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Effects of gravity in extra dimensions in atomic phenomena
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We use the difference between theory and experiment for energy intervals in simple atomic systems (hydrogen,
muonium, positronium, and deuteron) to find limits on the size of extra space dimensions in the Arkani-Hamed–
Dimopoulos–Dvali model for gravitational potential on short distances. As an additional experimental fact
we use the absence of the small size gravitational bound states of elementary particles. We demonstrate that
the perturbation theory approach does not work and more reliable results are obtained by solving the Dirac
equations for an electron in Coulomb and gravitational fields. These results probe smaller distances than the
distance between nuclei in molecules and the limits are significantly stronger than the limits on the size of extra
dimensions obtained using the spectra of hydrogen molecules.
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I. INTRODUCTION

Observations indicate that our universe has three noncom-
pact spatial dimensions, with all forces and particles operating
inside these dimensions. However, there are popular theo-
retical models with extra spatial dimensions such as string
theories—see, e.g., Ref. [1]. These models have been moti-
vated by the search for a theory unifying all interactions and
producing finite results which do not require hiding infinities
using the renormalization procedures.

In this paper, we examine the Arkani-Hamed–
Dimopoulos–Dvali (ADD) model [2] which aimed at
solving the hierarchy problem by proposing that gravity
can propagate through n extra spatial compact dimensions
as well as the regular three noncompact dimensions. An
ordinary Newtonian gravitational interaction between
elementary particles is many orders of magnitude smaller
than other interactions. In the ADD model the observed
Newton gravitational law in our three dimensions will be
significantly strengthened at a distance smaller than the
size of the extra dimensions R. The model also introduces
a higher-dimensional Planck mass M that is related to R
and the observed three-dimensional Planck mass MPl. The
Newtonian gravitational potential will change from 1/r to
a more singular 1/rn+1 dependence at distances smaller
than the size of the extra dimensions, R. This may be
easily explained by the Gauss integrated flux formula for
the gravitational force since the size of the “surface” in
(2 + n) dimensions [(2 + n)D] is proportional to r2+n [2]
(see also the Randall-Sundrum multidimensional models
[3,4] which have a similar small-distance gravity). The search
for macroscopic effects has not found any deviation from
Newton law. The gravity force has been observed to obey
the inverse-square law down to the μm scale [5] (see also
Refs. [6–10]). LHC searches for extra dimensions look for
signs of graviton emission, with Refs. [11,12] obtaining
constraints on the higher-dimensional Planck mass from

M2 > 10 TeV to M6 > 5 TeV, where Mn is the Planck mass
for n extra dimensions.

References [13,14] proposed using atomic spectroscopy to
search for extra dimensions and proceeded to calculate atomic
energy shifts by treating the gravitational potential as a small
perturbation. While the works did not place constraints, they
had chosen the proton radius as a cutoff parameter to obtain
a finite energy shift produced by the gravitational potential
g/rn+1 for n > 1. With this cutoff, the interaction between
the electron and quark inside the proton has been excluded
without justification. Reference [15] used Bethe’s nonrela-
tivistic treatment to calculate the radiative correction to the
energy shift produced by the gravitational potential, with the
proton radius cutoff for hydrogen and a 10−17 m cutoff for
muonium; constraints obtained from 1s-2s spectroscopy range
from R3 ∼ 10 μm to R6 ∼ 0.01 nm, where Rn is the radius
of n extra dimensions. Reference [16] attempted to solve the
proton radius puzzle with extra dimensions and used perturba-
tion theory for a range of cutoff parameters; these constraints
were comparable to Ref. [15]. However, all these results
strongly depend on an unknown (and practically arbitrary)
cutoff parameter. Note that there are several other works, for
example, Refs. [17,18], that investigate gravitational effects
with additional modifications of the model such as the brane
thickness.

The cutoff problem has been avoided in Ref. [19] where the
authors studied the effects of the potential g/rn+1 between nu-
clei in H2, D2, and HD+ molecules. Since nuclei in molecules
are separated by distances exceeding the Bohr radius aB, there
is no need for a cutoff parameter here. However, the effects of
the potential g/rn+1 are much bigger for subatomic distances
which give the main contribution to the energy shift in atoms.

In this paper we want to solve the cutoff problem using the
absence of small size bound states between two elementary
particles which could be produced by the singular potential
g/rn+1 if the cutoff parameter is too small. Indeed, the highly
singular nature of the ADD gravitational potential introduces
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a fall-to-center problem, where there must exist some new
physics mechanism that cuts off the gravitational potential
below some cutoff radius rc. To solve the cutoff problem em-
pirically, we will use simultaneously two experimental facts:
The absence of the collapsed gravitational bound states of
elementary particles and the difference between the measured
and calculated (using QED) transition energy. In this way we
can get conservative limits on the size of the extra dimensions
by excluding the area of unknown physics at distances smaller
than the electroweak scale.

II. OVERVIEW OF THE ADD MODEL

The ADD model was first proposed in Ref. [2] and in-
troduced n extra spatial compactified dimensions of size R.
There is also a change to the Planck mass, where a higher-
dimensional Planck mass M is defined with respect to R and
replaces the observed three-dimensional Planck mass MPl,(cMPl

h̄

)2

= Rn
(cM

h̄

)n+2

. (1)

This means that Gauss’s law can be applied to the grav-
itational potential for two masses m1 and m2 separated by a
distance r,

V (r) = −Gm1m2

r
for r � R,

−Gm1m2Rn

rn+1
= − h̄n+1

cn−1Mn+2

m1m2

rn+1
for r � R, (2)

where G = 6.674 × 10−11 m3 kg−1 s−2 is the regular gravita-
tional constant. The long-range component of the potential
matches the regular Newtonian gravitational potential that
is known to be accurate from μm scales to astronomical
scales. However, the short-range component has a more sin-
gular form, therefore this is the region where the gravitational
potential can become significantly stronger with extra dimen-
sions.

For atomic calculations it is convenient to present a relation
between the Planck mass M for 4 + n dimensions and the
radius of extra dimensions R in the following form:

Mc2 = (1.22 × 1019)
2

n+2 10− 6n
n+2

(
3.73aB

R

) n
n+2

GeV. (3)

We introduce the dimensionless variable S to describe the
ratio of the three-dimensional gravitational and Coulomb po-
tential

S ≡ Gm1m2

e2
= m1m2

αM2
Pl

, (4)

and therefore the short-range ADD potential can be written as

V (r) = − h̄cαSRn

rn+1
. (5)

We can also consider the gravity-Coulomb boundary

h̄cαSRn

rn+1
gc

= e2

rgc
, (6)

which provides the cutoff radius rgc = S1/nR for the applica-
bility of the perturbation theory for n > 1. Indeed, for n > 2

the matrix elements of V (r) = g/rn+1 are dominated by the
small distance integral near the cutoff radius rc,

∫
b d3r/rn+1 ∼

1/rn−2
c . For n = 2 the divergence is logarithmic. We can

present the correction to energy exactly as

δE = 〈ψ |H |ψ〉 − 〈ψ0|H0|ψ0〉
= 〈ψ0|H − H0|ψ0〉 + 〈ψ |H |ψ〉 − 〈ψ0|H |ψ0〉, (7)

where H − H0 = V (r) is the gravitational potential. Since in
the area r < rgc the correction to the wave function is not
small, ψ − ψ0 � ψ0 for r � rgc, the first-order perturbation
theory result is incorrect even if δE is small. Indeed, in this
case the last two terms in Eq. (7) are bigger than the first
term presenting the first-order correction to the energy. The
correction to energy δE is small since the volume occupied by
the perturbation V (r) is small. However, inside this volume
the perturbation is much bigger than the Coulomb potential
and the correction to the wave function is very large.

One may say that the distance rgc may be associated with
the scale where all interactions have a comparable strength.

III. THE PERTURBATION APPROACH

As mentioned, we expect that perturbation theory for the
potential V (r) = g/rn+1 is applicable for n = 1 and may be
not applicable for n > 1. To make a link to ADD theory, we
should find estimates for the size of the extra dimensions Rn,
which determines the area of the highly singular gravitational
potential, V (r) = g/rn+1 for r < Rn. We will do these first es-
timates using experimental data from muonium, postronium,
and hydrogen spectra and perturbation theory.

For n = 1, we use the known expectation values of 1/r2

potentials [20] and obtain the energy shift produced by the
potential Eq. (5),

δE1 = h̄cαSRZ2

n3
p

(
l + 1

2

)
a2

, (8)

where a is the reduced atomic Bohr radius, Z is the nuclear
charge (in units of proton electric charge e), np is the principal
quantum number, and l is the angular momentum quantum
number.

For n = 2 and n � 3, we estimate leading terms enhanced
by the small cutoff parameter rc in the first-order perturbation
energy shift for s orbitals:

δE2 = 4h̄cαSR2Z3

n3
pa3

ln
( a

rc

)
, (9)

δEn�3 = 4h̄cαSRnZ3

(n − 2)n3
pa3rn−2

c

. (10)

Note that for p orbitals, the energy shift for n > 1 is negli-
gible compared to the s-wave shift. We consider two different
choices for the cutoff parameter rc. First, we consider the point
rgc where the gravitational and Coulomb potentials are equal.
This choice corresponds to the boundary of applicability of the
perturbation theory. Defining the variable λ ≡ 1

n3
i
− 1

n3
j

as the

inverse cubed principal quantum number difference of the two
s-wave states, we determine the size for any extra dimensions
Rn for a given energy shift from gravity for a transition be-
tween s orbitals ni → n f ; for the 2s-2p1/2 transition we should
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TABLE I. Input parameters for simple systems. All systems have
an atomic charge Z = 1 and reduced Bohr radius aB (with the excep-
tion of positronium with 2aB).

System �E = Eexpt − Etheor Max. �E (eV) Ref.

H 1s-2s −0.9 (5.4) kHz 2.2 × 10−11 [25]
H 1s-3s 1.2 (4.1) kHz 2.2 × 10−11 [26]
Mu 1s-2s 5.6 (9.9) MHz 6.4 × 10−8 [27]
Mu 2s-2p1/2 0.084 (2.500) MHz 1.08 × 10−8 [28]
Ps 1s-2s −5.78 (3.5) MHz 1.3 × 10−8 [29–31]

take λ = 1/8. Assuming a cutoff radius rc = rgc = S1/nR from
equality of the gravitational and Coulomb potentials, we
obtain

R1 = a2δE

2h̄cαSZ2λ
, (11)

R2 =
√

a3δE

4h̄cαSZ3λ ln(a/S1/nR2)
, (12)

Rn�3 =
√

a3(n − 2)δE

4h̄cαS2/nZ3λ
. (13)

Note for n = 2, R2 must be obtained using iterations; all other
Rn can be trivially calculated.

To have inputs for δE , we consider the maximal energy
shift between experimental and theoretical energy levels in
simple systems. The systems were chosen due to their small
deviation between theoretical and experimental results, which
is presented in Table I. Spectroscopy results for the hydrogen
and muonium Lamb shifts are new, while muonium 1s-2s
and positronium measurements are older; see Refs. [21,22]
for recent reviews in muonium and positronium spectroscopy.
Significant improvements for muonium and positronium 1s-2s
spectroscopy are expected in the near future [23,24].

In our calculations, we use the S values for each system:
See = 2.4 × 10−43 for positronium and Seμ = 4.9 × 10−41 for
muonium. For hydrogen, stable gravitational bound states
could be formed between an electron and pointlike quark.
However, when we calculate the gravitational energy shift,
the total proton mass density defines the strength of the
gravitational potential. For n > 2, the quark-electron potential
V (r) = g/rn+1 with a cutoff rc, which is very small on an
atomic scale, is practically equivalent to the contact potential
V (r) = Cδ(r), where C = ∫

V (r)d3r. For a finite-size proton
or nucleus this approximation gives a potential proportional to
the mass density mρ(r), where

∫
ρ(r)d3r = 1. In light atoms,

the s-wave electron wave function tends to be constant at
r → 0 and the finite size of the nucleus has no effect, i.e.,
we may take V (r) = Cδ(r) for n > 2.

For n = 1 the effect of the potential V (r) = g/r2 is not
sensitive to both the cutoff radius and nuclear size. For n = 2
there is only a very weak logarithmic sensitivity to these pa-
rameters. Thus we may conclude that the formulas presented
above may be used to estimate the energy shift for a hydrogen
atom with Sep = 4.4 × 10−40. Use of the proton mass (instead
of the quark mass) for the estimate of the cutoff parameter

overestimates rc and makes the limits on R weaker but more
reliable.

A smaller value of the cutoff distance rc comes from the
condition of the absence of the gravitational bound states
of elementary particles (since they have not been observed
experimentally). The estimate follows from the equality of
the relativistic kinetic energy h̄c/r and gravitational energy
Eq. (2) for weakly bound states. It leads to

(rc/R)n ∼ m1m2/M2
Pl, (14)

which gives

rc ∼ α1/nrgc. (15)

This choice leads to stronger constraints on the size of the
extra dimensions (see Table IV). Note that we still use the
nonrelativistic expression for the gravitational interaction (2).
The estimation of the role of the relativistic effects is pre-
sented in the Appendix. Relativistic corrections increase the
gravitational interaction and make the constraint on the radius
of extra dimensions R stronger.

A. Deuteron binding energy

The wave function of the deuteron may be found using
the short-range character of the strong interaction and the
relatively small binding energy of the deuteron. Outside the
interaction range, we use the solution to the Schrödinger equa-
tion for zero potential. Within the interaction range r0 = 1.2
fm, the wave function has a constant value for the s orbital,

ψ (r) =
{

Be−κr

r for r > r0,

B J (0)
r0

for r < r0,
(16)

where the normalization constant B is given by 4πB2 = 2κ for
κ = √

2m|E | = 4.56 × 107 eV (reduced mass m = mp/2 and
binding energy |E | = 2.22 MeV). The Jastrow factor, J (0) =
0.4 [32], is included to account for the nucleon repulsion at a
short distance. For n = 1 we obtain

δE1 = −2κR1αSpn

r0
, (17)

where Spn = 0.81 × 10−36, αSpn = 0.59 × 10−38. Following
Ref. [33] we take the difference between experimental [34]
and theoretical [35] results as Eexpt − Etheor = −13.7 eV. This
gives R1 < 3 × 1016 m.

For n > 1 the quark-quark gravitational potential V (r) =
−g/rn+1 is more singular than the strong interaction, so the
latter may be neglected in the area r ∼ rc. The cutoff radius
rc is very small on a nuclear scale, so the gravitational inter-
action may be approximated by the contact potential V (r) =
−Cδ(r), where C = − ∫

V (r)d3r. This contact interaction is
similar to the weak interaction mediated by the Z boson. From
the results of the weak effects calculation we know that the
finite size of the nucleons produces a suppression of the effects
described by the Jastrow factor J (0) [32]. After accounting for
this factor we may assume that nucleons are pointlike particles
with an interaction V (r) = −Cδ(r).
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TABLE II. Parameters of extra dimensions obtained from the
deuteron data. n is the number of extra dimensions, R is the size of
extra dimensions, rc is the cutoff parameter, and M is the Planck mass
for extra dimensions (3). Numbers in square brackets mean powers
of ten.

n R rc Mc2

(m) (m) (GeV)

2 5.1 4.5[−19] 22
3 4.8[−06] 9.6[−19] 25
4 3.8[−09] 1.1[−18] 32
5 5.2[−11] 1.2[−18] 38
6 3.0[−12] 1.3[−18] 43
7 4.0[−13] 1.4[−18] 47

Using the wave function in Eq. (16) we obtain the follow-
ing estimate for the energy shift in the case of n > 1,

δEn = 〈ψ | − Cnδ(r)|ψ〉 = −CnκJ (0)2

2πr2
0

= −Cn0.8 × 1036 eV

m2
, (18)

where for n = 2,

C2 = 4παSpnR2
2 ln

r0

rc
, (19)

and for n > 2,

Cn = 4παSpnR2
n

(n − 2)

(
Rn

rc

)n−2

. (20)

We can estimate the cutoff radius rc from the condition of the
absence of the small size gravitational bound states Eq. (14).
Note that we want to exclude the gravitational bound state
for two quarks while all quarks contribute to the deuteron
binding energy. To have a conservative estimate of the limits
on R and M, we use a constituent quark mass mq = 300 MeV
in Eq. (14) (mass mq ∼ 5 MeV would give a smaller rc, big-
ger energy shifts, and stronger limits). Using Eexpt − Etheor =
−13.7 eV we obtain estimates for Rn and Mn presented in
Table II, and Figs. 1 and 2. Formally, these estimates appear to
be the strongest constraints among two-body systems. How-
ever, deuteron is a system with a strong interaction and these
constraints are probably less reliable than the constraints from
hydrogen, muonium, and positronium. In any case, constraints
from deuteron should be treated as order-of-magnitude esti-
mates.

IV. NUMERICAL CALCULATIONS

We performed the numerical calculations of the energy
shifts caused by the gravitation potential in order to find limits
on the size of extra dimensions R. We do this in two ways.
First, we use the perturbation theory (PT) approach described
in the previous section. Second, we solve Dirac equations for
the 1s, 2s, 2p1/2, 3s states of hydrogen, muonium, and positro-
nium. The energy shift is found as the difference of energies
calculated in the Coulomb potential and in the potential with
an added gravitational contribution. The size of extra dimen-
sions R is used in this approach as a fitting parameter to fit

FIG. 1. Upper limits on the size of extra dimension R for varying
number of extra dimensions n based on Tables II and IV. Transitions
1s-2s and 1s-3s in hydrogen as well as 1s-2s and 2p1/2-2s in muo-
nium give practically the same curves.

the input energy shifts from Table I (we call these shifts “ex-
perimental” shifts and use the notation �Eexpt for them). The
calculations with Dirac equations are done to check whether
PT actually works. Note that a small value of the correction
to the energy does not necessarily mean that PT is applicable.
The correction is small because it comes from a very small
region in the vicinity of the cutoff radius. However, in this
region the change of the potential is not small, leading to a
large change in the wave function and the breaking of PT.

We perform the calculations using two ways of defining the
cutoff parameter rc [Vg(r) = Vg(rc) for r < rc]. Using rc = rgc

[see Eq. (6)] leads to conservative estimates of the size of
extra dimensions which are in agreement with the perturbation
theory calculations. The corresponding results are presented
in Table III. In another approach we use a much smaller value
of rc which we find from the condition of the absence of the
small size gravitational bound states of elementary particles.

FIG. 2. Lower limits on the Planck mass M for varying number
of extra dimensions n based on Tables II and IV. Transitions 1s-2s
and 1s-3s in hydrogen as well as 1s-2s and 2p1/2-2s in muonium
give practically the same curves.
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TABLE III. Parameters of extra dimensions obtained from comparing experimental and theoretical energy shifts. Experimental shifts
�Eexpt are taken from Table I. Parameter n is the number of extra dimensions; �Ea is the energy shift given by Eqs. (8)–(10); �EPT0 =
〈ψ (0)

ns |V |ψ (0)
ns 〉 − 〈ψ (0)

1s |V |ψ (0)
1s 〉, where ψ (0) are unperturbed wave functions; �EPT = 〈ψns|V |ψns〉 − 〈ψ1s|V |ψ1s〉, where ψ are wave functions

obtained by solving Dirac equations including Coulomb and gravitational potentials. Energy shifts �ED, obtained using Dirac equations, are
fitted to �Eexpt by varying size of extra dimensions R, i.e., �ED = �Eexpt. The values of Ra are given by Eqs. (11)–(13); RD is chosen to fit
the experimental energy shift by solving Dirac equations; rgca = S1/nRa, rgc = S1/nRD. M is the Planck mass for extra dimensions (3). The
calculations were done at the cutoff parameter rc = rgc. Due to the selection of the cutoff parameter, there is no area where the gravitational
potential (the perturbation) is bigger than the Coulomb potential. Equality �EPT0 = �EPT = �ED indicates that perturbation theory works for
such a cutoff parameter. Numbers in square brackets mean powers of ten.

�Ea �EPT0 �EPT Ra rgca RD rgc Mc2

n (eV) (eV) (eV) (m) (m) (m) (m) (GeV)

Hydrogen, 1s-2s, �ED = �Eexpt = 2.23 × 10−11 eV
1 2.23[−11] 2.23[−11] 2.23[−11] 5.63[+16] 2.48[−23] 5.63[+16] 2.48[−23] 80.5
2 2.41[−11] 2.27[−11] 2.27[−11] 3.06[+02] 6.42[−18] 3.18[+02] 6.68[−18] 2.75
3 1.69[−11] 2.26[−11] 2.26[−11] 3.37[−04] 2.56[−17] 2.93[−04] 2.23[−17] 2.15
4 1.29[−11] 2.15[−11] 2.15[−11] 2.50[−07] 3.62[−17] 1.90[−07] 2.75[−17] 2.36
5 1.09[−11] 2.19[−11] 2.19[−11] 3.30[−09] 4.44[−17] 2.31[−09] 3.11[−17] 2.54
6 9.44[−12] 2.20[−11] 2.20[−11] 1.86[−10] 5.13[−17] 1.21[−10] 3.33[−17] 2.70
7 8.04[−12] 2.14[−11] 2.14[−11] 2.40[−11] 5.73[−17] 1.44[−11] 3.44[−17] 2.88

Hydrogen, 1s-3s, �ED = �Eexpt = 2.19 × 10−11 eV
1 2.22[−11] 2.22[−11] 2.22[−11] 5.53[+16] 2.44[−23] 5.08[+16] 2.24[−23] 83.3
2 2.41[−11] 2.27[−11] 2.27[−11] 3.03[+02] 6.36[−18] 3.03[+02] 6.36[−18] 2.82
3 1.62[−11] 2.16[−11] 2.16[−11] 3.34[−04] 2.54[−17] 2.74[−04] 2.08[−17] 2.24
4 1.32[−11] 2.20[−11] 2.20[−11] 2.48[−07] 3.59[−17] 1.83[−07] 2.66[−17] 2.42
5 1.12[−11] 2.23[−11] 2.23[−11] 3.27[−09] 4.40[−17] 2.22[−09] 2.99[−17] 2.61
6 9.58[−12] 2.24[−11] 2.24[−11] 1.84[−10] 5.08[−17] 1.16[−10] 3.20[−17] 2.79
7 8.54[−12] 2.28[−11] 2.28[−11] 2.38[−11] 5.68[−17] 1.42[−11] 3.38[−17] 2.92

Muonium, 1s-2s, �ED = �Eexpt = 6.41 × 10−8 eV
1 6.41[−08] 6.41[−08] 6.41[−08] 1.43[+21] 7.12[−20] 1.43[+21] 7.12[−20] 2.7
2 7.04[−08] 6.48[−08] 6.48[−08] 5.67[+04] 4.00[−16] 5.95[+04] 4.20[−16] 0.20
3 4.74[−08] 6.32[−08] 6.32[−08] 3.73[−02] 1.37[−15] 3.21[−02] 1.18[−15] 0.13
4 3.90[−08] 6.50[−08] 6.50[−08] 2.31[−05] 1.94[−15] 1.80[−05] 1.51[−15] 0.11
5 3.32[−08] 6.65[−08] 6.65[−08] 2.73[−07] 2.38[−15] 1.97[−07] 1.71[−15] 0.11
6 2.71[−08] 6.32[−08] 6.32[−08] 1.43[−08] 2.75[−15] 9.31[−09] 1.78[−15] 0.10
7 2.54[−08] 6.78[−08] 6.79[−08] 1.76[−09] 3.07[−15] 1.11[−09] 1.93[−15] 0.098

Muonium, 2s-2p1/2, �ED = �Eexpt = 1.08 × 10−8 eV
1 1.00[−8] 1.02[−8] 1.02[−8] 2.55[+21] 1.25[−19] 2.40[+21] 1.19[−19] 2.3
2 1.16[−8] 1.07[−8] 1.07[−8] 6.18[+04] 4.33[−16] 6.48[+04] 4.57[−16] 0.19
3 8.01[−9] 1.08[−8] 1.08[−8] 4.05[−02] 1.48[−15] 3.52[−02] 1.29[−15] 0.12
4 6.26[−9] 1.07[−8] 1.07[−8] 2.50[−05] 2.09[−15] 1.93[−05] 1.62[−15] 0.11
5 5.18[−9] 1.06[−8] 1.06[−8] 2.96[−07] 2.56[−15] 2.08[−07] 1.81[−15] 0.10
6 4.53[−9] 1.06[−8] 1.06[−8] 1.55[−08] 2.96[−15] 1.01[−08] 1.93[−15] 0.098
7 3.98[−9] 1.06[−8] 1.06[−8] 1.90[−09] 3.31[−15] 1.16[−09] 2.02[−15] 0.095

Ps, 1s-2s, �ED = �Eexpt = 1.34 × 10−8 eV
1 1.34[−8] 1.34[−8] 1.34[−8] 2.49[+23] 5.97[−20] 2.49[+23] 5.97[−20] 0.49
2 1.50[−8] 1.26[−8] 1.26[−8] 1.04[+06] 5.08[−16] 1.10[+06] 5.39[−16] 0.047
3 9.71[−9] 9.71[−9] 9.71[−9] 2.86[−01] 1.78[−15] 2.43[−01] 1.51[−15] 0.038
4 7.97[−9] 7.97[−9] 7.97[−9] 1.14[−04] 2.51[−15] 8.75[−05] 1.94[−15] 0.040
5 6.58[−9] 6.59[−9] 6.59[−9] 1.03[−06] 3.08[−15] 7.20[−07] 2.16[−15] 0.042
6 5.68[−9] 5.68[−9] 5.68[−9] 4.51[−08] 3.56[−15] 2.93[−08] 2.31[−15] 0.044
7 5.16[−9] 5.17[−9] 5.17[−9] 4.87[−09] 3.97[−15] 3.02[−09] 2.46[−15] 0.045

In practice this means that the wave function, found from solv-
ing the Dirac equation, does not oscillate at small distances.
We found that in all cases rc = rgca/100, where rgca = S1/nRa,
in agreement with an estimate from Eq. (14). The results are
presented in Table IV and Figs. 1 and 2.

In Tables III and IV we present energy shifts and corre-
sponding values of rc, R, and M obtained in several different
ways. �Ea is calculated using formulas (8)–(10) but with the

radius of extra dimensions found from the fitting of the energy
shift �ED obtained by solving the Dirac equations. �EPT0 =
〈ψ (0)

1s |V |ψ (0)
ns 〉, where ψ (0) are unperturbed wave functions.

To avoid a misunderstanding, we should note that we used
a slightly different method of cutoff in the analytical approach
and in the numerical solution of the Dirac equation. �EPT0 =
�Ea if integration for �EPT0 is done from rc to infinity, as
in the analytical approach. We did such calculations as a test
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TABLE IV. The same as Table III but the calculations were done at the smaller values of the cutoff parameter rc, chosen from the condition
of the absence of the gravitational bound states of elementary particles [this rc also agrees with estimate (14)]; the values of Ra are given by
Eqs. (11)–(13). Energy shifts �ED, obtained using Dirac equations, are fitted to �Eexpt by varying size of extra dimensions RD, and M is the
Planck mass for extra dimensions (3). �Ea is the energy shift given by Eqs. (8)–(10) for R = RD; �EPT0 = 〈ψ (0)

ns |V |ψ (0)
ns 〉 − 〈ψ (0)

1s |V |ψ (0)
1s 〉,

where ψ (0) are unperturbed wave functions; �EPT = 〈ψns|V |ψns〉 − 〈ψ1s|V |ψ1s〉, where ψ are wave functions obtained by solving Dirac
equations including Coulomb and gravitational potentials. The main contribution to �E comes from the area where the gravitational potential
is much bigger than the Coulomb potential. Large differences between the values of �EPT0, �EPT, and �ED indicate that perturbation theory
is not applicable for this small value of the cutoff parameter rc. Therefore, all constraints are obtained using �ED.

�Ea �EPT0 �EPT Ra rc RD Mc2

n (eV) (eV) (eV) (m) (m) (m) (GeV)

Hydrogen, 1s-2s, �ED = �Eexpt = 2.23 × 10−11 eV
2 1.01[−12] 9.49[−13] 1.26[−08] 3.06[+02] 6.42[−20] 5.73[+01] 6.5
3 7.58[−13] 7.59[−13] 8.41[−10] 3.37[−04] 2.56[−19] 2.35[−05] 9.8
4 7.85[−13] 7.86[−13] 3.23[−10] 2.50[−07] 3.62[−19] 1.08[−08] 16
5 8.04[−13] 8.05[−13] 1.96[−10] 3.30[−09] 4.44[−19] 1.07[−10] 23
6 8.17[−13] 8.17[−13] 1.36[−10] 1.86[−10] 5.13[−19] 4.97[−12] 30
7 8.25[−13] 8.26[−13] 9.73[−11] 2.40[−11] 5.73[−19] 5.59[−13] 36

Hydrogen, 1s-3s, �ED = �Eexpt = 2.19 × 10−11 eV
2 1.10[−12] 1.03[−12] 1.33[−08] 3.03[+02] 6.36[−20] 5.69[+01] 6.5
3 8.18[−13] 8.19[−13] 7.21[−10] 3.34[−04] 2.54[−19] 2.33[−05] 9.8
4 8.48[−13] 8.49[−13] 3.49[−10] 2.48[−07] 3.59[−19] 1.07[−08] 16
5 8.61[−13] 8.62[−13] 1.09[−10] 3.27[−09] 4.40[−19] 1.06[−10] 23
6 8.74[−13] 8.75[−13] 7.92[−11] 1.84[−10] 5.08[−19] 4.91[−12] 30
7 8.85[−13] 8.86[−13] 7.33[−11] 2.38[−11] 5.68[−19] 5.53[−13] 36

Muonium, 1s-2s, �ED = �Eexpt = 6.41 × 10−8 eV
2 2.84[−09] 2.62[−09] 2.24[−05] 5.67[+04] 4.00[−18] 1.01[+04] 0.49
3 2.17[−09] 2.17[−09] 1.55[−06] 3.73[−02] 1.37[−17] 2.60[−03] 0.58
4 2.25[−09] 2.25[−09] 9.50[−07] 2.31[−05] 1.94[−17] 1.00[−06] 0.78
5 2.32[−09] 2.33[−09] 1.60[−06] 2.73[−07] 2.38[−17] 8.89[−09] 0.97
6 2.35[−09] 2.35[−09] 4.77[−07] 1.43[−08] 2.75[−17] 3.83[−10] 1.14
7 2.37[−09] 2.37[−09] 2.82[−07] 1.76[−09] 3.07[−17] 4.09[−11] 1.28

Muonium, 2s-2p1/2, �ED = �Eexpt = 1.08 × 10−8 eV
2 4.06[−10] 3.81[−10] 1.65[−5] 6.18[+4] 4.00[−18] 1.01[+04] 0.49
3 3.11[−10] 4.16[−10] 3.31[−6] 4.05[−2] 1.37[−17] 2.61[−03] 0.58
4 3.23[−10] 5.37[−10] 6.60[−7] 2.50[−5] 1.94[−17] 1.00[−06] 0.78
5 3.27[−10] 6.54[−10] 2.38[−7] 2.56[−7] 2.38[−17] 8.87[−09] 0.97
6 3.32[−10] 7.75[−10] 1.98[−7] 1.55[−8] 2.75[−17] 3.83[−10] 1.1
7 3.41[−10] 9.11[−10] 6.35[−7] 1.90[−9] 3.07[−17] 4.09[−11] 1.3

Ps, 1s-2s, �ED = �Eexpt = 1.34 × 10−8 eV
2 5.89[−10] 5.21[−10] 6.02[−06] 1.04[+06] 5.08[−18] 1.85[+05] 0.11
3 4.55[−10] 4.55[−10] 3.27[−07] 2.86[−01] 1.78[−17] 1.99[−02] 0.17
4 4.72[−10] 4.73[−10] 2.00[−07] 1.14[−04] 2.51[−17] 4.92[−06] 0.27
5 4.81[−10] 4.82[−10] 7.83[−08] 1.03[−06] 3.08[−17] 3.34[−08] 0.38
6 4.91[−10] 4.92[−10] 8.26[−08] 4.51[−08] 3.56[−17] 1.21[−09] 0.48
7 4.93[−10] 4.94[−10] 4.12[−08] 4.87[−09] 3.97[−17] 1.13[−10] 0.58

and found good agreement between the two. However, in
the tables we present values of �EPT0 and �EPT found by
integrating from zero to infinity. This is done to make a mean-
ingful comparison with the energy shift obtained from solving
the Dirac equations. The same gravitational potential is used
to calculate �EPT0, �EPT, and �ED in the Dirac equations. If
�EPT0 = �EPT = �Eexpt (we have �ED = �Eexpt), then one
could say that PT works. We see that this is the case only for
rc = rgca (Table III).

The values of Ra and rgca are given by Eqs. (11)–(13) and
(6). The values of RD and rgc are found from solving the Dirac
equations. We believe that the results obtained with the use of
Dirac equations are more reliable since they are not based on

the perturbation theory. The Planck mass for extra dimensions
M was found using the Dirac equation values of R (RD).

V. CONCLUSION

In the present paper we investigated possibilities to probe
the ADD gravitational potential Eq. (2) at subatomic dis-
tances. This potential does not include relativistic corrections.
However, as it is demonstrated in the Appendix, relativistic
corrections increase the gravitational interaction and lead to
much stronger constraints. Therefore, our estimates of the
limits on the size of extra dimensions, based on the poten-
tial Eq. (2), are conservative. By imposing the condition that
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there are no gravitational bound states between the considered
elementary particles (which have not been observed), we cut
off an area of unknown physics at distances smaller than the
electroweak scale. Constraints on the size of extra dimensions
R and Planck mass M, obtained using the difference between
the experimental and calculated values of the deuteron binding
energy, have been presented in Table II. However, deuteron
is a system with a strong interaction and these constraints
are probably less reliable than the constraints from hydro-
gen, muonium, and positronium presented in Table IV. The
perturbation theory is not applicable if the main contribution
to the energy shift comes from the area where the gravita-
tional potential exceeds the Coulomb potential. Therefore, we
obtain the energy shift using a solution of the Dirac equa-
tion including both Coulomb and gravitational potentials. The
corresponding limit on the size of extra dimensions is denoted
by RD.

We investigate the gravitational potential at subatomic dis-
tances and obtain stronger constraints than that obtained from
the spectra of hydrogen molecules where the distance between
the nuclei exceeds the Bohr radius—see Ref. [19]. Our con-
straints are also stronger than that presented in Ref. [15] which
are based on the estimate of the radiative correction.
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APPENDIX: RELATIVISTIC ESTIMATES

As known, all types of energy contribute to the gravita-
tional potential. For example, the kinetic energy of nearly

massless quarks (mu ≈ 3 MeV, md ≈ 5 MeV) makes a sig-
nificant contribution to the nucleon mass. The kinetic energy
of an ultrarelativistic particle may be estimated as Ek = pc ∼
h̄c/r, so mass m in the gravitational potential should be
replaced by h̄/cr, and the corresponding gravitational inter-
action energy of two particles is

U ∼ −G

r

(
h̄

cr

)2(Rn

r

)n

. (A1)

For weakly bound states the kinetic energy and potential
energy compensate each other, Ek = |U |, and this equality
defines the cutoff radius excluding the formation of the bound
states, rc = h̄/Mnc, where Mn is the Planck mass for extra
n dimensions—see Eq. (1). Note that one can find similar
estimates in Ref. [36].

Perturbation theory gives the following estimate for the
energy shift produced by the potential Eq. (A1) with the cutoff
rc = h̄/Mnc (in natural units h̄ = c = 1):

δE ∼ 4πψ (0)2

nM2
n

. (A2)

For hydrogen δE < 2.2 × 10−11 eV and we obtain the limit
Mn > 100 GeV/n1/2, which is much stronger than the limit
obtained using the nonrelativistic gravitational potential. For
deuterium the limit is even stronger, Mn > 170 GeV/n1/2.

Thus, we conclude that the use of the nonrelativistic gravi-
tational potential underestimates the energy shift δE and gives
conservative limits on the Planck mass Mn and radius of extra
dimensions Rn.
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