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Time-dependent response theories are foundational to the development of algorithms that determine quantum
properties of electronic excited states of molecules and periodic systems. They are employed in wave-function,
density-functional, and semiempirical methods and are applied in an incremental order: linear, quadratic,
cubic, etc. Linear response theory is known to produce electronic transitions from ground to excited state,
and vice versa. In this work, a linear response approach, within the context of the coupled-cluster formalism,
is developed to offer transition elements between different excited states (including permanent elements) and
related properties. Our formalism, second linear response theory, is consistent with quadratic response theory
and can serve as an alternative to develop and study excited-state theoretical methods, including pathways for
algorithmic acceleration. This work also formulates an extension of our theory for general propagations under
nonlinear external perturbations, where the observables are given by linked expressions which can predict their
time evolution under arbitrary initial states and could serve as a means of constructing general state propagators.
A connection with the physics of wave-function theory is developed as well, in which dynamical cluster operator
amplitudes are related to wave-function linear superposition coefficients.
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I. INTRODUCTION

Predicting the dynamics of electronic quantum systems,
and ensembles of these, is a primary goal in theoretical science
for the understanding and discovery of cutting-edge physical
and chemical effects [1–3]. Without demanding parameters
besides the fundamental physical constants, quantum mechan-
ics (QM) provides all the necessary tools to determine all
quantities needed for the theoretical modeling of quantum
phenomena. This has led to the development of theoretical
methods and algorithms that compute observables connected
to excited states, including the development of quantum [4–8]
and machine-learning [3,9–12] technologies. Such algorithms
are often based on wave function theory or density functional
theory, but they could also rely on semiempirical theory, de-
pending on their foundation their range of application varies.
There is a growing interest by the scientific community in
excited-state phenomena linked to quantum information sci-
ence [13–16], quantum light emission and absorption [17–23],
cavity quantum dynamics [24], and multiphoton processes
[25]. Hence, quantum methods to compute properties con-
nected to the modeling and understanding of these phenomena
can benefit from advanced theoretical tools.

Because of their useful accuracy and their relatively mod-
est computational power requirements, algorithms based on
linear response (LR) time-dependent density functional theory
(TDDFT) are commonly used to study the behavior of elec-
trons subject to external perturbations (such as a low-intensity
laser field). LR TDDFT techniques [26–29], through a sin-
gle matrix diagonalization, provide excited-state energies and
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ground-to-excited-state multipolar transition elements [30],
but other similar quantities can be computed as well. These
methods are quite suited for excited states mainly composed
of single-electron transitions [31]. Excited states that originate
from the simultaneous excitation of two or more electrons are
challenging to determine numerically. This also includes the
study of multireference states [32–34]. Multireference theory
[35–38], due to its widespread applicability to systems of
strongly correlated character, is to date very actively moti-
vating the development of advanced theoretical methods that
could stimulate newer generations of algorithms, which may
also encompass density functional techniques.

On the other hand, response theories within the con-
text of wave-function theory deliver information as the
aforementioned techniques [39–44]. These demand higher
computational power over DFT-based methods, but they
are essential due to their natural reliability and improvabil-
ity. Wave-function and Green’s function response theories
have also been extended to the multireference case [45–47].
Excited-state methods, derived from response theory, that di-
rectly diagonalize a Hamiltonian are of general broad use
as they can be computationally convenient. An example
of this is the well-known Bethe-Salpeter equation [48,49],
capable of yielding highly accurate absorption spectra of ex-
tended systems and explaining spectroscopic features seen
in a vast family of experiments. Similarly, multireference
coupled-cluster (MRCC) theory is among the most advanced
tools being developed currently to obtain high accuracy
in energetics and wave-function-derived properties [50–55].
MRCC methods are remarkably promising because they in-
tegrate both dynamic- and strong-correlation effects. Hence,
if computationally efficient MRCC methods are enabled for
large systems, they would likely result in enjoying a broad
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productive applicability to critical problems in physics and
chemistry.

This work presents the formulation of an extended
linear-response approach, within single-reference standard
(non-Hermitian) coupled-cluster theory [40,56–66], that leads
to the calculation of excited-state properties. This theory relies
on a modification to the initial-state wave function of the
system so one can extract properties of excited states through
linked coupled-cluster (CC) equations. These are quantities
such as matrix elements to study transitions between excited
states, as well as permanent dipoles of such states. This for-
mulation is based on an alternative linear response theory
we developed previously, dubbed the second linear response
theory (SLR) [67–69]. We have applied it before within the
context of time-dependent (TD) density functional theory to
organic semiconductors. The general working principle is
founded on exact QM identities and is applicable to wave-
function methodologies, as shown in this work, where we
develop an SLR approach within the CC formalism and show
that it provides excited-state expressions that are fully consis-
tent with established quadratic response (QR) theory. Then,
we show SLR theory can be used to compute wave-function
amplitudes in the linear regime where the electronic system is
initially described by an excited-state wave function. QR the-
ory is based on the analysis of terms that are quadratic in the
perturbing external field. In contrast, SLR theory only requires
linear terms. The linear quantities of interest are different
with respect to QR theory because they are multiplied by an
initial wave-function superposition coefficient. However, as
we show in this work, SLR theory gives the same result as QR
theory for excited-state-to-excited-state transition moments.

Finally, we extend our SLR theory to the nonlinear case,
where excited-state information can be extracted from the
analysis of generalized time-dependent transition elements.
This generalization, which is exact in principle, includes the
description of the evolution of an observable starting from an
arbitrary initial state, such as a linear superposition of different
quantum states. The formalisms we present in this work could
be used to further expand the capabilities of response theories
in theoretical and numerical contexts, where a different angle
on the fundamental problem of wave-function propagation
can stimulate further developments in the pursuit of accuracy
or to accelerate wave-function-based algorithms to compute
excited-state properties.

II. DEFINITIONS AND CONNECTION TO STANDARD
LINEAR RESPONSE THEORY

For any operator �̂ we write �̄ = exp(−T̂ )�̂ exp(+T̂ ),
where T̂ refers to the standard ground-state cluster operator,
which is assumed to be given. The symbol �̂N denotes the
normal-ordered form of �̂, i.e., �̂N = {�̂}; also, we use
the notation �̄N = {�̄}. The letter μ labels transitions from
the (single) ground-state reference of any order: singles, dou-
bles, triples, etc. So τ̂μ is a product of electron-hole creation
operators, and τ̂ †

μ is its Hermitian conjugate. We use (i) |0〉
to refer to the reference Hartree-Fock wave function, (ii)
〈�̂〉0 = 〈0|�̂|0〉, and (iii) ∂t as a compact symbol for the
partial derivative operator ∂/∂t .

The (nonrelativistic) TD Hamiltonian of interest in this
work is

Ĥ (t ) = Ĥ0 − f (t )B̂, (1)

where Ĥ0 is the static component, consisting of the kinetic,
external (electron-nuclei interaction), and electron-electron
repulsion energies. The term f (t ) denotes the scalar driving
potential the system is subject to, and B̂ is the observable
operator that couples to that potential. In addition, we are also
interested in the evolution of an additional operator, denoted
Â. Hence,

〈A(t )〉 = 〈[L̂0 + λ̂(t )]e−x̂(t )Āe+x̂(t )〉0, (2)

where the operator L̂0 leads to the expression for the ground-
state bra 〈0|L̂0 exp(−T̂ ). In terms of the well-known λ

operator this gives L̂0 = 1 + �̂. The excitation operators read
x̂(t ) = ∑

μ xμ(t )τ̂μ and λ̂(t ) = ∑
μ τ̂ †

μλμ(t ), with xμ(t ) and
λμ(t ) being the excitation and deexcitation TD amplitudes.
For the application of SLR theory, the above expression re-
mains the starting point, but the initial conditions of the λ̂(t )
and x̂(t ) terms are different, as we detail in Sec. III.

In this TD CC response formalism the (left) bra of the TD
wave function is represented as

〈ϒ(t )| = 〈0|[L̂0 + λ̂(t )] exp[−x̂(t ) − T̂ + iφ(t )], (3)

where φ(t ) is a TD phase. The right ket reads

|	(t )〉 = exp[T̂ + x̂(t ) − iφ(t )]|0〉. (4)

Regarding the Hamiltonian, using normal ordering we can
express it as H̄ (t ) = E0 + H̄0,N + v̄(t ), where v̄(t ) = − f (t )B̄,
and E0 is the ground-state energy, 〈L̂0H̄0〉0 (or simply 〈H̄0〉0).

In an ideal CC calculation both the (left) bra and (right) ket
solve the full TD Schrödinger equation. In practice, however,
the differences between 〈ϒ(t )| and |	(t )〉 are responsible for
the non-Hermitian nature of CC response theory. However,
they offer the quite desirable property of size extensive-
ness, required to study large molecular systems and periodic
structures.

The motion equations of the λ̂ and x̂ operators can be
derived from stationarizing the action functional:

F[λ, x, φ] =
∫

dt〈[L̂0 + λ̂(t )]{e−x̂(t )H̄ (t )e+x̂(t )

− i�∂t [x̂(t ) − iφ(t )]}〉0

=
∫

dt[〈ϒ(t )|Ĥ (t )|	(t )〉 − i〈ϒ(t )|�∂t |	(t )〉].
(5)

The symbols λ and x refer to the “history” of the amplitudes
{λμ(t )} and {xμ(t )}, respectively, whereas �∂t indicates the time
derivative is applied to the ket |	(t )〉. Variations with respect
to λμ and xμ give the well-established TD equations:

i∂t xμ(t ) = 〈τ̂ †
μe−x̂(t )[H̄0 + v̄(t )]e+x̂(t )〉0 (6)

and

−i∂tλμ(t ) = 〈[L̂0 + λ̂(t )]e−x̂(t )[H̄0 + v̄(t ), τ̂μ]e+x̂(t )〉0. (7)
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Using the solution to the two last equations and by demanding
that F = 0, the phase function takes the form

∂tφ(t ) = 〈[L̂0 + λ̂(t )]e−x̂(t )H̄ (t )e+x̂(t )〉0. (8)

Because it originates from an action functional, the phase
factor we use is different from that employed in other TD CC
response formalisms. For convenience we define


φ(t ) =
∫ t

0
ds〈[L̂0 + λ̂(s)]e−x̂(s)[H̄0,N + v̄(s)]e+x̂(s)〉0, (9)

so φ(t ) = E0t + 
φ(t ). Even though this phase does not in-
fluence the calculation of observables, it is important for the
interpretation of the right and left wave functions.

Now we specialize the above equations to the standard
form of linear response theory, and then to the SLR case (see
Sec. III). For the latter, however, we consider a few additional
terms that are due to the different type of initial condition that
we use. We start by linearizing the TD CC equations with
respect to x̂, λ̂, and v̂. This gives the following equation for
the excitation amplitudes:

i∂t xμ(t ) = 〈τ̂ †
μ(v̄(t ) + [H̄0, x̂(t )])〉0. (10)

Now we define the following operators:

H̄0
τ,μ = [H̄0, τ̂μ] (11)

and

v̄τ,μ(t ) = [v̄(t ), τ̂μ]. (12)

In general, �̄τ,μ = �̄τ̂μ − τ̂μ�̄.
Using the above definitions we obtain the following equa-

tion:

−i∂tλμ(t ) = 〈
L̂0

(
v̄τ,μ(t ) + [

H̄0
τ,μ, x̂(t )

]) + λ̂(t )H̄0
τ,μ

〉
0. (13)

To derive the above result one uses the fact that
〈L̂0[H̄0, τ̂μ]〉0 = 0. Let us introduce the matrix:

(A)μν = 〈
τ̂ †
μH̄0

τ,ν

〉
0
. (14)

Because this is a nonsymmetric (square) matrix, we assume
there is a complete set of left and right eigenvectors {�I , XI}
and eigenvalues (excitation energies) {�I} such that AXI =
�I XI and AT�I = �I�

I . Following the steps shown in the
Supplemental Material [70], we find the well-known linear
response expressions (or assignments) for the ground-state-
to-excited-state transition matrix elements:

〈�I |Â|�0〉 =
∑

μ

�I
μ〈τ̂ †

μĀ〉0 (15)

and

〈�0|Â|�I〉 =
∑

μ

〈L̂0Āτ,μ〉0X I
μ −

∑
J

F IJ (�J · Ā)

�I + �J
, (16)

where �0 denotes the exact standard ground-state wave func-
tion of the system, and �I denotes an arbitrary excited-state
wave function. F IJ is the matrix element:

F IJ =
∑
μν

X I
μFμνX J

ν , (17)

where Fμν = 〈L̂0[H̄0
τ,μ, τ̂ν]〉0, and �J · Ā = ∑

μ �J
μ〈τ̂ †

μĀ〉0.
This result holds for the observable B as well.

FIG. 1. Theoretical components explored in this work. Standard
TD QM defines the quantities that are to be represented by our CC
approaches. The starting point is the use of LR QM where the initial
state is not the ground state, but a combination of its ground-state
wave function with an excited state of interest (�N ). A LR CC theory
is formulated to cover this situation and is then extended to consider
cases beyond the linear response regime, yielding SR theory, in
which an observable is propagated for a general initial state (not
purely ground state). In the center frame we show the combined set
of operators used to examine the response of the system to external
perturbations.

III. SECOND LINEAR RESPONSE THEORY

In this section we develop an alternative formalism to com-
pute excited-state transition elements. We observe, as in the
linear response case, that the left response vector contributes
counterclockwise and clockwise elements [terms proportional
to exp(iωt ) and exp(−iωt ), respectively, where ω denotes
frequency in the Fourier analysis we perform below], whereas
the right vector does so only for counterclockwise ones.
Although we follow different theoretical steps, the matrix el-
ements we predict are consistent with QR theory. We remark,
however, that the phase expression we utilize differs from
other CC-based response theories. This phase does not affect
the transition elements. However, as we show in Sec. IV, our
phase equation is useful to interpret wave-function amplitudes
that emerge from our second response (SR) theory. The steps
followed are pictorially summarized in Fig. 1.

From standard quantum mechanics, we apply linear re-
sponse analysis to the case where the system is initially
described by a linear combination of the following form:

|�(t = 0; g)〉 = |�0〉 + g|�N 〉. (18)

Here �0 refers to the exact standard ground-state wave func-
tion, and �N denotes an excited state of interest. We assume
the symbols �I and �J denote exact standard (non-CC)
excited-state wave functions with labels “I” and “J”. The
linear-response TD WF is

|�(t ; g)〉 = |� (0)(t ; g)〉 + |� (1)(t ; g)〉, (19)

where

|� (0)(t ; g)〉 = e−iĤ0t |�(0; g)〉 (20)
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and

|� (1)(t ; g)〉 = −i
∫ t

0
dse−iĤ0(t−s)V̂ (s)e−iĤ0s|� (0)(0; g)〉, (21)

where V̂ (s) = − f (s)B̂. The response function now reads

R(ω; g) =
∫ +∞

−∞
dtei(ω±iη)t δ

δ f (s)
{〈� (0)(t ; g)|Â|� (1)(t ; g)〉 + c.c.}

∣∣∣∣∣
s=0, f =0

. (22)

Using these equations and taking η → 0+, we find the following:

lim
g→0

∂

∂g
R(ω; g) = −

∑
J

[
〈�0|Â|�J〉(〈�J |B̂|�N 〉 − δJN 〈�0|B̂|�0〉)

ω − �J
− 〈�J |Â|�0〉(〈�N |B̂|�J〉 − δNJ〈�0|B̂|�0〉)

ω + �J

]
. (23)

Although we used a single variable (g) for the above equations, we now split the analysis into a left and a right mathematical prob-
lem by using one superposition variable (gL) for the counterclockwise component and a second variable (gR) for the clockwise
one, where variations with respect to either give the information of interest. Starting from Eqs. (19)–(21), we consider the wave
functions 〈�(t ; gL)|, |�(t ; gR)〉 and their zero- and first-order components. For example, 〈� (0)(t = 0; gL)| = 〈�0| + gL〈�N |,
where 〈� (0)(t ; gL)| = 〈� (0)(t = 0; gL)| exp(iĤ0t ). In a similar way we obtain the wave function |� (0)(t ; gR)〉.

Henceforth, we introduce the function

R2(ω; gL, gR) =
∫ +∞

−∞
dtei(ω±iη)t δ

δ f (s)
{〈� (0)(t ; gL)|Â|� (1)(t ; gR)〉 + 〈� (1)(t ; gL)|Â|� (0)(t ; gR)〉}

∣∣∣∣∣
s=0, f =0

. (24)

In agreement with the function R, R2 satisfies

lim
ω→�I

lim
gL,gR→0

−(ω − �I )
∂

∂gR
R2 = 〈�0|Â|�I〉(〈�I |B̂|�N 〉 − δIN 〈�0|B̂|�0〉) (25)

and

lim
ω→−�I

lim
gL,gR→0

(ω + �I )
∂

∂gL
R2 = 〈�I |Â|�0〉(〈�N |B̂|�I〉 − δNI〈�0|B̂|�0〉). (26)

We now proceed to solve the CC linear response equations under the initial condition where the system is in a linear combination
of the ground state and some excited state of interest. We label this excited state as N .

If the system is unperturbed then it must behave as a stationary state that satisfies the standard linear response equations.
Therefore, we seek for a solution set as shown below:

x̂(t ; gR) = gRx̂N (t ) + x̃(t ; gR),

λ̂(t ; gL, gR ) = gLλ̂N (t ) + λ̃(t ; gL, gR ),

φ(t ; gL, gR ) = gRφN (t ) + φ̃(t ; gL, gR). (27)

The operators x̂N (t ) and λ̂N (t ) and the phase φN (t ) represent the stationary state that would occur in the absence of an external
perturbation [v̂(t ) = 0]. The terms x̃(t ), λ̃(t ), and φ̃(t ) are the “new” response operators and phase; they provide information
about the evolution of the system. We express the operators as x̃(t ) = ∑

μ x̃μ(t )τ̂μ and λ̃(t ) = ∑
μ τ̂μ

†λ̃μ(t ). As we show later
on, the operator λ̃ depends on both gL and gR, in addition to time. For the phase we use the right amplitude gR only as the
operator x̂N (t ) determines this object, besides E0. Its response part, φ̃, on the other hand, depends on x̃ and λ̃, and thereby on gL

and gR.
The vectors x̂N (t ) and λ̂N (t ) stationarize their respective equations. Equation (10) reads

i∂t x
N
μ (t ) =

∑
ν

AμνxN
ν (t ). (28)

So we naturally take xN
μ (t ) = X N

μ exp(−i�Nt ). The vector λN
μ (t ) follows a different relation:

−igL∂tλ
N
μ (t ) = 〈

gRL̂0
[
H̄0

τ,μ, x̂N (t )
] + gLλ̂N (t )H̄0

τ,μ

〉
0. (29)

The solution to this equation when both gL and gR are different from zero is possible to obtain. But in this section, we are
interested in the case where (after derivatives with respect to gL or gR are taken in our formalism) gR = 0 and gL �= 0, and then
the limit gL → 0. Thus we take λN

μ (t ) = �N
μ exp(i�Nt ). The phase φN (t ) satisfies

φN (t ) = E0t + 
φN (t ) (30)

in the above equation 
φN (t ) = ∫ t
0 ds〈L̂0[H̄0, x̂N (s)]〉0.
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To derive the linearized time-dependent equations from Eqs. (6)–(8), we include terms that are proportional to gL or gR (for
example, a term like gR[v̄(t ), x̂N (t )] needs to be included), as such terms, for the purpose of applying linear response analysis,
are required and remain nonzero after completing the limiting procedures that we apply. Any term that is quadratic in gL or gR

in the weak perturbation limit is neglected because these vanish.
The SLR equation for the components of the operator x̃ reads

i∂t x̃μ(t ) = 〈τ̂ †
μ{[H̄0, x̃(t )] + v̄(t ) + gR[v̄(t ), x̂N (t )] + gRM̂(t )}〉0, (31)

where

M̂(t ) = [[H̄0, x̂N (t )], x̃(t )]. (32)

The conjugate operator λ̃(t ) follows the equation

−i∂t λ̃μ(t ) = 〈
L̂0

(
v̄τ,μ(t ) + [

H̄0
τ,μ, x̃(t )

]) + λ̃(t )H̄0
τ,μ + gRL̂0[v̄τ,μ(t ), x̂N (t )] + gLλ̂N (t )v̄τ,μ(t ) + Q̂μ(t )

〉
0, (33)

where

Q̂μ(t ) = gRL̂0
[[

H̄0
τ,μ, x̂N (t )

]
, x̃(t )

] + gLλ̂N (t )
[
H̄0

τ,μ, x̃(t )
] + gRλ̃(t )

[
H̄0

τ,μ, x̂N (t )
]
. (34)

The SLR phase is given by

∂t φ̃(t ) = (1 − gR)E0 + ∂t
φ̃(t ), (35)

where


φ̃(t ; gL, gR ) =
∫ t

0
ds〈gLλ̂N (s)v̄(s) + gLλ̂N (s)[H̄0, x̃(s)] + gRλ̃(s)[H̄0, x̂N (s)]

+ L̂0{[H̄0, x̃(s)] + v̄(s) + gR[v̄(s), x̂N (s)] + gRM̂(s)}〉0 (36)

The last three SLR equations are fully consistent with standard LR when g = 0.
For these SLR equations, it is important to note the initial conditions λ̃μ(t = 0) = x̃μ(0) = 0, and this holds regardless of

the values of gL and gR. After carrying out the mathematical analysis of the response functions, as shown in the Supplemental
Material [70], we obtain the following relation:

〈�I |B̂|�N 〉 = δIN 〈L̂0B̄〉0 + 〈�̂I B̄X,N 〉0 +
∑

J

[
CIN,J

�I − �J − �N

]
(�J · B̄), (37)

where

CIN,J = 〈�̂I [[H̄0, X̂ N ], X̂ J ]〉0 (38)

and X̂ J = ∑
μ X J

μτ̂μ and �̂I = ∑
μ �I

μτ̂ †
μ. Both the left and

right evaluations give the same element, one only has to swap
the N and I indices.

In the limit where the CC excited state problem is solved to
all orders, the last term in Eq. (37) eliminates 〈�̂I X̂ N B̂〉0, so
the matrix element is given by 〈�̂I B̄X̂ N 〉. This implies that the
last term in Eq. (37) is in such a limit finite, but not necessarily
otherwise. For this reason, it may be important to apply a reg-
ularization scheme in case there is a term �I − �J − �N that
is quite close to zero. Alternatively, as an additional approxi-
mation, not explored in this work, for the sake of eliminating
divergences one can neglect the difference �I − �N . It holds
true for the case of permanent-dipole determination, but not
for transition elements.

IV. INTERPRETATION OF WAVE-FUNCTION
AMPLITUDES

In this section we approach with approximations the inter-
pretation of wave-function amplitudes.

Although the initial state we employed before is a quan-
tum mixture of ground and excited states, one can also
analyze through such an initial state the situation where the

system begins evolving from the excited state N , and the
response to a weak perturbation can be determined. Note
that ∂/∂g|� (0)(t = 0; g)〉 = |�N 〉, where the first derivative
of the initial of state with respect to g gives the excited-state
wave function. When we apply the same operation to the first
response wave function, it is found that

∂

∂g
|� (1)(t ; g)〉 = −i

∫ t

0
dse−iĤ0(t−s)V̂ (s)e−iĤ0s|�N 〉. (39)

This is equivalent to the result of applying the standard linear
response, where the initial state is entirely described by �N .

Let us introduce the following expansion:

∂g|� (1)(t )〉 =
∑

I

CI (t )|�I〉, (40)

where the amplitude CI (t ) is given by CI (t ) = 〈�I |∂g�
(1)(t )〉

(∂g = ∂/∂g). This object then describes the contribution of
state I to the response of the initial excited state to a per-
turbation, and it can be related to response CC coefficients.
But before proceeding to show this, for a function h of the
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coefficients gL and gR, the following notation is used:

hr = lim
gL,gR→0

∂h

∂gR
,

hl = lim
gL,gR→0

∂h

∂gL
.

(41)

In addition, if h is time dependent, h(t ; 0) refers to the function
evaluated at time t in the case where gL = 0 and gR = 0. So
x̃(t ; 0) is essentially the same object as the operator x̂(t ) for
an arbitrary driving scalar field f and where the system is
initially at the ground state. Now let us consider the starting
ansatz

|	(t ; gR, gL)〉 = exp{T̂ + gRx̂N (t ) + x̃(t )

− i[gRφN (t ) + φ̃(t )]}|0〉. (42)

On the basis of the previous analysis, we derive from this wave
function the following:

|	r (t )〉 = lim
gL,gR→0

∂

∂gR
|	(t ; gR)〉

≈ ∣∣	(0)
r (t )

〉 + ∣∣	(1)
r (t )

〉
, (43)

where ∣∣	(0)
r (t )

〉 = eT̂ −iE0t [x̂N (t ) − i
φN (t )]|0〉 (44)

and |	(1)
r (t )〉 is assigned as∣∣	(1)

r (t )
〉 = [x̃r (t ) − i
φ̃(t ; 0)x̂N (t ) − i
φ̃r (t )]eT̂ −iE0t |0〉,

(45)

where 
φN is a relatively small residual term that would
vanish in a formally exact calculation. In the above we ne-
glected exp[x̃(t ; 0)] and a few quadratic terms. Similarly, the
left ansatz reads

〈ϒ(t ; gL, gR )|
= 〈0|[L̂0 + gLλ̂N (t ) + λ̃(t )] exp{−T̂ − gRx̂N (t ) − x̃(t )

+ i[E0t + gR
φN (t ) + 
φ̃(t ; gL, gR )]}. (46)

From this (left) bra the approximated state is derived as

〈ϒl (t )| = lim
gL,gR→0

∂

∂gL
〈ϒ(t ; gL, gR )|

≈ 〈
ϒ

(0)
l (t )

∣∣ + 〈
ϒ

(1)
l (t )

∣∣, (47)

where〈
ϒ

(0)
l (t )

∣∣ = 〈0|λ̂N (t )e−T̂ +iE0t ,〈
ϒ

(1)
l (t )

∣∣ = 〈0|[λ̃l (t ) + i
φ̃(t ; 0)λ̂N (t ) + iL̂0
φ̃l (t )]e−T̂ +iE0t .

(48)

The left bra and right ket can be expanded in their respective
eigenbasis [x̃(t ) = ∑

I c̃I (t )X̂ I , λ̃(t ) = ∑
I d̃I (t )�̂I ], giving

∣∣	(1)
r (t )

〉 =
{ ∑

I

[c̃r,I (t ) − δNI i
φ(t )]X̂ I − i
φ̃r (t )

}
eT̂ −iE0t |0〉 (49)

and 〈
ϒ

(1)
l (t )

∣∣ = 〈0|e−T̂ +iE0t

{ ∑
I

�̂I [d̃l,I (t ) + δNI i
φ(t )] + L̂0i
φ̃l (t )

}
, (50)

where

c̃r,I (t ) = ∂ c̃I

∂gR

∣∣∣
gR=0

,

d̃l,I (t ) = ∂ d̃I

∂gL

∣∣∣
gL=0,gR=0

. (51)

From the above equation we extract the following approximated excited-state wave function, 〈ϒ I | = 〈0|�̂I exp(−T̂ ), which
leads to 〈

ϒ I
∣∣	(1)

r (t )
〉 = [c̃r,I (t ) − δNI i
φ(t )]e−iE0t ≈ CI (t ). (52)

Analogously, using |	I〉 = X̂ I exp(T̂ )|0〉 we see that 〈ϒ (1)
l (t )|	I〉 = [d̃l,I (t ) + δNI i
φ(t )] exp(iE0t ) ≈ C∗

I (t ).
The motion equations in this case follow from Eqs. (31) and (33):

i∂t x̃r,μ(t ) = 〈τ̂ †
μ{[H̄0, x̃r (t )] + [v̄(t ), x̂N (t )] + [[H̄0, x̂N (t )], x̃(t ; 0)]}〉0 (53)

and

−i∂t λ̃l,μ(t ) = 〈
λ̃l (t )H̄0

τ,μ + λ̂N (t )v̄τ,μ(t ) + λ̂N (t )
[
H̄0

τ,μ, x̃(t ; 0)
]〉

0. (54)

In the eigenbasis representation we then have that

(i∂t − �I )c̃r,I (t ) = e−i�N t

〈
�̂I [v̄(t ), X̂ N ] +

∑
J

�̂I [[H̄0, X̂ N ], X̂ J ]cJ (t )

〉
0

,

(−i∂t + �I )d̃l,I (t ) = ei�N t

〈
�̂N [v̄(t ), X̂ I ] +

∑
J

�̂N [[H̄0, X̂ I ], X̂ J ]cJ (t )

〉
0

. (55)
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Even though these two equations involve similar objects, they
are different. Hence, the left (d̃l,I ) and right (c̃r,I ) amplitudes
differ from one another.

The assignment deduced above can be applied to derive
the excited-state transition elements in a different way, by
simply taking the functional derivatives and extracting the
information from this. Such a feature can be seen if variations
with respect to f (t ) are taken for coefficients such as CJ and
c̃r,I − δNI i
φ(t ), where one would derive an equation identi-
cal to Eq. (37). Not only do quantum terms such as CJ lead to
transition matrix elements but also they are an integral com-
ponent in predicting the course of a photostimulated physical
process, or driven by other factors. Hence, a connection be-
tween the CC analog is relevant to bridge electronic structure
algorithms with photophysical models.

V. GENERAL EVOLUTION EQUATIONS

A. Extension of the SLR framework

We consider a more general propagation from an excited
state, i.e., Û (t )|�N 〉, where Û (t ) = T exp[−i

∫ t
0 ds Ĥ (s)] (T

being the time-ordering superoperator), and extend our for-
malism beyond the linear response; we refer to this as SR
theory. First, we write |�(t ; gR)〉 = Û (t )[|�0〉 + gR|�N 〉],
and 〈�(t ; gL)| = [〈�0| + gL〈�N |]Û †(t ). We also define

〈A(t ; gL, gR)〉 = 〈�(t ; gL)|Â|�(t ; gR)〉. (56)

Hence,

lim
gL,gR→0

[
∂

∂gL
+ ∂

∂gR

]
〈A(t ; gL, gR)〉

= 〈�N |ÂH(t )|�0〉 + c.c., (57)

where ÂH(t ) = Û †(t )ÂÛ (t ). Note that the derivative above
has information about propagation of both the excited state
of interest and the ground state of the system. In this
case, a full normalization of the left and right initial states
[�(t ; gL), �(t ; gR)] is not required as such a normalization as
no effect on the final result.

The same notation applied before (see Secs. IV and III)
is used in this section to derive the SR equations. We start
with the set shown in Eq. (27) and insert these in Eqs. (6)–
(8), where no further assumptions are taken. So the response
operators x̃(t ) and λ̃(t ) and the phase φ̃(t ) are now valid for
arbitrary strengths of the perturbation. It is important to bear
in mind that the operators λ̂(t ) and x̂(t ), when the system does
not initiate completely from a ground-state configuration, are
functions of the numbers gL and gR, allowing us to compute
variations of these operators with respect to such parameters at
any time t , including t = 0, leading to the equations discussed
below.

In the present case, the expectation value reads
〈A(t ; gL, gR )〉 = 〈ϒ(t ; gL, gR )|Â|	(t ; gL, gR)〉, so it satisfies

lim
gL,gR→0

[
∂

∂gL
+ ∂

∂gR

]
〈A(t ; gL, gR )〉

= 〈λ̂l (t )e−x̃(t ;0)Āe+x̃(t ;0)〉0

+ 〈[L̂0 + λ̂(t ; 0)]e−x̃(t ;0)[Ā, x̂r (t )]e+x̃(t ;0)

+ λ̂r (t )e−x̃(t ;0)Āe+x̃(t ;0)〉0. (58)

Because we distinguish the parameters gL and gR, we assign
the term 〈�N |ÂH(t )|�0〉 as 〈λ̂l (t )e−x̃(t ;0)Āe+x̃(t ;0)〉0, and we as-
sign the other quantity containing the right-handed derivatives
as 〈�0|ÂH(t )|�N 〉 (in the numerical calculations shown in the
next section we found they are visually identical, but in more
practical contexts they are not expected to be so). Where the
general equations of motion are

i∂t xr,μ(t ) = 〈τ̂ †
μe−x̃(t ;0)[H̄ (t ), x̂r (t )]e+x̃(t ;0)〉0,

−i∂tλl,μ(t ) = 〈λ̂l (t )e−x̃(t ;0)[H̄ (t ), τ̂μ]e+x̃(t ;0)〉0,

−i∂tλr,μ(t ) = 〈[L̂0 + λ̃(t ; 0)]e−x̃(t ;0)[H̄τ,μ(t ), x̂r (t )]e+x̃(t ;0)

+ λ̂r (t )e−x̃(t ;0)H̄τ,μ(t )e+x̃(t ;0)〉0,


φr (t ) =
∫ t

0
ds〈[L̂0 + λ̃(s; 0)]e−x̃(s;0)[H̄ (s), x̂r (s)]e+x̃(s;0)

+ λ̂r (s)e−x̃(s;0)H̄ (s)e+x̃(s;0)〉0,


φl (t ) =
∫ t

0
ds〈λ̂l (s)e−x̃(s;0)H̄ (s)e+x̃(s;0)〉0. (59)

recall that H̄τ,μ(t ) = [H̄ (t ), τ̂μ] refers to the full Hamilto-
nian. The operators λ̃(t ; 0) and x̃(t ; 0) refer to the solution
of Eqs. (6) and (7) in the case where the system is initially
at the ground state, so x̃(t = 0; 0) = λ̃(t = 0; 0) = 0. Also
note the equations for the phases correspond to taking the
derivatives of the quantity 
φ(t ), not φ̃. The initial conditions
of the (de)excitation amplitudes are λ̂l (t = 0) = λ̂N (t = 0)
and x̂r (t = 0) = x̂N (t = 0), and for λ̂r we have

λ̂r (t = 0) = −
∑

I

F NI

�N + �I
�̂I . (60)

These initial conditions ensure that at the initial time, the
transition moment 〈�N |Â|�0〉 is consistent with the standard
CC linear response result. On the other hand, for the en-
ergy 〈E (t ; gL, gR)〉 = 〈ϒ(t ; gL, gR )|Ĥ (t )|	(t ; gL, gR )〉, using
the phases above we obtain

lim
gL,gR→0

[
∂

∂gL
+ ∂

∂gR

]
〈E (t ; gL, gR)〉 = ∂t [
φ̃l (t ) + 
φ̃r (t )].

(61)

This result provides a connection between the phase response
and the energy evolution.

Equation (58) is advantageous as it provides linked
expressions for quantities such as 〈�N |ÂH|�0〉, in which
the ground- and excited-state propagations are present
together. The resolution of the identity can be inserted on
both sides of the operator Â, which gives, for instance,
〈�N | ÂH(t ) | �0〉 = ∑

IJ 〈�N |Û †(t ) | �I 〉AIJ〈�J | Û (t )|�0〉,
where AIJ = 〈�I |Â|�J〉. Therefore, the expression above
has contributions from the solutions to the excited- and
ground-state problems. The excited-state component can be
extracted through a frequency space analysis or a related
technique.

Alternatively, a single resolution operation can be applied,
giving

〈�N |ÂH(t )|�0〉 =
∑

J

C∗
J (t )〈�J |ÂÛ (t )|�0〉 (62)
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[C∗
J (t ) = 〈�N |Û (t )|�J〉]. If this idea is applied to the

first term on the right-hand side of Eq. (58), we ob-
tain the following two elements: δNJ exp(i�Nt ) + d̃l,J (t )
and 〈�̂J exp[−x̃(t ; 0)]Ā exp[+x̃(t ; 0)]〉0. These resemble in
appearance their parent linear (quantum mechanical) coun-
terparts, from Eq. (57). Hence, it is plausible to approximate
C∗

J (t ) using d̃l,J + iδJN
φ(t ), where d̃l,J (t ) = 〈λ̃l (t )X̂ J〉0. Al-
though the right-hand contribution is more interconnected
than the left one, it may be associated approximately with the
term 〈�0|ÂH(t )|�N 〉. In the next section we use a numerical
model to discuss the right-hand expression for CJ (t ).

Although the assignment above might serve useful for
interpretation and for quantitative analysis, it could result in
more rigorous formulas for a direct comparison in frequency
space based on the specific form of the perturbation used.
A robust determination of the TD element 〈�I |Û (t )|�N 〉 for
manyfold N and I states in turn provides a nonsymmetric
representation of the operator Û (t ) and by extension a prop-
agator for general initial states of the form |�(t = 0)〉 =∑

J CJ,0|�J〉. This supposes that the propagator is represented
in the eigenbasis of the Hamiltonian. It is possible, however,
to change the basis representing the operators, such as that
corresponding to the bare single orbital excitations, character-
ized by the indices μ and ν. The choice is largely dependent
on the potential numerical approach of interest. We pursue
the excited-state energy picture because of its connection to
physical models, where a state-by-state perspective becomes
convenient and leads to the calculation and understanding of
optical and/or magnetic spectra.

B. Propagation from an arbitrary initial state

It is possible to obtain the time evolution of an observ-
able average where the system is an initial state described
by a linear combination of eigenstates. We thus denote
|�R〉 = N−1/2[|�0〉 + gR|�(0)〉] and 〈�L| = N−1/2[〈�0| +
gL〈�(0)|], where N is the normalization factor

N = 1 + gLS + gRS∗ + gLgR (63)

and S is the overlap between the ground-state and the initial
wave functions: S = 〈�(0)|�0〉. The initial wave function
reads

|�(0)〉 =
∑

N

CN |�N 〉. (64)

The set {CN } represents normalized complex-valued coeffi-
cients (

∑
N |CN |2 = 1). Contrary to the case of expressing

〈�N |ÂH(t )|�0〉, in this instance the normalization function N
is of crucial relevance.

To obtain the element 〈�(0)|ÂH|�(0)〉 we apply the fol-
lowing limit to the mixed second-degree derivative, which
gives

lim
gL,gR→0

∂2

∂gL∂gR
〈�L|ÂH(t )|�R〉

= 〈�(0)|ÂH(t )|�(0)〉 − 〈�0|ÂH(t )|�0〉 − I (t ), (65)

where

I (t ) = [S〈�(0)|ÂH(t )|�0〉 + c.c.] − 2S × S∗〈�0|ÂH(t )|�0〉.
(66)

In the standard picture the element 〈�(0)|ÂH(t )|�(0)〉 is
equivalent to 〈�(t )|Â|�(t )〉, with |�(t )〉 = Û (t )|�(0)〉. In
this case we then use a different initial condition for the
cluster operators, so λ̂l (t = 0) = ∑

M C∗
M�̂M and x̂r (t = 0) =∑

N CN X̂ N . The superposition of operators does not translate
into a superposition of symmetrized wave function, but in-
stead it ensures that at the end of the calculation one obtains
〈�(0)|ÂH|�(0)〉 = ∑

M,N C∗
MCN 〈�M |ÂH|�N 〉.

With the initial conditions defined we derive the following
expression:

lim
gL,gR→0

∂2

∂gL∂gR
〈ϒ(t ; gL, gR)|Â|	(t ; gL, gR〉

= 〈λ̂l (t )e−x̃(t ;0)[Ā, x̂r (t )]e+x̃(t ;0)

+ λ̂l,r (t )e−x̃(t ;0)Āe+x̃(t ;0)〉0, (67)

where λ̂l,r is the mixed derivative (∂2λ̂/∂gL∂gR) with respect
to gL and gR evaluated at gL = gR = 0, and it follows the
motion equation

−i∂tλl,r,μ(t ) = 〈λ̂l,r (t )e−x̃(t ;0)H̄τ,μ(t )e+x̃(t ;0)

+ λ̂l (t )e−x̃(t ;0)[H̄τ,μ(t ), x̂r (t )]e+x̃(t ;0)〉0, (68)

in which

λ̂l,r (t = 0) =
∑

J

YJ�̂
J (69)

and

YJ =
∑
M,N

C∗
M (0)CN (0)

〈�̂M[[H̄0, X̂ N ], X̂ J ]〉0

�M − �J − �N
. (70)

This initial condition guarantees that at the initial propagation
time the element 〈�(0)|ÂH(0)|�(0)〉 is consistent with QR
theory.

Using the standard TD CC equations for ground-state prop-
agation [〈�0|ÂH(t )|�0〉], we find the relation

〈�(0)|ÂH(t )|�(0)〉 = 〈[L̂0 + λ̃(t ; 0)]e−x̃(t ;0)Āe+x̃(t ;0)〉0

+ 〈λ̂l (t )e−x̃(t ;0)[Ā, x̂r (t )]e+x̃(t ;0)

+ λ̂l,r (t )e−x̃(t ;0)Āe+x̃(t ;0)〉0 + I (t ).
(71)

If the ground-state wave function �0 is orthogonal to the
initial state, then I = 0, otherwise this term, I (t ), can be
computed using Eqs. (10) and (13). Our method is also ap-
plicable to obtain an element such that 〈�J |ÂH(t )|�I〉. This
only requires changing the initial conditions of the left and
right cluster operators and a simple adaptation of Eq. (70)
where C∗

M (0) and CN (0) are replaced by δJM and δIN , corre-
spondingly, and the same applies to the initial conditions. In
fact one can analyze propagating the wave functions 〈�L| =
〈�0| + gL〈�J | and |�R〉 = |�0〉 + gR|�I〉 and conclude that
our formalism gives the element 〈�J |ÂH(t )|�I〉 in terms of
the equations shown above, with the mentioned required adap-
tations. This would in turn justify the initial conditions for
cluster operators we applied to obtain the general evolution
of a quantum mechanical observable under an arbitrary initial
state, 〈�(0)|ÂH(t )|�(0)〉.
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FIG. 2. Sketch of the two-level system considered for the numer-
ical illustration.

VI. NUMERICAL ILLUSTRATION

Here we examine the application of our generalized SR
method to a two-electron two-level system, where we examine
in total four levels. It is studied here how the quantum system
evolves under the presence of an external TD driving field that
is strong. The Hamiltonian of the system is

Ĥ (t ) =
∑

σ

εâ†
σ âσ +

∑
σ

b[τ̂σ + τ̂ †
σ ]+w[τ̂↑τ̂↓ + τ̂

†
↓ τ̂

†
↑] + v̂(t ).

(72)

We denote the occupied level as i and the unoccupied one
as a, so τ̂σ = â†

σ îσ . The external driving term reads v̂(t ) =
− f (t )μ0

∑
σ [τ̂σ + τ̂ †

σ ]. The function f (t ) describes a Gaus-
sian pulse f (t ) = f0 exp[−(t − t0)/2σ 2

0 ]. In our simulation
we take ε as 1 eV, b and w as 0.25 eV, μ0 = 0.5 a.u., f0μ0

as 1 eV (so f0 ≈ 0.0735 a.u., which is approximately 3.8 ×
1010 V/m), σ0 = 5 fs, and t0 = 2.5 × σ0. This corresponds to
applying a strong pulse to the system.

In Fig. 2 we show the four mentioned quantum levels,
which form the linear space we consider: the ground-
state configuration |0〉, two separate single-electron promoted
states, |1〉 and |2〉, respectively, and the a doubly excited
configuration |3〉. All our wave functions are constrained
to the space L spanned by the set of mentioned states,
{|0〉, |1〉, |2〉, |3〉}. We then translate all the required opera-
tors, such as the Hamiltonian and the cluster operators, into
matrix form over the basis shown in Fig. 2; this allows us to
perform all the operations numerically. The diagonalization
of the Hamiltonian matrix reveals a considerable mixing be-
tween the states in the generation of the eigenvectors; such
mixing ensures that our model is nontrivial, which leads to the
characteristic asymmetries of non-Hermitian CC approaches,
discussed below. The eigenvectors of the unperturbed Hamil-
tonian matrix are referred to as �0, �1, �2, and �3, where
H0|�J〉 = EJ |�J〉 (for J = 0, 1, 2, and 3). The ground state
is composed approximately of 92% |0〉 and 8% of the sin-
gles configurations. The first-excited state contains 13% of
the doubles configuration |3〉, 6% of |0〉, and the rest is an
equal mix of singles. The second-excited state is a triplet
state with equal amounts of the |1〉 and |2〉 states. And the
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FIG. 3. (a) Computed element 〈�N |ÂH(t )|�0〉 (Â = μ̂) for N =
1 in the interval of time between 0 and 40 fs. The purple line cor-
responds to our second response calculations, whereas the blue “X”
symbols correspond to sample points of full standard propagation,
from computing Û (t ) in matrix representation and applying it to
the states �N and �0, which are eigenfunctions of the Hamiltonian
matrix derived from Eq. (72).

third-excited state is dominated by the doubles state |3〉 with a
weight of 87%, the combined states |1〉 and |2〉 give a weight
of 10%, and the rest corresponds to |0〉. Therefore, there is
considerable interaction by the configurations that we selected
(Fig. 2). The standard unitary operations based on the operator
Û (t ) were performed using a simple midpoint rule, where we
discretize the whole time interval as a grid and propagate step
by step using |�(t + δt )〉 ≈ exp[−iĤ (t + δt/2)δt]|�(t )〉. For
the TD CC equations we use the second-order Runge-Kutta
methodology, over the same grid for the unitary propagation,
which consists of 60 000 points.

Let us begin considering the computation of the element
〈�N |ÂH(t )|�0〉, where Â corresponds to the dipole operator,
which we take in this work as μ̂ = μ0(τ̂↑ + τ̂↓ + H.c.), and
denote 〈�N |μ̂H(t )|�0〉 as μH

N0. The term 〈�N |ÂH(t )|�0〉 is an
important quantity because in the Heisenberg representation,
for a general initial state that is a linear combination of eigen-
states, a quantity of this kind is required. For this reason we
propose a model for this type of object, because it would be
needed for a propagation from an initial state that includes a
portion of the ground state. We take N = 1, so our simulation
is based on propagating with the SR equations both the ground
state and the excited state. �1 is a singlet excited state of the
system. Our basis misses the two paramagnetic states in which
the second level is occupied with an electron with the same
z-spin as the electron in the first level. However, we focus on
singlet states. Figure 3(a) shows the time dependency of the
real part of this object (its imaginary component behaves in
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FIG. 4. Probability of finding the system in the doubly excited
state �3, when the quantum system evolves from state �1 and in
the presence of the pulse shown in Fig. 3. The black line with stars
is obtained from the unitary propagation, the purple solid line is
obtained from d̃∗

l,3(t ), the green line with solid circles is obtained
from c′

3(t ), and the blue line with squares corresponds to the average
1/2[c′

3(t ) + d̃∗
l,3(t )].

a similar fashion), and Fig. 3(b) shows the shape of the pulse
applied to the system. As expected, given that the TD CC the-
ory is robust if the cluster operators cover all excitation orders,
the SR theory and the standard unitary solution yield visually
identical results. Both the SR theory left and right expressions
for the matrix element in the Heisenberg representation offer
the same results. This would not hold if the cluster operators
were truncated, which happens in practice; in that case the
expressions may differ.

If this two-electron quantum system initiated evolution
from the first-excited state, then one can ask about the proba-
bility of finding the system in the third-excited state at some
given time. Such probability is determined by the squared
modulus of the coefficient C3(t ) = 〈�3|Û (t )|�1〉. This coef-
ficient is approximated as d̃∗

l,J (t ) (J = 3), which is discussed
in the previous section. For the right-hand contribution, we
noted that the coefficient cJ (t ) often underestimates C3 by
a significant margin. As an alternative to this, we com-
pute c′

J (t ) = 〈�̂J x̂r (t ) exp (x̃(t ; 0))〉0/‖x̂r (t ) exp (x̃(t ; 0))|0〉‖
and denote that as our right-hand estimator. Computing the
norm of x̂r (t ) exp (x̃(t ; 0))|0〉 is not practical for molecular
systems due to the need for Hermitian conjugation, but in
this case the small size of the system allows for its com-
putation. We refer to c′

J (t ) as the right-hand approximation
to the standard coefficient 〈�J |Û (t )|�1〉. Figure 4 shows the
result of this procedure. As discussed before, at short times
our assignment holds, but as the pulse action becomes more
significant some deviations are present. Part of the reason
for such behavior is the non-negligible cluster amplitudes
associated with the operator T̂ . We noticed that upon reduc-
ing the parameters b and w to about 0.1 eV, the agreement
with respect to C3 is quite improved, especially for the aver-
aged value cavg,3(t ) = 1/2 × [c′

3(t ) + d̃∗
l,3(t )], but we believe

it important to emphasize potential deviations over closer
agreements.

Now we show the application of the SR theory to compute
the evolution of an observable such as the dipole in the case
where the system does not initiate at the ground state, but at a
linear combination of two excited states. We then choose the

−0.8
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0.0
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 0  10  20  30  40

<
µ(

t)
>

 (
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)

t (fs)

FIG. 5. Comparison between SR theory and unitary propaga-
tion for the calculation of the time-dependent dipole of the system
〈μ(t )〉 = 〈�(0)|Û †(t )μ̂Û (t )|�(0)〉, where |�(0)〉 is a linear combi-
nation of the states |�1〉 and |�3〉: |�(0)〉 = √

3/4|�1〉 + √
1/4|�3〉.

The purple line represents SR theory. The blue “X” symbols repre-
sent samples from the unitary propagation.

following as the initial state:

|�(0)〉 =
√

3/4|�1〉 +
√

1/4|�3〉, (73)

where the wave functions |�1〉 and |�3〉, in the basis shown
in Fig. 2, correspond to the first- and third-excited states
obtained from the diagonalization of the unperturbed sys-
tem Hamiltonian matrix. As in the case for calculating
〈�N |μ̂H(t )|�0〉, the SR expression, Eq. (71) with Â = μ̂, for
〈μ(t )〉 = 〈�(t )|μ̂|�(t )〉 [where Û (t )|�(0)〉 = |�(t )〉] is fully
consistent with respect to the unitary propagation (Fig. 5),
confirming the possibility of propagating an observable based
on a general initial state.

The effect of increasing the intensity of the electric field
is presented in Fig. 6, where the unitary propagation results
are reproduced for the observable. Despite this, however, the
terms c′

3 and d̃∗
l,3 display deviations and an oscillatory behav-

ior at longer times. This is caused by the non-Hermitian nature
of our time-dependent CC wave functions. Because the left
bra and the right ket are different, there is likely an imbal-
ance in the projections we extracted from such TD CC kets.
However, we believe that with all the tools developed here an
alternative more accurate route to compute eigenstate proba-
bilities may be found, possibly by analyzing the behavior of
the system under different initial conditions. Non-Hermitian
CC theories are the subject of asymmetries that can cause
small deviations from the unitary calculations. The matrix
elements that are inferred from unitary standard quantum me-
chanics are identified in nonsymmetric non-Hermitian TD CC
theory; however, matrix elements from CC do not conjugate
as expected [43], resulting in disparities. In our simulations
these are small. There are differences between the SR CC and
the unitary calculations that do not meet the eye and are below
0.1%, but they persist for very fine time grids. For this reason,
a potential alternative is to formulate our theory within unitary
coupled-cluster theory, which has quite desirable properties in
terms of the assignment of transition elements. On the other
hand, for convenience we employed a simplified two-electron
two-level approach which was tuned to feature non-negligible
couplings between the configurations that span the linear
space of interest. However, future work could focus on the
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FIG. 6. Response of the system to a stronger driving pulse in
which f0μ0 = 2 eV (so f0 ≈ 7.6 × 1010 V/m), σ0 = 1.5 fs, and t0 =
4.5 fs. Panel (a) shows the shape of the pulse (light gray) and time
dependency of the real part of the element 〈�N |μ̂H(t )|�0〉, N = 1.
The purple line denotes SR calculations and the blue “X” sym-
bols denote unitary reference results. Panel (b) shows the element
〈�(0)|μ̂H|�(0)〉. The purple line refers to SR calculations and the
blue “X” symbols refer to unitary reference results. Panel (c) displays
the evolution of the coefficient C3, and our CC estimators. The purple
solid line is the left-hand estimator, the green line with solid circles is
the right-handed estimator, the blue line with squares is their average,
and the black line with stars is the exact result.

application of our initial-state modifications within the context
of Lipkin models [71–75], which are often employed to gain
a critical understanding of many-body systems and may offer
in-depth insights regarding the numerical performance of the
proposed methodologies.

VII. CONCLUSION

An extended linear response theory (or second linear re-
sponse theory) was formulated to determine properties of
excited states through the time-dependent coupled-cluster for-
malism, where the generalization to cases beyond that of
linear perturbations was considered. From the theoretical gen-
eralization we derived a set of equations that characterize
the time-dependent evolution of transition elements in the
Heisenberg representation, so these could support propaga-
tions that rely on such kinds of transition objects or to derive
nonlinear properties that rely on linked coupled-cluster ex-
pressions. The proposed second response theories can be
used to study quantities such as multipolar matrix elements,
magnetic transition amplitudes, and electronic densities. In
the case of the second linear response theory, we found it
gives results fully consistent with the well-known coupled-
cluster quadratic response theory. On the other hand, because
our theory examines excited states in a step-by-step fash-
ion, it allows us to identify wave-function time-dependent
linear-combination coefficients, so bridging the second lin-
ear response and general response theory expressions with
standard wave-function theory. These connections could serve
useful in the computation of excited-state coherent interfer-
ences and their response to driving fields in either the linear
or the nonlinear regime.
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