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Measurement of Rb-Rb van der Waals coefficient via quantum diffractive universality
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Collisions between trapped atoms or trapped molecules with room-temperature particles in the surrounding
vacuum induce loss of the trapped population at a rate proportional to the density of the background gas
particles. The total velocity-averaged loss-rate coefficient (o, v) for such collisions and the variation of the
loss rate with trap depth has been shown to depend only on the long-range interaction potential between the
collision partners. This collision universality was previously used to realize a self-calibrating, atom-based,
primary pressure standard and was validated by indirect comparison with an orifice flow standard. Here, we
use collision universality to measure (o, v) = 6.44(11)(5) x 10715 m3/s for Rb-Rb collisions and deduce the
corresponding Cg = 4688(198)(95)E;,a8, in agreement with predictions based upon ab initio calculated and

previously measured Cq values.
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Since the pioneering work of Rutherford [1], the study
of collisions between particles has been central to the
advancement of our knowledge of atomic, molecular, and
particle physics [2]. Recently, ultracold atom-atom collisions
have been used provide precision values of the leading term
of the van der Waals attractions through the measurement
of magnetically tunable Feshbach resonances [3-5]. One of
the first such measurements provided the Rb-Rb Cg coef-
ficient [6], in agreement with later measurements of the
Rb ground-state polarizability using atom interferometry [7].
Here, we present another experimental method of determining
the leading term of the van der Waals interaction. Namely, we
determine it from measurements of the energy exchange pro-
duced by collision between room-temperature particles and
ultracold trapped atoms.

In our previous work [8,9], we demonstrated that the total
collision cross section of and the energy exchanged by room-
temperature collisions are universal functions depending only
on the leading term of the van der Waals interaction. In partic-
ular, for neutral atom-atom collisions, where the leading term
of long-range interaction is given at an atom separation R by
V(R) = —Cs/R®, the total collision rate is

Ciot = {0t V) (D

with total velocity-averaged loss-rate coefficient
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Here n and my, are the density and mass of the background gas
particles and u is the reduced mass of the collision pair. The
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angle brackets denote the average over the relative collision
velocities given the Maxwell-Boltzmann distribution for room
temperature (294 K).

If we consider an ensemble of sensor atoms held in a trap
of finite depth with zero initial energy, the collision-induced
sensor ensemble loss rate is

FCioss = Feot[1 — pQDU6] = n{0loss V), 3)

where pqpus is the probability that a sensor atom remains in
the trap after a collision (mediated by a —Cs/R® long-range
interaction) corresponding to the atom’s postcollision cumula-
tive energy distribution evaluated at the trap depth. As shown
in Refs. [8,9], this energy exchange distribution is a universal
function and, at small trap depths (U < Uy), the cumulative
distribution function is well modeled by

% U
PQDUG = ;ﬁ](lj_d) , “4)

where the coefficients §; are given in Table I and Uy is the
characteristic energy scale for so-called quantum diffractive
collisions [10,11],

Ak A7 iy
Us = = Ly ®)

mo m (Ot V)

Here m, is the mass of the trapped atom and v, = \/2kgT /myg
is the most probable velocity of the background particles (of
mass n, at temperature 7). From Egs. (1)-(5), we see that
the measured loss rate depends on two parameters, n and
(ototv). Normalizing the measured loss rate [Eq. (3)] by its
value extrapolated to zero trap depth, I'ioss (U = 0) = n{oirv),
eliminates the background density and we obtain

[loss — (Oloss V) —
[loss (U = 0) (Ot V)

1 — papus. (6)
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TABLE 1. The universal coefficients appearing in Eq. (4)
were derived from fitting the quantum scattering computations for
(01055 (U ) v) to a sixth-order polynomial. The derivation of 8; can be
found in Ref. [8].

Term Bj

1 0.673 (7)

2 —0.477(3)

3 0.228 (6)

4 —0.0703(42)
5 0.0123 (14)
6 —0.0009(2)

Thus, measurements of the loss rate as a function of trap
depth, normalized as above, enable the experimental de-
termination of Uy and therefore (oy:v) for any collision
partners. This procedure was previously used to realize a self-
calibrating, atom-based, primary pressure standard and was
validated by comparison with an ionization gauge that was
calibrated by the orifice flow standard at NIST [8,9,12].

In this work, we use the normalized loss rates of 8’Rb
atoms held in a magnetic trap exposed to a room-temperature
background of Rb atoms (both 8’Rb and %Rb atoms) to
determine the total loss-rate coefficient (o, v) and corre-
sponding Cg value for Rb-Rb interactions. After eliminating
losses arising from two-body intratrap collisions and account-
ing for collision-induced sensor ensemble heating, we find a
value for (o, v) in agreement with predictions based upon
ab initio calculated [6] and previously measured Cg values
[7,13].

I. MEASUREMENT THEORY

A. Trap losses

In order to extract the C¢ value for Rb-Rb interactions,
we use loss-rate measurements of an ultracold atomic ensem-
ble of ’Rb atoms in a magnetic trap subject to collisions
with other Rb atoms in the surrounding background vapor.
However, as atoms held in the magnetic trap are subject to
several possible loss channels, we must isolate only those
losses induced by Rb-Rb collisions to accomplish this goal.

For example, the total collision rate for a Rb sensor atom
in the magnetic trap can be expressed as

Tt = ) nx{Ot00)Rb X (7)
X

where the sum is taken over all possible constituents, labeled
by X, in the background vapor. Here, nx is the background
density of the constituent, and (o, v)Rrp x 18 the total loss-rate
coefficient associated with collisions with the trapped 3’Rb.
In addition, Majorana spin-flip loss (I'm,j) can occur as atoms
pass through the vicinity of the field zero, where they have a
finite probability of transitioning to an untrappable spin state,
and are thereby lost from the trap [14]. In order to isolate
losses induced only by Rb-Rb collisions, we vary the Rb
density in the vacuum while keeping the trapping gradient and
the non-Rb background gas partial pressures constant. This

ensures that I'y,,; and losses induced by collisions with other
gases do not vary.

Intratrap collisions between trapped atoms may promote
one or both collision partners above the trap depth, inducing
loss proportional to the density of the trapped ensemble. The
change in the trapped-atom number N over holding time ¢ can
be written as

Ci,—];/ = —<Z nx(ov)x + Fmaj>N — L2/n2(r, t)dr. (8)
X

The two-body loss coefficient L, includes both elastic [6]
and inelastic [15] collisional loss channels between trapped
8Rb atoms. Assuming a trapped population of 10° atoms
and a trapping volume of 1 cm?, an order-of-magnitude es-
timate for the inelastic loss rate is L j, nN =~ 1073 Hz, well
below the loss rate due to collisions with background particles
(= 0.1 Hz in this work), and can therefore be neglected [15].

Two-body elastic losses, however, cannot be neglected.
The principle problem is that these two-body losses are
trap-depth dependent. This dependence arises due to the
decrease of the trapping volume induced by the resonant
radio-frequency (RF) field used experimentally to set the trap
depth E\,x (see Sec. II). Atom pairs with combined energies
greater than Ey,,x can exchange energy to promote one partner
above En.x, and thus be ejected from the trap. The effective
contribution of the elastic two-body loss rate to the total loss
rate scales as

Jon(x, t)dr
Jon(r, t)dr’

where 2 denotes the region in space where the energy of
atoms remaining in the trap is below Ep,x. Owing to the
nonuniformity of the spatial distribution in the trap [16],
the effective intratrap density scales inversely with trapping
volume €2, and hence the effective contribution to the total loss
rate via Eq. (9) varies as a function of trap depth Ep,x. As the
total collision rate coefficient (oyv) is uniquely determined
by the variation of the loss rate with trap depth Epx, it is
imperative to minimize or eliminate these losses to determine
(o10tv) accurately.

To suppress elastic two-body losses, we apply an RF field
to the atoms initially loaded into the magnetic trap to eject
all atoms above a defined “cut” energy E.y = Emax/2. This
depletes the population of atom pairs with a combined energy
above En.x, and hence elastic two-body losses are energet-
ically forbidden until significant heating of the ensemble
occurs. Both collisions with the background particles and
multiple intratrap collisions can populate states above Ey.
We mitigate these effects by restricting the holding time to
less than 1.2 lifetimes.

In the absence of two-body losses, Eq. (8) can be solved
to find

€))

N(t) = Noe~TrotTor, (10)

where I'g, denotes the loss rate due to collisions with back-
ground rubidium, and Iy is the aggregate loss rate due to
collisions with all other background species and Majorana
spin flips.
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B. Ensemble distribution and heating

For an atom with finite energy E, the effective trap depth
experienced is given by the difference (En.x — E), the energy
required to exceed En,x. Consequently, the loss rate from the
trap is given by the loss-rate coefficient (oj,55v) [appearing in
Egs. (3) and (6)] averaged over the energy distribution of the
trapped ensemble, p(E):

f()me p(E)<Uloss (Emax —E )v>dE
fOEmax p(E )dE

<Gloss(Emax)v> = (11)

The energy distribution can be measured experimentally by
varying the trap depth E.x and observing the remaining
population. This corresponds to a direct measurement of the
cumulative energy density function and therefore p(E), as
described previously [8,9].

For a nonzero trap depth Ey.x, the loss-rate coefficient
(O10ssV) = (0101V) (1 — popuse) deviates from the total collision
rate coefficient (o, v). Collisions with background particles
that do not generate loss from the trap redistribute the en-
ergies of the trapped particles (heating), in turn modifying
the loss rate. To make a proper determination of the relation
between the observed loss rate and (ojov), it is crucial to
quantify the evolution of the energy distribution with hold
time ¢, background density n, and cut energy E... The topic
of background-collision-induced ensemble heating has been
investigated theoretically [10,17]. Our work here relies on
experimental measurements of the energy distribution.

Once the time dependence of the distribution p(E) is
known, the change in the trapped-atom number dN can be
expressed as

dN = —(n{0105s (Emax )V) (1) + To)Ndt, (12)

where the formal solution can be expressed as an integral over
holding time ¢,

0]

= eXp <_ |:I’l/ (Oloss (Emax)V) () + Fo]dl>- (13)
No 0

Experimentally, we observe the remaining atom number at
two times, #; and #;, given by N; and Ny, respectively. The loss
rate is determined by the relative change in the atom number
between the two hold times; taking the logarithm of the ratio
Ny /N;, one finds

N(t%)
N(t;)

Tk
) = —ni / (Uloss(Emax)v)d[
0

In(
ti
+ ni/ (Oloss (Emax)v)dt — Loty — 1;)
0

173
= —I’l/ (Oloss (Emax))v)dt — To(tx — 1;),  (14)
ti
where we have assumed n; and ny, the background densities
of rubidium at times #; and #, respectively, are approximately
equal. This is valid for sufficiently short time scales between
measurements at times #; and f;. Experimentally, we satisfy
this assumption by operating in a regime where the back-
ground density varies over the time scale of hours, whereas the
time scale between measurements at ¢; and #;, is a few seconds.

To isolate losses due to collisions with background
rubidium, we perform loss-rate measurements at different
background rubidium densities, #; and n,, where n; >> n,. For
the experiments conducted at low background rubidium den-
sity, ny, the collision-induced heating rate is negligible over
the experimental duration. In principle, the degree of heating
due to background collisions with a single species, measured
over a single lifetime, is constant for all n. However, in this
experiment, a variety of species are present, and at low n, the
relative partial pressure of rubidium is significantly lower than
other species in the background, most notably H,. Owing to
the relatively large Uy ~ 21.5 mK for Rb-H; collisions [8],
the majority of collisions with background hydrogen result
in loss from the trap, thereby lowering the collision-induced
heating rate in this regime. Consequently, the ensemble energy
distribution, p(E'), is approximately constant and the temporal
average is given by

/ (Uloss(Emax)v>2dt - <Uloss(Emax)v>2(tk - ti)~ (15)

The measured trap loss rate,
expressed as

I (Emax) = o + 12{010ss (Emax )V)7- (16)

Since the background gas composition is not measured, the
trap depth dependence of I'y is unknown. However, this
background remains constant over the experiment duration,
allowing us to rearrange Eq. (16) to solve for I'y.

Repeating these measurements at a higher background
Rb density n;, we have

N e
! <N((l:)))nl =—m /; (010ss (Emax V) 1dt — To(tx — 1;)

I'y(Enax), can then be

i

tk—
=—-m / <Ulossv>1dt
1

—[I2 — n2(010ss V)2 1 (tx — ). 17

For this measurement the ensemble energy distribution will
change appreciably over the holding time due to a non-
negligible heating rate. Because of the large polarizability (C)
of Rb [6,7,13] and low peak velocity v, at room temperature
compared to Hj, one expects a correspondingly smaller Uy
for Rb-Rb collisions. Consequently, a higher proportion of
the background gas collisions result in heating rather than
loss (as compared to the proportion at lower Rb pressures).
Thus, for these measurements at n;, the ensemble energy
distribution will change appreciably due to particle collisions.
Rearranging Eq. (17), one has

Ik
ny / (Ol0ssV) 1 dt
;

i

—1n<N(t")) — [T — 15 (0105 0)a 1t — 1) (18)
= N([k) . 2 2\Oloss V/2 1k il

As a proxy for the Rb background densities, n; and n,, we
use measurements of the magneto-optical trap (MOT) initial
loading rates, R, observed during the atom collection stage. As
shown in Ref. [18], this loading rate is directly proportional to
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FIG. 1. Experimental apparatus and procedure. (a) A schematic of the experimental setup surrounding the vacuum cell and the relative
orientation of the trapping light and magnetic fields. The pump and repump light are combined through polarized beam splitters prior to the
cell. A Glan-Thompson (GT) polarizer maintains the polarization of the optical pumping beam. An additional magnetic field is generated
by a small coil to ensure the optical pumping beam drives the required sample-polarizing o transitions. (b) The atomic fluorescence, as
monitored by the photodetector shown in panel (a), for a single shot. In stage 1, rubidium atoms are collected in the MOT from the surrounding
background vapor, initially at a rate directly proportional to this background density (inset). The MOT continues to load until near steady
state, with an associated voltage Vot (green square) indicative of the atom number prior to magnetic trapping. Stage 2 depicts the subsequent
cooling, optical pumping, and transfer into the magnetic trap, in which the atomic ensemble is held for a variable time #yr. Initially, a resonant
RF field is applied to eject all atoms above a specified energy E., (stage 2.a). During the hold time, collisions with background particles and
between trapped 8’Rb atoms occur (stage 2.b), inducing loss and the redistribution of trapped energies. Finally, a second resonant RF field is
applied to eject all atoms above the trap depth E,,,.x (stage 2.c). Remaining trapped atoms are subsequently recaptured in the MOT by ramping
down the field gradient and turning back on the trapping light, as shown in stage 3. The loading curve upon recapture in the MOT is fit to
determine Vyr (red square), indicative of the remaining atom population after the trapping duration.

the background particle density. We write
R j =an;, (19)

t —t;]. We proceed iteratively: we begin by assuming no
heating has occurred and approximate the denominator on the
RHS as

where « is a constant of proportionality that depends upon
the solid angle collected by the optical detection system, the
photon-to-voltage conversion efficiency of the detector, and
trapping parameters of the MOT [19]. Substituting R into
Eq. (18), we obtain

Ry —
Ry = OtV = 1) = Ry = Ro. (23)

L

Under this approximation, Eq. (22) becomes

(Oloss V)1 (T — 1;) _ In(N(;)/N @) — Ta(te — 1)

) S K — —
; / (01085 V) dt o Ri =R,
1,

i which involves only experimentally determined quantities,

N(t;) Ry meaning an initial estimate of (oyv) and @ can be obtained,

=In < N(lk)> - [F2 - EWIOSSD)Z] (= 1). (20) denoted {0y v)o and «g, respectively. This expression assumes

" a constant energy distribution p(E) for the entirety of the

trapping duration and thereby neglects heating by background

I collisions. These initial estimates can be used to construct

H;k = / (O10ss (Emax )v) dt 21 the full expression in Eq. (22), now including the measured

i time dependence of p(E), and subsequent fitting provides an

updated estimate for (oycv) and «. This process is repeated

until convergence of the fitted quantities is achieved, typically

(22) within two or three iterations. The convergence of the fitted

quantities (oyv) and « indicates that the self-consistency

requirement posed by Eq. (22) has been fulfilled, and the final

fitted values represent the best estimate for the true values

given the experimental measurements, corrected for ensemble
heating.

L)

We now define the time-integrated loss fraction as

and use this to further rearrange Eq. (20), arriving at

L _ In@OV@)/NG@)) — Dol — 1)
o t Rl - %(010550)2(@ - ti)

where the unknown quantity « is isolated to one side. How-
ever, (oo v) still appears on both sides of Eq. (22), preventing
the construction of the right-hand side (RHS) from purely
experimental measurements a priori of the determination
of (Giotv).

Therefore, we proceed by using Eq. (22) as a self- II. EXPERIMENT

consistency requirement between the fitted quantities, H,’f and
a, and the experimental measurements [N(¢;), R;, I'>, and

In our experiment, 8’Rb atoms are loaded from a back-
ground vapor at room temperature into a MOT. Trapping light
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is generated by grating-stabilized and injection-seeded diode
lasers denoted pump (repump) resonant to the 52| 52—
52P3/2 F =2-3' (1-2') D, transition, detuned by § >~ —2y
(8repump = 0) from resonance, where y is the transition’s nat-
ural linewidth [20]. The magnetic field configuration is a
spherical quadrupole with an axial gradient of 27.5 G/cm.

Atomic fluorescence is collected and focused onto a pho-
todetector inducing a voltage (V') proportional to the number
of atoms present (N). To efficiently transfer atoms to the
magnetic trap (MT), the ensemble is cooled by far-detuning
(A ~ —6y) the pump laser for 50 ms. Next, the pump light is
extinguished and the atoms are polarized by a weak uniform
field and optically pumped by a o T-polarized beam reso-
nant to the F = 2-2' transition for 5 ms to generate a pure,
polarized sample of |F = 2, mp = 2) atoms. Residual |2, 1)
atoms are then ejected by holding the sample at a magnetic
field gradient to 27.5 G/cm for which only the |2, 2) state
is held against gravity. This results in a typical atom transfer
efficiency of 40% of the ensemble loaded into the MT.

The magnetic field is then ramped to a preselected trapping
gradient and held constant for the hold duration ¢, after which
the remaining atoms are recaptured in the MOT. By compar-
ing the MOT fluorescence upon recapture to the fluorescence
prior to transfer to the magnetic trap, the relative change in the
atom number can be determined:

Nur () — Vur (@)
Nwvor

Voor (25)
This ratiometric measurement minimizes the effects of the
shot-to-shot variation of the number of atoms initially loaded
into the MT. A schematic of the apparatus and the experi-
mental sequence, showing an example fluorescence signal, is
shown in Fig. 1.

The background density of rubidium is varied by energiz-
ing a commercial rubidium dispenser for 1-2 min, increasing
the background density by a factor of 10 or more. During this
process, other atomic and molecular species are also released
by heating the dispenser, but owing to the relatively slow
pumping rate of rubidium from the chamber compared to
the other species, the rubidium background density remains
elevated while the background density of the other species
decreases quickly (on the order of several minutes) to a low,
steady equilibrium value. By contrast, the density of rubidium
vapor in the test chamber decreases slowly over several days.
This assumption of a low and constant background vapor
with an elevated rubidium vapor that changes slowly over
time is verified by observing the linearity between the initial
loading rate of the MOT, R, and the loss rate I of the MT,
as shown in Fig. 2. Since T" scales with the density of all
background species, but R is only dependent on the density
of background rubidium, linearity between I' and R indicates
that only the background density of rubidium is varying sig-
nificantly during the experiment. After loading rubidium into
the experimental chamber, we wait 1.5 hours before collect-
ing loss-rate data to ensure that the rubidium density is only
slowly varying over the data collection period.

To perform the energy precut and set the magnetic trap
depth, atoms are exposed at the beginning and at the end of
the hold time to a RF field that drives transitions between
adjacent hyperfine states |F, mp) — |F, mp £ 1). During the

—— 0.40 mK
0.78 mK

08F ¢ 1.83mK
—4— 2.81mK
¥— 4.53 mK

One-body loss rate I (Hz)

L L

0.0 0.2 0.4 Ot6 0t8 1t0 1.2 1.4
Initial loading rate R (V/s)

0.0 . .

FIG. 2. Measured one-body loss rates I from the magnetic trap
as a function of initial loading rate R for varying trap depths 0.40 <
En.x < 4.53 mK. The loss rate is determined by fitting the decaying
atom population to Eq. (10). The slope varies according to the rela-
tion between the background density n and the loss rate at finite trap
depth, as per Eq. (6). The observed linearity between I" and R indi-
cates that only the background density of rubidium is significantly
varying. As R decreases to zero, I' approaches the loss rate in-
duced by collisions with all other background species and Majorana
spin flips.

exposure, the RF is swept between vy, and vy.x. Atoms
with energies that exceed hvp;, will encounter a resonant
RF field and transition into an untrappable state and are
thereby ejected from the trap. When applied at the beginning
of the hold time, this procedure empties the trap of atoms
above the cut energy E., = hvyin. When applied at the end
of the hold time, a different minimum frequency is chosen to
define a precise upper energy bound on the trapped atoms that
are recaptured and counted, with the corresponding trap depth
given by Epax = hv) . (With Enax > Ecy).

As described in Sec. I, it is necessary to characterize the
evolution of the atoms’ energy distribution p(E) as both
collisional loss and heating occur in the trap. In order to
measure the energy distribution of the atoms in the trap, we
apply the RF field to eject all atoms above some energy E and
measure the fraction of atoms retained in the trap as a function
of this energy. This measurement is repeated for a variety of
energies and provides, as shown in Fig. 3, a discrete sampling
of the cumulative energy distribution (the fraction of atoms
below E) from which we can extract the energy distribution
p(E).

For short trapping durations, we model p(E) by a zero-
point shifted Maxwell-Boltzmann energy distribution,

€ 1
— _ < —e/kgT
omB(€, T) = O(Ecys — €) X 2‘/71 (kBT)3/Ze T (26)

where € = E — Eqin, the energy shifted by a fixed amount
Ein, below which no atoms are found. As described above,
the ensemble is truncated at E,;, assuming the initial resonant
RF field is applied. As the trapping time increases, we observe
a repopulation of states above the initial truncation at E,, and
an increasing temperature 7. We describe the heated energy

052812-5



STEWART, SHEN, BOOTH, AND MADISON

PHYSICAL REVIEW A 106, 052812 (2022)

¢ 055s i o o _ O 5" » 9 65 110
0.175f 1.85s ,f" """ & e 1 0.70 = #--'H“'#'“H‘ b
¢ 3.15s ¢! a | £
0.150( ¢ 4445 S 1 0.65 5 .
g =) b g ©
0125l o i | . =550 4 =}
5 . , : Z 0.60 % #I =
= ’I : ) S
Z 0.100} / IR SR SV EEES <Ll di 2 s 055 ¢ o 1 2 3 4
=) / 4+ =
E PN 4t ES §
= 0.075¢ P Y e XYY 0.50f ’ o
ol ¥ »T
ARy ¥ 4 ]
0.050 / 4 H 1 0.451 ‘
crodi REERNEY
0.025} e { Ecu=0.42mK . 0.40}
s e E . .
0.000{p8¢% | . . - ! 2 3 4
0.0 0.2 0.4 0.6 0.8 1.0 Emax (mK)
Emax (mK) 0.70
FIG. 3. Measured cumulative energy density functions with in- 065!
creasing trapping time, ¢, for R = 0.504(2) V/s, E.y = 0.42 mK, and '
an axial trapping gradient of 55 G/cm. Solid points show the experi- E 0.60
mentally measured recaptured fraction Ny (z)/Nyor as a function of a
trap depth E.,; corresponding dashed lines depict fits to Eq. (27). 3
The ensemble is initially truncated at E.,, shown by the vertical 5 0.55¢
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where m(t, n, E.y) is a uniform distribution indicative of the
population above the initial cut energy, as shown in Fig. 3.
These measurements are repeated with varied parameters , f,
and E.; to fully characterize the dependence of T and m.

To determine the loss rate at each trap depth Ep.x, the rel-
ative remaining fraction of the atom population Nyr(¢)/Nyor
is measured as a function of holding time 7. We first verify the
atom loss is dominated by one-body losses; that is, the relative
remaining fraction is well modeled by a decaying exponential
as per Eq. (10). Experimentally, the minimum holding time
is limited by the RF exposure duration required to eject all
atoms above the selected precut energy. Following Ref. [21],
we proceed in subsequent measurements by placing half of the
points at a shortest holding time #; = 0.55 s and the remaining
point measurements at #, = 1.2/I". Experimentally, we find
this sampling scheme provides the most precise measurement
of the loss rate given a finite total number of measurements.
For this work, we select a total number of siXx measurements
for each loss rate, to which the loss rate can be determined
with a relative uncertainty of less than 1%. For each of these
points, the associated initial loading rate R is also determined,
thus providing all the necessary experimental quantities to
determine (o v).

III. RESULTS

Figure 4 shows the experimentally measured time-
integrated loss fraction H,’k /o as a function of the maximum
trap depth Ep.x. As the minimum energy Ep, of the trapped

FIG. 4. Top: Measured time-integrated loss fraction H,’i" /o as
determined by collisions between trapped and background rubidium
as a function of maximum trap depth E, following convergence
of the iterated fitting process. Each point represents an average over
the six measurements of the remaining atom number for a particular
ensemble energy distribution. Measurements below (above) E.x =
1 mK correspond to an axial trapping gradient of 55 (275) G/cm.
Inset shows the fitted (o v); and o; values as a function of itera-
tion number, for which the values converge within three iterations.
Bottom: Measured H,ﬁk /a plotted against the best-fit values cal-
culated from the final values of (o,,v) and « and the associated
distributions for each point. The solid line, corresponding to the
line y = x, demonstrates the best fit to the measurements given the
associated distributions.

ensemble, determined by the misalignment of the MOT and
magnetic trap centers [8], scales with increasing trapping gra-
dient, it is difficult to probe small Ey,,x with a large trapping
gradient. We therefore perform measurements at two different
axial trapping gradients of 55 and 275 G/cm, enabling us to
achieve both shallow and deep trap depths, respectively.

As described in Sec. I, we perform an iterative fitting anal-
ysis to account for the redistribution of energies (i.e., heating)
in the trap due to background collisions. Table II lists both the
initial and final fitting results corresponding to a simultaneous
fit across both trapping gradients. As H,’f /o depends on the
ensemble energy distribution p(E) over the duration in the
MT, we include an additional plot of the measured values
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TABLE II. Experimental values of o and (oy,v) determined by
the self-consistency requirement posed by Eq. (22). The first and
second brackets indicate the statistical and systematic error associ-
ated with each parameter (see the Appendix for details). We include
previously ab initio calculated and experimentally measured disper-
sion coefficients for comparison [6,7,13]. Here, E, is the Hartree
energy and qay is the Bohr radius.

No heating  Heating corrected ~ No precut
a (101 V%‘s) 8.6(2) 9.8(2) 12.5(2)
(Ot V) (10"5‘“73) 5.19(8)(4) 6.44(11)(5) 7.40(10)(6)
U; (mK) 3.24(5)(3) 2.61(5)(1) 2.27(3)(1)
Co expr (Enaf) 4688(198)(95)

C6,1heory (Ehag)
Cﬁ,expt (Ehag)

4691(23) [13]
4719(30) [7], 4700(50) [6]

against those calculated from the final values of (oyv) and
o, (H,ik /@ )best fit, Dased the associated distributions for each
point. Agreement between these two values is reflected in
the grouping of points about the line y = x. The variation
of the H,lf /a values observed at each Ey, arises from both
statistical variations of the determined loss rate (that worsens
at lower trap depths where the number of recaptured atoms
is smaller) and systematic variations of the loss rate due to
differences in the ensemble energy distribution evolution at
different background densities.

It is important to note that when the atoms are loaded
into the MT, the resulting ensemble energy is significantly
altered by the magnetic potential energy associated with the
chosen gradient. As a result, measurements at lower and
higher magnetic field gradients reveal different ensemble en-
ergy distributions. The data presented in Fig. 4 demonstrate
the influence of this distribution change: the data acquired for
Erax < 0.75 mK correspond to a lower magnetic field gradi-
ent of 55 G/cm, while those shown for E,x > 1.5 mK were
collected at the higher gradient of 275 G/cm. For the colder
ensemble—or equivalently, the lower gradient—the average
effective trap depth E.x — (E) is larger than that of the hotter
ensemble at the higher gradient. As such, the loss rate of the
colder ensemble decreases faster as compared to the warmer
ensemble at the same trap depth.

The initial fitting value, (o v)0, corresponds to neglecting
the heating of the ensemble and is listed in column 2 of
Table II (“No heating”). This value is systematically 20%
smaller than the best-fit {oy,v) value found in column 3. This
can be understood from the decrease in the average effective
trap depth as the temperature of the ensemble increases, re-
sulting in an increase in the loss rate over time, an effect that
is absent when no ensemble heating occurs. The systematic
error will be compounded by the fact that the heating rate
increases for deeper traps, leading to the observed loss rate
appearing to decrease more slowly as a function of trap depth.
Consequently, the fit value of Uy extracted is systematically
larger than the true value and, hence, yields the smaller (oo v)
value. Accounting for this redistribution, one obtains accord-
ingly a much larger (o, v) value that is closer to the true value
(column 3).

We also find clear evidence of two-body intratrap elastic-
collisional losses in the trapped rubidium ensemble. Column

4 of Table II shows the value of (o, v) extracted from the
trapped ensembles which were not subjected to the initial
RF field to remove those atoms with energies above E.
For these ensembles, this additional two-body loss channel
is energetically allowed and confounds the extratrap loss-rate
measurements, generating the larger value reported here. Note
that this value is corrected for ensemble heating using the
iterative process reported in this paper.

For collisions that are dominated by the long-range
van der Waals interaction and subject to the quantum diffrac-
tive universality described here, Eq. (2) relates (o v) to Cs.

To first order, we observe Cg X (Umtv)% making the exper-
imentally determined Cg value a sensitive measure of the
validity of the pgpu collision model for Rb-Rb collisions.
Here we report (0o v) = 6.44(11)(5) x 107 m3/sand Cs =
4688(198)(95)Eha8 (shown in column 3 of Table II). This is
in agreement with theoretical ab initio calculations and with
previous measurements [6,7,13]. These results, together with
the previous measurements of Rb-Nj collisions [8,9], provide
evidence of the accuracy of the quantum diffractive collision
universality predictions for (o v).

While knowledge of the rubidium background pressures
n, and n, is not needed to extract loss-rate coefficients, our
analysis provides a measurement of «, the proportionality
constant between the initial loading rate and the background
density of rubidium, from which these may be calculated.
At the largest and smallest initial loading rates of 0.014(2)
and 1.578(7) V/s, corresponding to the highest and low-
est background densities of rubidium, we find densities of
1.4(2) x 10" and 1.61(2) x 10" m~3, respectively. Partial
pressures may be readily calculated from the ideal gas law,
for which we find 4.3(5) x 107! and 4.89(6) x 10~° Torr,
respectively, within expectations given previous studies with
similar-order-of-magnitude loss rates [8].

IV. CONCLUSION

We have presented precision measurements of loss rates
of magnetically trapped 8’Rb generated by collisions with
room-temperature rubidium in the surrounding vacuum. We
use these measurements, in conjunction with the universal
law describing these room-temperature collisions, to extract
the total velocity-averaged loss-rate coefficient (o v) and the
corresponding C value for Rb-Rb interactions.

By eliminating two-body intratrap collisions and account-
ing for collision-induced ensemble heating, we observe an
experimentally measured velocity-averaged total collision
rate coefficient (oyov) = 6.44(11)(5) x 10~1 m3/s and a cor-
responding dispersion coefficient Cg = 4688(198)(95)Eha8,
in agreement with a previously published theoretical value of
4691(23)Eha8 [13]. We also find agreement with other exper-
imentally measured Cg values derived from measurements of
the Rb ground-state polarizability using atom interferometry
[7] and Feshbach resonance spectroscopy [6].

This agreement serves as another experimental verification
of quantum diffractive universality for long-range van der
Waals interactions and provides independent corroboration
that atomic sensors can be used to realize a self-defining,
quantum, primary pressure standard. In addition, this work
demonstrates the importance of accounting for ensemble
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heating and eliminating two-body intratrap collisions to min-
imize systematic errors in determining (oyv). For Rb-Rb
collisions we find that the value of (o v) can be under-
estimated by up to 20% when the confounding effects of
trapped ensemble heating are ignored. It must be noted that
this is likely an upper bound on the error as the present
work involves collisions between particles of equal mass,
maximizing the momentum and energy transfer per collision.
This is reflected in the high value of (oy,;v) or, equivalently,
in the low value of Uy characterizing this collision system.
Thus, the ensemble heating is significant between trapped and
background rubidium atoms at large trap depths. Finally, we
observe that if two-body intratrap collisions are not mitigated,
they can lead to an overestimate of (o, v) by up to 15%.
We have shown that this loss channel can be suppressed
by removing sensor atoms with energies above half the trap
depth, E.x/2. In doing so, elastic two-body losses are en-
ergetically forbidden until higher-energy states are populated
by background collisions or multiple intratrap collisions. For
the purposes of realizing a self-calibrating primary pressure
standard, accounting for and mitigating these confounding
effects is essential.
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APPENDIX: SYSTEMATIC UNCERTAINTY

The calculation of the time-integrated loss fraction H,?
requires knowledge of the energy distribution as a function
of time, which is calculated based upon the measured tem-
perature T, energy offset Ey,, and slope m above the cut
energy E.y. To estimate the systematic uncertainty associated
with each of these quantities, we analyze the change in the
fitted value of (o, v) as each input parameter is varied. Based
upon the variances of these measured input quantities, we find
they contribute a combined relative systematic uncertainty of
0.80% on the resultant (oycv) value.

As the derived quantity (oyv) depends on the peak ve-
locity v, of the surrounding background gas, there is also a
systematic shift related to the assumed temperature of the gas.
We place a bound of 1 K on the variation of the background
temperature, for which the related relative systematic uncer-
tainty is 0.05%. Under the assumption that each source of
error is independent, we find a total systematic uncertainty of
0.81% on the determined (o v) value.
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