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Atomic-level-mixing contribution to the P,T -odd Faraday effect as an enhancement
factor in the search for P,T -odd interactions in nature
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Recently, a P,T -odd Faraday effect (PTFE), optical rotation in an external electric field parallel to the light
propagation direction, was discussed as a promising tool for observation of the electron electric dipole moment
in the intracavity absorption spectroscopy with atoms or molecules. The main mechanism leading to this effect,
the linear Stark splitting of atomic levels (PTFE, LS) is well known. This mechanism is similar to the Zeeman
splitting mechanism in case of the ordinary Faraday effect, i.e., optical rotation in an external magnetic field. In
this paper we analyze the other possible mechanisms of PTFE, in particular, the atomic-level-mixing mechanism
(PTFE, LM). In our analysis we perform considering PTFE (as well as the ordinary FE) as a kind of electro-
(magneto-) optical circular birefringence. For the ordinary FE the level-mixing mechanism (FE, LM) is known
apart from the main Zeeman level splitting mechanism (FE, LS). However, (PTFE, LM) mechanism for the PTFE
was never considered in literature. Usually, the (FE, LS) mechanism dominates and the same was expected for
(PTFE, LS). We demonstrate, however, that with heavy diatomic molecules, in particular in PbF, the contribution
of (PTFE, LM) may essentially exceed the (PTFE, LS). This promises an additional enhancement of P,T -odd
effects in experiments with PbF molecule and makes this molecule one of the best candidates for performing
such experiments.

DOI: 10.1103/PhysRevA.106.052803

I. INTRODUCTION

A search for the interactions (forces) in the nature violating
the fundamental symmetries is the most long-standing fun-
damental problem in physics. The basic equations of motion
in classical and quantum theories are invariant under space-
inversion (P), charge-conjugation (C), and time-reflection (T )
operations. The P-noninvariant interactions were predicted in
[1] and discovered in [2]. In 1964 the violation of combined
CP symmetry was discovered in high-energy physics [3]. Due
to the CPT invariance which is believed to be always true (it
is connected to causality) means also the T violation.

A very promising way to search for the P, T -odd inter-
actions is the experiments with atomic systems. In particular,
the existence of the electric dipole moment (EDM) for any
particle which is not truly neutral (i.e., does not coincide with
itself after charge conjugation) or for the closed system of
such particles would mean the violation of both P and T
symmetries. The examples of truly neutral particles are the
photon, Z boson, but the electron, quark, nucleon, nucleus,
atom, or molecule may possess an EDM. In 1950 it was first
suggested to observe the neutron’s EDM by the magnetic
resonance method [4]. Later it was found theoretically that
the electron EDM (eEDM) should be strongly enhanced in
heavy atoms, i.e., the atomic EDM should be much larger
than the eEDM [5]. Even stronger enhancement of P, T -odd
effects occurs in heavy diatomic heteronuclear molecules. For
the molecules with closed electron shells (like TlF) the Schiff
moment (connected with nuclear EDM) of the Tl nucleus is

enhanced [6], for the molecules with open electronic shells the
enhancement occurs for the eEDM [7–10]. In the latter case
the enhancement is due to the � doubling of the rotational
molecular levels, including the ground state. Here � is the
projection of the total electronic orbital angular momentum
on the molecular axis. For heavy molecules � should be re-
placed by �, where � includes also the projection of the total
electron spin. The �-doubling enhancement of P-odd effects
in heavy diatomic molecules on the basis of neutral currents
in the standard model (SM) was first discussed in [11]. The
� doubling as the origin of enhancement of P, T -odd effects
was considered in [7–9]. The larger the value of � for the
ground (or metastable) electronic state in a certain molecule,
the smaller is the splitting between the � components with
opposite parities and the stronger is the enhancement of the
P, T -odd effects. In case of the states with � = 1 the en-
hancement coefficient K may reach the value K = 109.

The most advanced result for the lower bounds for parti-
cle’s EDM is obtained now by ACME collaboration for eEDM
with the ThO molecule [12]. Their result, obtained via the ob-
servation of the electron spin precession in an external electric
field, reads as |de| < 10−29 e cm (e is the electron charge). In
principle, the P, T -odd interaction of the EDM of the particle
with an external electric field is not a unique P, T -odd effect
which can be observed in atomic physics. Another such effect
is the P, T -odd interaction of an electron with the nucleus
in atom or molecule [7,9]. Both effects are indistinguishable
in any experiment with any particular atom or molecule, but
can be distinguished in a series of experiments with different
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species [13,14]. It is convenient to express P, T -odd electron-
nucleus interaction via equivalent eEDM deqv

e which produces
the same linear Stark shift of atomic levels in the same exter-
nal electric field.

Extraction of the information on de, deqv
e from experiments

with atoms or molecules is not straightforward: it requires
the knowledge of enhancement coefficients for eEDM in
atoms (molecules) which can be obtained only theoretically.
Evaluation of enhancement coefficients in heavy atoms and
especially in heavy diatomic molecules is a very complicated
problem which requires the usage of the most powerful mod-
ern numerical methods (see a discussion on the subject, for
example, in [14,15]).

The latest theoretical evaluation of eEDM on the ba-
sis of the SM gives the value de = 10−39 e cm [16]. In the
SM, the scalar-pseudoscalar-type electron-nucleus P, T -odd
interaction yields the leading contribution to paramagnetic
atoms [7,9,10]. Estimates with the two-photon model of this
interaction give the maximum prediction deqv

e ∼ 10−38 e cm
[17]. Estimates made with another scalar-pseudoscalar model
within the SM (exchange by Higgs boson) [18] also do not
give the value deqv

e larger than predicted in [17]. There exists
also a vast literature on extensions of the SM which predict
larger values for de (see, for example, [19]). However, none of
these predictions have been yet confirmed and some of them
are ruled out by existing experimental bounds [12].

Since the existing experimental bound is nine orders of
magnitude above the theoretical SM predictions, it is desirable
to consider another (apart from the electron spin precession in
an external electric field employed in [12]) possible way to
observe the P, T -odd effects in atomic physics. One of these
ways is the observation of the P, T -odd Faraday effect, the
optical rotation (rotation of the polarization plane of a photon)
in an external electric field (PTFE). The ordinary Faraday
effect (FE) is the optical rotation in an external magnetic
field. The PTFE was first considered in [20] among the other
magneto- and electro-optical effects, then mentioned in [8],
and studied theoretically and experimentally in [21] (see also
the reviews on the subject in [22,23]).

Recently it was suggested to use the fast progress in in-
tracavity absorption spectroscopy (ICAS) for observation of
the P, T -odd effects in atoms and molecules [24–28]. During
last decades the optical path length of 70 000 km for the
light propagating through an absorber within a cavity was
reached [29] and a sensitivity of 10−12 rad for observation
of birefringence in the cavity experiments [30] was reported.
In [31,32] the theoretical simulations of the experiments on
the observation of P-odd effects in atoms were described.
The techniques which were assumed to be employed in such
experiments are very close to what is necessary to observe
PTFE. The principal scheme of the proposed experiment can
be seen in Fig. 1.

In this paper we analyze the P, T -odd electro-optical ef-
fects which may be used for the observation of P, T -odd
interactions in atoms or molecules or may give an additional
contribution to PTFE. In principle, all P, T -even and -odd
magneto-, electro-, and magneto-electro-optical effects were
considered in a seminal paper [20]. In this work, written more
than 40 years ago, all the known to this time as well as the
“new” effects were included in the consideration. Some of

FIG. 1. Principal scheme of the proposed experimental setup.
The laser beam travels back and forth within the cavity. In interaction
volume there is an electric field oriented along the direction of the
laser beam. Through this interaction volume, the molecular beam
crosses the laser beam in the transverse direction.

those “new” effects were discovered afterwards, the others
remain “new” up to now, among the latter ones PTFE. It
is important to note that the authors of [20] were interested
in the symmetry properties of the effects in liquids where
the T noninvariance may arise due to dissipation of energy.
Nevertheless, experiments on the search for T noninvariance
were suggested in gases, liquids, and even solids [10]. It is
commonly assumed that the dissipation effects, i.e., interac-
tion of particular atom (molecule) with environment can be
made sufficiently small or can be taken into account. This
can be achieved easier in gaseous phase, especially with the
use of atomic (molecular) beams. In this paper we are inter-
ested only in the latter case. Moreover, we will consider only
chiral-odd effects. The chiral transformation may be defined
as the mirror reflection (M) and is connected with the space
inversion via MR(π ) = P , where R(π ) is the rotation by an
angle π . The circular birefringence is the chiral-odd process
since Mn± = n∓ and M(n+ − n−) = −(n+ − n−) but the lin-
ear birefringence is not. Here n± are the refractive indices
for the right (left) circularly polarized light. Below we will
consider the chiral-odd (M-odd) birefringence effects, con-
nected with the real parts of refractive indices Re(n+ − n−)
and ignore the chiral-odd (M-odd) dichroism effects, corre-
sponding to the imaginary parts of the refractive indices. The
experimental accuracy of measurement of optical dichroism
(difference between the absorption coefficients for the right
and left photons) as a rule is lower than the accuracy of
measurement of the optical rotation for the right and left
photons. We will consider the optical rotation as a kind of
circular birefringence as it was done, for example, in [22,23].
The ordinary Faraday effect (FE) is the chiral-odd magneto-
optical birefringence caused by an external magnetic field
[23]. It is commonly observed as a rotation of polariza-
tion plane for linearly polarized light propagating through a
medium in the presence of an external magnetic field oriented
along the direction of the light propagation. For description
of the chiral-odd processes it is convenient to introduce the
photon spin

�sph = i(�e × �e∗), (1)
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where �e is the photon polarization vector. For the linear polar-
ization �sph = 0, for the circularly polarized light

M�s±
ph = �s∓

ph. (2)

The projections �sph�ν = ±1 where �ν is the unit vector along
the light propagation direction are called chiralities. The FE is
P, T even but M odd, the PTFE is P, T odd and M odd.

Our paper is organized as follows. In Sec. II we give the
basic formulas for evaluating the optical rotation in an ex-
ternal electric field (P, T -odd Faraday effect) including both
linear Stark level splitting (LS) contribution (PTFE, LS) and
level-mixing contribution (PTFE, LM). These formulas are
necessary to start more detailed derivations for both contribu-
tions in succeeding sections. In Sec. III the detailed derivation
of the P, T -odd optical rotation via the linear Stark splitting
(PTFE, LS) mechanism is given. The formulas include the rel-
ativistic effects since the maximum PTFE rotation is expected
for heavy atoms where the relativity is important. Although
the (PTFE, LS) mechanism has been already discussed in
[24–28], such step-by-step derivation did not yet arrive in
the literature. Moreover, all these formulas are necessary to
explain the second contribution to PTFE, the P, T -odd level-
mixing (PTFE, LM) mechanism. The (PTFE, LM) mechanism
never was considered before. The full account for this mech-
anism is contained in Sec. IV. In Sec. V the comparison of
both (PTFE, LS) and (PTFE, LM) mechanisms is made. It
appears that in PbF molecule the contribution of (PTFE, LM)
to the optical rotation becomes 10 times stronger than the
contribution of (PTFE, LS). This gives an order of magnitude
additional enhancement to the optical rotation (PTFE). The
possible PTFE experiments with PbF were described in [27].
This may be considered as the main result of our studies in
this article.

II. OPTICAL ROTATION IN AN ELECTRIC FIELD

It is well known that there are two different mechanisms
that lead to the ordinary Faraday effect in an external magnetic
field: Zeeman splitting of atomic levels (FE, LS) (we have
to note that here, as throughout the text, LS stands for “level
splitting”) and atomic level mixing in magnetic field (FE, LM)
[10,33]. The first mechanism is usually dominant and is due
to the absorption of the right and left photons in transitions
between different Zeeman sublevels of two atomic states. This
leads to the different absorption frequencies and hence to the
different refractive indices n±. The additional contribution
(FE, LM) originates from the mixing of atomic levels with
different total angular momentum values F (but with the same
projections MF on the magnetic field direction) by an external
magnetic field. Magnetic field mixes the states with the same
parities, therefore, the main contribution to (FE, LM) comes
from the mixture of hyperfine sublevels JF, JF ′ having the
same parity and lying close to each other [10,33].

The similar two contributions exist also in PTFE. The
(PTFE, LS) which arises due to the linear Stark splitting of
atomic levels with account for the P, T -odd effects is fully
similar to the (FE, LS). The other contribution (PTFE, LM)
was not yet considered in the literature. This contribution
is similar to (FE, LM) and originates from the mixing of
atomic levels in an external electric field. Electric field in

the absence of P, T -odd interactions mixes the states with
opposite parities but with account for P, T -odd interactions
mixes JF and JF ′ states which as in case of (FE, LM) gives
the major contribution to (PTFE, LM).

The optical rotation angle connected with the P, T -odd
birefringence due to both (PTFE, LS) (level splitting) and
(PTFE, LM) (level mixing) mechanisms is given by the gen-
eral formula

ψ = π
l

λ
Re(n+ − n−), (3)

where l is the optical path length, λ is the wavelength of
the propagating light, and n± are the refractive indices for
the right and left circularly polarized light. In frames of the
linear optics the refractive index n(ω) for any type of the light
polarization is defined via the amplitude of the elastic forward
photon scattering by the atomic electron A(ω),

n(ω) = 1 + 2πρA(ω), (4)

where ω is the photon frequency and ρ is the atomic (molec-
ular) number density.

An expression for the photon scattering amplitude A(ω)
looks like

A(ω) =
∑

MF M ′
F

|〈γ JFMF |Â|γ ′J ′F ′M ′
F 〉|2

Eγ ′J ′F ′M ′
F

− Eγ JFMF − ω − i
2�γ ′J ′F ′

. (5)

Here γ JFMF are the quantum numbers characterizing the
state of atomic (molecular) system: J is the total angular
momentum of a system (without nuclear spin), F is the total
angular momentum including the nuclear spin, MF is the
projection of the momentum �F on the electric field direction,
and γ is the additional set of quantum numbers necessary to
characterize the state. Via Eγ JFMF we denote the energies of
atomic (molecular) system including the linear Stark splitting
components labeled by the index MF . We assume the case
of resonant scattering when the photon frequency is close to
the energy difference Eγ ′J ′F ′M ′

F
− Eγ JFMF . The linear Stark

splitting components are not necessarily resolved, the state
γ JF is assumed to be the ground state, �γ ′J ′F ′ is the natu-
ral width of the excited state. The operator Â in the matrix
element is the operator of interaction for the electromagnetic
and electron-positron fields. In the dipole approximation for
electromagnetic field this operator looks like

Â = �e �DE (6)

for E1 transition and

Â = (�e × �ν) �DM (7)

for M1 transition. In Eqs. (6) and (7), �e is the photon polariza-
tion vector. �DE is the electric dipole moment operator for the
electron

�DE = e�r, (8)

�DM is magnetic dipole moment operator for the electron

�DM = μ0(�l + 2�s), (9)

e is the electron charge, �r is the radius vector for atomic
electron, μ0 is the Bohr magneton, and �l and �s are the orbital
and spin angular momentum operators for atomic electron.
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In Eqs. (4) and (5) the contributions of both (PTFE, LS)
and (PTFE, LM) mechanisms are incorporated. To introduce
the (PTFE, LS) we should write the energies in the denomina-
tor of (5) with account for the linear Stark splitting caused by
the P, T -odd interactions:

Eγ JFMF = E (0)
γ JF + �Eγ JFMF , (10)

where E (0)
γ JF are the energies in the absence of external electric

field and �Eγ JFMF represents the linear Stark splitting

�Eγ JFMF =〈γ JFMF | �de �E |γ JFMF 〉 ≡ 〈γ JF |S|γ JF 〉deEMF .
(11)

Here E = | �E |. Inserting (11) in (5) and expanding in terms of
external field E we find

A(ω) = A0(ω) +
∑

MF M ′
F

|〈γ JIFMF |Â|γ ′J ′IF ′M ′
F 〉|2

×
[

〈γ ′J ′IF ′|S|γ ′J ′IF ′〉M ′
F

E (0)
γ ′J ′IF ′−E (0)

γ JIF −ω− i
2�γ ′J ′IF ′

− 〈γ JIF |S|γ JIF 〉MF

E (0)
γ JIF −E (0)

γ ′J ′IF ′−ω − i
2�γ ′J ′IF ′

]
Ede. (12)

In case of (PTFE, LS) in the sum over MF , M ′
F in (12) only

the terms with M ′
F − MF = ±1 contribute to the effect since

they correspond to the scattering of the right (left) circularly
polarized photons. As a result, the resonances for the right
and left photons occur at the different frequencies and the
birefringence effect arises.

Another contribution to PTFE comes from the (PTFE,
LM) mechanism. To demonstrate this we may note that the
external electric field (when P, T -odd interactions are taken
into account) mixes the states with the same space parity, in
particular, the components of the hyperfine structure for the
ground (or excited) electronic state in case of atoms or the
components of the hyperfine structure for the ground (or ex-
cited) electronic, vibronic, and rotational states for molecules.
The mixing of the hyperfine components gives the major
contribution to the (PTFE, LM). To derive the contribution
of this type we have to replace the wave functions ψγ JFMF in
the matrix element of the operator Â in (5) by functions

ψ̃γ JFMF = ψγ JFMF + deEMF

∑
F̃

〈γ JF |S|γ JF̃ 〉
E (0)

γ JF̃
− E (0)

γ JF

ψγ JF̃MF
.

(13)
Note that the linear Stark effect in an external homogeneous
electric field (which we always assume to be the case in our
discussion) mixes only F but not MF quantum numbers. After

insertion of the wave functions (13) into (5) and summation
over MF , M ′

F the terms containing the photon spin can be
singled out and the (PTFE, LM) contribution proportional to
the photon spin

i(�e∗ × �e) �E = i[(�e∗ × �ν) × (�e × �ν)] �E = (�sph �E ) (14)

in both cases of E1 and M1 photon arises.

III. LINEAR STARK SPLITTING CONTRIBUTION
TO THE P,T -ODD FARADAY EFFECT

Using (12) and going over from the Lorentz profile to the
more realistic Voigt profile we can present the linear Stark
contribution to the angle of rotation of polarization plane of
the light ψLS in the following way:

ψLS(ω) = 2π
l

λ
ρ
∑

MF ,M ′
F

(MF −M ′
F =±1)

|〈γ JFMF | �DM,E |γ ′J ′F ′M ′
F 〉|2

× 1

h̄�D

h(u, v)

�D
[〈γ JFMF | �de �E |γ JFMF 〉

+ 〈γ ′J ′F ′M ′
F | �de �E |γ ′J ′F ′M ′

F 〉], (15)

where �E is the external electric field and the vector �de will be
defined below. In (15) the Voigt parametrization of the spectral
line profile is used [10]:

g(u, v) = ImG(u, v), (16)

f (u, v) = ReG(u, v), (17)

h(u, v) = d

du
g(u, v), (18)

G(u, v) = √
πe−(u+iv)2{1 − Erf[−i(u + iv)]}, (19)

u = �ω

�D
, (20)

v = �n

2�D
. (21)

Here Erf(x) is the error function, �ω is the detuning, �D is the
Doppler width, and �n is the natural width of atomic level. We
fully neglect the collisional width as is commonly accepted for
the atomic beam experiments [25–28].

The matrix element 〈γ JFMF | �de �E |γ JFMF 〉 in (15) defines
the linear Stark splitting of atomic levels in an external electric
field when the P, T -odd interactions are taken into account. In
case of the interaction of the eEDM with an external electric
field this matrix element looks like [26,34]

〈γ JFMF | �de �E |γ JFMF 〉 = − de〈γ JFMF |(γ0 − 1) �E �|γ JFMF 〉 + dee �E

×
∑

γ ′′J ′′F ′′M ′′
F

[
〈γ JFMF |�r|γ ′′J ′′F ′′M ′′

F 〉〈γ ′′J ′′F ′′M ′′
F |(γ0 − 1) �Ec �|γ JFMF 〉

E (0)
γ ′′J ′′F ′′ − E (0)

γ JF

+ 〈γ JFMF |(γ0 − 1) �Ec �|γ ′′J ′′F ′′M ′′
F 〉〈γ ′′J ′′F ′′M ′′

F |�r|γ JFMF 〉
E (0)

γ ′′J ′′F ′′ − E (0)
γ JF

]
. (22)
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Now we can introduce the vector �de:

�de = de�nd , (23)

�nd = (γ0 − 1) � +
∑

γ ′′J ′′F ′′M ′′
F

e�r|γ ′′J ′′F ′′M ′′
F 〉〈γ ′′J ′′F ′′M ′′

F |(γ0 − 1)( �Ec �)

E (0)
γ ′′J ′′F ′′−E (0)

γ JF

+
∑

γ ′′J ′′F ′′M ′′
F

(γ0−1)( �Ec �)|γ ′′J ′′F ′′M ′′
F 〉〈γ ′′J ′′F ′′M ′′

F |e�r
E (0)

γ ′′J ′′F ′′−E (0)
γ JF

,

(24)
where γ0, � are the Dirac matrices and �Ec is the Coulomb field of the nucleus and the other electrons acting on a certain electron
in an atom, �r is the electron radius vector. The factor (γ0 − 1) in the matrix elements in (24) takes into account the Schiff theorem
[35] on the screening of eEDM effect in atoms. In the case of the scalar-pseudoscalar electron-nucleus interaction, de in (22)
should be replaced by deqv

e .
The vector �nd is the pure electronic vector independent on the nuclear variables. Then the dependence on the quantum numbers

MF can be separated out and the expression for ψLS can be presented in the form

ψLS = 2π
l

λ
ρ

〈γ JF ||R||γ ′J ′F ′〉
�D

h(u, v)

�D
deE , (25)

where E = | �E | and the factor 〈γ JF ||R||γ ′J ′F ′〉 can be defined as

〈γ JF ||R||γ ′J ′F ′〉 =
∑

MF ,M ′
F

(MF −M ′
F =±1)

|〈γ JFMF | �DM,E |γ ′J ′F ′M ′
F 〉|2[〈γ JFMF |�nd �E |γ JFMF 〉 + 〈γ ′J ′F ′M ′

F |�nd �E |γ ′J ′F ′M ′
F 〉]. (26)

Here the vector �nd was defined in (24) and �E = �E
E . To evaluate the rotation angle we have to start with consideration of the matrix

element 〈γ JFMF | �DM,E |γ ′J ′F ′M ′
F 〉 in (15). The wave function ψγ JFMF is

ψγ JFMF =
∑
MJ MI

CJI
FMF

(MJMI )ψγ JMJ ψIMI , (27)

where ψγ JMJ is the electron wave function, JMJ are the total electron angular momentum and its projection, ψIMI is the angular
part of the nuclear wave function, IMI are the nuclear spin and its projection, FMF are the total angular momentum of an atom
and its projection, and CJI

FMF
(MJMI ) are the Clebsch-Gordan coefficients. We start with the case of many-electron atom in the

one-electron approximation. For description of an atomic electron we employ the one-electron Dirac wave functions

ψγ JMJ (�r) =
(

gnl (r)�JlMJ (�)
i fnl (r)�JlMJ

(�)

)
. (28)

Here gnl (r) and fnl (r) are the radial parts of the Dirac wave function, n is the principal quantum number, quantum number l
determines the parity of the atomic state, P = (−1)l , l = 2J − 1. The angular part is represented by spherical spinors

�JMJ (�) =
∑
ml ms

C
l 1

2
JMJ

(ml , ms)Ylml (�)ηms , (29)

Ylml (�) is the spherical function and ηms is the electron spin function. The numbers l, ml , ms denote the electron orbital angular
momentum, its projection, and the electron spin projection, respectively. By � the spherical coordinates � = θ, ϕ are denoted.
Using spherical components of the vector �DM,E we can write

|〈γ JFMF | �DM,E |γ ′J ′F ′M ′
F 〉|2 =

∑
q=0,±1

(−1)q
〈
γ JFMF

∣∣DM,E
q

∣∣γ ′J ′F ′M ′
F 〉∗〈γ JFMF

∣∣DM,E
−q

∣∣γ ′J ′F ′M ′
F

〉
,

(30)

where DM,E
q is the component q of the spherical tensor of the rank 1. Inserting the wave functions (29) in the matrix elements in

(30) we obtain〈
γ JFMF

∣∣DM,E
q

∣∣γ ′J ′F ′M ′
F

〉 = ∑
MJ M ′

J

∑
MI M ′

I

∑
mm′

∑
msm′

s

CJI
FMF

(MJ , MI )CJ ′I
F ′M ′

F
(M ′

JM ′
I )

×
[
C

l 1
2

JMJ
(mlms)C

l ′ 1
2

J ′M ′
J
(m′

lm
′
s)

〈
nlml

1

2
ms

∣∣∣∣DM,E
q

∣∣∣∣n′l ′m′
l

1

2
m′

s

〉
+ C

l 1
2

JMJ
(mlms)C

l
′ 1

2
J ′M ′

J
(m′

lm
′
s)

〈
nlml

1

2
ms

∣∣∣∣DM,E
q

∣∣∣∣n′l
′
m′

l

1

2
m′

s

〉]
× 〈IMI |IM ′

I〉. (31)
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Here γ represents the other possible quantum numbers
depending on the chosen coupling scheme. For simplicity
here we will restrict ourselves with the atomic configurations
with one electron in the outer-electron nonclosed shell. Then,
introduction of γ is unnecessary. Extension of the results to
the arbitrary atomic configurations can be easily done by the
standard methods employed in atomic theory.

In (31) we have taken into account that the operator DM,E
q

does not depend on the nuclear variables. Then

〈IMI |IM ′
I〉 = δMI M ′

I
. (32)

We consider first the electric dipole operator, when DE
q =

e(�r)q, (�r)q are the spherical components of radius vector of the
electron. After integration (summation) over spin variables in
(31) we obtain〈

nlml
1

2
ms

∣∣∣∣r1
q

∣∣∣∣n′l ′m′
l

1

2
m′

s

〉
=
〈
nlml

∣∣∣∣r1
q

∣∣n′l ′m′
l

〉
δmsm′

s
, (33)〈

nlml
1

2
ms

∣∣r1
q

∣∣n′l
′
m′

l

1

2
m′

s

〉
= 〈nlml

∣∣r1
q

∣∣n′l
′
m′

l

〉
δmsm′

s
. (34)

In (33) the radial parts of the Dirac wave functions are gnl (r)
and in (34) the radial wave functions are fnl (r). For the
evaluation of the matrix elements 〈nlml |r1

q |n′l ′m′〉 in (33)

and 〈nlml |r1
q |n′l

′
m′〉 in (34) we can apply the Wigner-Eckart

theorem [36].
After summation over all the angular momenta projections

but MF , M ′
F this yields〈

γ JFMF

∣∣DE
q

∣∣γ ′J ′F ′M ′
F

〉
=
(

F F ′ 1
MF M

′
F q

){
J ′ J 1
F F ′ I

}
QE

nJl,n′J ′l ′ , (35)

QE
nJl,n′J ′l ′ = eGE

nl,n′l ′

{
J J ′ 1
l ′ l 1

2

}
+ eF E

nl,n′l
′

{
J J ′ 1
l
′

l 1
2

}
.

(36)

Here GE
nl,n′l ′ and F E

nl,n′l
′ are

GE
nl,n′l ′ =

∫ ∞

0
r3dr gnl (r)gn′l ′ (r), (37)

F E
nl,n′l

′ =
∫ ∞

0
r3dr fnl (r) fn′l

′ (r). (38)

Similarly, we can consider the magnetic dipole operator DM
q =

μ1
q, μ1

q are the spherical components of the electron magnetic
moment:

μ1
q = μ0

(
l1
q + 2s1

q

)
. (39)

In (39), l1
q are the components of the electron orbital angular momentum and s1

q are the components of the electron spin
momentum. After using the Wigner-Eckart theorem and summation over all angular momenta projections we obtain〈

γ JFMF

∣∣DM
q

∣∣γ ′J ′F ′M ′
F

〉 = ( F F ′ 1
MF M

′
F q

){
J ′ J 1
F F ′ I

}
QM

nJl,n′J ′l ′ , (40)

QM
nJl,n′J ′l ′ = μ0GM

nl,n′l ′

[{
J J ′ 1
l ′ l 1

2

}
δll ′
√

l (l + 1)(2l + 1) +
{

J ′ J 1
1
2

1
2 l

}
δll ′

√
3

2

]

+μ0F M
nl,n′l

′

[{
J J ′ 1
l
′

l 1
2

}
δll

′

√
l (l + 1)(2l + 1) +

{
J ′ J 1
1
2

1
2 l

}
δll

′

√
3

2

]
, (41)

GM
nl,n′l ′ =

∫ ∞

0
r2dr gnl (r)gn′l ′ (r), (42)

F M
nl,n′l

′ =
∫ ∞

0
r2dr fnl (r) fn′l

′ (r), (43)

GM
nl,n′l ′ + F M

nl,n′l
′ = δnn′δll ′ . (44)

Inserting (35) or (40) in (26) we get

〈γ JF ||R||γ ′J ′F ′〉 =
∑

MF ,M ′
F

(MF −M ′
F =±1)

(
F F ′ 1

MF MF + 1 1

)2{
J ′ J 1
F F ′ I

}2(
QE ,M

nJl,n′J ′l ′
)2

×
[{

J J 1
F F I

}
〈nJl|n1

d0|nJl〉 +
{

J ′ J ′ 1
F ′ F ′ I

}
〈n′J ′l ′|n1

d0|n′J ′l ′〉
]
, (45)
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where 〈nJl|n1
d0|nJl〉 and 〈n′J ′l ′|n1

d0|n′J ′l ′〉 are the enhancement coefficients. These coefficients for various atoms were calculated
in [25,26]. In (45) n1

d0 is the projection of the vector �nd on the direction of electric field �E .

IV. LEVEL-MIXING CONTRIBUTION TO THE P,T -ODD FARADAY EFFECT

In (15) for the ψLS rotation angle the dependence on the photon polarization �e was omitted since the result does not depend
on the particular choice of �e. Now we have to retain the dependence on the photon polarizations in the expression for A(ω)
since they are needed for obtaining the birefringence contribution. We will consider only M1 transition; the derivations for E1
transition are fully similar. Then, we come to an expression

A(ω) =
∑

MF M ′
F

|〈γ JFMF |(�e × �ν) �DM |γ ′J ′F ′M ′
F 〉|2

ω
(0)
γ ′J ′F ′,γ JF − ω − i

2�γ ′J ′F ′
+
∑

MF M ′
F

1

ω
(0)
γ ′J ′F ′,γ JF − ω − i

2�γ ′J ′F ′

×
⎧⎨⎩2 Re

[∑
F̃

〈γ JFMF | �de �E |γ JF̃MF 〉
E (0)

γ JF̃
− E (0)

γ JF

〈γ JF̃MF |(�e × �ν) �DM |γ ′J ′F ′M ′
F 〉〈γ JFMF |(�e × �ν) �DM |γ ′J ′F ′M ′

F 〉∗
]

+ 2 Re

⎡⎣∑
F̃ ′

〈γ ′J ′F̃ ′M ′
F | �de �E |γ ′J ′F ′M ′

F 〉
E (0)

γ ′J ′F̃ ′ − E (0)
γ ′J ′F ′

〈γ JF̃MF |(�e × �ν) �DM |γ ′J ′F ′M ′
F 〉〈γ JFMF |(�e × �ν) �DM |γ ′J ′F ′M ′

F 〉∗
⎤⎦⎫⎬⎭. (46)

Here, ω
(0)
γ ′J ′F ′,γ JF = E (0)

γ ′J ′F ′ − E (0)
γ JF , �e is the photon polarization, and �ν is the unit vector of its propagation direction which

coincides with the direction of the external electric field. The summation over MF , M ′
F is extended over all possible values since

the birefringence contribution is not connected with the special choice of Stark sublevels (all of them contribute to the effect).
Only the second and the third terms in the right-hand side of (46) contribute to the optical rotation. The matrix elements in

the numerator of the second term in the right-hand side of (46) are

2 Re
∑
qq′q′′

〈
γ JFMF

∣∣DM
q (�e × �ν)−q

∣∣γ ′J ′F ′M ′
F

〉〈
γ ′J ′F ′M ′

F

∣∣DM
q′ (�e × �ν)−q′

∣∣γ JF̃MF̃

〉∗
×〈γ JF̃MF̃

∣∣d1
eq′′E1

−q′′
∣∣γ JFMF

〉
.

(47)

Employing the Wigner-Eckart theorem and performing the summation over MF , MF̃ , M ′
F in (47) gives∑

MF ,MF̃ ,M ′
F

(
F F ′ 1

MF M ′
F q

)(
F̃ F ′ 1

MF̃ M ′
F q′

)(
F F̃ 1

MF MF̃ q′′

)
=
{

1 1 1
F ′ F̃ F

}(
1 1 1
q q′ q′′

)
. (48)

Then, using the definition of the vector product of two vectors �A and �B in terms of the irreducible tensors [36]∑
qq′

(
1 1 1
q q′ q′′

)
AqBq′ = − i

2
(−1)q′′

( �A × �B)q′′ (49)

and the same for the scalar product ∑
q

(−1)qAqB−q = ( �A �B) (50)

and using (40) we get for the numerator in the second term in (46) (note that the denominator is now independent on MF ) an
expression

(�sph �E )

{
1 1 1
F ′ F̃ F

}{
J ′ J 1
F F ′ I

}{
J ′ J 1
F̃ F ′ I

}{
J ′ J 1
F F̃ I

}
×(QM

nJl,n′J ′l ′
)2〈

nJl
∣∣n1

d0

∣∣nJl
〉
.

(51)

The same operations can be done also for the third term in the right-hand side of (46). Introducing the Voigt profile for the
optical rotation angle caused by (PTFE, LM) we can write

ψLM(ω) = 2π
l

λ
ρ

{∑
F̃

〈γ JF, γ JF̃ ||T ||γ ′J ′F ′〉
E (0)

γ JF̃
− E (0)

γ JF

+
∑

F̃ ′

〈γ JF ||T ||γ ′J ′F ′, γ ′J ′F̃ ′〉
E (0)

γ ′J ′F̃ ′ − E (0)
γ ′J ′F ′

}
g(u, v)

�D
deE , (52)

where

〈γ JF, γ JF̃ ||T ||γ ′J ′F ′〉 = 2

{
1 1 1
F ′ F̃ F

}{
J ′ J 1
F F ′ I

}{
J ′ J 1
F̃ F ′ I

}{
J ′ J 1
F F̃ I

}(
QM

nJl,n′J ′l ′
)2〈

nJl
∣∣n1

d0

∣∣nJl
〉
, (53)
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〈γ JF ||T ||γ ′J ′F ′, γ ′J ′F̃ ′〉 = 2

{
1 1 1
F F ′ F̃ ′

}{
J ′ J 1
F F ′ I

}{
J ′ J 1
F F̃ ′ I

}{
J ′ J 1
F ′ F̃ ′ I

}(
QM

nJl,n′J ′l ′
)2〈n′J ′l ′|n1

d0|n′J ′l ′〉. (54)

The same result with the replacement QM → QE can be ob-
tained for E1 transitions.

V. RESULTS AND DISCUSSION

In the real situation energy denominator in the expression
for the rotation angle due to (PTFE, LS) in the resonance
case should be replaced by the Doppler width �D. In the
expression for the rotation angle due to (PTFE, LM) the en-
ergy denominator will contain the hyperfine structure interval
�HFS = E (0)

γ JF̃
− E (0)

γ JF . Assuming that the matrix elements for
(PTFE, LS) and (PTFE, LM) are approximately the same apart
from the pure angular factor F (JFF̃ , J ′F ′F̃ ′) we obtain an
estimate for the ratio ψLM/ψLS:

ψLM

ψLS
= ξ (JFF̃ , J ′F ′F̃ ′)

�D

�HFS
, (55)

where

ξ (JFF̃ , J ′F ′F̃ ′) = FLM(JFF̃ , J ′F ′F̃ ′)
FLS(JFF̃ , J ′F ′F̃ ′)

. (56)

Here F̃ and F̃ ′ are the admixed hyperfine levels for the ground
and excited states. In [27] it was found that one of the best
candidates for the P, T -odd Faraday experiment on the search
for eEDM is the PbF molecule. The details of calculations in
Secs. III and IV refer to the atomic systems. Although the
formulas (55) and (56) (obtained by the perturbation theory)
strictly speaking are not valid anymore for molecular systems,
the size of the effect will have the same value �D

�HFS
by order of

magnitude.
In order to provide the comparison of contributions and

describing the dependence of the optical rotation angles ψ (ω)
on ω with the Voigt parametrization we can rewrite (3) for
(PTFE, LS) and (PTFE, LM) in the form

ψLS = C(APTFE, LS + A′
PTFE, LS)

deE

�D
h(u, v), (57)

ψLM = C

(APTFE, LM

�HFS
+ A′

PTFE, LM

�′
HFS

)
deEg(u, v), (58)

where E (0)
γ JF̃

− E (0)
γ JF ≡ �HFS, E (0)

γ ′J ′F̃ ′ − E (0)
γ ′J ′F ′ ≡ �′

HFS. Here,
�D is the Doppler width and �HFS is the hyperfine struc-
ture interval. The coefficient C depends on the resonant
transition frequency, on the optical path length, on the
atomic number density, and on the transition rate and
is approximately the same for both contributions to the
rotation angle in the P, T -odd Faraday effects for partic-
ular transition in a particular atom (molecule). The co-
efficients APTFE, LS, A′

PTFE, LS, APTFE, LM, A′
PTFE, LM denote

angular factors defined in Eqs. (45), (53), and (54). The
Voigt parametrization functions g(u, v) and h(u, v) at small
detunings are of the same order of magnitude. However, as
it was shown in [25], the optimal detuning for performing

the P, T -odd Faraday experiment would be �ω ≈ 5�D. An
asymptotic behavior of g and h functions at u → ∞ is g ∼ 1

u ,
h ∼ 1

u2 , so we can consider g(u,v)
h(u,v) ≈ 5.

We suggest using X12� 1
2
− X22� 3

2
transition in PbF with

the nucleus 207Pb. Enhancement coefficients are K(X1) =
38×105 and K(X2) = 9.3×105 [27]. In spite of large
values of hyperfine structure APb

‖ = 10 146 MHz, APb
⊥ =

−7264 MHz, and � doubling Ep = −0.138 27 cm−1 con-
stants for the ground state of 207PbF [37,38] it was shown
[39–41] that a coincidental near degeneracy of levels of op-
posite parity in the ground rotational state J = 1

2 for 207PbF
takes place. It is caused by near cancellation of energy shifts
due to �-type doubling and the 207Pb 19F magnetic hyperfine
interaction shifts with account for the nuclear spin of 19F
atom. As a result, there are closely spaced �-doublet hyper-
fine states F p = 3

2
−

, F p = 1
2

−
, F p = 1

2
+

, and F p = 3
2

+
lying

within energy interval of about �HFS = 300 MHz. The levels
are the second, third, fourth, and fifth energy levels of the
ground rotational state of X 2�1/2. The relevant energy levels
can be seen in Fig. 1 of Ref. [39]. Formally, the quantum
numbers F p = 1

2 , 3
2 can be obtained by introducing the total

nuclear spin I = 1 (I = 1
2 for 207Pb and 19F). The effect for

X 2�3/2 is negligible as the molecule is completely polar-
ized. To estimate the ratio of (PTFE, LS) and (PTFE, LM)
contributions we can introduce an “effective atom” with the
same quantum numbers: total angular momentum values F =
F ′ = 1

2 , F̃ = F̃ ′ = 1
2 , MF = 1

2 and total “electronic” angular
momentum values J = J ′ = 1

2 . All 3 j symbols in Eqs. (45),
(53), and (54) should be the same for such an atom and PbF
molecule in the chosen state. For the rough estimate we can
assume that the integrals in Eqs. (45), (53), and (54) are of the
same order of magnitude for atoms and molecules and also of
the same order of magnitude for LS and LM contributions. For
the simple integrals in Eqs. (45), (53), and (54) this should be
the case, though an accurate molecular calculation of both LS
and LM contributions is still required. After substitution, the
values J = J ′ = 1

2 , F = F ′ = 1
2 , F̃ = F̃ ′ = 1

2 , MF = 1
2 into

Eqs. (45), (53), and (54) we get

ξ = ψLM

ψLS
≈ 10. (59)

This number demonstrates that the (PTFE, LM) contribu-
tion essentially exceeds the (PTFE, LS) in the PbF molecule
which therefore can be considered as a promising candidate
for the search for P, T -odd effects (interactions) in the nature.
This result is evident from (55) due to the unusual small-
ness of �HFS in PbF molecule comparing to the ordinary
values of �HFS in heavy atoms (∼103 MHz). Summarizing,
we can state that the diatomic heavy molecules seem to be
the most suitable objects for the search of P, T -odd ef-
fects in atomic physics. PTFE-ICAS experiments with these
molecules may become an important tool for this search.
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Theoretically, as it was shown in this paper, P, T -odd effects
in such molecules arise due to the two different mecha-
nisms: LS and LM. All earlier theoretical predictions for the
magnitude of P, T -odd effects in PTFE-ICAS experiments
with heavy diatomic molecules were based on LS, LM was
ignored. We have shown that in some special cases, in par-
ticular in PbF molecule, the LM contribution may become
even stronger than LS, thus enhancing essentially the total
expected experimental result. We should note that preliminary
results for the possible observation of (PTFE, LM) in atoms

(where these effects are much weaker than in molecules) were
reported in [42].
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