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In the light of a multiple scattering (MS) description of molecular photodiffraction and photoabsorption
processes, we present an investigation of the interplay between initial state coherence and intramolecular
scattering, leading to a reinterpretation of the molecular interference in diatomic molecules and in particular of
the Cohen-Fano (CF) interference term in photoabsorption. Indeed, the delocalization of the initial state electron
over different atoms at positions Rn introduces in the language of MS theory as many virtual emitters as there are
atoms in the molecule, giving rise to new MS paths as compared to the case of a single emitter. Their emission
amplitudes interfere via the usual phase factor eik·Rn and in the case of two emitter photoemission describe how
the usual picture of the microscopic Young’s experiment is modified by the presence of intramolecular scattering.
Photoabsorption follows from photoemission by integrating over the emission directions of the photoelectron and
characterizes the CF oscillations as the remnants on the energy scale of the photoemission interference patterns
introduced by the new paths joining the two centers, exactly like the extended x-ray absorption fine structure
signals are the remnants of the closed paths that begin and end at the same atom. In the same context of initial
state coherence we also show that the orientationally averaged scattering of electrons off small molecules can
give access to CF type of oscillations, although in a more complicated way, due to the lack of site selectivity in
comparison with the photoemission process and the absence of a dipole selection rule. It is shown that this type
of modulation has the same physical origin as that found in photoabsorption.
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I. INTRODUCTION

Since the seminal paper by Cohen and Fano (CF) [1] in
1966 describing the interference effect of the delocalization
of the initial 1σg,u core state in the K-edge photoabsorption
of the N2 molecule, 35 years elapsed to find the experimental
evidence of the predicted effect in H2 [2] and almost 40 years
for N2 [3,4]. The effect was regarded as the manifestation of
a kind of molecular double slit experiment, because photo-
electrons can be emitted coherently from the two equivalent
atoms in these molecules. In particular, the work of the au-
thors in Ref. [2] about coherent emission from H2 molecules
by impact of energetic charged ion, has inspired an intense
research activity on the subject that is still going on. We refer
the interested reader to the paper of Ciappina et al. [5] for
a comprehensive review on the theoretical interpretation of
these phenomena. In this work we want to limit ourself to
the interpretation of photoionization experiments with a minor
digression to electron scattering processes.

In Ref. [3] the author shows that inversion symmetry in-
deed causes nonlocal, coherent behavior of the core electron
photoemission from homonuclear diatomic molecules such as
N2 and that this nonlocality changes in a continuous way into a
partially localized behavior, if inversion symmetry is violated
by isotopic nuclear substitution.

Shortly after Zimmermann et al. [6] investigated the re-
lation between intramolecular scattering and CF interference
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in photoelectron diffraction experiments on the isoelectronic
hetero- and homonuclear molecules, CO and N2, in the gas
phase, reaching the conclusion that there are two kinds of
processes: A two-center interference between two spatially
coherent emitters in the case of N2 and one-center self-
interference in the case of CO, the latter being the signature
of a loss of spatial coherence.

The idea behind this interpretation is that the indistin-
guishability of the emission pathways caused by the inversion
symmetry of the N2 molecule leads to coherent emission of
photoelectron waves from both molecular centers, whereas
this process is not possible in the CO molecule due to the
distinguishability of the emission sites.

For a certain period the symmetry equivalence of the emit-
ters was considered essential for the observation of the CF
interference effect, so that it came to a surprise [7] when
Canton et al. found evidence of the effect in the vibrationally
resolved photoionization of the 1π−1 valence state of the
heteropolar molecule CO [8].

In view of these findings it would be very useful to have a
conceptual framework in which to describe all these phenom-
ena. The purpose of this paper is to present such a unifying
theoretical framework based on multiple scattering (MS) the-
ory, in the light of the concept of atomic coherence of the
initial state (as specified below) that does not necessarily
require the equivalence of the emitters to cause interference.
The ensuing analysis will lead to a different interpretation
of the physical meaning of the interference phenomena than
hitherto attributed to them.
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It is by now well established that MS theory is the
language of election for the description of many types of
spectroscopy, including photoabsorption and photoelectron
diffraction [9–11]. Based on the Full Potential formulation
of MS theory [12], one has now the possibility of generating
exact numerical solutions of the Schrödinger equation (SE)
for bound or continuum states, which are the ingredients for
the description of many spectroscopies in the independent
quasiparticle approach. Indeed, a great advantage of MS the-
ory is that one can write the response function of the various
spectroscopies only in terms of the scattering path operator
τ, which provides at the same time an intuitive physical de-
scription of the processes under consideration. For example,
it highlights the coherence of the various atomic emission
processes (even virtual) and their connection with the atomic
structure. In this respect the use of MS theory for describing
these virtual emissions in relation to interference processes is
nearly irreplaceable for the insight it provides into the working
of quantum mechanics.

In the following we shall use the length form of the dipole
operator. Disregarding the presence of the core and valence
hole, in our independent particle picture approach both initial
and final states are eigenstates of the same Hamiltonian and
therefore the length and velocity gauge should give identical
results. Even in this ideal situation, the numerical approxima-
tions (the angular momenum expansion around each center
is truncated to an lmax value, neglect of the contribution of
the outer sphere region to the integral of the transition matrix
element...) make the two gauges slightly different, up to a 10–
15% in some cases, though in general they present the same
shape. (A comparison between calculated cross sections in the
two gauges is given in Fig. 7.)

Taking into account the presence of the core and valence
hole (by considering some kind of static charge self-consistent
relaxation around the hole in the final state) introduces further
uncertainties. Indeed, a satisfactory treatment of the dynami-
cal effects of the hole in the final is still an unsolved problem.
Therefore, even in the assumption that the various gauges gave
the same answer, we would be still confronted with an ap-
proximate description of the effect of the hole. The important
point, however, is that the transition matrix elements of the
cell around each atom [Mn

L (E ) in Eq. (13)] are featureless both
for core and valence states. The amplitudes Bn

L (k) in Eq. (14),
which describe the physics of the process, are only slightly
affected by this uncertainty. This aspect of MS theory has been
exploited in the past in relation to structural analysis [11,13].

There is no problem in accounting for the presence of the
core hole in the final state, if the initial core state is localized
on one atom. One promotes the core electron to the first
available non occupied state of the system under consideration
(crystal, cluster of atom, etc.) to mimic some sort of static
screening of the core hole, using the self-consistent charge
density of this configuration to calculate the final state core-
hole potential [14]. Note however that the calculations with
and without core hole do not differ significantly in relations to
the questions discussed in this paper.

When the initial core state is delocalized on two equivalent
atoms (valence-like core state), such as the 1σg,u states in N2,
our ansatz is to use a self-consistent charge density with a hole
in the same delocalized initial state and an electron promoted

to the first available non occupied state of the same symme-
try. The resulting core hole potential has therefore the same
symmetry as the initial state. This approach is inspired by the
nonorthogonal configuration interaction (NOCI) method used
to describe the molecule with a core hole by making proper,
symmetry adapted, linear combinations of the degenerate lo-
calized solutions, in which the core hole is localized in turn
on the various equivalent atoms [15].

Throughout this paper we shall use atomic units (a.u.)
for lengths and Rydberg units for energies, unless otherwise
stated. Moreover, we have followed the literature in mate-
rial science, whereby photoemission implies the detection of
photoelectron outside the system, whereas in photoabsorption
one measures the attenuation of the photon beam after passing
trough the sample.

In the organization of the paper we distinguish between
the two spectroscopies. Even though both of them are ex-
pression of the same physical process (photoionization) and
are described in terms of coherent emission from atomic
centers, the experimental apparatus is different in the two
cases. As discussed below in photoemission one measures
the diffraction patterns of the emitted electrons, whereas in
absorption one measures the number of holes created by the
incoming photons. Therefore, one cannot expect the same
interference patterns in the two spectroscopies nor the same
physical meaning. Sections II and III and relative subsections
deal with photoemission, while Sec. IV and its subsections
deal with photoabsorption. In particular Sec. II presents the
way to write the photoemission cross section in the language
of multiple scattering theory (MST) both for the initial and the
final states, this latter expressed in terms of the scattering am-
plitudes Bn

L(k) centered at each molecular site n. Section II A
describes the photoemission process starting from a localized
core state and gives the physical interpretation of these scatter-
ing amplitudes according to the Feynman’s rules. They obey a
kind of generalized optical theorem given in Eq. (10) which is
essential to establish the relation between photoemission and
photoabsorption cross section. Section III gives the general
expression to calculate the cross section of photoemission
from valence states, where Eq. (12) presents the process as a
coherent sum of virtual core-like excitations, each emanating
from one of the various molecular sites, weighted by the
phase factor eik·Rn . Section III A specializes this formula to
the case of heteropolar diatomic molecules, whereas Sec. III B
deals with the case of photoemission in homopolar diatomic
molecules and illustrate how the usual picture of the micro-
scopic Young’s experiment is modified by the presence of
intramolecular scattering. Section III C calculates the photo-
electron diffraction along the molecular axis in N2 and CO
using an exact expression calculated in the Appendix A 2,
to interpret the experimental findings of Ref. [6] and eluci-
dates the relation between intramolecular scattering and CF
interference. Section IV uses Eq. (12) of Sec. III and the
generalized optical theorem for the photoemission scattering
amplitudes to derive the exact photoabsorption cross sec-
tion in the framework of our independent particle approach,
both for heteropolar and homopolar diatomic molecules. The
case of CO absorption is treated to illustrate the role of photon
polarization in determining the presence or absence of MS
oscillations in the spectrum. Section IV A derives the Cohen-
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Fano interference term in the framework of the present theory
using the Born Approximation for the scattering path oper-
ator τ, for photon polarization along and perpendicular to
the molecular axis, and compares with the original derivation
by Cohen and Fano [1]. It is shown that both the extended
x-ray absorption fine structure (EXAFS) and CF oscillations
have the same physical origin, being the remnants on the
energy scale of the corresponding photodiffraction patterns,
after averaging over the emission angles. Section IV B studies
the conditions of validity of the Born approximation with
application to the oscillatory structure of N2 valence photoab-
sorption ionization cross section. The corresponding signal is
compared with the experimental data by Ilchen et al. [16],
deriving in this way the correct molecular bond length. Sec-
tion IV C presents an analysis of the photoabsorption cross
section in the whole spectral range, based on Eq. (25). It gives
an explanation of why the shape resonance is missing in the
case of the ungerade initial state. Section IV D discusses the
question of the Cooper-like minima in the partial absorption
cross sections and their relation with the CF modulations in
the total cross section, showing clearly that they are not related
to some kind of intra molecular confinement of the excited
photoelecton, as suggested by some authors [17]. Section IV E
illustrates the CF formula in the case of photoabsorption in
heteropolar diatomic molecules, showing that this kind of
signal can also be observed in molecules like CO, depending
on the values of the mixing coefficients ci present in the
initial valence state. Finally, Sec. V presents, in the context of
initial state coherence, the derivation of the cross section for
orientationally averaged scattering of electrons off diatomic
molecules, that also shows the typical CF oscillations. It is
shown that this type of modulation has the same physical
origin as that found in photoabsorption. After this, Sec. VI
draws the conclusions. Appendix A 1 summarizes, for the
benefit of the reader, some of the aspects of MS theory, useful
for understanding its structure, in particular the ordering of the
MS paths. Appendix A 2 derives in the framework of MST the
exact expression for calculating the photoelectron diffraction
along the molecular axis in N2 and CO and Appendix A 3, us-
ing the same formalism, derives the total integrated molecular
cross section in terms of the integrated partial ionization cross
sections to get more insight into the mechanism of electron
confinement.

II. THE PHOTOEMISSION CROSS SECTION IN THE
FRAMEWORK OF MULTIPLE SCATTERING THEORY

In the independent particle approach the initial and final
states of the system are Slater determinants (SD) so that,
taking into account the presence of the core hole in the final
state by a static potential when needed, the photoemission
cross section for the ejection of a photoelectron along the
direction k̂ is given by

dσ

dk̂
= 4π2αh̄ω

∣∣∣∣
∫

d r [ψ−
k (r)]∗ (eiκ·r e · r) �c,v (r)

∣∣∣∣
2

, (1)

where α = 1/137 is the fine structure constant, h̄ω is the in-
coming photon energy with real polarization vector e, �c,v (r)
is the initial core (valence) wave function and ψ−

k (r) is the
time reversal of the continuum scattering state ψ+

k (r) describ-

ing the excited photoelectron. The time reversal is necessary
to impose the boundary condition that no electron exists in a
continuum state in the remote past. Neglecting spin degrees
of freedom, ψ−

k (r) = [ψ+
k (r)]∗. In Eq. (1) we have kept the

exponential factor originating from the vector potential of
the impinging photon with wave vector κ, neglecting terms
proportional to κ · p and κ2, where p is the electron momen-
tum. It should be kept in mind if one intends to highlight
the self-interference of the incoming photon in the coherent
photoionization, but in the following applications it can be and
was actually set equal to one with a good approximation.

The continuum state |ψ+
k (r)〉 satisfies the SE with positive

energy (k = √
E )

[∇2 + E − Veff (r)] ψ+
k (r) = 0, (2)

with outgoing wave boundary condition and normalization to
one state per Rydberg

ψ+
k (r) �

(
k

16π3

) 1
2
[

eik·r + f (r̂; k)
eikr

r

]
. (3)

In Eq. (2) Veff(r) represents an effective optical potential, in
general complex, coming from the reduction of the many-
body problem to an effective one-particle problem. Without
loss of generality for the present discussion, we assume that
Veff(r) is a real potential. We shall use throughout the real
Hedin-Lundqvist potential (HL) [18]. The role of the complex
part of the potential is to dampen the effects of the coherent
interference. Details of the reduction process and of the role
of a complex potential are provided in Ref. [9].

As is well known, multiple scattering theory is a technique
for solving a linear partial differential equation over a region
of space with certain boundary conditions. It is implemented
by dividing the space into nonoverlapping domains �i (cells),
solving the differential equation separately in each of the cells
and then assembling together the partial solutions into a global
solution that is continuous and smooth across the whole region
and satisfies the given boundary conditions.

As a consequence, both the initial and final state, global
solutions of the SE, can be represented in each cell by a lin-
ear combination of suitably normalized local solutions times
coefficients depending on the imposed boundary conditions.

For initial valence states, without loss of generality, in each
cell �i we can write the global solution as

�c,v (ri ) =
∑

L

Ci
L φv

L (ri ), (4)

where ri = r − Ri is the local coordinate referred to the center
of the cell Ri and φv

L (ri ) are regular local solutions of the
SE for bound states behaving at the origin like rl YL(r̂). As
usual, L stands for the pair l, m of angular momentum indices
and YL(r̂) is a real Spherical Harmonics. Global normalization
requires that ∑

i L

∣∣Ci
L

∣∣2
∫

�i

d ri

∣∣φv
L (ri )

∣∣2 = 1, (5)

assuming that the various φv
L (ri ) are orthogonal in the L basis.

An initial state with support in different cells is said to have
atomic coherence.
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A core state completely localized in the cell �c, with a
definite angular momentum Lc, is obtained by taking all the
coefficients Ci

L = 0, except for i = c and L = Lc. In this case
Cc

Lc
= 1, since the core wave function φc

Lc
(ri ) is normalized to

one in the cell.
Similarly, the excited continuum state ψ+

k (r) can be repre-
sented locally by the expression

ψ+
k (ri ) =

∑
L

Bi
L(k) �i

L(ri; k), (6)

where the index k is reminiscent of the boundary conditions
Eq. (3) and �i

L(ri; k) is a suitably normalized local solution of
the SE in cell �i [12]. The coefficients Bi

L(k), together with
their physical meaning, will be discussed extensively in the
next section.

A. Photoemission from a localized core state

In this case, we assume that the initial core state is localized
inside the cell �c at site c. Then the matrix element in Eq. (1)
becomes

dσ

dk̂
= 4π2α h̄ω

∑
mc

∣∣∣∣∣
∑

L

Me
Lc L (E ) [Bc

L (k)]

∣∣∣∣∣
2

. (7)

Here we have introduced the atomic transition matrix element

Me
Lc L (E ) =

∫
�c

d rc
(
�c

L(rc; k)
)


(e · rc ) φc
Lc

(rc), (8)

where the superscript e indicates the dependence on the
incoming photon polarization. The role of this latter is to de-
termine the escape direction of the photoelectron according to
the final angular momentum L selected by the dipole selection
rule with amplitude YL(r̂). For typographical convenience it
will be omitted in the following.

By performing the sum over the linear components em

before the square modulus one obtains the unpolarized cross
section.

In Appendix A 1 we show that the scattering amplitude
Bc

L(k) is given by

Bc
L(k) =

√
k

π

∑
jL′

τ
c j
LL′ il ′YL′ (k̂) eik·R j , (9)

where τ
i j
LL′ represents the full scattering path operator, giving

the total amplitude of propagation of the photoelectron from
site i to site j, starting with angular momentum L around site
i and arriving with angular momentum L′ at site j.

Due to the expression (9) we obtain the photoelectron
diffraction (PED) cross section by taking the product of the
amplitude MLc L for creating a photoelectron in a state of
spherical wave L selected by the dipole selection rule from
an initial core state Lc, times the amplitude of propagation
from site c to any site j, starting with angular momentum
L and ending with angular momentum L′ after any number
of scattering events, times the phase difference eik·R j of the
photoelectronic wave between the initial and final sites c and
j, times the spherical wave amplitude il ′YL′ (k̂) for escaping
toward the detector. All these amplitudes are to be summed to-
gether and squared to obtain the intensity of the photoelectron
current at the detector, in keeping with the Feynman’s rules

for composite consecutive events [19] and alternative paths to
the same final state.

It is clear that the interference patterns so measured by
the detector depend on the actual positions of the atoms in
the sample and represent a three-dimensional hologram of the
sample-object (i.e., the atomic positions in the system under
study) in momentum and energy space, associated with the
three degrees of freedom of the two polar and azimuthal emis-
sion angles and the final kinetic energy of the photoelectron,
as pointed out by Ref. [20]. For an in depth discussion on this
aspect also from an experimental point of view see Ref. [21].

In case of real potentials the scattering amplitudes Bi
L(k)

satisfy the relation∫
dk̂ Bi

L(k)
[
B j

L′ (k)
]∗ = − 1

π
� τ

i j
LL′, (10)

which is a kind of generalized optical theorem, consequence
of the conservation of particle flux. This relation is very
important, since it establishes the connection between the
photoemission and the photoabsorption cross sections [12].

In fact, by integrating the PED cross section over all emis-
sion angles and exploiting Eq. (10) we get

∫
dk̂

dσ

dk̂
= 4 π2 α h̄ ω

∑
mc

∫
dk̂

∣∣∣∣∣
∑

L

MLcL(E ) [Bc
L(k)]∗

∣∣∣∣∣
2

= −4 π α h̄ ω
∑

LL′mc

MLc L (E )�τc c
LL′M


Lc L′, (11)

which is equal to the absorption cross section [9].
As a consequence, the integration process eliminates the

physical detector located outside the sample and replaces it
by the atomic emitter (since we count the number of holes),
which becomes in this way both the source and the detector of
the photoelectrons.

According to Feynman’s rules we can interpret the second
line of Eq. (11) as the imaginary part of the amplitude for
creating an electron at the site of the photoabsorber, times the
amplitude of propagation from this site to the same site after
undergoing any number of multiple scattering by the atoms in
the system, times the amplitude of being re-absorbed at the
emitter atom. A typical such contribution to the absorption
cross section are the oscillations of period �k = π/R, that are
due to the interference between the outgoing photoelectronic
wave from the emitter and the returning wave after a single
back-scattering from a neighbor at distance R. They are known
as EXAFS oscillations.

III. PHOTOEMISSION FROM MOLECULAR
VALENCE STATES

Remembering Eq. (4), photoemission from molecular va-
lence states can be written as

dσ

dk̂
= 4π2α h̄ω

∣∣∣∣∣
∑

n

∑
L

Mn
L (E )

[
Bn

L (k)
]


∣∣∣∣∣
2

= 4π2α h̄ω

∣∣∣∣∣
∑

n

e−ik·Rn
∑

L

Mn
L (E ) [B

n
L (k)]


∣∣∣∣∣
2

, (12)
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FIG. 1. Minimal space partitioning for a diatomic molecule.

where we have partitioned the molecular volume in cells �n

so that

Mn
L (E ) =

∑
�

Cn
�

∫
�n

d rn
[
�n

L(rn; k)
]


(e · rn ) φv
�(rn).

(13)

In the second equation (12) we have introduced the quantity

B
n
L(k) =

√
k

π

∑
jL′

τ
n j
LL′ il ′YL′ (k̂) eik·(R j−Rn ), (14)

which in a periodic system is translationally invariant. Re-
membering Eq. (1), we have omitted in Eqs. (12) and (13)
a phase factor eiκ·Rn which would arise from the fact that
the vector potential of the photon is referred to the common
origin of the atomic coordinates Rn, representing the self-
interference of the incoming photon. It can be neglected with
respect to the photoelectron wave vector for energies up to
1000 eV for shallow initial states.

Equation (12) is particularly suggestive, in that it describes
the photoemission from a valence initial state as a coherent
sum of core-like photoemission amplitudes, each processes
emanating from one of the various molecular sites, weighted
by the phase factor e−ik·Rn .

Emission from valence molecular states in terms of
photoelectron wave interference, caused by initial state de-
localization and final state photoelectron scattering has also
been treated by Krüger in Ref. [22], but without making ex-
plicit reference to the structural phase factor.

In the following we shall specialize the above equations to
diatomic molecules in the framework of full potential multiple
scattering (FPMS) theory [12]. Figure 1 shows a minimal
partition of the space into two cells �1 and �2 around the
physical atoms and a third region �3 comprising the rest of
the space. For all considered valence states of the diatomic
molecules mentioned below, we found that the contribution
to the photoemission and photoabsorption cross section of
region �3 can be neglected, due to its small contribution
to the normalization integral and therefore to the transition
matrix elements involved in the expression of the cross sec-
tion. Indeed, calculations carried out using the above minimal
partition, and one in which region �3 is replaced by a suf-
ficient number of empty cells covering the space until the

external molecular potential becomes negligible, do not show
meaningful differences. We are therefore confident that we
can describe the physical properties of the diatomic molecules
by considering only the regions �1 and �2. In the following
all our calculations are carried out in full potential mode,
including therefore the anisotropies of the molecular potential,
and by inverting exactly the MS matrix (T−1 − G) = τ−1,
except when explicitly stated otherwise.

A. Photoemission in heteropolar diatomic molecules

In the case of diatomic molecules we assume that the
two atoms are located along the z axis at R1 = (0, 0,−R/2)
and R2 = (0, 0, R/2), R being the interatomic bond length.
For future reference, we shall take R = 1.1 Å for N2 and
R = 1.13 Å for CO.

In the framework of MST we can write the initial valence
state in the heteropolar case as

φv
is(r) = c1 φ1(r1) + c2 φ2(r2) + c3 φ3(r3), (15)

where each function φi(ri ) has support only in the cell �i. The
normalization condition imposes that∑

i=1,3

c2
i

∫
�i

dri |φi(ri )|2 = 1. (16)

As anticipated above, we neglect the wave function in region
�3 and renormalize the two coefficients ci (i = 1, 2) accord-
ingly. Then the photoemission cross section can be written as

dσ

dk̂
= 4π2α h̄ω

∣∣∣∣∣∣
∑

L

(
c1

[
M1

L (E )
]∗

B
1
L (k)

+ c2
[
M2

L (E )
]∗

B
2
L (k)eik·R)∣∣∣∣∣∣

2

, (17)

taking for convenience the complex conjugate of the photoe-
mission amplitude in Eq. (12) and putting R = R2 − R1.

This equation illustrates the role of the initial coherent
delocalization of the excited photoelectron in creating inter-
ference patterns between different emitter sites. It can be used
to describe the 1π−1 ionization of the heteropolar molecule
CO. In this case the φi(ri ) wave functions are approximately
2p carbon and oxygen atomic orbitals so that the main tran-
sition is to a l = 2 final state [8]. In the limit c2 → 0 one
recovers the photoemission from a core state localized at R1

(and viceversa).
The case of the heteropolar molecule CO is particularly

interesting, since photoemission from the K-edge of either
carbon or oxygen has been considered as a double-slit ex-
periment with only one of the two slits open, due to the
inequivalence of the two atomic sites [6]. However, Eq. (17)
shows that to get interference between two atomic sites it is
only necessary that the initial state be delocalized over the
two sites.

By looking at the extension of the two 1s orbitals centered
on the two atomic sites we notice that the situation is similar to
that of the N2 molecule, that has an effective hopping integral
(resonance integral) of 0.05 eV (half the energy gap between
the bonding (1σg) and the antibonding (1σu) states). So we
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expect a resonance integral of the same order of magnitude
between the 1s carbon and oxygen orbitals in CO, with the
consequence that even the 1σ ground state of the CO molecule
is slightly delocalized and is a mixture of the two 1s orbitals
with appropriate coefficients. We defer this discussion until
after the molecular photoabsorption has been calculated.

B. Photoemission in homopolar diatomic molecules
and its relation to the Young’s two-slit experiment

In the case of homopolar diatomic molecules, the two
atomic sites are related by inversion symmetry. For illustration
purposes, in a first approximation one might consider the
molecule as a periodic system with two sites, neglecting ter-
mination errors. In this case, assuming Mi

L (E ) B
i
L independent

from the site i and taking c2
i = 1/2, one would obtain

dσ

dk̂
= 4π2α h̄ω

∣∣∣∣∣
∑

L

M∗
L (E ) BL (k)

∣∣∣∣∣
2

[1 ± cos(k · R)],

(18)

where the + (−) sign is for “gerade (ungerade)” initial states.
As apparent from this expression the summation over the
two states eliminates the interference term and the coherent
emission from the two equivalent atoms collapses to a single
site emission.

Before proceeding with the discussion on the relation with
the Young’s two-slit experiment it is expedient to derive from
Eq. (17) the photoemission equivalent of the Cohen-Fano for-
mula in our formalism. This expression is obtained by putting
in the lowest order Born approximation BL(k) ∝ tl il YL(k̂),
so that assuming a final l = 1 angular momentum and c2

1 =
c2

2 = 1/2, one finds

dσ

dk̂
= 1

2
σat (h̄ω)

∣∣∣∣∣
∑

m

emY1m(k̂)

∣∣∣∣∣
2

|1 ± eik·R|2

= σat (h̄ω)(e · k̂)2 [1 + cos (k · R)], (19)

where again em indicates the linear components of the photon
polarization vector. Here the k̂ polar angle θ is measured
from the z axis where the two atoms of the molecule lie with
coordinates (0, 0, ± R/2). This result coincides (except for
the atomic matrix element!) with the direct calculation of
the Cohen-Fano molecular matrix element as performed by
Baltenkov et al. [23].

We now analyze the interference patterns when the photon
polarization vector is perpendicular to the molecular axis.
In this case we consider a plane containing the molecular
axis and perpendicular to the photon polarization, and put
the detector on a plane parallel to it, at a distance d � R.
The angle θ ′ between k̂ and ê is complementary to the angle
θ , so that [1 + cos(k · R)] = {1 + cos[k R sin(θ ′)]}. Hence,
the condition for extinction is given by R sin(θ ′) = nλ/2, n
being any positive or negative integer odd number. This is
the well known formula of the directional Young’s two-slit
experiment. For polarization parallel to the molecular axis
the detector plane can be taken orthogonal to the polariza-
tion direction. The interference pattern are then determined
by the relation {1 + cos[k R cos(θ )]} and the condition for
extinction is R cos(θ ) = nλ/2, where again n is any positive

or negative odd number. In particular at θ = 0 the condition
becomes k R = nπ , as observed in Ref. [17] and interpreted
as a condition for electron confinement. Notice that if the
lateral spread of the rays in the Young’s experiment is large
enough (reaching θ ′ = π/2 and beyond), some of the two sets
of extinction directions coincide.

Both situations can be physically realized by two radi-
ating dipole antennas with charge oscillating along the z
axis, separated by a distance R along the y axis at positions
(0, ±R/2, 0) and observed by detectors put in two planes
orthogonal, respectively, to the x and y axis at distance much
greater than R.

The common physical principle underlying the two sit-
uations is coherent emission from two sources without
interference of one source onto the other. The “classical”
directional Young’s two-slit experiment realizes only one of
the two arrangement, but is clear that the other too can be
called in his own right a “Young experiment.” We might call
the antenna’s setup a generalized Young-type experiment, in
keeping with other authors that call the second set of extinc-
tion conditions “Young-type” interference conditions [24].

The distinctive features that makes photoemission interfer-
ence patterns different from the Young-type patterns coming
from the interference factor [1 + cos (k · R)] is that photoe-
mission patterns do include feedback between the two emission
slits, as apparent from Eq. (18), where the emission from a
single site does depend on the direction of k. Indeed, what
is modulated is the entire photoelectron diffraction pattern
of the molecule. This type of interplay has been investigated
by Zimmermann et al. in the paper mentioned above [6],
although from a different point of view. If the “feedback” were
absent, the Young-like picture would be perfectly adequate to
describe the interference phenomenon, as shown in the case
of the photoemission equivalent of the CF formula.

The same conclusion was reached by Baltenkov et al. [23]
by comparing the interference pattern of Eq. (19) with the
photoemission angular distribution of a model of two equiva-
lent atoms scattering only in s waves, but sufficient enough to
contain the effect of the feedback of one source onto the other.

The factor [1 + cos (k · R)] is the ubiquitous interference
factor for coherent emission of two equivalent centers present
in other spectroscopies. Notably, it is present in the case of
“coherent electron emission from simple molecules by impact
of energetic charged particle” [5]. In the case of heavy ion
impact the key equation is given by Eq. (15) of the review
paper by Ciappina et al. [5]

|T̃ f i(η, ρ)|2 = {1 + cos[(k − q) · ρ]}|T̃ f i(η)|2, (20)

where T̃ f i(η, ρ) is the active electron scattering matrix ele-
ment (AESME), η is the transverse part of the momentum q =
K f − Ki transferred by the impinging ion to the molecule, k
is the wave vector of the ejected (active) molecular electron
and ρ is the vector describing the orientation of the molecular
axis. The decoupling between η and ρ in the AESME is
achieved by means of the two effective center (TEC) approxi-
mation, which is done also in the case of electron impact. The
analogies and differences with the Young’s experiment have
been studied mainly in conjunction with the interference fac-
tor {1 + cos[(k − q) · ρ]} with the conclusion that analogies
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should be taken with caution since the presence of q “may
play a crucial role.” This is probably in connection with the
presence of the variable η in the effective one center matrix
element T̃ f i(η), in line with our analysis.

C. Photoelectron diffraction along the molecular
axis in N2 and CO

Equation (18) is only an approximate form of the pho-
toemission cross section in the case of homopolar molecules
and was considered only for discussing its relation to other
spectroscopies regarding the similarity to a Young’s two-slit
experiments.

In Appendix A 2 we derive the exact expression which we
report in the main text for the convenience of the reader:

dσ

dk̂
= 2π2α h̄ω

∣∣∣∣∣∣
∑

L

M∗
L (E )

[
(1 ± eik·R ) A1 1

L (k)

+ A1 2
L (k) eik·R ± (−1)l A1 2

L (−k)
]∣∣∣∣∣∣

2

, (21)

where Ai j
L (k) =

√
k
π

∑
L′ τ

i j
LL′ il ′YL′ (k̂).

Based on this expression we have calculated the photoelec-
tron diffraction intensity versus electron kinetic energy for
electron emission along the molecular axis (assumed hence-
forth to coincide with the z direction of the laboratory frame)
with photon polarization along the same direction, in the
homonuclear molecule N2 for the gerade (+) and ungerade
(−) initial state, according to the experimental conditions
chosen in Ref. [6]. The choice of the photon polarization along
the molecular axis was taken to maximize the intramolecular
scattering.

To compare with Fig. 4 of Ref. [6] we have summed the
two cross sections in Eq. (21) corresponding to k̂ · R̂ = ±1,
since the emphasis in the selection of events [6] was on the
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FIG. 2. Photoelectron diffraction intensity versus electron wave
vector k expressed in units of R−1 for electron emission along the
direction of the molecular axis with photon polarization along the
same axis in the homonuclear molecule N2. “PEDg” (full line) is for
the gerade (+) state, “PEDu” (long-dashed line) for the ungerade (−)
state. Experimental points are from Fig. 4 of Ref. [6]. The short-
dashed curves represent the model used in Ref. [6] to interpret the
data. See text for details.

“energy-resolved detection of the gerade and ungerade states
rather than on the directional separation of forward and back-
ward scattering events” along the molecular axis. The result
is shown in Fig. 2 where the curve labeled “PEDg (PEDu)”
represents the PED intensity of the gerade (+) [ungerade
(−)] channel. Their sum, given by the light blue (dot-dashed)
curve, re-establishes the EXAFS periodicity of the diffracted
intensity, since it is equivalent to a single center emission (see
Fig. 4).

In the same figure we have reported the experimental
points in Fig. 4 of Ref. [6] and have adopted their k units to
make easier the comparison. (We have used the conversion:
k(a.u.−1) = 0.529 k(R−1)/R to pass from our k units (a.u.−1)
to their units (R−1), where R = 1.1 is in Å.) Henceforth,
the notation k(R−1) will indicate that k is measured in units
of R−1.

The short-dashed lines in Fig. 2 represent the model simu-
lations adopted by the authors of Ref. [6], according to which
the photoelectron diffraction intensities of the gerade and
ungerade states were simulated by a superposition of two sine
functions representing fractional intensities of the scattered
(shown in their Fig. 5) and nonscattered electrons, respec-
tively, in the spirit of a generalized Cohen-Fano model. It is
an ad hoc model which however is at variance with the exact
expression Eq. (21) [derived from Eq. (17) in Appendix A 2],
where the interference function between the scattering ampli-
tudes centered on the two sites is given by the phase difference
eik·R, as usual in quantum mechanics.

A comment is in order here on the normalization of the
experimental data. The g/u data have been normalized to the
corresponding absorption cross section σg/u up to 4.7 k(R−1).
Afterward, the data have been normalized to (σg + σu)/2 to
enhance the oscilatory behavior of the cross section. This
renormalization explains why for k(R−1) < 4.7 the experi-
mental data do not show the typical shape resonance behavior
in this region, whereas in the second region they do not show
the typical decreasing behavior of the atomic cross section.
Both features are evident in our theoretical ’raw’ data which
have been plotted whitout any treatment.

To understand the minima of the “PEDg/u” we use Eq. 21
and assume for sake of illustration that

A12
L (k) ≈ (−1)l A12

L (−k), (22)

so that for the gerade and ungerade cross section we obtain

dσg/u

dk̂
∝

∣∣∣∣∣
∑

L

M∗
L (E )

[
A11

L (k) ± A12
L (k)

]∣∣∣∣∣
2

[1 ± cos(k · R)].

(23)

Therefore, we expect minima for the gerade and ungerade
cross section at kR = nπ with n odd or even, respectively.
This is in fact what one roughly finds due to the approxima-
tion (22). The first experimental [and theoretical within 0.15
(R−1)] minimum of the ungerade state falls at k = 5.2(R−1) so
that kR = 1.7π , while the second theoretical minimum falls
at k = 11.7(R−1) giving kR = 3.7π . For the gerade state we
find the experimental [and theoretical within 0.15 (R−1)] at
k = 8.5(R−1) so that kR = 2.7π , whereas the second theoret-
ical minimum falls at k = 15.0(R−1) giving kR = 4.8π The
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FIG. 3. Comparison between the exact expression Eq. (21) and
its approximation Eq. (23). The labels “PEDga” (dot-dashed line) and
“PEDua” (dashed line) indicate the approximate cross sections

deviation from the condition of exact zeros in the interference
factor is of the order of 0.2–0.3π , which shows that the ap-
proximation (22) is reasonable. This is confirmed by Fig. 3
which shows the comparison between the exact expression
Eq. (21) and its approximation Eq. (23)

A second important point to underline is the fact that the
shape resonance in the ungerade cross section is depressed
compared to the gerade one. This can be explained by look-
ing at Eq. (23), since the two amplitudes A11

L (k) and A12
L (k)

interfere constructively in the gerade case and destructively in
the ungerade one. We shall discuss further this point below in
Sec. IV C.

Figure 4 shows the result of a calculation (a theoretical
experiment!) for the N2 molecule that artificially suppresses
the contribution of one of the two centers. This is obtained
by suppressing the terms immediately following the ± sign
in Eq. (21) and multiplying the cross section by two, or
equivalently by using Eq. (17) with c1 = 1 and c2 = 0. In the
calculations the emitter is the atom located at (0, 0,−R/2).
The curve labeled by “PED+1” plots the PED intensity of
the “forward” channel [6], (emission into the molecule,
therefore k̂ · R̂ = 1), whereas the curve labeled “PED−1” rep-
resents the “backward” channel (emission out of the molecule,
therefore k̂ · R̂ = −1). Their sum is given by the blue curve.
The resulting behavior is similar to Fig. 2 of Ref. [6], which
however represents the carbon K-edge absorption of the CO
molecule. The similarity confirms that the important physical
process is the emission from a single site. One can easily un-
derstand the different behavior of the two channels in the high
energy region by making the single scattering approximation
for τ ≈ T + T GT + · · · in the expression (A4). In this way
the scattering amplitude Bc

L(k) for the photoabsorber becomes
(for an initial l = 0 state), dropping the site indication,

B1(k) ∝ t1

[
(e · k̂) + (e · R̂) feff(k̂ · R̂)

eikR(1−k̂·R̂)

kR

]
, (24)

where e is again the photon polarization, R is the vector
joining the photoabsorber with the other atom, feff(k̂ · R̂) =∑

l (2l + 1) tl Pl (k̂ · R̂) g1l (kR) is an effective scattering am-
plitude and g1l (kR) is the curved wave correction of the free
propagator G in Eq. (A6). This is the well known single
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FIG. 4. PED intensity for the “forward” (full line) and “back-
ward” (dashed line) channels in the N2 molecule, obtained from
a calculation that artificially suppresses the contribution of one of
the two emitting centers. Photon polarization along the molecular
axis.

scattering expression for PED [25]. We see that for k̂ · R̂ = 1
the exponent of the propagator is zero, leading to a flat behav-
ior of the PED cross section, whereas k̂ · R̂ = −1 leads to the
typical EXAFS oscillation with period �k = π/R.

For completeness, we also give in Fig. 5 the PED spectrum
for the CO molecule together with the experimental points
taken from Fig. 2 of Ref. [6]. In the words of the authors,
“all diffraction intensities have been normalized to the cor-
responding partial cross-sections to remove the exponential
decay behavior, which would otherwise mask the oscillatory
structure.” Again the theoretical data have not been treated,
so that they show after k = 4.7 (R−1) the typical decreasing
behavior of the atomic cross section. It is not clear what is
the “corresponding partial cross section.” In Fig. 6 we give
the theoretical cross sections renormalized by M∗

L (E ) A11
L (k).

The effect of leveling of the cross section is reproduced after
k = 4.7 (R−1), but below this value of k there seems to be a
problem of normalization.

Coherence effects in N2 are also observed in the angular
distribution of the emitted photoelectrons as opposed to the
localized emission case. Our results are the same as those
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FIG. 5. PED intensity for the “forward” and “backward” chan-
nels in the CO molecule together with the experimental points taken
from Ref. [6]. Photon polarization along the molecular axis. Same
line conventions as in Fig. 2 .

052807-8



MULTIPLE SCATTERING DESCRIPTION OF … PHYSICAL REVIEW A 106, 052807 (2022)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12

PED+1

PED-1

R
en
o
rm
al
iz
ed
P
E
D
C
ro
ss
se
ct
io
n

k (R-1)

PED+1
PED-1
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obtained in Sec. 5.2 of Ref. [4] by the MS approach with non
spherical potentials. Therefore, they are not presented here.

In the PED calculations of the CO spectra (as in the absorp-
tion spectrum below) we have used a complex HL potential
just to show that its role is to dampen a bit the effects of
coherent interference, as anticipated above.

IV. PHOTOABSORPTION FROM DIATOMIC MOLECULES

The relation
∫

dk̂ cos(k · R) = 4π sin(kR)/(kR)
prompted some authors [26] to derive the Cohen-Fano
formula [1] by integrating Eq. (18) over the directions of
the photoelectron momentum k̂, after averaging over the
molecular orientations to calculate the unpolarized absorption
cross section. However, the resulting expression could only
be approximate due to the simultaneous k dependence of the
PED cross section and the interference term. More physical
insight could be gained by calculating directly and exactly the
polarization-dependent photoabsorption cross section.

Starting from the initial state Eq. (15), integrating Eq. (12)
over dk̂ and using Eq. (10) we find, neglecting again the
contribution of the outer cell �3,

σabs(ω) = −4 π α h̄ ω

[
1,2∑

i

c2
i

∑
LL′

Mi
L(E )�τ i i

LL′
(
Mi

L′
)


(E )

+
1,2∑
i = j

ci c j

∑
LL′

Mi
L(E )�τ

i j
LL′

(
M j

L′
)


(E )

]
(25)

due to the symmetry τ
i j
LL′ = τ

j i
L′L holding in real spherical

harmonic basis. Note that the integration over dk̂ has restored
the equivalence over the two sites.

To illustrate the effect of the photon polarization, Fig. 7
gives the CO absorption cross section from a 1σ carbon initial
state (in the limit c2 → 0) both for photon polarization along
the molecular z axis and orthogonal to it. As expected, the
shape resonance and the EXAFS oscillations appear only in
the first case. When the photoelectron is ejected in the (x, y)
direction no such effects are observed due to the absence of
back-scattering atoms. The curves with line points represent
the same cross sections calculated in the velocity gauge.
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FIG. 7. The CO absorption spectrum from a 1σ carbon initial
state with photon polarization along the molecular z axis and perpen-
dicular to it. In this latter case no oscillations of the cross section are
observed due to the absence of back-scattering atoms. The curves
with line points represent the same cross sections calculated in the
velocity gauge.

If we assume an initial state of the type σg,u,

φg,u(r) = 1√
2

[φ(r1) ± φ(r2)], (26)

then Eq. (25) reduces to

σabs(ω) = −4 π α h̄ ω

[∑
LL′

ML(E )�τ11
LL′M


L′ (E )

±
∑
LL′

ML(E )�τ12
LL′M


L′ (E )

]
. (27)

A. Photoabsorption in homopolar diatomic molecules:
The Cohen-Fano interference term revisited

In the independent particle approximation, Eq. (27) is
the exact expression for the total absorption cross section of
the molecule. It consists of two terms, the first of which is the
usual term describing processes in which the emitting atom
acts also as a detector, measuring the interference between the
outgoing and the incoming photoelectron wave and leading to
EXAFS-like oscillations in the cross section with maximum
k period of �k = 2π/2R = π/R. The second term instead
describes processes where one atom acts as the emitter and the
other as the detector (and viceversa), generating oscillations in
the cross section with maximum period �k = 2π/R. This is
the lowest order feature of other higher-order oscillations of
this type present in the absorption cross section with period
�k = 2π/nR, where n is any odd integer number. How-
ever, their intensity fades away quite rapidly with increasing
photoelectron energy and since they add incoherently with
increasing frequency they constitute a featureless background
which is eliminated in data analysis. Therefore, only the
biggest n = 1 signal survives, which is the CF oscillation (see
discussion below in Sec. IV B).

To make contact with Cohen-Fano’s assumptions in de-
riving their expression, we work in the Born approximation,
use the muffin-tin approximation for the atomic scattering
amplitudes (TLL′ ≈ tlδLL′ = −1/k eiδl sin δl ), where δl is the lth
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phase shift of the spherically averaged atomic potential, and
assume initial φ1s(ri ) orbitals, so that only an l = 1 final state
is selected by the dipole transition matrix element.

In the Born approximation, according to Eq. (A4) in Ap-
pendix A 1, τ i i

LL′ ≈ tl δLL′ and τ12
LL′ ≈ tlG12

LLtl ′ δLL′ . To get more
insight into the derivation of the CF formula, we treat sepa-
rately the cases of longitudinal and perpendicular polarization
with respect to the molecular axis. For z polarization the
atomic matrix element ML selects the L = (10) final orbital
state, so that, using the approximation (A6) for the free spher-
ical wave propagator, Eq. (27) yields

σabs ≈ σat

{
1 ± 3A11(kR)

sin[kR + 2δ1 + φ11(kR)]

kR

}
, (28)

where σat = 4 π α h̄ ω |M1|2/k sin2 δ1 is the atomic absorp-
tion. As in Ref. [1] we have taken Ri j along the z axis
so that |Y10(R̂i j )|2 = 3/(4π ). which entails the factor of
three in Eq. (28). For the perpendicular polarization, since
|Y11(R̂i j )|2 = 0, we find only the atomic absorption and no
oscillatory term in Eq. (28). Figure 7 clearly illustrates this
point in the case of CO photoabsorption. As a consequence
the unpolarized cross section re-establishes the CF result with
the factor one in front of the oscillatory term. Since summing
over the photon polarizations is equivalent to averaging over
the molecular orientations, very often authors in the literature
make use of this second method in discussing the application
of the CF formula. However, there are configurational aver-
ages that do lead to a CF functional form, but do not have the
same physical meaning. We defer the discussion of this point
to the end of Sec. V.

The additional amplitude A11(kR) and phase φ11(kR) in
Eq. (28) originate from the function g0

ll ′ (kR) in Eq. (A7).
Their expressions for l = l ′ = 1 are φ11(kR) = 2/(kR) and
A11(kR) = [1 + 2/(kR)2]1/2 J0[4/(kR)2].

The phase shift 2δ1 has the same origin as for the EXAFS
term and was also found by Liu et al. [26] who took into
account MS within the molecule. It was missed by Cohen
and Fano due to their simplifying assumption of a final plane
wave photoemission state. Together with the phase φ1 1, it
can be important in the determination of the bond length
since it might not be negligible. Their neglect is responsible
for the fact that the bond lengths of N2 and O2 molecules,
measured in photoabsorption from delocalized valence states,
were found shorter than the equilibrium ones [16], as shown
below.

A further comment is in order here, regarding the physical
meaning of the Cohen-Fano interference term. As apparent
from the second term of Eq. (27) and the Born approximation
of the full scattering path operator τ12

LL′ , it is clear that the
interference term stems from the imaginary part of the free
electron propagator G1 2

LL′ ≈ eikR1 2/(kR1 2), reinforcing the pic-
ture of site 1 as the source of the photoelectron and of site 2
as the detector (or viceversa).

This is physically different from the Young two-slit experi-
ment, where both slits act as sources of the interfering (photon
or electron) waves. Rather, the similar polarization depen-
dence of the EXAFS and CF oscillations and the appearance
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FIG. 8. The EXAFS χ2 (full line) and CF interference term χ12

(dot-dashed line) in N2 absorption spectrum normalized to the atomic
absorption σat for polarization along the molecular axis.

of the atomic phase shifts in the sinus argument characterizes
the corresponding oscillations as the remnants of the PED
patterns on the energy scale, after averaging over the emission
angles. In the case of EXAFS they are associated to closed
paths beginning and ending at the same atom, whereas in the
case of the CF signal they are associated to open paths going
from one photoabsorber to the other, acting as source and
detector of the photoelectron, respectively.

B. The validity of the Born Approximation: Application to the
oscillatory structure of the N2 valence photoabsorption

ionization cross section

To see the region of validity of the Born approximation we
have calculated the spectral radius ρ(TG) of the matrix TG,
while calculating the N2 full potential absorption. Already at
100 eV of the photoelectron kinetic energy (corresponding
to k ≈ 2.7 a.u.−1), ρ ≈ 1/4, so that we can stop the series
expansion at n = 2 in Eq. (A3). τ ≈ T + TGT + T(GT)2.

Figure 8 plots two curves χ2 and χ12 as a function
of k (a.u.−1) from k = 0, where χ2 = [M1(E )]2 � (T 1 G12

T G21 T 1)/σat − 1 is the usual EXAFS signal in struc-
tural analysis and χ12 = [M1(E )]2 � (T 1G12T 2)/σat is the
CF signal, both normalized to the atomic absorption σat =
Mn

L (E ) �T n
LLMn

L (E ) (n = 1 or 2) for l = 1.
We see that the χ12 CF term is dominant in all k range

compared to the χ2 EXAFS signal. This is in keeping with
the ordering of the paths described in Appendix A 1. The next
CF signal comes from the term n = 3 in the series expansion
of τ : �(T G12T G21T G12T ). However, the frequency of this
signal is three times that of the CF signal and its amplitude is
similar the EXAFS signal, i.e., roughly ten times smaller than
the first term. The presence of higher-order oscillations, out of
phase of each other, will form a featureless background which
is eliminated in the data analysis. The dominance of χ12 at
high energy had been noted before [5].

The period of the CF oscillation is �k = 2π/Reff = 6.95 −
3.40 = 3.55 a.u.−1, corresponding to an effective bond length
Reff = 0.94 Å, the same as that derived from the fitting proce-
dure used in Ref. [16].

Figure 9 shows the comparison of our ab initio calculated
CF χ12(k) signal with the experimental points presented in
Ref. [16].
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FIG. 9. Comparison of the calculated CF signal (full lines) with
experimental points and the fitted CF signal (dashed lines) of
Ref. [16].

The k axis is now in (R−1) (with R in Å). Before making the
change of units, the “χ12g” curve was shifted by −1.2 (a.u.−1)
and the “χ12u” curve by −1.0 (a.u.−1) due to the fact that the
ionization threshold of our potential does not coincide with
the experimental one and the two initial edges are slightly
different (respectively, 3σg and 1πu).

The authors in Ref. [16] interpreted this value of Reff as an
indication that “a delocalized valence state has a smaller effec-
tive bond length compared to the equilibrium bond lengths.”
However, before reaching any conclusion one should correct
this value by −2a, where −a is the coefficient of the linear
term in the fit of the total phase shift δ1 + φ11 = −ak + b,
which is shown in Fig. 10. We find a = 0.08 Å, so that
Rcorr = 0.94 + 0.16 = 1.1 Å.

Since the valence states are mainly composed of their
respective atomic p(l = 1) and s(l = 0) states, the emitted
photoelectrons have predominantly p(l = 1) and d (l = 2)
character. Figure 10 shows the corresponding phase shifts.
Both δ1 and δ2 + φ22 have the same slope a = 0.06, so that
there is enough indication that the true bond length is the
equilibrium one. Unfortunately the error in the determination
of Reff was not given in Ref. [16]. We note here the importance
of the curved wave phase φll correction, especially important
for the δ2 atomic phase shift, which is almost flat in the
asymptotic region 7 < k < 16.
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FIG. 10. Linear fit of the total δ1 + φ11 phase shift. Also shown
is δ2 + φ22 and δ1 alone.
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FIG. 11. Plot of full single site absorption ∝ �τ11 (χ11; full line)
and the CF signal ∝ �τ12 (χ12; dashed line) of Eq. (27) for the gerade
state σg and photon polarization along the molecular axis in the whole
k-range divided by the atomic absorption. The atomic absorption
(σat; dot-dashed line), independent of the photon polarization, is also
shown.

C. Analysis of the photoabsorption cross section
in the whole spectral range

Figure 8 shows the behavior of χ2 and χ12 from k = 0.
However, their validity is restrained only to the region k �≈
2.7 a.u.−1, since at lower energies other contributions are
present, coming from higher-order MS paths which in this
region have bigger amplitudes due to the low value of k.
Moreover, these paths can interfere constructively like in the
case of the shape resonance at 18 eV in N2, enhancing the
cross section. In Fig. 11 we plot separately the corresponding
quantities (proportional, respectively, to �τ11 and �τ12 in
Eq. (27), again for the gerade state) obtained by inverting
exactly the MS matrix in the whole energy range. We see that
for k > 2.7 a.u.−1 they practically coincide with the results
obtained by calculating τ by series expansion, whereas they
show the typical shape resonance behavior around 18 eV. For
reference, the atomic absorption σat is also shown. The total
cross section is the sum of all three curves, after multiplying
the first two oscillatory signals by σat.

While in the region around the shape resonance the sin-
gle site absorption and the CF signal for the gerade initial
state interfere constructively, one expects the opposite for the
ungerade initial state, so that the shape resonance in this last
case should almost disappear. This is what is observed in
Fig. 12, which plots the total absorption cross section for the
gerade σg and ungerade state σu divided by the atomic cross
section σat.

This result for N2 was in fact already known to the au-
thors of Ref. [27], who used MS theory to derive it, but
without providing any comment that could give a physical
explanation for this finding. However, a flat cross section
for the σu channel in the region of the shape resonance is
in disagreement with the experimental angular distributions
of photoelectrons ejected from fixed-in-space N2 molecules,
which could be reproduced theoretically only after taking into
account many-electron correlations using the random phase
approximation (RPA) method [28]. The ratio σg(ω)/σu(ω)
was later calculated in the RPA by Semenov et al. [29] who
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line). Photon polarization along the molecular axis

found a maximum ratio of 1.8, which is in agreement with the
same ratio seen experimentally in Fig. 2 for photoemission.

Indeed, our approach can only describe the independent
particle aspect of the interaction and cannot describe the many
body aspect of the excitation process. It is asymptotically
correct above 50–100 eV of photoelectron kinetic energy
(depending on the systems) since then the electron-electron
interaction plays a marginal role that can be accounted for by
an absorptive complex potential and interchannel coupling is
ineffective.

D. Cooper-like minima and electron confinement

It is known that the total photoabsorption cross sec-
tion σtot (ω) can be decomposed in partial cross sections (PCS)
σl (ω), each one in correspondence with an l partial wave
of the final state wave function ψ−

k (r), so that σtot(ω) =∑
l σl (ω), the final angular momentum l being an odd inte-

ger due to the dipole selection rule. These PCS exhibit deep
minima when the relation kR = lπ is approximately satisfied.
These interference effects have been related to a confinement
effect of the ejected photoelectron [17]. Later work by the
authors in Ref. [24] related these minima to CF modulations
considering them as “Cooper-like minima.” They actually
found this connection somewhat puzzling, since Cooper min-
ima appear in the photoelectron spectra of homonuclear and
heteronuclear molecular targets [30] while CF modulations
“appear only in the case of homonuclear molecules” (at the
time of writing it was not yet known that CF oscillation could
be present also in heteronuclear molecules, like CO [8]!).

In Appendix A 3 we calculate the PCS using our MS ap-
proach. The result [changing l to λ and omitting for simplicity
the global parity factor Pf = 1 − (−1)λ−1] is

σλ(ω) ∝
∑
mγ mλ

σ at
mγ

(ω)

∣∣∣∣|Aλ| eiφλ + eikR

kR
|Bλ| eiψλ

∣∣∣∣
2

∝
∑
mγ mλ

σ at
mγ

(ω)

[
|Aλ|2 + |Bλ|2

(kR)2

+ 2 |Aλ||Bλ| cos(kR + ηλ)

kR

]
, (29)

where Aλ and Bλ are complex amplitudes defined in
Eqs. (A18) and (A19) in terms of τ i i(i = 1, 2), respectively,
and eikR/(kR) comes from the free propagator G12 of Eq. (A6).

Minima of this expression occur at energies such that
kR + ηλ = nπ , with n odd integer, where ηλ = ψλ − φλ. Note
however that for each partial cross section σλ(ω) there are
several such minima, as found for example by Semenov et al.
[29] for the N2 molecule. Equation (29) is consistent with the
connection between CF modulations and Cooper-like minima
considered in Ref. [24]. Indeed, the CF oscillations are related
to �G12 due to the generalized optical theorem valid for total
photoabsorption, while for the PCS one has to consider am-
plitudes squared. Clearly there is no mechanism for electron
confinement.

The extension of this result to heteropolar molecules is
straightforward, so that, depending of the mixing coefficients
c1 and c2 in Eq. (15) one can expect to observe Cooper-like
minima also in these molecules

E. Photoabsorption in heteropolar diatomic molecules

If we use again the Born approximation for τ in Eq. (25)
and assume a main transition to a final l state, we find a result
very similar to the homopolar case for the unpolarized cross
section:

σabs ≈
1,2∑

i

c2
i σ i

at + 2 c1 c2 All (kR)

× sin
[
kR + δ1

l + δ2
l + φll (kR)

]
kR

√
σ 1

at

√
σ 2

at, (30)

where σ i
at = 4 π α h̄ ω |Mi

l |2/k sin2 δi
l and R = Ri j . This be-

havior with periodicity 2π/R has been found experimentally
in the vibrationally resolved photoionization of the 1π−1 va-
lence state of the heteropolar molecule CO in Ref. [8]. In
this case the φi(ri ) orbitals are approximately 2p Carbon
and Oxygen atomic states, so that the main orbital transition
is to l = 2. In this case φll = 6/(kR) and All (kR) = [1 +
6/(kR)]1/2 J0[36/(kR)2].

Equation (30) shows that a Cohen-Fano interference term
is also present in the photoionization of heteropolar diatomic
molecules like CO. However, its experimental observation
depends critically on the value of the product c1 c2. For the
1σ initial state we estimate this product to be of the order of
t/�E12, where t ≈ 0.05 eV is the resonance integral (equiv-
alent to the hopping integral in band theory) between the
carbon and oxygen sites and �E12 ≈ 250 eV is the energy
difference between the energies of the respective atomic 1s
orbitals. Therefore, c1 c2 ≈ 2 × 10−4, which makes the CF
oscillations practically undetectable. The reason however is
the smallness of the product c1 c2 rather than the inequivalence
of the two atomic sites.

In the case of the photoabsorption of the 1π−1 valence
state instead, assuming the approximate values for c2

1 = 0.68
and c2

2 = 0.32 suggested in Ref. [8], we obtain c1 c2 = 0.47,
which implies the possibility of a direct experimental de-
tection of the CF oscillations in photoabsorption. Similar
coefficients are found for the 3σ valence state.
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V. ELASTIC ELECTRON-MOLECULE SCATTERING

In the light of the coherence concept, it is worth point-
ing out that another spectroscopy can give access to CF
oscillations. This is the orientationally averaged scattering
of electrons off small molecules, in particular diatomic
molecules.

The related integrated cross section has been given by Dill
and Dehmer [31] as

σAES(E ) = 4π
∑
LL′

|TLL′ |2, (31)

where E is the energy of the impinging electron beam with
wave number k = √

E and TLL′ is the scattering matrix of the
molecule.

In the framework of MST, indicating by o the molecular
center (origin of the coordinates), TLL′ is given by [9]

TLL′ =
∑

i j

∑
� �′

Joi
L �τ

i j
��′ J j o

�′ L′, (32)

where Joi
L L′ is the translation operator (TO) in MST given by

Joi
L L′ = 4π

∑
L′′

il−l ′+l ′′ CL′′
L L′ JL′′ (Roi ), (33)

where JL(R) = jl (kR)YL(R̂), jl (kR) is the spherical Bessel
function of order l and CL′′

L L′ is the usual Gaunt coefficient.
This is reminiscent of the similar definition for the free
spherical wave propagator (A5). Since −ih+

l (kR) = nl (kR) −
i jl (kR), where nl (kR) is the Neumann function, we find the
useful relation [32]

Goi
L L′ = k Noi

L L′ − i k Joi
L L′ , (34)

where Noi
L L′ has the same definition as Joi

L L′ in Eq. (33), with
the Neumann function replacing the Bessel function. Retain-
ing for simplicity only the phase correction, Eq. (A6) entails
therefore the following approximation for Ji j

L L′ ,

Ji j
LL′ ≈ −4π

sin[kRi j + φll ′ (kRi j )]

kRi j
YL(R̂i j )YL′ (R̂i j ) i(l−l ′ ),

(35)

where φll ′ (kR) = [l (l + 1) + l ′(l ′ + 1)]/(2kR). Exact, useful
properties of the TO are (see Appendix A of Ref. [32])∑

L′′
Joi

L L′′ Ji j
L′′ L′ = Jo j

L L′ ; Joi
L L′ = Ji o

L′ L; Ji i
L L′ = δL L′ . (36)

By application of the generalized optical theorem we find

∑
LL′

|TLL′ |2 =
∑
LL′

TLL′ T ∗
L′L = −1

k

∑
L

� TLL, (37)

remembering the symmetry property TLL′ = TL′L. Therefore,
we can write the cross section σAES(E ) as

σAES(E ) = −4π

k

∑
i j

∑
L L′

�(
J j i

L L′ τ
i j
LL′

)
. (38)

Specializing to a diatomic molecule and in the Born approx-
imation of the scattering path operator τ used for arriving at

Eq. (28), we find

σAES(E ) = σ 1
AES(E ) + σ 2

AES(E ) + 2
4π

k2

∑
ll ′

(2l + 1)

× (2l ′ + 1) sin δ1
l sin δ2

l ′
sin[kR + φll ′ (kR)]

kR

× sin
[
kR + δ1

l + δ2
l ′ + φll ′ (kR)

]
kR

, (39)

taking into account that

−4π

k

∑
L L′

Ji i
L L′ � t i

l = 4π
∑

l

(2l + 1)
∣∣t i

l

∣∣2 = σ i
AES(E ) (40)

is the atomic scattering cross section and

4π
∑

L

YL(R̂i j )YL(R̂i j ) =
∑

l

(2l + 1) Pl (1). (41)

In contrast to the photoemission case, the double sum over
l, l ′ in Eq. (39) reflects the absence of a dipole selection rule,
whereas the presence of the extra term sin(kR + φll ′ )/(kR),
originating from the TO, is due to the lack of selectivity of the
electron probe in the scattering process, as apparent from the
expression (38). However, the appearance of the CF term is
related, like in photoemission, to the coherence of the “initial”
electron state.

Similar phenomena of coherent electron emission from
simple molecules have been observed in impacts of energetic
charged particle [5].

It is interesting at this point to try to clarify the relation
between averaging over the molecular orientations and the
CF modulation factor. At the end of their paper [1], Cohen
and Fano mention that their two-center modulation factor
[1 + sin(kR)/(kR)] appears also in the formulas for elastic
coherent scattering of x rays, electrons, or neutrons by a
diatomic molecule [33]. We give here a short derivation of
these formulas for the convenience of the reader and restrict
for the sake of discussion to electron molecular scattering.
Referring to Eq. (XIX.153) of Ref. [34], the amplitude for
elastic electron scattering off an homopolar diatomic molecule
fixed in space, is given to the lowest order of approximation by

〈k|T |k0〉 ≈ (1 + e−iq·R ) 〈k|t |k0〉, (42)

where T is the transition matrix for the molecular scattering,
t is the transition matrix for the single atomic scattering,
q = k − k0 is the momentum transfer of the process, and R
is the interatomic distance. This formula corresponds to the
approximation T ≈ t1 + t2 and neglects higher-order terms
describing electron propagation from one site to the other,
like t1 G t2. Therefore, for the transition probability we find

|〈k|T |k0〉|2 ∝ |〈k|t |k0〉|2 [1 + cos(q · R)], (43)

which is the usual formula for this kind of interference.
For scattering off a gas phase, one should average over the
molecular orientations, obtaining

|〈k|T |k0〉|2 ∝ |〈k|t |k0〉|2
[

1 + sin(qR)

qR

]
, (44)

since 〈k|t |k0〉 depends only on the scattering angle. Clearly
the functional form [1 + sin(qR)/(qR)] does not have
the same physical origin as the CF interference found in
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photoabsorption. Even though the original result [1] was
found by averaging over the photon polarization (equivalent
therefore to a configurational averaging) the same functional
form was also found for the polarized CF signal, as shown by
Eq. (28) of Sec. IV A, where it was associated to a MS path
joining the two molecular centers. We might call this latter
signal an intrinsic two-center modulation factor, as opposed to
an extrinsic one, coming from a truly configurational average
of the system under study. In this respect the signal obtained
in Eq. (39) is of the intrinsic type, despite the configurational
averaging, since it corresponds to a true propagation of the
impinging electron from one site to the other of the molecule,
due to the term t1 G t2, which was not neglected.

VI. CONCLUSIONS

Working in the framework of MS theory, we have shown
that when the initial state in a photoemission process is ex-
tended over many atomic sites, whether equivalent or not, new
MS processes are generated compared to the case of emission
from a single localized site, due to the fact that emission from
different sites is coherent, as dictated by the Feynman’s rules
[19]. In photoabsorption, these processes are characterized by
the fact that the emitter does not coincide with the detector,
as in the case of a localized emitter (where EXAFS type of
oscillations are generated in the cross section), but any two
atoms at sites i and j share this role, giving rise to a propa-
gation of the photoelectron wave between them with a period
given by �k = 2π/Ri j . This case encompasses the emission
from delocalized occupied states of diatomic molecules and
characterizes the Cohen-Fano interference term as the lowest
order of such new processes, rather than the realization of a
microscopic Young’s experiment.

We have clarified that the coherent emission from atomic
sites does not necessarily require their equivalence. It is suffi-
cient that the initial state be delocalized over different atomic
sites, as shown clearly by the expression (12) and indicated by
other authors [22].

In this context we have also elucidated the relation between
intramolecular scattering from a single site and coherent in-
terference originating from the new processes, accounting in
this way for the experimental findings of Zimmermann and
coworkers [6].

Finally, we have shown that the orientationally averaged
scattering of electrons off small molecules (in particular di-
atomic molecules) can give access to CF oscillations, although
in a more complicated way, due to the lack of site selectivity in
comparison with the photoemission process and the absence
of a dipole selection rule. This type of modulation has the
same physical origin as that found in photoabsorption.

APPENDIX

1. Synopsis of multiple scattering theory

We summarize here, for the benefit of the reader, some of
the aspects of MS theory useful for understanding its struc-
ture.

The method of MS transforms the Lippmann-Schwinger
(LS) equation associated to the SE (2) in a set of alge-
braic equations for the amplitudes Bi

L(k) which obey the MS

equations∑
L′

(T i )−1
L L′ Bi

L′ (k)

−
∑
jL′

(1 − δi j ) Gi j
L L′ Bi

L′ (k) =
√

k

π
ilYL(k̂) eik·Ri ,

(T−1 − G) B(k) = I (k), (A1)

in terms of the cell scattering matrix T i
LL′δi j and the free

spherical wave propagator (SWP) Gi j
L L′ coming from the free

Green’s Function of the LS equation. The term on the right-
hand side stems from the impinging plane wave part of the
continuum photoelectron state in Eq. (3). Due to the factor
(1 − δi j ), one defines by convention Gii

LL′ = 0. The second
equation writes the first in compact matricial form. We refer
the interested reader to Ref. [35] for a derivation of the MS
equations from the LS equation.

The cell scattering matrix T i
LL′ in an angular momentum

basis gives the scattering amplitude due to the (in general)
anisotropic molecular potential in cell i of the photoelectron
impinging on the cell with angular momentum L into a state of
angular momentum L′, whereas the free SWP Gi j

LL′ represents
its amplitude of propagation from cell i, starting with angular
momentum L, to cell j ending with angular momentum L′.

The solution for the amplitudes Bi
L(k) is given by

Bi
L(k) =

√
k

π

∑
jL′

τ
i j
LL′ il ′YL′ (k̂) eik·R j , (A2)

after introducing the scattering path operator τ, inverse of the
MS matrix (T−1 − G)

τ = (T−1 − G)−1 =
∞∑

n=0

(TG)n T =
∞∑

n=0

T (GT)n, (A3)

where the series expansion generates the Born series (matrix
multiplication in the appropriate indexes is implied) and con-
verges if ρ(TG), the spectral radius (maximum eigenvalue) of
TG, is less than one.

It is clear that τ
i j
LL′ obeys the following equation:

τ
i j
LL′ = T i

LL′δi j +
∑
LL′k

T i
LL Gi k

LL′ τ
k j
L′L′ , (A4)

which is derived from a resummation of the Born series in
which the photoelectron first scatters from cell i, then propa-
gates to cell k undergoing here another scattering event, then
to the next cell, and so on and so forth.

The exact expression of the SWP, also known as real-
space Korringa-Kohn-Rostoker (KKR) structure factors [36],
is given by

Gi j
L L′ = −4π i k

∑
L′′

il−l ′+l ′′ CL′′
L L′ H+

L′′ (Ri j ), (A5)

where H+
L (R) = h+

l (kR)YL(R̂), h+
l (kR) being the Hankel

function of the first kind, and Ri j = Ri − R j is the vec-
tor joining the origins of the cells �i and � j . Moreover,
CL′′

L L′ = ∫
YL(�)YL′ (�)YL′′ (�) d� is a Gaunt coefficient. We

052807-14



MULTIPLE SCATTERING DESCRIPTION OF … PHYSICAL REVIEW A 106, 052807 (2022)

use throughout real spherical harmonics (SH). A fairly good
approximation to the SWP [9,37] is given by

Gi j
LL′ ≈ −4π k

eikRi j

kRi j
g0

ll ′ (kRi j )YL(R̂i j )YL′ (R̂i j ) i(l−l ′ ). (A6)

The function g0
ll ′ (ρ) represents a kind of curved wave correc-

tion [37] given by

g0
ll ′ (ρ) =

[
1 + L2 + (L′)2

2ρ2

]1/2

ei[L2+(L′ )2]/(2ρ) J0

(
L2L′2

ρ2

)
,

(A7)

where J0 is the spherical Bessel function of order zero and
L2 = l (l + 1).

The series expansion in Eq. (A3) is known as MS series,
each terms being in one-to-one correspondence with the path
followed by the photoemitted electron in its way out of the
system. The various paths are ordered in amplitude in terms of
the number of successive scattering undergone by the photo-
electron, since each additional scattering costs in amplitude a
factor |T G| ≈ max|TLL|/(kR) (the diagonal terms are always
dominant).

Indeed, due to the anisotropy of the molecular potential,
the scattering matrices TLL′ are not diagonal in the angular
momentum. The program calculates these cell matrices ac-
cording to formulas (63), (64), and (71) of Ref. [12] in terms
of the radial functions RL′L(r) of the local solutions of the
Schrödinger equation �n

L(r) = ∑
L′ Rn

L′L(r)YL′ (r̂) (n = 1, 2).
At energies beyond roughly 100 eV the photoelectron barely
sees the anisotropies of the potential, so that with increasing
energy TLL′ ≈ tlδLL′ = −1/k eiδl sin δl becomes almost diag-
onal and m independent. These tl are the atomic scattering
matrices of a spherically averaged muffin-tin potential, pro-
viding the associated phase shifts. The same behavior is seen
in the eigenphase shifts obtained by diagonalizing directly
the matrix TLL′ , which become almost m-independent with
increasing energy.

In photoemission there are open and closed paths. A path
is open when the last atom touched by the photoelectron
before reaching the detector is different from the photoemitter,
closed when the last atom coincides with the photoemitter. In
photoabsorption, in the absence of an external detector, only
closed paths are possible for emission from a single center,
whereas in the case of multicenter emission other paths are
possible that go from one emitter to the other, as illustrated in
the body of the paper.

2. Exact expression of photoemission in homopolar
diatomic molecules

The result in Eq. (18) would be exact if the photoemission
amplitudes BL (k) contained only closed multiple scattering
paths [see Eqs. (A8) and (A9)]. However, the presence of
paths connecting the two atomic sites destroys their equiva-
lence with respect to periodicity.

In fact, with reference to Eq. (14), we have

B
1
L(k) =

√
k

π

∑
L′

[
τ1 1

LL′ il ′YL′ (k̂) + τ1 2
LL′ il ′YL′ (k̂) eik·R]

. (A8)

Similarly for B
2
L(k) we find

B
2
L(k) =

√
k

π

∑
L′

[
τ2 2

LL′ il ′YL′ (k̂) + τ2 1
LL′ il ′YL′ (k̂) e−ik·R]

.

(A9)

Notice the difference of the phase factor in the two expres-
sions. To express the amplitude at site 2 in terms of that at
site 1, we transform the last term of the second equation us-
ing the symmetry property of the scattering path operator in
a real spherical harmonics basis: τ2 1

LL′ = τ1 2
L′L = (−1)l+l ′τ1 2

LL′ ,
coming directly from the property of the spherical wave prop-
agator Gi j

LL′ . We find

τ2 1
LL′ il ′YL′ (k̂) = (−1)lτ1 2

LL′ il ′YL′ (−k̂). (A10)

As expected, the photoemission amplitude emanating from
site 2 and going to site 1 is the same as that emanating from
site 1 calculated at −k, due to the presence of the inversion
center midway the two atomic sites. The additional phase
factor (−1)l takes into account the parity of the final state,
selected by the dipole rule, with respect to the inversion sym-
metry.

As a consequence, putting c1 = c2 = 1/
√

2 in Eq. (17),

defining for short Ai j
L (k) =

√
k
π

∑
L′ τ

i j
LL′ il ′YL′ (k̂) and taking

into account that A11
L (k) = A22

L (k) we find for the photoemis-
sion cross section

dσ

dk̂
= 2π2α h̄ω

∣∣∣∣∣∣
∑

L

M∗
L (E )

[
(1 ± eik·R ) A1 1

L (k)

+ A1 2
L (k) eik·R ± (−1)l A1 2

L (−k)
]∣∣∣∣∣∣

2

. (A11)

3. Integrated partial ionization cross sections

To get more insight into the confinement analysis of Ref.
[17], we derive in our formalism the total integrated molecular
cross section in terms of the integrated partial ionization cross
sections σl (ω), where l is the angular momentum of the pho-
tolectronic wave referred to the molecular center. According
to Dill [38] the total integrated unpolarized cross section is
given by the expression

σtot(ω) ∝
∑
lmmγ

∣∣D(−)�0
lmmγ

∣∣2 =
∑

l

σl (ω), (A12)

where the transition matrix element D(−)�0
lmmγ

= 〈� (−)
lm |e · r|��0〉

is given in terms of the time reversal scattering states �
(−)
lm in

response to a spherical wave JL(ro) = jl (kro)YL(ro) referred
to the molecular origin midway the two equivalent atoms and
��0 is the initial 1σg molecular state. Moreover, mγ refers
to the spherical component of the polarization vector e. It is
not hard to convince oneself [9] that the coefficients Bi

L(k) in
Eq. (A1) in Appendix A 1, which were calculated in response
to a plane wave [Eq. (3)], when calculated in response to the
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spherical component � of the plane wave become [39]

Bi
L(�) =

√
k

π

∑
jL′

τ
i j
LL′J

jo
L′�, (A13)

where J jo
L′� is the translation operator of Eq. (33). This is due

to the relation [9]∑
L′

Jio
LL′ il ′YL′ (k̂) = ilYL(k̂) eik·Rio, (A14)

and the fact that a plane wave is a linear combination of
spherical waves JL(ro) with coefficients ilYL(k̂).

Therefore, the integrated partial ionization cross sec-
tion σλ(ω) (starting for simplicity from a σg initial state) is
given by

σλ(ω) ∝
∑
mλmγ

∣∣M1mγ

∣∣2∣∣B1
1mγ

(�) + B2
1mγ

(�)
∣∣2

. (A15)

As a check, summing over λ and using the optical the-
orem of Eq. (10), which can also be written [39] as∑

� Bi
L(�)B j

L′ (�) = − 1
π
�τ

i j
LL′ one recovers the total absorp-

tion cross section of Eq. (27)

σtot(ω) ∝
∑
mγ

∣∣M1mγ

∣∣2(�τ11
1mγ 1mγ

+ �τ12
1mγ 1mγ

)
. (A16)

To have an insight as to the origin of the Cooper-like
minima of σλ(ω), we use in Eq. (A13) a renormalized Born
approximation for τ1 2

LL′ , whereby τ1 2
LL′ ≈ tl

∑
L′′ G12

LL′′ τ2 2
L′′ L′ .

This form should be reasonably valid beyond ≈ 30 eV from
the ionization edge, since it is first order only in the propaga-
tion G12 and of infinite order for all closed paths [34].

Indicating by R the vector joining the two atomic sites, we
find

σλ(ω) ∝ P2
f

∑
mγ mλ

|M1 mγ
|2

∣∣∣∣∣
∑

L

τ1 1
1mγ LJ1 o

L � + t1
eikR

kR
Y1mγ

(R̂)
∑
LL′

YL(R̂) i1−lτ2 2
LL′ J2 o

L′�

∣∣∣∣∣
2

∝ P2
f

∑
mγ mλ

σ at
mγ

(ω)

∣∣∣∣|Aλ| eiφλ + eikR

kR
|Bλ| eiψλ

∣∣∣∣
2

∝ P2
f

∑
mγ mλ

σ at
mγ

(ω)

[
|Aλ|2 + |Bλ|2

(kR)2
+ 2 |Aλ||Bλ| cos(kR + ηλ)

kR

]
, (A17)

where, for short, we have put ηλ = ψλ − φλ,

Aλ = |Aλ| eiφλ = t−1
1

∑
L

τ1 1
1mγ LJ1 o

L �, (A18)

Bλ = |Bλ| eiψλ = Y1mγ
(R̂)

∑
LL′

YL(R̂) i1−lτ2 2
LL′ J2 o

L′�, (A19)

and we have dropped for simplicity the dependence of Aλ and Bλ on mγ , mλ.
The parity factor Pf = 1 − (−1)λ−1 arises from the fact that Eq. (A15) provides four terms in the site indices 1 and 2 that are

related by pairs by the factor (−1)λ−1 due the symmetry properties of τ and J . It is at this point that the global parity requirement
for λ arises, as in Ref. [1].
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