extracted from numerically exact
solutions of the time-dependent Schrödinger equation (TDSE)
[17–23].

The concept of measuring phase shifts and time delays in a
RABBIT-like setting was recently extended by Zipp et al. [24]
to the strong-field regime of two commensurate frequencies ω

and 2ω (with ω in the near infrared). The strong 2ω field in-
duces above threshold ionization (ATI) peaks for argon atoms
while the weaker ω field delayed by a relative phase φ couples
two adjacent ATI peaks at E2n (absorption of n2ω photons of
frequency 2ω) and E2n+2 (absorption of n2ω + 1 photons of
frequency 2ω) to (sideband) states with the same final energy
E2n+1. This opens up interfering paths (e.g., absorption of
n2ω photons of frequency 2ω plus one additional ω photon
interfering with absorption of n2ω + 1 photons of frequency
2ω plus emission of one ω photon). The extraction of phase
delays by such an ω − 2ω multiphoton ionization interference
scenario has been extended to probes of chiral molecules
by using for either the strong 2ω field or the weak ω field
circularly rather than linearly polarized light [25]. Our recent
theoretical study of these ω − 2ω phase delays employing
ab initio solution of the TDSE and lowest perturbation theory
for atomic argon [26] revealed surprisingly strong nonlinear
effects by the probe field beyond lowest-order perturbation
theory. This observation raised conceptual questions as to
the extraction and interpretation of atomic phase and timing
information within such setting in the strong-field regime.
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In this work, we begin to address some of these questions
by exploring a semiclassical strong-field description of the
photoelectron emission from atomic hydrogen in a two-color
(ω − 2ω) linearly polarized laser pulse in the multiphoton
regime. The present study involving the saddle-point ap-
proximation (SPA) to the strong-field approximation (SFA)
represents a generalization of the theory for diffraction at a
time grating [27–29] to the multiphoton strong-field ioniza-
tion process. Key is the observation that the phase-controlled
superposition of the ω and the 2ω fields results in a phase-
dependent modulation of the electron emission that gives
access to an entire ensemble of phase delays {δi(E )} with
i = 1, 2, . . .. The latter are associated with a plethora of dif-
ferent interfering pathways of multiphoton absorption and
emission reaching the same final state in the continuum.
Semiclassically, these interfering pathways can be related to
electronic wave packets emitted at different ionization times
within one optical cycle T = 2π/ω. We gauge the applicabil-
ity of the SPA by comparison with full SFA calculations as
well as TDSE results. In the limit of a very weak ω probe
field the present SPA converges to previous SFA perturba-
tive results for δi=1 [24,26,30]. Within the SPA or SFA, the
influence of the Coulomb potential of the outgoing wave
packet is neglected [28,31–34]. The comparison with TDSE
results demonstrates the influence of Coulomb effects in the
strong-field regime of the present multiphoton strong-field
interference (MPSFI) scenario.

The structure of the paper is as follows. In Sec. II we
briefly review the semiclassical theory of photoionization. We
present the generalization of the SPA to the ω − 2ω field in
the nonperturbative regime in Sec. III, where approximate
analytic expressions for the interfering phases between dif-
ferent emission points on the time grating are given. Results
for signatures of these interferences on the doubly differen-
tial momentum distributions (DDMD) of emitted electrons
as a function of the relative phase φ between the ω and the
2ω fields for the atomic phase delays are discussed and a
comparison with full SFA and TDSE calculations is given
in Sec. IV. By means of a Fourier analysis of angle-resolved
energy spectra, the set of phase delays {δi(E )} is extracted for
the nonlinear regime in Sec. V. Our conclusions are summa-
rized in Sec. VI. Atomic units (e = h̄ = me = 1 a.u.) are used
throughout unless stated otherwise.

II. BRIEF REVIEW OF SEMICLASSICAL SADDLE-POINT
APPROXIMATION

Ionization of atomic and molecular systems by a strong
laser pulse is frequently treated in the single-active-electron
approximation. The TDSE for an atom exposed to the laser
field reads

i
∂

∂t
|ψ (t )〉 = [H0 + Hint(t )]|ψ (t )〉, (1)

where H0 = �p2/2 + V (r) is the time-independent atomic
Hamiltonian, whose first term corresponds to the electron
kinetic energy and its second term to the electron-core
Coulomb interaction. In Eq. (1), Hint(t ) represents the interac-
tion Hamiltonian between the atomic system and the external
radiation field. In the case of hydrogen for which we present

numerical results in the following, Eq. (1) with V (r) = −Z/r,
(Z = 1) is exact. In the presence of the external field, the
electron initially bound in an atomic state |ϕi〉 can undergo a
transition to a final continuum state |ϕ f 〉 with final momentum
�k and energy E = k2/2, corresponding to photoionization.
The transition amplitude can be expressed within the time-
dependent distorted wave theory in the prior form as [35,36]

Tif = −i
∫ +∞

−∞
dt 〈χ−

f (�r, t )|Hint(�r, t )|ϕi(�r, t )〉, (2)

where ϕi(�r, t ) = ϕi(�r) eiIpt is the initial atomic state with
ionization potential Ip and χ−

f (�r, t ) is the distorted final state.
Equation (2) would be still exact provided the exact exit
channel function χ−

f (�r, t ) is used.
Equation (2) serves as a starting point for several frequently

used approximations. One of the most popular is the SFA,
which neglects the Coulomb interaction between the ionized
electron and the ionic core in the exit channel. The underlying
assumption is that the strong laser field-electron interaction
dominates over the Coulomb field. Thus, in the SFA the exact
exit channel function χ−

f (�r, t ) is reduced to a Volkov state
[37], i.e., χ−

f (�r, t ) = χV
f (�r, t ), where

χV
f (�r, t ) = 1

(2π )3/2
exp{i[�k + �A(t )] · �r}

× exp

{
i

2

∫ ∞

t
[�k + �A(t ′)]2dt ′

}
. (3)

The vector potential �A(t ) is given in terms of the external elec-
tric field by �A(t ) = − ∫ t

−∞ dt ′ �F (t ′). The Volkov state [Eq. (3)]
represents the solution of the TDSE in the length gauge for a
free electron exposed to an electromagnetic field. We evaluate
the transition matrix element within the dipole approximation
by inserting Eq. (3) and Hint (�r, t ) = �F (t ) · �r into Eq. (2),
which yields

Tif =
∫ +∞

−∞
Mif (t ) eiS(t ) dt, (4)

where the coupling matrix element

Mif (t ) = −i �F (t ) · �d[�k + �A(t )] (5)

contains the dipole transition moment defined as �d (�v) =
(2π )−3/2〈ei�v·�r |�r|ϕi(�r)〉, and the phase in Eq. (4) is given by
the Volkov action [37]

S(t ) = −
∫ ∞

t
dt ′

{
[�k + �A(t ′)]2

2
+ Ip

}
. (6)

We note that the present SFA for photoemission [Eqs. (4),
(5), and (6)] shares many features of the Lewenstein model for
high-order harmonic generation by low frequency laser fields
[38] including the neglect of all bound states and quasibound
resonances except for the initial ground state and the neclect
of the depletion of the initial state population during the dura-
tion of the laser pulse.

Throughout this paper, we consider linearly polarized laser
fields (in the ẑ direction) featuring a smooth envelope with a
central flat-top region spanning N � 1 optical cycles within
which both �F (t ) and �A(t ) are strictly periodic with period T .
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From Eq. (6) it follows that in the central region the action
S(t ) satisfies the condition of Floquet periodicity

S(t + jT ) = S(t ) + Ẽ jT, (7)

with j = 1, 2, . . ., which implies, up to a linear shift with
time, T periodicity. The constant of proportionality for the
linear shift of the action corresponds to the (quasi)energy

Ẽ = k2

2
+ Ip + Up, (8)

which includes the ponderomotive energy Up =∫ t+T
t dt ′A(t ′)2/2. Using the T periodicity of the coupling

matrix element Mif (t + jT ) = Mif (t ), resulting from the
periodicity of the electric field and vector potential, the
transition matrix Tif in Eq. (4) can be written in terms
of the contribution stemming from one cycle or, equivalently,
one temporal unit cell of the time grating [29,39] as

Tif =
∫ NT

0
Mif (t )eiS(t ) dt

=
N−1∑
j=0

∫ ( j+1)T

jT
Mif (t + jT )eiS(t+ jT )dt

=
N−1∑
j=0

eiẼ jT
∫ T

0
Mif (t )eiS(t )dt

= sin (ẼT N/2)

sin (ẼT/2)
e(iẼT (2N−1)/2)Iif (�k), (9)

with N the total number of optical cycles in the flat-top region.
For simplicity and in order to arrive at analytic results, the
contributions from the ramps on and off of the field to the total
ionization amplitude have been omitted in the current SPA
analysis. Note, however, that in the full numerical implemen-
tations of the SFA and the TDSE presented below ramp-on
and ramp-off effects will be fully included. In Eq. (9)

Iif (�k) =
∫ T

0
Mif (t )eiS(t )dt (10)

denotes the contribution to the transition amplitude stemming
from one single optical cycle.

The DDMD of emitted electrons as a function of the trans-
verse (k⊥) and longitudinal (kz) momenta or, equivalently, of
the energy (E ) and angle (θ ) with respect to the polarization
direction can be expressed in terms of Tif [Eq. (9)] as

P(k⊥, kz ) = 1√
2E

P(E , cos θ ) = 2π |Tif |2. (11)

Thus, the DDMD can be represented by a product of an
intracycle factor

F (�k) = |Iif (�k)|2, (12)

which stems from the contributions within one optical cy-
cle and plays the role of a form factor of the time grating
[36,39,40], and of the intercycle factor

B(Ẽ ) =
(

sin (ẼT N/2)

sin (ẼT/2)

)2

, (13)

which corresponds to the Bragg factor of the time grating
signifying the superposition of contributions from N different
optical cycles. The expression for the DDMS can thus be
expressed as diffraction at a time grating [27–29], i.e.,

P(k⊥, kz ) ∝ B(Ẽ )F (�k). (14)

We emphasize that, apart from neglecting transient turn-on
and turn-off effects, the decomposition of the DDMS into
intracycle and intercycle factors holds in general for smooth
continua, in particular also in the present case of temporal
modulations of the time grating resulting from the superposi-
tion of the ω and 2ω laser fields. We note that for multiphoton
ionization into structured continua, in particular resonances
[25], modifications are to be expected.

Finite maxima are reached at the zeros of the denominator
of the intercycle factor B(Ẽ ) in Eq. (13), i.e., at energies
satisfying ẼT/2 = nπ . Such maxima are recognized as the
multiphoton peaks of the photoelectron spectra. They occur at
final electron kinetic energies k2/2 equal to

En = n
2π

T
− Ip − Up, (15)

where we have used Eq. (8). In fact, for long pulses when
N → ∞, the intercycle factor becomes a series of delta
functions, i.e.,

∑
n δ(E − En), expressing the conservation of

quasienergy for multiphoton absorption. Correspondingly, for
finite pulse durations τ = NT , each multiphoton peak has
a width �E ∼ 2π/NT , consistent with time-energy uncer-
tainty.

The numerical evaluation of the intracycle amplitude
[Eq. (10)] yields the SFA. In the semiclassical limit, assuming
the action S(t ) to be large and rapidly varying, Eq. (10) can be
approximately evaluated within the SPA. Hence, Iif (�k) reduces
to a coherent superposition of amplitudes associated with
electron bursts emitted with momentum �k at different times
tβ within a single optical cycle (or unit cell of the temporal
lattice) [41]

Iif (�k) 
∑

β

W (tβ )eiS(tβ ) (16)

with W (tβ ) the complex amplitude of the emission burst.
The ionization times tβ are, in general, complex, fulfilling
the saddle-point condition [42] Ṡ(tβ ) = 0 (the dot denotes the
time derivative), i.e.,

[�k + �A(tβ )]2

2
+ Ip = 0, (17)

where we have used Eq. (6). In the Appendix we provide de-
tails of the saddle-point integration within the SPA leading to
Eq. (16). Solutions of Eq. (17) come in pairs (tβ, t∗

β ) where the
star denotes complex conjugation. From each pair we select
only the exponentially converging (nondiverging) solutions,
i.e., exp{− Im[S(tβ )]} � 1. We refer in the following to the
approximation [Eq. (16)] with numerically determined tβ as
the full SPA.
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III. SEMICLASSICAL APPROXIMATION FOR PHASE
DELAYS IN ω − 2ω IONIZATION

We now explore the effect of an ω − 2ω laser field on the
photoionization dynamics with the goal to relate the phase
delays observed with the ω − 2ω setting to semiclassical path
interferences. The present approach allows for both strong
pump (2ω) and probe (ω) fields and is, thus, not restricted to
the perturbative limit.

We consider the two-color electric field of the form

�F (t ) = f (t )[F2ω sin (2ωt + φ) + Fω sin(ωt )] ẑ, (18)

with φ the relative phase of the second harmonic with re-
spect to the fundamental laser field, f (t ) is the normalized
envelope function varying between 0 and 1, ẑ is the polar-
ization direction of both fields, and F2ω and Fω are the field
strengths of the second harmonic and fundamental frequency,
respectively. For our numerical results we use F2ω = 0.05
a.u. and Fω = 0.005 a.u. corresponding to Keldysh parameters
γ2ω = 2 and γω = 10 in the multiphoton regime. The relative
phase φ serves as a control parameter to unravel the subcycle
ionization dynamics.

For a long pulse with suitable switch-on and switch-off, the
vector potential can be written in its central part [ f (t )  1], as

�A(t ) = f (t )

[
F2ω

2ω
cos(2ωt + φ) + Fω

ω
cos(ωt )

]
ẑ, (19)

displaying the same periodicity as the electric field, i.e.,
�A(t ) = �A(t + 2 jπ/ω) and �F (t ) = �F (t + 2 jπ/ω), with j any
integer number provided that f (t + 2 jπ/ω) = 1. Note that
the periodicity of the time grating or lattice constant of the
temporal lattice is determined by the fundamental frequency
ω, i.e., T = 2π/ω and not by the 2ω field. The latter, even
though stronger than the ω field (F2ω > Fω), should rather be
viewed as a strong and rapid modulation with period T/2 of
the time grating with period T . Figure 1 displays the time
dependence of the superimposed ω − 2ω field. For reference,
the dominant 2ω-one-color field (Fω = 0) is also given. The
unit cell corresponding to one optical cycle of the field is
delimited by the zeros of the vector potential [27,28]. For the
limiting one-color case (Fω → 0) this would correspond to,
for example for φ = 0, t ∈ [π/4ω, 9π/4ω) [Fig. 1(a)], while
these values vary for the two-color case. Accordingly, the unit
cell of the time grating for the two-color pulse for φ = 0 is
located at t ∈ [0.275π/ω, 2.275π/ω) [Fig. 1(a)]. Analogous
shifts can be found for other values of φ.

The dependence of the angular differential ionization prob-
ability [Eq. (11)], e.g., in the forward direction (cos θ = 1),
on the relative phase φ between the ω and 2ω fields can be
Fourier expanded as [26,43]

P(E , cos θ = 1) = c0(E ) +
∑
i�1

ci(E ) cos [iφ − δi(E )].

(20)

This expansion signifies the quantum path interference
between different multiphoton absorption and emission path-
ways to the same final state [26]. Adopting the standard
RABBIT terminology, we refer to peaks in the energy spectra
at En with n even to ATI peaks and to side bands when
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FIG. 1. Vector potential (thick red) and electric field (thin black)
along the polarization axis as a function of time. Solid line: the two-
color field [Eqs. (18) and (19)], dashed line: The 2ω field [Fω = 0] in
Eqs. (18) and (19)] for reference. Fields are shown for different rel-
ative phases (a) φ = 0, (b) φ = π/2, (c) φ = π , and (d) φ = 3π/2.
Yellow shadings delimit the unit cell of the time lattice determined
by zeros of the vector potential. One-color (2ω) vector potentials and
electric fields are scaled to unit amplitude.

n is odd [see Eq. (15)]. The phase-independent term i = 0
mirrors the φ-averaged forward spectrum corresponding to
an experiment with randomly fluctuating relative phase φ.
The order of the Fourier component corresponds to the differ-
ence i = |n2ω − n′

2ω| in the number (n2ω, n′
2ω) of strong-field

2ω photons involved in the two interfering paths (Fig. 2).
The first-order Fourier component i = 1 in Fig. 2(a) bears
closest resemblance to the RABBIT protocol [4–6,24,26] in-
volving the absorption or emission of just one (nω = 1) probe
(weak-field) photon ω. This Fourier component is expected to
dominate the φ variation of the DDMD in the perturbative
limit of weak probe fields (Fω/F2ω � 1). With increasing
amplitude Fω of the probe field higher-order Fourier compo-
nents (i > 1) will account for nonperturbative effects on the
pump-probe protocol. Accordingly, the set of atomic phase
shifts {δi(E )}, i = 1, 2, . . . provides detailed information on
the atomic ionization dynamics in this multiphoton scenario.
For simplicity, we refer in the following to δi(E ) as phase de-
lays even though both positive and negative values of δi(E ) are
possible. In the perturbative limit only i = 1 is present, thus,
δi=1(E ) can be viewed as a finite-difference approximation to
the spectral derivative of the scattering phase shift and, thus,
as a time delay. In the presence of higher Fourier components
in Eq. (20), such an interpretation is no longer obvious. One
goal of the present work is to relate the multiphoton quantum
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FIG. 2. Examples for interfering photon absorption/emission
pathways to the same final state, the sideband level (n = 17). The
paths are sorted according to the difference in the number i = |n2ω −
n′

2ω| of the strong-field 2ω photons (blue arrows) involved in the two
paths, (a) i = 1, (b) i = 2, and (c) i = 3. Red arrows denote probe
photons with frequency ω. An analogous path classification can be
applied to paths leading to ATI peaks

pathway interference encapsulated in Eq. (20) (Fig. 2) to the
semiclassical wave-packet interference in the time domain.
The paths displayed in Fig. 2 represent just few prototypical
examples of a multitude of possible paths, among them those
where the absorption of ω photons precedes the absorption
of 2ω photons (see also Ref. [26]). The presence of such a
multitude of different sequences of photoabsorption process
contributes to the differences between the present multiphoton
strong-field interference (MPSFI) scenario and the standard
RABBIT scheme.

Under the assumption of an adiabatic switch-on and
switch-off, the action S(t ) [Eq. (6)] entering the SPA can be
analytically calculated (in the central region where f (t ) = 1)
as

S(t ) = Ẽt + b sin(2ωt + φ) + c sin(4ωt + 2φ) + d sin(ωt )

+ e sin(ωt + φ) + f sin(2ωt ) + g sin(3ωt + φ),

(21)

where Ẽ is given by Eq. (8) and

b = F2ω

4ω2
ẑ · �k,

c = Up,2

4ω
,

d = Fω

ω2
ẑ · �k, (22)

e = F2ωFω

4ω3
,

f = Up,1

2ω
,

g = F2ωFω

12ω3
.

In Eq. (22) Up = Up,2 + Up,1 = F 2
2ω/(4ω)2 + F 2

ω /(2ω)2 is the
sum over the ponderomotive energies contributed by each
color. We have omitted diverging terms common to all elec-
tron trajectories in Eq. (21) since only differences between

actions will be relevant. The two-color action reduces to the
one-color action when either Fω = 0 (for d = e = f = g = 0)
or F2ω = 0 (for b = c = e = g = 0) [27,28].

Within one temporal unit cell, the laser field features four
extrema (Fig. 1) near each of which an electronic wave
packet can be emitted at times tβ (β = 1, ..., 4) [Eq. (16)].
In the presence of both the strong 2ω field F2ω and the
weaker ω probe field Fω, the determination of the ionization
times tβ requires the numerical solution of the coupled equa-
tions [Eq. (17)] for the real and imaginary parts of tβ

F2ω

2ω
cos (2ω Re tβ + φ) cosh(2ω Im tβ )

+ Fω

ω
cos (ω Re tβ ) cosh (ω Im tβ ) = −kz (23a)

F2ω

2ω
sin (2ω Re tβ + φ) sinh(2ω Im tβ )

+ Fω

ω
sin (ω Re tβ ) sinh (ω Im tβ ) = ±

√
2Ip + k2

⊥, (23b)

with β = 1, 2, 3, and 4. The ± sign in Eq. (23b) must be cho-
sen such that in the limit Fω → 0, Eqs. (23a) and (23b) yield
the well-known analytic solutions for the ionization times for
a one-color (2ω) field [27,28,36,40].

The DDMD [Eq. (11)] is governed by the product
[Eq. (14)] of the Bragg factor B(Ẽ ) signifying intercycle inter-
ference [Eq. (13)] and the structure factor F (�k) representing
the intracycle interference [Eq. (12)]. In particular, the latter
contains the information on the ω − 2ω interferences. From
Eqs. (16) and (A5) in the Appendix, the intracycle amplitude
stemming from the electron trajectories with release times tβ
(β = 1, . . . , 4) can be approximated by

Iif (�k)  2
√

2(2Ip)5/4

F (t0
1 )

√
2Ip + k2

⊥
[ei�(t1 ) + ei�(t2 ) + ei�(t3 ) + ei�(t4 )]

 4
√

2(2Ip)5/4

F (t0
1 )

√
2Ip + k2

⊥

[
ei�̄1,2 cos

(
��1,2

2

)

+ ei�̄3,4 cos

(
��3,4

2

)]
(24)

with �β,β ′ = [�(tβ ) + �(tβ ′ )]/2 is the mean action of the
wave packets emitted at tβ and tβ ′ , and ��β,β ′ = �(tβ ′ ) −
�(tβ ), the action difference between tβ and tβ ′ . The modified
action entering Eq. (24) is defined as �(t ) = S(t ) + α(t ),
where α(t ) = − arg S̈(t ) [see Eq. (A5) in the Appendix]. In
the prefactor of Eq. (24) we have approximated the ionization
times by their values to zeroth order in the ω field using
Eq. (17). These zeroth-order ionization times can be analyt-
ically determined as

t0
1 = 1

2ω

{
cos−1

[
2ω

F2ω

(−kz − i
√

2Ip + k2
⊥)

]
− φ

}
,

t0
2 = 1

2ω

{
− cos−1

[
2ω

F2ω

(−kz + i
√

2Ip + k2
⊥)

]
− φ + 2π

}
,

(25)
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for kz � 0 and,

t0
1 = 1

2ω

{
− cos−1

[
2ω

F2ω

(−kz + i
√

2Ip + k2
⊥)

]
− φ + 2π

}
,

t0
2 = 1

2ω

{
cos−1

[
2ω

F2ω

(−kz − i
√

2Ip + k2
⊥)

]
− φ + 2π

}
,

(26)

for kz � 0. At this level of approximation, the absolute values
of the prefactors of each term representing a wave packet
are identical. We have also used |F (t0

β )| = |F (t0
β ′ )|, (β, β ′ =

1, . . . 4) in Eq. (24). The action differences ��1,2 and ��3,4

in Eq. (24) control the interference phase of two electron
trajectories being born within the same (��1,2 for the first,
��3,4 for the second) half-cycle.

In order to pinpoint to the origin of the interference and
to arrive at a simple analytic expression we simplify Eq. (24)
further by using the zeroth-order approximation of the action
in the probe field, (��0)1,2 = (��0)3,4 ≡ ��0, where ��0

denotes the one-color (2ω) action difference between trajec-
tories released during the same optical half-cycle. With this
additional assumption, the form factor simplifies to

F (�k) = |Iif (�k)|2  D|ei�1,2 + ei�3,4 |2 cos2

[
��0

2

]

 4D cos2

(
�S

2

)
︸ ︷︷ ︸
inter-half-cycle

cos2

[
��0

2

]
︸ ︷︷ ︸

intra-half-cycle

, (27)

with �S = S3,4 − S1,2 = �3,4 − �1,2 and

D = 8(2Ip)5/2

F 2
2ω(2Ip + k2

⊥)
∣∣1 − [

ω2

F 2
2ω

(−kz + i
√

2Ip + k2
⊥)

]2∣∣ . (28)

To arrive at Eq. (27) we have exploited the T/2 periodicity

of �0(t ) [Eq. (5)], and used S̈(t0
1 ) = iF2ω

√
2Ip + k2

⊥/2{1 −
[2ω/F2ω(−kz + i

√
2Ip + k2

⊥/2)]2}. We refer in the following
to Eq. (27) as the analytic SPA to distinguish this simplified
expression, which involves several additional approximations
including the zeroth-order approximation to tβ from the full
SPA [Eq. (16)]. The intracycle factor |Iif (�k)|2 factorizes now
in (i) the intra-half-cycle interference factor cos2[��0/2]
stemming from the interference of the two electron trajec-
tories released during one-half optical cycle of the ω field
(or within one optical cycle of the 2ω field) and (ii) the
inter-half-cycle interference factor cos2[�S/2] between the
contributions stemming from the two different half-cycles of
the ω field (or, equivalently, between two subsequent optical
cycles of the 2ω field). The two half-cycles are separated from
each other by a zero of the vector potential and, in general,
do not have (necessarily) the same duration (see Fig. 1) since
the ω − 2ω field breaks the inversion symmetry within the
temporal unit cell.

Ionization phases and phase delays can now be deduced
from the interferences between the electron trajectories as-
sociated with the different release times tβ [Eq. (16)]. In
order to arrive at an approximate analytic expression for
the inter-half-cycle interference factor we insert the zeroth-
order approximation to the ionization times tβ = (2β −

1)π/4ω − φ/2ω (β = 1, ..., 4), applicable in the perturbative
limit (Fω � F2ω) of the probe field into �S, resulting in

�S = nπ − (d + e + g)[cos(φ/2 + π/4) + sin(φ/2 + π/4)]

= nπ − 2χ cos (φ/2). (29)

The amplitude χ of the φ oscillation follows as

χ = (d + e + g)/
√

2 = Fω[kz/ω
2 + F2ω/(3ω3)]/

√
2. (30)

This amplitude depends on the wave number kz (or energy)
of the emitted electron as well as on the product of both field
amplitudes (∝ FωF2ω) signifying a nonlinear pump-probe re-
sponse. Evaluating now the inter-half-cycle factor in Eq. (27)
to lowest nonvanishing order in χ (∝ χ2) near an ATI peak En

(with n even) gives

cos2[χ cos (φ/2)]  1 − χ2

2
+ χ2

2
cos (φ − π ) + O(χ4).

(31)

Comparison to Eq. (20) shows that, to this order, the ionization
phase delay near an ATI peak is completely character-
ized by its first-order Fourier component δi=1 with δi = π .
Correspondingly, near a sideband peak (with n odd), the inter-
half-cycle factor reads

sin2 [χ cos (φ/2)]  χ2

2
+ χ2

2
cos (φ) + O(χ4), (32)

and the corresponding phase delay is δ1 = 0 [24,30]. These
results within the SPA reproduce the well-known SFA predic-
tions for the perturbative limit [24,26,30]. They provide, in
addition, insights into their origin in terms of semiclassical
path interferences: the quantum interference between paths
involving a different number of strong-field 2ω photons (i =
|n2ω − n′

2ω| = 1) [Fig. 2(a)] can be mapped onto the temporal
interference of wave packets emitted at different half-cycles
of the ω field or, equivalently, different cycles of the 2ω field.

Going beyond the lowest order in χ , the inter-half-cycle
interference factor cos2[�S/2] as a function of the relative
phase between the ω and 2ω fields and the strength of χ

drastically varies [Figs. 3(a), 3(b)] and strongly differs from
its perturbative limit [Figs. 3(c), 3(d)]. Cuts through Fig. 3 at
fixed χ are displayed in Fig. 4. For small χ a simple sinusoidal
variation of the SPA inter-half-cycle interference factor is ob-
served in line with the RABBIT-like extraction protocol as the
phase shift in the first term of the Fourier expansion [Eq. (20)].
For χ = 0.5 [Fig. 4(a)] the SFA predictions δ1 = π, 3π for
ATI and δ1 = 0, 2π for the sidebands are reproduced by the
SPA. However, for larger χ [Figs. 4(b)–4(d)] the present non-
perturbative SPA results clearly indicate that application of
the standard RABBIT-like protocol would fail as higher-order
Fourier components [Eq. (20)] strongly distort the sinusoidal
signal. Such differences are to be expected since the standard
RABBIT protocol is designed for two-photon processes (one
XUV and one IR photon) while the present scenario deals with
multiphoton processes involving many n2ω and (up to) several
nω photons.

It is therefore convenient to employ an alternative Fourier
representation of the inter-half-cycle interference factors of
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FIG. 3. SPA inter-half-cycle factor cos2(�S/2) near ATI peaks
(a), (c) and sidebands (b), (d). The factor to all orders is displayed in
the top row (a), (b), and the perturbative predictions to order χ2 in the
bottom row (c), (d). In the perturbative limit χ � 1 ATI maximizes
at δ = π and the sidebands at δ = 0.

the analytical SPA valid to all orders in χ ,

cos2[χ cos (φ/2)]

= 1

2
[1 + J0(2χ )] +

∞∑
i=1

J2i(2χ ) cos (iφ − iπ ), (33)
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FIG. 4. SPA inter-half-cycle interference factor cos2(�S/2) for
ATI peaks and sidebands given by Eqs. (31) and (32) and their
respective perturbative predictions as a function of φ for different
values of the perturbation parameter: (a) χ = 0.5, (b) χ = 1, (c) χ =
2, and (d) χ = 4. In the perturbative case (χ = 0.5) the ATI peaks
maximize at φ = δ = π and 3π while the sidebands have maximum
at φ = δ = 0 and 2π . For χ > 1, the perturbative limit fails.
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of χ where different higher harmonics (J4 in dash blue, J6 in short-
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and

sin2[χ cos (φ/2)] = 1

2
[1 − J0(2χ )] +

∞∑
j=1

J2 j (2χ )

× cos( jφ − ( j − 1)π ), (34)

for ATI [Eq. (33)] and sidebands [Eq. (34)], respectively.
The nonoscillatory (φ-independent) background terms of the
Fourier series are given by 1 + J0(2χ ) and 1 − J0(2χ ) for
the ATI peaks and sidebands, respectively. For ATI peaks
[Eq. (33)] the phase delays are δi = π , for odd orders in i and
δi = 0 for even orders in i, as long as its Fourier amplitude
J2i(2χ ) > 0. Correspondingly, for sidebands, the phase delay
is δi = (i − 1)π , or equivalently δi = 0 for odd orders in i and
δi = π for even orders in i, as long as J2i(2χ ) > 0. However,
e.g., between χ  2.57 and χ  4.21 the sign of the ampli-
tude J2(2χ ) of the first harmonic ( j = 1), is reversed, thereby
changing the phase delay of ATIs to δ1 = 0 and sidebands to
δ1 = π , contrary to perturbation theory [Eqs. (33) and (34)].
More generally, phase changes in the ith harmonic occur
whenever J2i(2χ ) < 0. The variation of the first few Fourier
amplitudes as a function of χ is displayed in Fig. 5. It is
obvious that the perturbative results [Eqs. (31), (32)] valid for
small χ cease to be valid above χ � 1 when the dominance
of the first-order amplitude is broken and, eventually, sign
reversals occur for strong fields.

For completeness we note that the present semiclassical de-
scription of the inter-half-cycle interference factor allows also
for an alternative intuitive interpretation following Ref. [23].
Expressing χ in terms of the quiver vectors �αω = �Fω/ω2 and
�α2ω = �F2ω/(2ω)2 with amplitudes Fω/ω2 and F2ω/(2ω)2 of
the respective ω and 2ω fields,

χ = αωkz[1 + F2ω/(3ωkz )]/
√

2

= �αω · �k(1 + 2ω�α2ω · �k/(3Ez ))/
√

2, (35)
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the inter-half cycle factors can be written as

cos2[χ cos(φ/2)] = cos2[�k · ( �R+ − �R−)/2] (ATI) (36)

sin2[χ cos(φ/2)] = sin2[�k · ( �R+ − �R−)/2] (SB). (37)

Equations (36) and (37) can be interpreted as the interference
between the emission from two point sources located at �R± =
±�αω(1 + 2ω�α2ω · �k/(3Ez )) cos(φ/2)/

√
2. This picture offers

a close analogy to emission from a homonuclear diatomic
molecule aligned along the polarization axis. In the case of
the ATIs [Eq. (36)], these two point sources emit in phase and
constructive interference occurs for perpendicular emission.
For sidebands, the two point sources emit out of phase, leading
to partial destructive interference in the perpendicular direc-
tion since in this case χ = FωF2ω/(3

√
2ω3) �= 0. We want to

point out that all additional approximations to SPA [analytical
SPA in Eqs. (27)–(37)] are performed for the sake of clearly
tracing patterns in the DDMD back to interference processes.
These come at the price of limited quantitative accuracy. In
next section we explore the accuracy of the SPA.

IV. COMPARISON OF DDMD WITHIN
THE SPA, SFA, AND TDSE

The interplay between the Bragg (intercycle) factor
[Eq. (13)] and the structure (intracycle) factor [Eq. (12)] in
the buildup of the interference pattern in the DDMD for ion-
ization by the ω − 2ω field with ω = 0.05 and relative phase
φ = 3π/2 is illustrated in Fig. 6 within the analytic SPA.
The Bragg factor B(Ẽ ) [for N = 4 in Fig. 6(a)] generates
isotropic rings in the (kz, k⊥) plane (or spherical shells in
three dimensions) with radii kn = √

2En corresponding to ATI
peaks (even n) and sideband peaks (odd n). The number of
(hardly seen) minima between consecutive multiphoton rings
is N − 1 = 3. As expected, this factor stemming from inter-
cycle interferences is not only independent of the emission
angle but also of the relative phase φ between the ω and the
2ω fields. The inter-half-cycle factor cos2(�S/2) in Fig. 6(b)
[Eq. (27)] consists of a set of deformed concentric rings,
slightly stretched along the longitudinal momentum and, con-
sequently, the isotropy is lost. Therefore, the minima of these
rings do not perfectly match with those of the sidebands of the
Bragg factor [Fig. 6(a)]. When the two factors are multiplied
with each other a modulation of these rings emerge [Fig. 6(c)].
The intra-half-cycle factor cos2(��0/2) [Fig. 6(d)] features
an entirely different pattern of two partially overlapping
deformed structures [27,29,44]. The product of the inter-half-
cycle [Fig. 6(b)] and intra-half-cycle [Fig. 6(d)] interference
factors in Eq. (27) approximately representing the form factor
F (�k) is shown in Fig. 6(e). The nearly isotropic inter-half-
cycle factor is now strongly modulated by the intra-half-cycle
pattern resulting in a highly anisotropic emission distribution
and pronounced variation with the emission angle. Finally, the
complete interference pattern in Eq. (14) [Fig. 6(f)] results
from the multiplication of the form factor F (�k) [Fig. 6(e)] with
the Bragg factor B(Ẽ ) [Fig. 6(a)]. Obviously, the resulting
interference pattern is primarily governed by that of the form
factor [Fig. 6(e)].

FIG. 6. Doubly differential interference pattern as a function of
the longitudinal kz and perpendicular momenta k⊥ for the ω − 2ω

ionization within the analytic SPA for relative phase φ = 3π/2.
(a) intercycle Bragg factor [Eq. (13)], (b) inter-half-cycle factor
[Eq. (27)], (c) multiplication of (a) and (b), (d) intra-half-cycle
factor [Eq. (27)], (e) intracycle factor [multiplication of (b) and (d) in
Eq. (14)], and (f) total interference pattern [multiplication of (a) and
(e)]. We use a laser field with F2ω = 0.05 a.u. F2ω = 0.005, ω = 0.05,
with N = 4.

The dependence of the DDMD [Eq. (11)] on the relative
phase within the full SPA [Eq. (16)] is displayed in Fig. 7
for different values of the relative phase φ. For a quantitative
comparison with the SFA and TDSE results, in Fig. 7 we show
the full SPA [Eq. (16)] with complex coefficients W (tβ ) as
described in Eq. (A5) in the Appendix, without invoking the
additional approximations used in arriving at Eq. (27) (Fig. 6).
While, overall, the interference pattern remains unchanged,
differences in the intensity distributions in the DDMD be-
come visible. In general, the weak ω field (slightly) breaks
the forward-backward (kz ←→ −kz) symmetry of the DDMD
within the SPA, except for φ = 3π/2, for which the vector
potential remains inversion antisymmetric with respect to the
center of the unit cell in the presence of Fω and F2ω [see
Fig. 1(d)]. In Fig. 7(d) we have also included a dashed line
illustrating the contours of minima of the intra-half-cycle pat-
tern of Fig. 6. This structure is clearly visible in the full SPA.

We now compare the semiclassical DDMD predicted by
the full SPA (Fig. 7) with the numerical evaluation of the
strong-field approximation (SFA) [Eq. (4)] (Fig. 8) as well
as with the full numerical solution of the time-dependent
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FIG. 7. DDMD within the full SPA calculated using Eqs. (11)
and (16) with the exact complex coefficients for ionization in the
ω − 2ω laser field (parameters as in Fig. 6) for different phases φ

between the ω and 2ω fields. (a) φ = 0, (b) φ = π/2, (c) φ = π ,
and (d) φ = 3π/2. In (d) we have included the nodal contours of the
intra-half-cycle pattern of Fig. 6(d).

Schrödinger equation (TDSE) (Fig. 9). Unlike the SPA, both
the SFA and the TDSE account for the envelope of the pulse
with a ramp-on and ramp-off of duration 2π/ω each and a flat
top of duration 8π/ω. They, furthermore, include the coupling
matrix elements Mif and, in the case of the TDSE, also the full
Coulomb interaction. Whereas distributions for φ = 3π/2 in
SPA and SFA [Figs. 7(d) and 8(d)] exhibit forward-backward
symmetry, the momentum distributions for other values of
the phase, (φ = 0, π/2, and π ) result in a small asymmetry

FIG. 8. DDMD within the SFA for ionization in the ω − 2ω laser
field (parameters as in Fig. 6) for different phases φ between the ω

and 2ω fields. (a) φ = 0, (b) φ = π/2, (c) φ = π , and (d) φ = 3π/2.
Laser parameters as in Figs. 6(d) and 7. In (d) we have included
the near-zero contours (for 0.01) of the intra-half-cycle pattern of
Fig. 6(d).

FIG. 9. DDMD within the TDSE for ionization in the ω − 2ω

laser field for different phases φ between the ω and 2ω fields. (a) φ =
0, (b) φ = π/2, (c) φ = π , and (d) φ = 3π/2. Laser parameters as
in Figs. 6(d), 7, and 8. In (d) we have included the near-zero contours
(for 0.01) of the intra-half-cycle pattern of Fig. 6(d).

enhancing either forward or backward emission. Pronounced
forward-backward asymmetries in electron emission were ex-
perimentally observed for ω − 2ω laser pulses for pump and
probe intensities of comparable magnitude, i.e., F2ω ≈ Fω

[44,45]. The origin of this asymmetry for φ �= 3π/2 can be
traced to the broken inversion antisymmetry of the vector
potential relative to the center of the temporal unit cell [see
Figs. 1(a), 1(b) and 1(c)]. This fact results in differences in
the actions of the wave packets emitted in different parts of
the unit cell [45]. Note that the ab initio solution of the TDSE
in the single-active-electron approximation [45–47] exhibits
for the DDMD a slight forward-backward asymmetry also at
φ = 3π/2 [Fig. 9(d)], however, for a different reason: here
it is the effect of the Coulomb potential (absent in both the
SPA and SFA calculations) on the emitted electron rather than
the broken inversion antisymmetry that causes this distortion.
Comparison between Figs. 7 and 8 to Fig. 9 shows that the
Coulomb potential and the influence of intermediate excited
bound states (or resonances) on the ionization process tends
to distort the intracycle interference pattern in agreement
with previous studies [44,48–53]. Notwithstanding the afore-
mentioned differences, the qualitative agreement between the
TDSE, SFA, and SPA DDMD is remarkable. Therefore, the
present semiclassical model is well suited to qualitatively
explain the origin of the observed structures in terms of path
interferences between emission at different ionization times in
the ω − 2ω field.

V. ANGLE-RESOLVED ENERGY SPECTRA
AND PHASE DELAYS

We finally address the angularly resolved multipho-
ton ionization spectrum P(E , cos θ ) [Eq. (11)], which has
been recently experimentally and theoretically investigated
[24,26,29,54]. As a prototypical case, we consider the
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FIG. 10. Differential multiphoton ionization spectrum in forward
direction P(E , cos θ = 1) as a function of the ω − 2ω phase φ.
(a) SPA, (b) SFA, and (c) TDSE. Laser parameters are the same as in
Figs. 6–9. In (a) we have included a contour of the inter-half-cycle
pattern cos2(�S/2) [Eq. (27)] to guide the eye.

forward emission spectrum P(E , cos θ = 1) as a function
of the relative phase φ between the two-color components
with the goal to extract the atomic multiphoton strong-field
interference (MPSFI) phases δi(E ) and their corresponding
harmonic weights ci(E ) [see Eq. (20)].

Figure 10 represents the forward spectrum calculated
within the full SPA [using Eq. (16) without further approxima-
tions], the SFA [using Eq. (4)], and the TDSE as a function of
the relative phase φ between the two-color components. The
ATI peaks and sidebands are formed by intercycle interfer-
ences [Eq. (14)] with peaks at energies given by Eq. (15) for
n even and odd, respectively. The ATI peaks and sidebands
probability densities change as the relative phase is varied.
Qualitatively, all three calculations using the SPA, the SFA,
and the TDSE agree with each other. The inter-half-cycle
interference pattern as a function of φ, highly visible in the
SPA multiphoton ionization spectrum, is somewhat blurred
in the SFA and TDSE spectra but still present underscoring
the utility of the SPA to unravel the semiclassical origin of
the φ variations. As indicated, the inter-half-cycle interference
manifests itself in Fig. 10(a) as a wavy pattern as a function
of φ. Changes in the multiphoton peaks and sidebands as a
function of φ are primarily due to the inter-half-cycle factor.
They result from the interference between emission during the

first and the second half-cycles of the temporal unit cell. Each
inter-half-cycle wavy stripe has period 4π and extends from a
minimum energy at φ = 2π to a maximum energy at φ = 0.
For small χ , the interplay of the intercycle interference given
by Eq. (13) and the inter-half-cycle interference in Eq. (27)
causes the ATIs (sidebands) to peak at φ = π and 3π (φ = 0
and 2π ) as predicted by the perturbative limit [Eqs. (31) and
(32)]. Increasing energy and strength of the Fω probe field,
and, consequently, the parameter χ , we find deviations from
these perturbative predictions, and consequently, higher-order
Fourier components [Eqs. (33) and (34)] appear (see Fig. 5)
and additional peaks arise. Furthermore, higher Fourier com-
ponents are responsible for the splitting of the peaks of the
higher-lying sidebands as a function of φ (in the present case
starting with the second sideband at energies E � 5 eV). For
the laser parameters used in our simulations only the first
(perturbative) and second Fourier components significantly
contribute. Higher Fourier components will contribute for
χ � 2, or equivalently E � 15 eV (above the energies consid-
ered in this paper). The present SPA provides useful guidance
to identify the nonlinear effects in photoelectron emission
for two-color fields. Comparing the full SPA, the SFA, and
the TDSE, the discrepancies among the three calculations, in
particular near threshold, can be traced back primarily to two
features: (i) the SPA fails to fully reproduce the SFA because
the action S(t ) is not large and, therefore, the semiclassical
limit is not reached and (ii) the SFA fails to accurately repro-
duce the TDSE since the influence of the Coulomb potential
is still significant.

A Fourier analysis of the angular differential emission
spectrum in Fig. 10 [Eq. (20)] allows the extraction of the
set of energy-dependent atomic phase delays [δi(E ), i =
1, 2, . . .]. In the present case contributions from the first three
harmonics i = 1, 2, 3 can be clearly identified (Fig. 11) in-
dicating that interferences between quantum paths differing
by up to three (2ω) photons [Figs. 2(a)–2(c)] effectively con-
tribute. Correspondingly, up to nω = 6 ω photons are involved
to close the interference loops (see Fig. 2). This illustrates the
major structural difference between the present MPSFI and
the standard RABBIT protocol. Within the SPA and SFA,
the phase shifts δ1(E ), δ2(E ), and δ3(E ) are found to be
(mostly) either 0 or π and agree with each other, with the
notable exception δ1(E17) for harmonic energy E17 = 7.75 eV
to be discussed below. This overall agreement illustrates the
applicability of the SPA to estimate atomic SFA phase delays.
However, significant departures from 0 or π delays arise for
the TDSE due to the effect of the Coulomb potential of the
ionic core on the outgoing electron. These deviations are more
pronounced for the first Fourier component δ1. In turn, for the
second and third orders, δ2(E ) and δ3(E ) appear to converge
to the SFA predictions as E increases.

Turning now to the amplitudes ci(En) of these Fourier
components, we observe in Fig. 12, overall, a decrease of
the amplitudes with increasing energies En for both the ATI
peaks (n even) and sidebands (n odd). A clear dominance
of the first harmonic component, which involves paths that
differ by only one strong-field 2ω photon, can be found only
near threshold. With increasing energy the relative impor-
tance of higher Fourier components grows. In particular, near
the sideband n = 17, the amplitude c1(E17) is very small
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FIG. 11. MPSFI phases δ1(En) (a), δ2(En) (b), and δ3(En)
(c) [Eq. (20)] extracted from the spectra within the SPA, SFA, and
TDSE in Fig. 10 at ATI and sideband energies given by Eq. (15)
SPA: squares, SFA: triangles, and TDSE ATI: blue (black) circles
and TDSE sidebands: green (gray) circles.

compared to c2(E17) and c3(E17) in the SPA and SFA, and
to c2(E17) for TDSE. At this energy the first-harmonic order
amplitude is about one order of magnitude smaller than the
corresponding third-order amplitude and two orders of magni-
tude smaller than the corresponding second-order amplitude.
Therefore, the mismatch between the SPA and SFA phases
δ1(E17) mentioned above (Fig. 11) is likely caused by the
numerical uncertainty.

Overall, the Fourier expansion [Eq. (20)] features pro-
nounced high-order Fourier components thereby precluding
the characterization of the MPSFI signal by a single energy-
dependent phase δ1(E ). Consequently, also the direct associa-
tion with a time delay related to the spectral derivative of this
phase, dδ/dE , is no longer possible. Characterization of the
emitted wave packet in a (nonperturbative) strong-field ω −
2ω setting requires, in general, a multitude of phases. Only
in the perturbative limit of a weak ω field, the reduction to a
single phase in analogy to the RABBIT-like protocol is justi-
fied. The present analysis provides the underlying background
and conceptual insights into the recent numerical observation
[26] that the atomic phase delay δ1(E ) features a sensitive
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FIG. 12. Harmonic amplitudes c1(En) (a), c2(En) (b), and c3(En)
(c) [Eq. (20)] extracted from the spectra of Fig. 10 as a function of
En calculated with the SPA, the SFA, and the TDSE.

dependence on the probe field, contrary to the expectations
suggested by the perturbative limit.

VI. CONCLUSIONS

We have developed a semiclassical nonperturbative strong-
field theory for the atomic ionization by a linearly polarized
ω − 2ω laser pulse. While the ω-probe field is assumed to be
weaker than the strong 2ω pump field, (Fω < F2ω), its ampli-
tude Fω, as employed in recent experiments [24], is found to be
sufficiently strong as to open a plethora of interfering quantum
pathways of absorption and emission of 2ω and ω photons.
The interferences resulting from this multiphoton strong-field
ionization process need to be characterized by an entire set
of atomic phase delays {δi(E )} with i = 1, . . . rather than a
single phase delay δ(E ) = δ1(E ), as customary in a struc-
turally similar perturbative RABBIT-like setting. Each phase
δi(E ) can be associated with a class of pairs of interfering
pathways differing by the absorption of i = |n2ω − n′

2ω| 2ω

photons. The present semiclassical theory allows mapping
these phases onto temporal interferences between wave
packets emitted during different cycles of the 2ω field denoted
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as inter-half-cycle interferences. These emissions may occur
within the same optical cycle of the ω field, which defines
the length of the temporal unit cell. We present the angular
differential emission spectrum in three different approxima-
tions: the semiclassical stationary phase approximation (SPA),
the strong-field approximation (SFA), and the numerical so-
lution of the time-dependent Schrödinger equation (TDSE).
We find that phase delays calculated within the SPA agree not
only with the present SFA calculations but also with previous
perturbation theories [24,26] when the probe field amplitude
is much weaker than the pump pulse, i.e., Fω � F2ω. The
extension to stronger fields gives rise to novel effects at inter-
mediate and high electron energies of forward spectra such as
the departure from the sinusoidal modulation of the intensity
of ATI peaks and sidebands as a function of the relative phase
φ between the two-color components of the electric field. This
results in the splitting of the maxima of ATIs and sidebands as
a function of the two-color phase φ. Phase shifts δi associated
with higher-order Fourier components, with i � 2, are a sig-
nature of the nonlinearity in the probe field. For the parameter
lasers used in the experiment, i.e., Fω/F2ω = 0.1, the second
harmonic of the phase delay significantly contributes to the
spectrum. Therefore, the strong influence of nonlinear contri-
butions on electron photoemission in pump-probe setup points
to the need to revise the extraction method of phase delays
beyond the perturbative regime. The extension of the current
multiphoton strong-field interference (MPSFI) protocol to the
case where the ω− and/or the 2ω field is circularly rather than
linearly polarized can be envisioned. This would enable us to
study strong-field chiral-matter interaction of molecules [25]
by probing the enantiosensitivity of the ionization phases δi.
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APPENDIX: SADDLE-POINT INTEGRATION

In this Appendix we calculate the time integral appearing
in the transition amplitude stemming from a single optical
cycle, Iif (�k), [Eq. (10)] by means of the saddle-point approxi-
mation. We evaluate

Iif (�k) = −i
∫ T

0

�F (t ) · �d[�k + �A(t )]eiS(t )dt, (A1)

where the dipole transition moment is defined as �d (�v) =
(2π )−3/2〈ei�v·�r |�r|ϕi(�r)〉, and the phase in Eq. (A1) is given by
the Volkov action in Eq. (6) [37]. The dipole matrix element
coupling a 1s hydrogenic initial state to a final Volkov state
can be calculated as

�d (�v) = 1

(2π )3/2

∫
d�rei�v·�r �r ϕ1s(�r),

with ϕ1s(�r) = (Z3/2/
√

π ) exp(−Z/r), where Z2/2 = Ip. This
integral is given in terms of the momentum representation of
the hydrogenic wave function by

�d (�v) =
√

2(2Ip)5/4

π

i�v
(v2/2 + Ip)3 .

Consequently, Eq. (A1) can be written as

Iif (�k) =
√

2(2Ip)5/4

π

∫ T

0

�F (t ) · [�k + �A(t )]( [�k+ �A(t )]2

2 + Ip
)3

eiS(t )dt

Iif (�k) = −
√

2(2Ip)5/4

π

∫ T

0

S̈(t )

[Ṡ(t )]3
eiS(t )dt, (A2)

where S̈(t ) = − �F (t ) · [�k + �A(t )] and Ṡ(t ) is given by Eq. (6).
Since the zeros in the denominator of the integrand of Eq. (A2)
coincide with the saddle-point condition Ṡ(tβ ) = 0 [Eq. (17)],
the standard saddle-point approximation cannot be directly
applied. Instead, expanding the denominator to first order
around the saddle point

Ṡ(t )  Ṡ(tβ ) + S̈(tβ )(t − tβ ).

leads to

Iif (�k) = −
∑

tβ

√
2(2Ip)5/4

π [S̈(tβ )]2

∫ T

0

eiS(t )

(t − tβ )3
dt . (A3)

Equation (A3) features a third-order singularity and thus can
be analytically evaluated following Eq. (B6) of Ref. [41] to
yield

Iif (�k) 
∑

β

W (tβ )eiS(tβ ). (A4)

with complex coefficients

W (tβ )  −2
√

2(2Ip)5/4eiα(tβ )

|F (tβ )|
√

2Ip + k2
⊥

, (A5)

and phases α(tβ ) = − arg S̈(tβ ).
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