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Interconversions of W and Greenberger-Horne-Zeilinger states in various physical systems have recently
been attracting considerable attention. We address this problem in the fairly general physical setting of qubit
arrays with long-ranged (all-to-all) Ising-type qubit-qubit interaction, which are simultaneously acted upon by
transverse Zeeman-type global control fields. Motivated in part by a recent Lie-algebraic result that implies
state-to-state controllability of such a system for an arbitrary pair of states that are invariant with respect to qubit
permutations, we present a detailed investigation of the state-interconversion problem in the three-qubit case.
The envisioned interconversion protocol has the form of a pulse sequence that consists of two instantaneous
(δ-shaped) control pulses, each of them corresponding to a global qubit rotation, and an Ising-interaction pulse
of finite duration between them. Its construction relies heavily on the use of the (four-dimensional) permutation-
invariant subspace (symmetric sector) of the three-qubit Hilbert space. In order to demonstrate the viability of
the proposed state-interconversion scheme, we provide a detailed analysis of the robustness of the underlying
pulse sequence to systematic errors, i.e., deviations from the optimal values of its five characteristic parameters.
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I. INTRODUCTION

Regardless of their concrete physical realization, maxi-
mally entangled multiqubit states are of utmost importance for
quantum-information processing (QIP) [1]. Two prominent
classes of such states, which cannot be transformed into each
other through local operations and classical communication
[2], are W [3] and Greenberger-Horne-Zeilinger (GHZ) [4]
states. In particular, in the three-qubit case W and GHZ are
the only two subclasses of states with genuine tripartite entan-
glement [5]. Both classes have proven useful in diverse QIP
contexts [6–10], which was the primary motivation behind
a large number of proposals for the efficient preparation of
W [11–21] and GHZ states [12,22–31] in various physical
systems.

In view of the completely different characters of entan-
glement in W and GHZ states [3,32], the interconversion
between those states in different physical platforms represents
an interesting, increasingly relevant problem of quantum-state
engineering. The earliest attempt in the context of such an
interconversion pertained to a photonic system [33]. This
initial study, which was probabilistic in nature, was followed
by another photon-related work [34] and an investigation of
such interconversions in a spin system [35]. In the realm of
atomic systems, irreversible conversions of W into GHZ states
were first proposed [36,37]. More recently, the deterministic
interconversion between the two states in a system of three
Rydberg-atom-based qubits [38,39] subject to four external
laser pulses was extensively studied [40–43].

In this paper the problem of the interconversion of W
and GHZ states is addressed for an array of qubits coupled
through Ising-type (ZZ) interaction, also being subject to

two Zeeman-like global control fields in the transverse (x
and y) directions. The Ising-type coupling between qubits is
of practical importance as it enables the realization of the
controlled-Z gate (also known as the controlled phase-shift
gate [44]). Namely, the Ising-coupling gate and controlled-Z
gate are related by single-qubit z rotations and a global phase
shift [44]. At the same time, the controlled-Z gate differs from
the controlled-NOT (CNOT) gate only by two Hadamard gates
applied to the target qubit of the CNOT gate [1].

It is worth pointing out that, generally speaking, global-
control schemes for qubit arrays constitute a promising
pathway towards scalable quantum computing (QC). Apart
from obviating the need for local qubit addressing, which in
some physical platforms for QC is unfeasible anyway, another
well-known advantage of such schemes stems from the fact
that a continuous-wave global field can efficiently decouple
qubits from the background noise [45].

The motivation behind the present work is twofold. First,
a qubit array with long-range Ising-type qubit-qubit interac-
tions can be realized in various physical platforms for QC,
from nuclear magnetic resonance (NMR) systems [46–48]
to ensembles of neutral atoms in Rydberg states [38]; there-
fore, an efficient solution of the W -to-GHZ state-conversion
problem may facilitate the realization of various QIP proto-
cols in those systems. Second, a recent result in the realm
of Lie-algebraic controllability implies that such an array of
Ising-coupled qubits, which is subject to global control fields
in the two transverse directions, is indeed state-to-state con-
trollable provided the two relevant (initial and final) states are
invariant under an arbitrary permutation of qubits [49]. More-
over, it is important to note that both W states and their GHZ
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counterparts are permutationally invariant for an arbitrary
number of qubits.

While the aforementioned Lie-algebraic result [49] guar-
antees the existence of a quantum-control protocol for
converting a W state into its GHZ counterpart for Ising-
coupled qubits with global transverse control, a solution of
the last problem for a three-qubit system is presented in this
paper. The envisioned state-conversion protocol is based on an
NMR-type pulse sequence that consists of two instantaneous
(δ-shaped) global control pulses and an Ising-interaction pulse
of finite duration between them. The construction of this
pulse sequence, as well as its robustness against errors in
the relevant parameters (e.g., small variations of the duration
of Ising-interaction pulses and global-rotation angles corre-
sponding to the transverse control fields), are discussed in
detail in what follows. It is worth mentioning that pulse
sequences of this kind have been utilized in multiple phys-
ical contexts of interest for QIP [44,50–53]. For example,
they were proposed by Tanamoto et al. for applications in
measurement-based quantum computing [54], more precisely,
for preserving cluster states [55], as well as for dynamically
generating codewords of various quantum error-correction
codes [56].

The remainder of the present paper is organized as fol-
lows. In Sec. II the system under consideration and the
state-conversion problem to be addressed in the following are
introduced, along with the notation to be used throughout the
paper. Section III is devoted to the symmetry-related aspects
of the problem at hand, more precisely, its invariance under an
arbitrary permutation of qubits and the ensuing concept of the
symmetric sector of the three-qubit Hilbert space. In addition,
one familiar (symmetry-adapted) basis of the latter subspace
is introduced. In Sec. IV the construction of an NMR-type
pulse sequence, which represents one solution of the state-
conversion problem in the three-qubit case, is discussed in
detail. The principal results for the idealized pulse sequence
behind the W -to-GHZ state conversion, as well as its robust-
ness to errors in its characteristic parameters, are presented in
Sec. V. Finally, the paper is summarized, along with under-
scoring its main conclusions and possible generalizations, in
Sec. VI.

II. SYSTEM AND W -TO-GHZ CONVERSION PROBLEM

The system under consideration is a qubit array with long-
range Ising-type coupling with strength J , subject to global
Zeeman-type control fields hx(t ) and hy(t ) in the x and y
directions, respectively. The total Hamiltonian of the system
H (t ) = HZZ + HC (t ) consists of the drift (Ising-interaction)
part HZZ and the global-control part HC (t ). It can succinctly
be written as

H (t ) = HZZ + hx(t )X + hy(t )Y . (1)

Here HZZ , X , and Y are given by

HZZ = J
∑

1�n<n′�N

ZnZn′ , (2)

X =
N∑

n=1

Xn, Y =
N∑

n=1

Yn, (3)

where Xn, Yn, and Zn are the Pauli operators of qubit n (n =
1, . . . , N):

Xn = 1 ⊗ · · · ⊗ 1 ⊗ X︸︷︷︸
n

⊗1 ⊗ · · · ⊗ 1,

Yn = 1 ⊗ · · · ⊗ 1 ⊗ Y︸︷︷︸
n

⊗1 ⊗ · · · ⊗ 1,

Zn = 1 ⊗ · · · ⊗ 1 ⊗ Z︸︷︷︸
n

⊗1 ⊗ · · · ⊗ 1. (4)

It is pertinent to comment on the controllability [57] as-
pects of systems described by the Hamiltonian of Eq. (1). In
this context, it is useful to first point out that for complete
operator controllability (implying the ability to realize an
arbitrary unitary transformation on the Hilbert space of the
underlying system, i.e., universal quantum computation) of a
qubit array with Ising-type interaction, it is required to have
two mutually noncommuting (local) controls acting on each
qubit in the array [58]. In fact, it is only for qubit arrays with
Heisenberg-type interaction (isotropic, XXZ , or XY Z type)
that a significantly reduced degree of control, namely, two
noncommuting controls acting on a single qubit in the array,
guarantees complete controllability [58,59]. Thus, a system
of N qubits that are coupled through Ising-type interaction
and subject to global Zeeman-like control fields in the x and
y directions [cf. Eqs. (1)–(3) above], is in general not com-
pletely operator controllable; in other words, its dynamical Lie
algebra [57] Ld = span{HZZ ,X ,Y} is not isomorphic with
u(2N ) or su(2N ), but with their proper Lie subalgebra.

Despite the lack of complete controllability, it has recently
been demonstrated that a system described by the Hamilto-
nian in Eq. (1), which is manifestly symmetric with respect
to an arbitrary permutation of qubits (i.e., spin-1/2 subsys-
tems), is controllable provided one restricts oneself to unitary
evolutions that preserve this permutation invariance [49]. An
immediate implication of this last result is that such a system
is state-to-state controllable for any pair of states that are
themselves invariant with respect to qubit permutations. This
is equivalent to the statement that the time dependence of
control fields hx(t ) and hy(t ) in Eq. (1) can be found such
that one can reach any permutation-invariant final state in
a finite time starting from an arbitrary permutation-invariant
state at t = 0. As usual for Lie-algebraic controllability the-
orems [57], which have the character of existence theorems,
the actual time dependence of these control fields that enables
a controlled dynamical evolution of the system from a given
initial state to a desired final state has to be determined in each
particular case [60].

In what follows, we design protocols for the deterministic
interconversion of W and GHZ states in a three-qubit system
(N = 3). The general expressions (2) and (3) in that case
reduce to

HZZ = J (Z1Z2 + Z2Z3 + Z1Z3),

X = X1 + X2 + X3,

Y = Y1 + Y2 + Y3, (5)

where, in line with the general definition of Xn, Yn, and Zn [cf.
Eq. (4)], the operators X1, X2, . . . , Z3 are represented in the
standard computational basis by eight-dimensional matrices.
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Because W and GHZ states both have the property of being
permutationally invariant (for an arbitrary number of qubits),
our treatment of the state-conversion problem for a three-qubit
system will rely heavily on this last property of the initial
and final states. More precisely, in the following, a protocol
is sought that allows the conversion of an initial W state
into a GHZ state; the inverse state-conversion process, i.e.,
converting an initial GHZ state into its W -state counterpart,
is analyzed in an analogous fashion. In other words, the state
|ψ (t )〉 of our three-qubit system should satisfy the conditions

|ψ (t = 0)〉 = |W3〉 = 1√
3

(|100〉 + |010〉 + |001〉),

|ψ (t = T )〉 = |GHZ3(ϕ)〉 = 1√
2

(|000〉 + eiϕ |111〉), (6)

where ϕ ∈ [0, 2π ) and T is the state-conversion time.
The W -to-GHZ state conversion will be achieved here us-

ing an NMR-type pulse sequence. Such sequences consist of a
certain number of instantaneous (δ-shaped) control pulses and
Ising-interaction pulses in between the control pulses. In the
following, we set h̄ = 1; hence all the relevant timescales in
the problem at hand will be expressed in units of the inverse
Ising-coupling strength J−1.

III. SYMMETRIC SECTOR AND ITS BASIS

In what follows, we describe the problem under considera-
tion by exploiting its permutation-symmetric character. To this
end, we first introduce the concept of the symmetric sector of
the three-qubit Hilbert space and define one specific basis of
this sector that facilitates the solution of the state-conversion
problem at hand.

In a variety of problems in quantum control and quantum-
state engineering it is beneficial to consider pure states that are
invariant with respect to permutations of qubits [61–66]. In
this context, we can distinguish situations where the relevant
states are those invariant under an arbitrary permutation, i.e.,
the full symmetric group Sn, where n is the number of qubits
[65], and those where the relevant states are invariant with
respect to specific nontrivial subgroups of Sn [66].

In the state-conversion problem at hand, we focus on the
subset of all the unitaries on the Hilbert space H ≡ (C2)⊗3 of
the three-qubit system under consideration that are invariant
under an arbitrary qubit permutation, i.e., the permutation
group S3. The relevant Lie subgroup of U(8) is denoted by
US3 (8) and has dimension equal to 20 [49]. Its corresponding
Lie algebra uS3 (8) is spanned by the operators i�(σ1 ⊗ σ2 ⊗
σ3), where � = (3!)−1 ∑

P∈S3
P and σn (n = 1, 2, 3) is either

the single-qubit identity operator 12 or one of the Pauli oper-
ators X , Y , and Z .

Under the action of the Lie algebra uS3 (8), the eight-
dimensional Hilbert space H splits into three invariant
subspaces that correspond to irreducible representations of
su(2). Two of those subspaces have dimension 2, while the
third one has dimension 4 and is uniquely determined. The
latter is usually referred to as the symmetric sector [62],
because it comprises the states that do not change under an
arbitrary permutation of qubits. One orthonormal symmetry-
adapted basis of the symmetric sector is given by the states

{|ζa〉|a = 0, . . . , 3}, where

|ζ0〉 = |000〉, |ζ1〉 = 1√
3

(|100〉 + |010〉 + |001〉),

|ζ2〉 = 1√
3

(|110〉 + |101〉 + |011〉), |ζ3〉 = |111〉, (7)

and the subscript a in |ζa〉 coincides with the Hamming weight
of the corresponding bit string (i.e., the number of occurrences
of 1 in that bit string) [67]. It is obvious that |ζ1〉 ≡ |W3〉 is
the W state itself, while |ζ2〉 corresponds to the two-excitation
Dicke state.

In the following, we consider the state-conversion problem
within the symmetric sector using the basis defined in Eq. (7).
To begin with, we map the four basis states onto column
vectors according to

|ζ0〉 �→

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |ζ1〉 �→

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|ζ2〉 �→

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |ζ3〉 �→

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. (8)

We also can straightforwardly represent the initial and target
states of our envisioned state conversion [cf. Eq. (6)] in this
same basis. While |ζ1〉 ≡ |W3〉, the GHZ state is given by

|GHZ3(ϕ)〉 �→ 1√
2

⎛
⎜⎝

1
0
0

eiϕ

⎞
⎟⎠. (9)

For the sake of completeness, it is worth mentioning that
a generalized Schmidt decomposition allowed a classification
of pure three-qubit states [68]. More specifically, in Ref. [68]
it was demonstrated that five independent nonzero real pa-
rameters are needed to describe the entire three-qubit state
space under local operations; in other words, a generic pure
three-qubit state is equivalent under local unitary transforma-
tions to a canonical state described by these five parameters.
It was shown that there exist in fact three inequivalent sets
of five local basis product states, where each of these three
sets contains the states |000〉, |100〉, and |111〉. One of those
sets, given by {|000〉, |001〉, |010〉, |100〉, |111〉}, is symmetric
with respect to permutations of qubits (parties) and yields
three-qubit W and GHZ states as linear combinations of its
elements. It is also worth pointing out that an experimental
scheme for creating a generic pure three-qubit state in NMR,
in line with the classification in Ref. [68], was proposed in the
past [12].

IV. W -TO-GHZ STATE CONVERSION
USING A PULSE SEQUENCE

We aim to find a solution of the W -to-GHZ state conversion
problem [cf. Eq. (6)] for an arbitrary value of ϕ. As indicated
above, the two states of interest are invariant with respect to
an arbitrary permutation of qubits. Thus, the problem can be
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FIG. 1. Pictorial illustration of the pulse sequence for realizing
the W -to-GHZ state conversion, which consists of two instantaneous
control pulses and an Ising-interaction pulse of finite duration T
between them. The first (second) control pulse is characterized by
a vector in the x-y plane, with the magnitude α1 (α2) and polar
angle φ1 (φ2). Here UC (α1, φ1) and UC (α2, φ2) are the time-evolution
operators corresponding to the control pulses at t = 0 and t = T , re-
spectively; UZZ (ξ ) corresponds to the interaction pulse, with ξ ≡ JT
being its dimensionless duration.

reduced to the symmetric sector and its basis given in Eq. (7)
above.

In the following, we first describe the layout of the en-
visioned pulse sequence for implementing W -to-GHZ state
conversion (Sec. IV A), followed by the derivation of the
time-evolution operators corresponding to different parts of
this pulse sequence (Sec. IV B).

A. Form of the pulse sequence

We seek a solution to the W -to-GHZ state conversion
problem in the form of an NMR-type pulse sequence that con-
sists of two instantaneous control pulses, at times t = 0 and
t = T (i.e., with a time delay T between them), and an Ising-
interaction pulse with duration T between these control pulses
(for a pictorial illustration, see Fig. 1 below). The correspond-
ing transverse (global) control field h(t ) ≡ [hx(t ), hy(t ), 0]T

can be written as

h(t ) = α1δ(t ) + α2δ(t − T ), (10)

where the two δ functions capture the instantaneous character
of the two control pulses and the vectors α1 and α2 point
in arbitrary directions in the x-y plane; the corresponding
directions are specified by their polar angles φ1 and φ2, re-
spectively, where φ1, φ2 ∈ [0, 2π ).

Before embarking on the derivation of the respective time-
evolution operators that correspond to different parts of the
envisioned pulse sequence (cf. Fig. 1), it is pertinent to com-
ment on the feasibility of realizing such pulse sequences in
various physical platforms for QC. First, the assumption of
instantaneous control pulses is well justified whenever the
control fields used are much stronger than the coupling be-
tween qubits; this requirement is, for example, satisfied for
typical control magnetic fields used in the NMR realm [46], as
well as for typical control fields in superconducting-qubit [51]
and neutral-atom systems [38]. Second, the fact that the envi-
sioned pulse sequence entails single-qubit rotations about two
different axes in the x-y plane is feasible in practice. Namely,

modification of the rotation axis of a single-qubit drive rep-
resents a rather straightforward operation in currently used
platforms for QC, such as neutral atoms [69], superconducting
qubits [70], and trapped ions [71]; such an operation does
not involve much of an additional experimental complexity
or overhead.

It is important to stress that the global character of single-
qubit rotations in the envisioned pulse sequence is in fact a
necessity in many QC platforms under current investigation.
An example is furnished by a typical setup for neutral-atom
QC, both in cases where the role of two logical states of a
qubit is played by two hyperfine states (gg qubits) and in cases
where a ground state and a high-lying Rydberg state play this
role (gr qubits). In such neutral-atom systems one typically
makes use of a global microwave field, which in the case of
gg qubits has the physical nature of magnetic dipole coupling,
to carry out a rotation about an arbitrary axis in the x-y plane
on every qubit [72]; at the same time, the rotation axis can
be chosen by modifying the phase of the microwave field.
Importantly, this rotation gate ought to be global in nature
because the distance between qubits in such systems (typically
a few micrometers) is far smaller than the wavelength of the
microwave field (1 mm � λ � 1 m); as a result, each qubit
undergoes the same rotation.

While here we aim for an analog implementation of the
envisioned pulse sequence, it should be stressed that such a
pulse sequence is also amenable to an efficient digital realiza-
tion in various QC platforms. For example, in the neutral-atom
platform a rotation over an arbitrary axis in the x-y plane,
represented by a two-parameter (single-qubit) gate Uxy, con-
stitutes the essential single-qubit operation [38]; this gate
allows one to realize an arbitrary single-qubit rotation and,
by extension, any single-qubit operation (e.g., the Hadamard
gate). The situation is even more favorable in the case of
typical trapped-ion QC setups [73], where the native gate set
includes not only x-y rotations but also a ZZ two-qubit gate
(therefore, the Ising-interaction pulse in the problem at hand
could be implemented in that platform through a sequence of
three pairwise ZZ gates); in addition, the trapped-ion platform
has the advantage of allowing perfect (all-to-all) connectivity
between individual qubits.

As substantiated above, global-control and interaction
pulses required for the realization of the envisaged state inter-
conversion represent the basic gate operations in systems with
Ising-type qubit-qubit coupling [44,74]. For completeness,
it is interesting to note that those types of pulses are for-
mally equivalent to the two unitary operations utilized in the
generalized form of the quantum approximate optimization
algorithm (QAOA) [75]. More precisely, the Ising-interaction
pulse corresponds to the cost-Hamiltonian-based unitary op-
erator, as the Ising model encodes the cost function of a
typical combinatorial-optimization problem (e.g., max-cut).
At the same time, our global control pulses have the same
form as the mixing-Hamiltonian unitary in the QAOA under
the assumption that the latter is generalized so as to involve
not only the Pauli-X but also Y operators. The correspond-
ing rotation angles should be the same for different qubits
and only vary between different rounds, which is one of
the already investigated modifications of the original QAOA
algorithm.
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B. Relevant time-evolution operators

In what follows, we present the derivation of the
time-evolution operators describing the control- and Ising-
interaction pulses enabling the W -to-GHZ state conversion in
the three-qubit system under consideration.

Using the form of the Ising-interaction Hamiltonian [cf.
Eq. (5)] in the chosen symmetry-adapted basis [cf. Eq. (8)]

HZZ �→ J

⎛
⎜⎝

3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎠, (11)

it is straightforward to derive the time-evolution operator cor-
responding to the Ising interaction pulse (cf. Fig. 1). This
time-evolution operator is given by

UZZ (ξ ) = e−iξHZZ /J �→

⎛
⎜⎜⎝

e−3iξ 0 0 0
0 eiξ 0 0
0 0 eiξ 0
0 0 0 e−3iξ

⎞
⎟⎟⎠, (12)

where ξ ≡ JT is the dimensionless duration of the Ising-
interaction pulse (i.e., the time delay between the two control
pulses).

We now address the form of the time-evolution operator
of one instantaneous (δ-shaped) control pulse [cf. Eq. (10)].
Even though the corresponding (time-dependent) control
Hamiltonian involves the mutually noncommuting Pauli op-
erators Xn and Yn (n = 1, 2, 3), the time dependence of the
x and y control fields is the same, which implies that this
control Hamiltonian has the property of commuting with
itself at different times (i.e., [HC (t ), HC (t ′)] = 0). Conse-
quently, its corresponding time-evolution operator is given by
exp[−i

∫ t f

ti
HC (t )dt] (where ti and t f are the initial and final

evolution times, respectively), rather than requiring a time-
ordered exponential (Dyson series). This operator is given by
an exponential of a linear combination of the Pauli operators
Xn and Yn and can be evaluated using the well-known identity
for single-qubit rotation operators

exp[−iθ (n̂ · X)] = cos θ12 − i sin θ (n̂ · X), (13)

where X ≡ (X,Y, Z )T is the vector of Pauli operators and
n̂ is an arbitrary unit vector. The left-hand side of Eq. (13)
corresponds to the rotation through an angle of 2θ around the
axis defined by the vector n̂, i.e., the rotation represented by
the operator Rn̂(2θ ).

By making use of the last identity, we obtain the time-
evolution operators UC (α) corresponding to individual control
pulses; in the problem at hand α = α1 for the first control
pulse and α = α2 for the second one. These time-evolution
operators are of the form

UC (α) =
3∏

n=1

(cos α 18 − i sin α An), (14)

where An (n = 1, 2, 3) are auxiliary operators given by

An = 1

α
(αxXn + αyYn) (15)

and α ≡ ‖α‖ > 0 denotes the norm of the vector α. By mak-
ing use of the polar coordinates in the x-y plane, the operator
An on qubit n can be recast in an exceedingly simple matrix
form using

1

α
(αxX + αyY ) =

(
0 e−iφ

eiφ 0

)
(16)

for each qubit, where φ designates the polar angle corre-
sponding to the vector α. By analogy with the general case
represented by Eq. (13), an instantaneous control pulse in
the system under consideration amounts to a global rotation
through an angle of 2α around the axis whose direction is
specified by the unit vector n̂ ≡ (cos φ, sin φ, 0)T.

To obtain a more explicit form of UC (α), we perform the
multiplication in Eq. (14) and arrive at the expression

UC (α) = cos3 α18 − i sin α cos2 αS1

− sin2 α cos αS2 + i sin3 αS3, (17)

where S1, S2, and S3 are auxiliary operators given by

S1 =
3∑

n=1

An,

S2 =
∑
n<n′

AnAn′ ,

S3 =
3∏

n=1

An. (18)

When expressed in the basis of Eq. (8), these operators are
represented by the 4 × 4 matrices

PSS1P†
S =

⎛
⎜⎜⎝

0
√

3e−iφ 0 0√
3eiφ 0 2e−iφ 0
0 2eiφ 0

√
3e−iφ

0 0
√

3eiφ 0

⎞
⎟⎟⎠,

PSS2P†
S =

⎛
⎜⎜⎝

0 0
√

3e−2iφ 0
0 2 0

√
3 e−2iφ√

3e2iφ 0 2 0
0

√
3e2iφ 0 0

⎞
⎟⎟⎠,

PSS3P†
S =

⎛
⎜⎜⎝

0 0 0 e−3iφ

0 0 e−iφ 0
0 eiφ 0 0

e3iφ 0 0 0

⎞
⎟⎟⎠, (19)

where PS is the projector on the (four-dimensional) symmetric
sector [cf. Eqs. (7) and (8)].

The time-evolution operator UC (α1) ≡ UC (α1, φ1) corre-
sponding to the first (t = 0) control pulse and its counterpart
UC (α2) ≡ UC (α2, φ2) that pertains to the second (t = T )
pulse are straightforwardly obtained using Eqs. (17)–(19) [the
cumbersome (but otherwise straightforward to derive) final
expressions are not provided here]. By combining the final
expressions for UC (α1, φ1) and UC (α2, φ2) with the previously
derived expression for UZZ (ξ ) [cf. Eq. (12)], one recovers the
time-evolution operator

U (ξ,α1,α2) = UC (α2, φ2)UZZ (ξ )UC (α1, φ1) (20)
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that corresponds to the entire pulse sequence (for an illustra-
tion, see Fig. 1).

V. STATE-CONVERSION PROTOCOL:
RESULTS AND DISCUSSION

In the following, we present and discuss the result for
the state-conversion protocol based on the pulse sequence
of Sec. IV. We first discuss the results obtained through
numerical optimization of the GHZ-state fidelity correspond-
ing to this pulse sequence (Sec. V A). We then consider the
robustness of the state-conversion protocol to errors in its
characteristic parameters (Sec. V B).

A. Optimization of the target-state fidelity

Aiming to convert the initial state |W3〉 into |GHZ3(ϕ)〉 for
an arbitrary value of ϕ, we maximize the central figure of
merit in the problem at hand, the GHZ-state fidelity FGHZ(ϕ),
with respect to the parameters ξ , α1, φ1, α2, and φ2 character-
izing the envisaged pulse sequence (cf. Sec. IV). This fidelity
is given by

FGHZ(ϕ) = |〈GHZ3(ϕ)|U (ξ,α1,α2)|W3〉|, (21)

i.e., by the module of the overlap of the target state |GHZ3(ϕ)〉
and the actual state U (ξ,α1,α2)|W3〉 obtained at the end of the
pulse sequence [cf. Eq. (20)]. Given that the target GHZ state
in the state-conversion problem at hand is parametrized by ϕ

[cf. Eq. (6)], it is plausible to expect that the values (ξ0, α1,0,
φ1,0, α2,0, and φ2,0) of these parameters that correspond to the
maximum of FGHZ(ϕ) should also depend on ϕ.

We first carry out the optimization of the fidelity in Eq. (21)
numerically for ϕ = 0 using the minimize routine from the
scipy.optimization package [76] of the SCIPY library.
In this manner, we obtain the optimal values ξ0 = 0.3077,
α1,0 = π/4, and α2,0 = 0.3077 for the parameters ξ , α1, and
α2, respectively. At the same time, for φ1 and φ2 we find three
different branches of optimal values

(φ1,0, φ2,0) = {(5π/6, π/3), (3π/2, π ), (π/6, 5π/3)},
(22)

which correspond to three different choices for the directions
of the global-rotation axes. As illustrated by Fig. 2, in all three
cases the rotation axes corresponding to the control pulses
are mutually perpendicular. Assuming that we choose φ1,0 =
5π/6 (along with φ2,0 = π/3) [cf. Eq. (22)], the first control
pulse of the envisioned pulse sequence is equivalent to a
global qubit rotation through an angle of 2α1,0 = π/2, around
the axis specified by the unit vector n̂1 ≡ (−√

3/2, 1/2, 0)T.
The numerically obtained optimal values of ξ0 and α2,0 can

be made plausible in the following manner. By inserting the
obtained values of α1,0, φ1,0, and φ2,0, along with the obser-
vation that ξ0 = α2,0, into the general expression for FGHZ(ϕ)
[cf. Eq. (21)], we obtain

FGHZ(ϕ) =
√

3

4

√
5 + 2 cos(4ξ0) − 3 cos2(4ξ0)

∣∣∣cos
(ϕ

2

)∣∣∣.
(23)

FIG. 2. Pictorial illustration of the three branches of optimal
values φ1,0 and φ2,0 of the angles that specify the directions of the
global-rotation axes corresponding to the control pulses.

Based on this expression, FGHZ(ϕ) = 1 if cos(4ξ0) = 1
3 and

ϕ = 0. Therefore, the optimal values of ξ and α2 are given by

ξ0 = α2,0 = 1
4 arccos 1

3 , (24)

which is equal to the 0.3077 found numerically. By choos-
ing φ2,0 = π/3 (along with φ1,0 = 5π/6) [cf. Eq. (22)],
the second control pulse of the envisioned pulse sequence
amounts to a global qubit rotation through an angle of 2α2,0 =
arccos( 1

3 )/2, around the axis specified by the unit vector n̂2 ≡
(1/2,

√
3/2, 0)T.

Given that the envisaged pulse sequence entails two instan-
taneous control pulses, the total duration of the pulse sequence
is effectively given by ξ , the (dimensionless) duration of the
Ising-interaction pulse. Therefore, to verify that the obtained
value ξ0 of this last parameter indeed represents the minimal
possible pulse-sequence duration that allows one to reach the
GHZ-state fidelity close to unity, we performed the following
numerical check. We reduced ξ to values below ξ0 and tried to
maximize FGHZ(ϕ = 0) with respect to the remaining four pa-
rameters. By so doing, we corroborated that ξ0 = arccos( 1

3 )/4
(i.e., T0 = 0.3077 J−1 upon reinstating the dimensionful units)
is indeed the sought-after minimal pulse-sequence duration
that enables one to carry out the desired W -to-GHZ state
conversion.

Having obtained the optimal values of the five pulse-
sequence parameters for ϕ = 0, we performed numerical
optimization of the GHZ-state fidelity for 100 nonzero values
of ϕ in [0, 2π ). These calculations lead to two important
conclusions. First, the optimal values α1,0, α2,0, and ξ0 are
completely independent of ϕ. Second, the optimal values of
φ1,0 and φ2,0 depend linearly on ϕ. More specifically, the
following linear dependences are recovered from the obtained
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numerical results:

φ1,0 = ϕ

3
+ 2πm

3
+ 5π

6
,

φ2,0 = ϕ

3
+ 2πm

3
+ π

3
. (25)

Here m = 0, 1, 2 enumerates different branches of optimal
values.

From the form of Eq. (25) it can be inferred why there are
three branches of possible solutions for the optimal values
of the parameters φ1 and φ2 [cf. Eq. (22)]. Namely, adding
multiples of 2π to ϕ does not change the GHZ state itself [cf.
Eq. (6)], while it yields additional possible values of φ1,0 and
φ2,0 in [0, 2π ). More specifically, by adding 2π to the value
ϕ = 0 (which yields φ1,0 = 5π/6 and φ2,0 = π/3) one ob-
tains φ1,0 = 3π/2 and φ2,0 = π , while by adding 4π one finds
φ1,0 = π/6 and φ2,0 = 5π/3 (for an illustration, see Fig. 2).

For the sake of completeness, having considered W -to-
GHZ state conversion it is worthwhile to briefly comment on
the reversed state-conversion process, i.e., the one whereby an
initial (t = 0) GHZ state is converted into a W state (t = T ).
The first instantaneous control pulse, acting on a GHZ state
at t = 0, is parametrized by α2 and φ2, while the second
one (at t = T ) is characterized by the parameters α1 and φ1.
Our numerical optimization of the W -state fidelity, defined by
analogy with Eq. (21), leads to the conclusion that the optimal
values of the parameters α1, α2, and ξ remain the same, while
the three branches of solutions for φ1,0 and φ2,0 are in this case
given by

(φ1,0, φ2,0) = {(7π/6, 5π/3), (π/2, π ), (11π/6, π/3)}.
(26)

Finally, the counterpart of Eq. (25) in the case of GHZ-to-W
state conversion reads

φ1,0 = −ϕ

3
+ 2πm

3
+ 7π

6
,

φ2,0 = −ϕ

3
+ 2πm

3
+ 5π

3
. (27)

B. Robustness of the state-conversion scheme to errors

Having obtained the parameter values that correspond to
W -to-GHZ state conversion in Sec. V A, we now discuss the
robustness of the envisaged state-conversion scheme to errors
in those parameters. For definiteness, we mostly discuss this
issue in the ϕ = 0 case; for a generic value of ϕ the discussion
would be fairly similar.

In the NMR realm it is common to consider various im-
perfections in pulse-sequence realizations [46]. They typically
amount to an error in the rotation axis (i.e., the direction of its
corresponding unit vector n̂) and/or an error in the rotation
angle. Therefore, the actual qubit rotation applied is not the
ideal Rn̂(2θ ) ≡ exp[−iθ (n̂ · X)] [cf. Eq. (13)], but is instead
given by

R̃n̂(2θ ) = exp[−if (θ, n̂) · X], (28)

where f (θ, n̂) is a vector function that characterizes the
systematic error [46]. For instance, f (θ, n̂) = θ (1 + εθ )n̂
describes under- and overrotation errors (for negative and pos-
itive values of εθ , respectively). At the same time, f (θ, n̂) =

θ (nx cos εφ + ny sin εφ, ny cos εφ − nx sin εφ, nz )T captures an
error pertaining to the direction of the rotation axis [46]
whose original direction is specified by the unit vector n̂ ≡
(cos φ, sin φ, 0)T.

In keeping with the above general considerations, it is
pertinent to investigate the robustness of the W -to-GHZ state-
conversion scheme based on the idealized pulse sequence
described in Sec. V A to systematic errors. Among them, it
is worthwhile to consider errors in the rotation angles corre-
sponding to the instantaneous control pulses (related to the
parameters α1 and α2), errors pertaining to the directions of
the attendant rotation axes (φ1 and φ2), and pulse-length errors
of the Ising-interaction pulse (ξ ). To this end, we consider
errors of either sign for the five relevant parameters

ξ = ξ0(1 + εξ ),

α j = α j,0(1 + εα j ), φ j = φ j,0 + εφ j ( j = 1, 2). (29)

Regarding the form of this equation, it should be noted that
the errors introduced in the parameters ξ , α1, and α2 have
the character of relative errors, while for φ1 and φ2 it is more
meaningful to consider absolute errors.

For general (i.e., not necessarily small) values of εξ , εα1 ,
εφ1 , εα2 , and εφ2 , the GHZ-state fidelity is given by

FGHZ(ϕ, εξ ) = 1

4
|3 + e4iξ0εξ |,

FGHZ(ϕ, εα1 ) = 1

2
|cos(α1,0εα1 )||3 cos(2α1,0εα1 ) − 1|,

FGHZ(ϕ, εφ1 ) = 1

8
|3 − 2eiεφ1 + 3e2iεφ1 ||1 + eiεφ1 |,

FGHZ(ϕ, εα2 ) =
∣∣∣cos(2α2,0εα2 ) − i

2
sin(2α2,0εα2 )

∣∣∣,
FGHZ(ϕ, εφ2 ) =

√
3

4
|(1 + e6iεφ2 )c3

−

+ i(eiεφ2 + e5iεφ2 )wc+c2
−

+ (e2iεφ2 + e4iεφ2 )wc2
+c−

+ 2ie3iεφ2 c3
+|, (30)

where w and c± stand for the following constants:

w = 1 + 2
√

2i

3
, c± =

√√
3 ± √

2

2
√

3
. (31)

It is interesting to note that none of the five expressions for
FGHZ in Eq. (30) has any dependence on ϕ, even though the
optimal values of the parameters φ1 and φ2 do depend on
ϕ. This can be understood as a manifestation of the general
notion that the most important global properties of GHZ-type
states do not depend on ϕ [43].

We now turn our attention to the case of small deviations
(εp � 1) from the optimal values of the relevant parameters
(p = ξ, α1, φ1, α2, φ2). By expanding the respective expres-
sions for the GHZ-state fidelity in Eq. (30) to the lowest
nonvanishing (quadratic) order in εp, we obtain the following
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FIG. 3. Deviation of the GHZ-state fidelity from unity (i.e., the
infidelity) 1 − FGHZ as a function of errors εp in the values of the
parameters that characterize the pulse sequence realizing the W -to-
GHZ state conversion.

results:

FGHZ(ϕ, εξ ) = 1 − 3
2ξ 2

0 ε2
ξ + O

(
ε4
ξ

)
,

FGHZ(ϕ, εα1 ) = 1 − 7
2α2

1,0ε
2
α1

+ O
(
ε4
α1

)
,

FGHZ(ϕ, εφ1 ) = 1 − 7
8 ε2

φ1
+ O

(
ε4
φ1

)
,

FGHZ(ϕ, εα2 ) = 1 − 3
2α2

2,0ε
2
α2

+ O
(
ε4
α2

)
,

FGHZ(ϕ, εφ2 ) = 1 − (
2 − 3

4

√
6
)
ε2
φ2

+ O
(
ε4
φ2

)
. (32)

Needless to say, the linear terms in these expansions vanish
because the fidelity reaches its maximum for the consid-
ered values α1,0 = π/4, φ1,0 = 5π/6, φ2,0 = π/3, and ξ0 =
α2,0 = arccos( 1

3 )/4 of the five relevant pulse-sequence param-
eters. Based on these values of the five relevant parameters
(cf. Sec. V A), the prefactors of the quadratic terms in the
expansions of Eq. (32) can straightforwardly be determined:
3ξ 2

0 /2 = 0.142, 7α2
1,0/2 = 2.159, 7/8 = 0.875, 3α2

2,0/2 =
0.142, and 2 − 3

√
6/4 = 0.163, respectively.

The small-εp expansions of FGHZ [cf. Eq. (32)], which
quantify the relative impact on the target-state fidelity of the
deviations εp in different parameters of relevance in the prob-
lem at hand, are illustrated in Fig. 3. What is evident from
this figure is that, among the five relevant parameters, the
GHZ-state fidelity is by far most sensitive to deviations in the
value of α1, i.e., the rotation angle corresponding to the first
control pulse. Another salient feature of Eq. (32) is that the
expansions obtained for α2 and ξ are completely the same (cf.
Sec. V A), with the results for φ2 being just slightly different
from those two (as can also be inferred from Fig. 3).

Another interesting conclusion can be drawn from the ob-
tained prefactors to quadratic terms in εp in Eq. (32). Namely,
the respective quantitative impacts on the fidelity FGHZ of
errors in the parameters α1 and α2 (i.e., in the rotation angles
corresponding to the t = 0 and t = T control pulses) from
their optimal values differ drastically, as can also be inferred

from Fig. 3. More precisely, for the same error (i.e., for
εα1 = εα2 ≡ εα), the deviation in α1 leads to an approximately
15 times larger reduction of the fidelity than that of α2. Thus,
our envisioned W -to-GHZ state-conversion scheme is much
more sensitive to errors in the first control pulse (at t = 0)
than those corresponding to the second one (at t = T ). This
last observation can be understood by analyzing the change in
the target-state fidelity resulting from the first control pulse.
Namely, this pulse leads to the change from FGHZ = 0 to
FGHZ = √

3/2 ≈ 0.866, which implies that the first control
pulse represents a much bigger stride towards the final GHZ
state than the second one. This makes the numerical results
presented in Fig. 3, i.e., the much larger sensitivity of the
state-conversion scheme at hand to errors in the first control
pulse, completely plausible.

It is well known that the entanglement-related properties
of GHZ states are largely independent of the specific value
of ϕ [cf. Eq. (6)]. For instance, GHZ states are characterized
by maximal essential three-way entanglement, as quantified
by the 3-tangle [77], irrespective of the value of ϕ. Likewise,
these states have no pairwise entanglement, as quantified by
the vanishing pairwise concurrences [32]. Because of that, it
makes sense to analyze the robustness of our envisaged pulse
sequence to errors in situations where one does not prioritize
obtaining a final GHZ state with the specific value of ϕ, but
rather a GHZ state with an arbitrary ϕ. This last scenario
alleviates the impact of the errors in the parameters εφ1 and
εφ2 , whose optimal values depend on ϕ, on the GHZ-state
fidelity in the following sense. Namely, if only the value of
one angle, e.g., φ1, deviates from its optimal value φ1,0, the
fidelity cannot reach unity for any ϕ since the relationship
found between the optimal values of φ1,0 and φ2,0, given by
Eq. (25), is not satisfied anymore. However, the final-state
fidelity might increase and reach values very close to unity
if ϕ is allowed to vary as well. In that case, we can de facto
treat ϕ as an additional variable parameter and try to optimize
the final-state fidelity with respect to ϕ for the fixed value of
the parameter φ1 that deviates from its optimal value φ1,0. In
other words, in the case of fixed ϕ the fidelity is computed
for a specific predetermined value of ϕ and deviations from
its corresponding optimal value of φ1. By contrast, in the
case that we do not prioritize obtaining a GHZ state with a
specific value of ϕ but instead any state of GHZ type, we
choose for ϕ the value for which the final-state fidelity reaches
its maximum, given the fixed value φ1,0 + εφ1 of φ1 (which
deviates from φ1,0); this last maximum, in principle, need not
be equal to unity. Both of these scenarios are illustrated in
Fig. 4, where the relative impacts of the errors εφ1 and εφ2

on the fidelity FGHZ in the aforementioned cases of fixed and
arbitrary ϕ are compared. What is evident from this plot is
that the deviation of the GHZ-state fidelity from unity due to
deviations in εφ1 is drastically smaller in the latter case.

Aside from the expansions in Eq. (32), which quantify the
impact of deviations εp in individual pulse-sequence param-
eters on the GHZ-state fidelity, it is pertinent to also discuss
the effect of simultaneous errors in more than one parameter.
To this end, the fidelity FGHZ is evaluated numerically based
on its defining expression [cf. Eq. (21)], i.e., without resorting
to the small-εp expansions in Eq. (32). For instance, Fig. 5 il-
lustrates the deviation 1 − FGHZ of the fidelity from unity (the
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FIG. 4. Comparison of the dependence of the infidelity 1 − FGHZ

on εφ1 and εφ2 for fixed and arbitrary values of ϕ.

infidelity) for a range [−0.1, 0.1] of values for simultaneous
deviations in two different parameters. In particular, Fig. 5(a)
illustrates the infidelity resulting from errors in the values of
the parameters φ1 and φ2, while Fig. 5(b) shows the analogous
dependence on errors in the parameters α1 and α2. In both
cases, it is noticeable that even relatively large errors (such as
0.1) in these parameters result in a relatively small infidelity.
As can be inferred from Fig. 5, the infidelity does not exceed

FIG. 5. Deviation of the GHZ-state fidelity from unity (i.e., the
infidelity) 1 − FGHZ as a function of (a) errors in the parameters φ1

and φ2, i.e., deviations from their respective optimal values φ1,0 =
5π/6 and φ2,0 = π/3, and (b) errors in the parameters α1 and α2,
i.e., deviations from their respective optimal values α1,0 = π/4 and
α2,0 = arccos(1/3)/4.

FIG. 6. Deviation of the GHZ-state fidelity from unity (i.e., the
infidelity) 1 − FGHZ as a function of (a) errors in the Ising-pulse
duration εξ and the angles εφ1 = εφ2 ≡ εφ specifying the two rotation
axes and (b) errors in εξ and the two rotation angles εα1 = εα2 ≡ εα

corresponding to the instantaneous control pulses.

1.25% (2.5%) in the case of the parameters φ1 and φ2 (α1 and
α2).

Another situation worth discussing is the one involving
simultaneous errors in the Ising-pulse duration ξ and the pair
of parameters φ1 and φ2 (or α1 and α2). In particular, shown
in Fig. 6(a) is the infidelity resulting from simultaneous errors
in ξ , φ1, and φ2, where errors in the last two parameters are
assumed to be the same (i.e., εφ1 = εφ2 ≡ εφ). At the same
time, Fig. 6(b) illustrates the infidelity resulting from errors in
ξ , α1, and α2, where, by analogy with Fig. 6(a), it was assumed
that εα1 = εα2 ≡ εα . What can be inferred from Fig. 6 is that
even rather large deviations of the three relevant parameters
[ξ , φ1, and φ2 in Fig. 6(a) and ξ , α1, and α2 in Fig. 6(b)]
from their optimal values (up to εp = 0.1) lead to relatively
modest deviations of the GHZ-state fidelity from unity, which
do not exceed 2.5%. This speaks in favor of the robustness
of the envisioned W -to-GHZ state conversion to errors in the
relevant parameters.

One common salient feature of Figs. 5 and 6 is the elliptical
shape of their central white-colored regions. This elliptical
shape is a consequence of the fact that the lowest-order de-
pendence of the GHZ-state fidelity on the error in the relevant
parameters is quadratic. For instance, the lowest-order expan-
sion of 1 − FGHZ in εξ and εα [cf. Fig. 6(b)] is given by

1 − FGHZ(ϕ) = 3
2ε2

ξ + 5ε2
α + εξ εα + O((εα, εξ )3), (33)

which clearly describes an ellipse in the εξ -εα plane. The other
regions in Figs. 5 and 6 represent dilated versions of these
central elliptically shaped regions.

While here we have discussed in detail the robustness
to errors of the pulse sequence for converting an initial W
state into its GHZ counterpart, the robustness of the inverse
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(GHZ-to-W ) state-conversion process can be analyzed in a
completely analogous fashion.

VI. SUMMARY AND CONCLUSIONS

In this paper we addressed the problem of interconversion
between W and GHZ states for a three-qubit system with
Ising-type coupling between qubits that are also subject to
global transverse Zeeman-like control fields. Motivated in
large part by a recent Lie-algebraic result that guarantees the
state-to-state controllability of such a system for an arbitrary
pair of initial and final states that are invariant with respect
to permutations of qubits, we carried out our analysis within
the four-dimensional subspace of the three-qubit Hilbert space
that contains such (permutation-invariant) states.

We determined a solution of the W -to-GHZ state-
conversion problem in the form of an NMR-type pulse
sequence, which consists of two instantaneous (global) con-
trol pulses, each of them being equivalent to a global qubit
rotation, and a finite-duration Ising-interaction pulse between
them. We numerically obtained the optimal values of the five
parameters (two rotation angles corresponding to the control
pulses, two angles that define the directions of the correspond-
ing rotation axes, and the duration of the Ising-interaction
pulse) that describe the envisioned pulse sequence. We then

demonstrated the robustness of the proposed pulse sequence
to errors in its five characteristic parameters. In particular,
we showed that the GHZ-state fidelity retains values very
close to unity even for appreciable deviations of the relevant
parameters from their optimal values.

Several generalizations of the present work can be en-
visaged. First, the robustness of the proposed scheme to
decoherence, an issue that necessitates treatment within the
open-system scenario, is worth investigating. Second, the
same deterministic interconversion problem for W and GHZ
states could also be studied for a system with more than three
qubits; also, other state-interconversion problems, involving
various types of generalized W and GHZ states as well as
other interesting classes of entangled states (e.g., Dicke-type
states), are also of appreciable interest. Finally, an analogous
state-interconversion problem could be addressed for qubit
arrays with other common types of qubit-qubit interactions,
such as XY -type interactions of relevance for superconducting
qubits [78] and Heisenberg-type interactions characteristic of
spin qubits [59,79].
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Rev. A 82, 052333 (2010); Eur. Phys. J. D 63, 41 (2011).

[60] J. Zhang and K. B. Whaley, Phys. Rev. A 71, 052317 (2005).
[61] P. Zanardi, Phys. Rev. A 60, R729 (1999).
[62] P. Ribeiro and R. Mosseri, Phys. Rev. Lett. 106, 180502 (2011).
[63] A. Burchardt, J. Czartowski, and K. Życzkowski, Phys. Rev. A
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