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We initiate a systematic study to provide upper bounds on device-independent keys, secure against a nonsignal-
ing adversary (NSDI). We employ the idea of “squashing” on the secrecy monotones and show that squashed
secrecy monotones are the upper bounds on the NSDI key. Our technique for obtaining upper bounds is based on
the nonsignaling analog of quantum purification: the complete extension. As an important instance of an upper
bound, we construct a measure of nonlocality called “squashed nonlocality.” Using this bound, we identify
numerically a certain domain of two binary inputs and two binary outputs of nonlocal devices for which the
squashed nonlocality is zero. Therefore one can not distill a secure key from these nonlocal devices via a
considered (standard) class of operations. Showing a connection of our approach to the one in New J. Phys. 8,
126 (2006), we provide, to our knowledge, the tightest known upper bound in the (3,2,2,2) scenario. Moreover,
we formulate a security condition, equivalent to known ones, for the considered class of protocols. To achieve
this, we introduce a nonsignaling norm that constitutes an analogy to the trace norm used in the security condition
of the quantum key distribution.
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I. INTRODUCTION

Secure key distribution is a process of generation of se-
cret key bits between two distant parties, in presence of an
eavesdropper [1–3]. There are four major cryptographic se-
curity paradigms developed in the last several decades that
provide a background for our investigation. These are (i)
a secret-key agreement scenario (SKA) [1,2], (ii) device-
dependent security against a quantum adversary (QDD) [3–7],
(iii) device-independent security against a quantum adversary
(QDI) [5,8–12], and (iv) device-independent security against a
nonsignaling adversary (NSDI) [13–17]. We have enumerated
them in order of increasing power of the eavesdropper. In
what follows, we are going to use concepts of SKA paradigm
to place upper bounds on the secret-key rate in the NSDI
scenario in a manner that is known from the QDD paradigm.
Let us then begin with a short reminder of the main ideas
behind the aforementioned cryptographic setups.

In the SKA scenario, the parties share marginals of a classi-
cal probability distribution P(ABE ), respectively. The honest
parties (often called Alice and Bob) can process their data
by the so-called local operations and public communication
(LOPC). At the same time, the eavesdropper Eve can listen to
public communication and can apply any stochastic map on
her data [1,2]. This paradigm is of special interest in context
of security of the wireless communication.

*Corresponding author: marek.winczewski@ug.edu.pl

The QDD scenario, originating conceptually from the
SKA, was introduced at the early stage of quantum cryp-
tography [4,5]. In this paradigm, the three parties share (in
the worst case) a subsystem of a joined pure quantum state
|�ABE 〉. Alice and Bob can process this state by Local quan-
tum operations and Classical communication (LOCC). At the
same time, Eve obtains any system which is discarded by
Alice and Bob and can perform any quantum operation on her
subsystem [18–20]. This scenario has a drawback that Alice
and Bob have to trust the inner working of their device: the
dimensionality of the state and operations of measurement
performed by the device. This problem has been resolved in
a much more sophisticated approach of the QDI, quantum
device-independent scenario. In this paradigm, the honest par-
ties share an untrusted device, described by a joint conditional
probability distribution P(AB|XY ) originating from a mea-
surement on a quantum state ρAB: P(AB|XY ) = Tr(MA|X ⊗
MB|Y ρAB). Security in this scenario is based solely on statistics
of the inputs X, Y and outputs A, B of the device. An eaves-
dropper is assumed to be restricted by the laws of quantum
mechanics. She is therefore bound to hold a purifying system
of a ρAB, i.e., the system E of such a pure state |ψABE 〉, that
TrE |ψ〉〈ψ |ABE = ρAB.

A. Nonsignaling adversary scenario

In this manuscript, we focus on another branch of key
distribution that has emerged in the last two decades,
which is the nonsignaling device-independent (NSDI) sce-
nario [13–17,21–23]. This scenario has even more relaxed
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assumptions than QDI. Here, the eavesdropper is restricted
only by the nonsignaling condition, i.e., she can not influ-
ence statistics of the honest parties in a faster than light
manner. Similarly the honest parties can share a possibly
supraquantum correlation only constrained by the nonsignal-
ing condition. The advantage of NSDI approach over SKA,
QDD, and QDI scenarios is the fact that it assures security
even if a new theory replacing quantum mechanics became
established, as long as it is nonsignaling. The object shared
by Alice, Bob, and Eve is a tripartite nonsignaling device,
P(ABE |XY Z ), with Z and E being the input and output re-
spectively of Eve’s part of the device. On this device, the
parties perform some measurements (X,Y ) and post-process
their output data (A, B) by some LOPC operations, to produce
the secure key. This device is assumed to be (in a worst case)
created by the eavesdropper who can listen to the public com-
munication, and perform certain operations on her subsystem.

The first NSDI protocol, whose security was proven, was
given by Barrett, Hardy, and Kent [13]. The protocol results in
a single key bit in the noiseless scenario. Later, lower bounds
on the key rate have been derived in Refs. [14,16,22], via
several key distillation protocols, under the assumption that
eavesdropper attacks each of the subsystems separately. In the
presence of a collective eavesdropping attack, it was shown
in Refs. [15,17,23], that one can obtain a nonzero key rate
under the fully nonsignaling constraint. By fully nonsignal-
ing, we mean that none of the subsystems of a device can
signal to each other. More precisely, a device with 2N + 1
inputs and 2N + 1 outputs (N for each of the honest parties
and one for the eavesdropper) is understood to have 2N + 1
subsystems none subset k of which can signal to the remaining
2N + 1 − k.1 This assumptions is vital, because if the device
can perform signaling between its subsystems (of one party)
[24], then no hash function is known to achieve privacy ampli-
fication against the nonsignaling eavesdropper. Moreover, if
the device has a memory [25,26], or can signal forward (from
one run2 of the protocol to the next one) [27], then a wide class
of hash functions can be attacked by a nonsignaling Eve. The
assumption of full nonsignaling can be achieved by perform-
ing measurements in parallel on all of the 2N subsystems. We
refer to this approach as to parallel measurement model.

The nonsignaling paradigm that allows defining the NSDI
scenario became an active field of research since the seminal
papers of Rastall [28], Khalfin, and Tsirelson [29] as well
as Popescu and Rohrlich [30] (for a recent review on Bell
nonlocality see [8]). Our findings will contribute not only to
the aforementioned cryptographic scenarios (NSDI and SKA)
but also to the domain of Bell nonlocality. This is because
some of the functions that serve as upper bounds on the key
rate that we establish in the NSDI scenario, are alternative
measures of nonlocality.

1In what follows, by “device” we mean a single-use device. A de-
vice can be used by measuring its input. A single-use device can not
be measured more than once. If there is a need to perform multiple
measurements on a device, then it will be assumed as a composite
device consists of multiple single-use devices.

2By one single run of the protocol, we mean one use of a particular
single use device.

B. Motivation

In the NSDI scenario described above, mainly the lower
bounds on the key rate has been considered [13–17,21–23].
For the upper after seminal result given in Ref. [16] based
on intrinsic information, upper bounds were not studied sys-
tematically until recently (an upper bound based on intrinsic
information has been proposed in parallel to the approach pre-
sented in this work in Ref. [31]). In contrast, if one considers
the QDD scenario, both lower bounds [18,32–34], and upper
bounds on the secure key rate are well known. Indeed, the
upper bounds in this scenario where studied both in the con-
text of quantum states [19,20,34–38] and quantum channels
[39–41] (see also Refs. [42–46] in this context). Similarly
in the case of QDI scenario, after seminal upper bound of
Refs. [31,47], a sequence of other proposals were provided
recently [48–52]. Some of the upper bounds in QDD and QDI
scenario [34,36–40,48–50] are based on the entanglement
measure called “squashed entanglement” [34]. A welcome
feature of this measure is that it is an additive function, i.e.,
one avoids regularization like it is the case for the relative
entropy of entanglement [19,20,45,46,53]. We aim at both
constructing upper bounds in the NSDI scenario and introduc-
ing alternative measures of nonlocality. Although the analog
of relative entropy—the “strength of nonlocality proof” [54]
(also called relative entropy of nonlocality [55]) has been
constructed, no analog of squashed entanglement was known
in the realm of nonlocality (for the parallel, and different ap-
proach see Ref. [31]). In our approach to the problem, we are
guided by an analogy between entanglement and nonlocality.
Interestingly the measure which we construct is, up to maxi-
mization over the inputs of the honest parties, equal to the one
implicitly considered in Ref. [16]. It is however differently
formulated, as we use the notion of a complete extension
[56] to formalize it. Moreover, we prove that our measure is
a convex function of the devices of the honest parties, what
allows for the use of the convexification technique (that we
formulate) for finding the numerical upper bound. We will see
that this reformulation is fruitful for studying properties of this
upper bound, which we call here “the squashed nonlocality.”

II. MAIN RESULTS

In this manuscript, we construct upper bounds on the NSDI
key rate, distillable via (i) direct measurement, changing de-
vice into a distribution followed by (ii) Local operations and
Public communication (denoted together as MDLOPC op-
erations). Aiming at upper bounds, we study the scenario
in which the shared device consists of N independent and
identically distributed (iid) copies of a nonsignaling device
P(AB|XY ). We define a wide class of secrecy quantifiers taken
from the so-called SKA (secure key agreement) model [2].
One such quantifier, we call the squashed nonlocality, as we
define it in analogy to squashed entanglement [34], however,
in the realm of nonsignaling devices. We then show that the
squashed nonlocality serves as an upper bound on the key
distilled by MDLOPC operations. It is important to note that
almost all of the secure key distillation protocols in QDI
and NSDI, proposed so far, belong to the MDLOPC class of
operations (see however recent proposal [57]). Therefore our
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bounds, on the amount of key, bound from above the key rate
achieved by a wide class of practical protocols.

A. Family of nonlocality measures as upper bounds

One of our achievements is a construction of upper bound
on the secret key in the NSDI scenario that is in an addition a
(nonfaithful) measure of nonlocality. Informally, the squashed
nonlocality Nsq(P), of a bipartite nonsignaling device P :=
P(AB|XY ) is given by

Nsq(P) := Î(A : B ↓ E )E (P)(ABE |XY Z )

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE|XYZ), (1)

where E (P)(ABE |XY Z ) is the complete extension of the de-
vice P [56] and I (A : B ↓ E )P(ABE ) is the intrinsic information
of a distribution P(ABE ) [58,59]. Furthermore, the honest par-
ties choose inputs x, y (for a full direct measurement MF

x,y),
while the eavesdropper is allowed to perform a more gen-
eral measurement MG

z that contains in particular probabilistic
mixing of input choices.

The squashed nonlocality, as we prove, possesses many
properties of those desired for a measure of nonlocality such
as convexity and additivity. As we show the above function
is only an example of an upper bound that can be introduced
using our approach. The other function that we study in this
paper to be lifted from the SKA to the NSDI scenario are
mutual information and conditional mutual information.

We note, however, that the above function can be equiva-
lently formulated in a way considered implicitly in Ref. [16]
by A. Acin, S. Massar, and S. Pironio (AMP). Consider a
function IAMP,(x,y):

IAMP,(x,y)(P(AB|X = x,Y = y)

:= inf
{p(E=e),P(ABE=e|X=x,Y =y)}

I(A : B ↓ E )P(ABE |XY ), (2)

where P(ABE |XY ) = p(E = e)P(AB, E = e|XY ), and the
infimum is taken over all ensembles {p(E = e), P(AB, E =
e|XY )} of the device P(AB|X,Y ) = ∑

e P(E = e)P(AB, E =
e|X,Y ). The equivalence can be establish as follows for a
device P ≡ P(AB|XY ):

max
(x,y)

IAMP,(x,y)(P) = Nsq(P). (3)

This fact, along with our proof of the convexity of Nsq leads
to the tightest known bound in the scenario (3,2,2,2) (see
Fig. 5), i.e., with three inputs for one party, binary inputs for
the other and binary outputs for both (for the proof of Eq. (3)
and consequences of it see Sec. VI).

We provide a method of generating tighter (though possi-
bly harder to compute) upper bounds. Indeed, in defining the
squashed nonlocality, we used the secrecy monotone called
intrinsic information. The nonfaithfulness3 of the squashed
nonlocality is therefore due to the property inherited from the
classical intrinsic information that can be zero for correlated
distribution. One can, however, use some other quantifiers of

3The property of nonfaithfulness of a measure of nonlocality means
that the measure is zero for some nonlocal behaviors.

FIG. 1. Plot of several secrecy quantifiers M̂(A : B||E ), as an
upper bound on K (iid)

DI , for a bipartite binary input-output device
lying on the isotropic line. The dashed red line represents squashed
mutual information Î(A : B)Piso . The straight blue line represents the
nonlocality cost, as well as the squashed conditional mutual entropy
Î(A : B|E )E (Piso ), over the complete extension E (Piso ) of the given
device Piso. The solid orange line represents the upper bound on
the squashed nonlocality Nsq, which is the lower convex hull of the
several other upper bounds on Nsq. The dotted pink curve (HRW)
corresponds to the lower bound achieved by Hänggi, Renner, and
Wolf’s protocol [17].

secret correlations, e.g., the so-called reduced intrinsic mutual
information, which also leads to an upper bound. Due to an
analogy between the entanglement and nonlocality, the upper
bounds we provide here are also measures of nonlocality, and
as such, can be studied independently.

Furthermore, we notice that our approach can be readily
modified in order to construct upper bounds for a wider class
of protocols in which one of the inputs of the honest par-
ties is not announced [14]. This can be done by changing
maxx,y minz to maxy minz maxx in Eq. (1), what reflects the
action of the parties in the latter scenario (only Bob announces
his inputs).

B. MDLOPC-bound nonlocality

Using the bound, we then obtain numerically a region of
nonlocal two binary input and two binary output, (2,2,2,2)
devices, from which no key can be distilled via MDLOPC
operations. These are the “isotropic” mixtures of the devices,
namely, the Popescu-Rohrlich (PR) box and the box comple-
mentarity to it, the anti-PR box when the admixture of the
PR box is less than 80%. Notably, this result implies that in
parallel measurement model, when the same measurement on
each device is performed, nonlocality does not imply secrecy.
Indeed, quantum devices with mixture of PR box more than
75% exhibit nonlocality, that is, they violate the CHSH in-
equality [60], while as we show, all the devices below 80%
have zero key distillable by MDLOPC protocols. We compare
also the upper bound via nonsignaling squashed nonlocality
for isotropic devices with the lower bound on the key rate
taken from [17] (see Fig. 1). The lower and the upper bounds
come pretty close for the state close to the PR box.

We note here that in Ref. [14] a protocol for distillation
of private key from isotropic devices were given which is out
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of MDLOPC class: one of the parties do not announce the
input from used to generate the key. There also it was shown
that the so called intrinsic information is zero when both the
parties announce their inputs after measurements. Our bound
does not extends straightforwardly to this scenario, as in our
case, Eve knows that Alice and Bob draw key from single pair
of inputs. However it indicates that keeping one of the inputs
used for generating key secret, is crucial for nonzero key rate
in the nonsignaling adversary scenario.

This indication is confirmed by recent result given in
Ref. [50] for the case of device-independent quantum key
distribution with quantum adversary. There, a broader notion
of protocols is considered, also called “standard.” These are
protocols during which for generation of the key each device
is measured by a pair of inputs (X = x, Y = y) with prob-
ability p(x, y) drawn in i.i.d manner, an announced before
post-processing the output key rate. It is shown there, that
such protocols admits an upper bound

∑1,1
x=0,y=0 p(x, y)I (A :

B ↓ E , xy), i.e., the intrinsic information [58,59] averaged
over choices of the inputs. Moreover it is argued, that there
exist nonlocal devices (violating CHSH inequality) for which
the latter upper bound is zero. This implies that no such a
“standard” protocol is able to achieve nonzero key rate in the
case of quantum adversary.

In a similar way, we show the MDLOPC-bound nonlocal-
ity in the (3,2,2,2) scenario [5,16]. In the latter, one party
has inputs x ∈ {0, 1, 2} and the other y ∈ {0, 1}. The inputs
x �= 0, y are used for testing the value of the CHSH inequality
[60], while the pair x = 0, y = 0 is used for generation of the
raw key. The fact that distributions with isotropic parameters
p ∈ [0.7071, 0.8284] are nonlocal but no key can be distilled
from them in the latter scenario was left open in Ref. [16].
Showing the equivalence given in Eq. (3) and the fact that
Nsq upper bounds the distillable key, we close the mentioned
open problem, by confirming that no key can be obtained
by a protocol drawing key from a single pair of settings
x = 0 and y = 0. The obtained results are shown in Fig. 5.

C. Analogies between different cryptographic paradigms

We finally compare the proposed security criteria with the
previously known ones [15,17,23,24,63,64], and prove their
equivalence. In the case of quantum mechanics, the power
of eavesdropper is fully described by system of the hon-
est parties through the so-called purification. However, it is
known that there is no analog of the quantum purification in
the realm of devices [65,66]. To overcome this problem, we
have used a recently introduced notion of complete extension
[56], to describe eavesdropper’s power. The complete exten-
sion, E (P)(ABE |XY Z ), of the shared device P(AB|XY ), is
the worst-case extension that Eve can share with the honest
parties. It is the worst case in the sense that it gives the
eavesdropper an ultimate power as compared to quantum
purification does in QDD and QDI scenarios. Indeed, the
complete extension gives access to all possible ensembles of
the device of the honest parties, when randomizing input and
post-processing channel is applied on the extended part. It
implies, as we show in detail, that this structural approach is
equivalent to the one proposed in Ref. [17].

FIG. 2. Summary of part of the results which contribute to the
analogy between security paradigms: SKA scenario where distribu-
tions are processed, and one of the upper bounds is the intrinsic
information I (A : B ↓ E ), QDD protocol, where the shared pure
state is processed, and distillable key KD is upper bounded (among
others) by the measure “squashed entanglement” Isq [61,62]. We
reformulate NSDI paradigm so that it bases on the complete exten-
sion, E (P(AB|XY )), of a device (conditional distribution) P(AB|XY ),
introduce an analog of intrinsic information and squashed entangle-
ment called “squashed nonlocality.”

We have further introduced amother criterion of security,
based on an operational distance measure between nonsignal-
ing devices—the nonsignaling norm (NS norm) analogous to
the trace norm in quantum mechanics (related to the one given
in Ref. [67]). We have also proved equivalence between our
criteria and the two proposed so far in Refs. [11,15,23] and
[17,24,63,64], respectively. As a byproduct, we have shown
that the latter two definitions are equivalent. By proving equiv-
alence of our definition based on ||.||NS norm to the definition
of Refs. [17,24,63,64], we have shown that the former is com-
posable, in a sense given there.4 A visualization of some of the
main results that contribute to developing a structural analogy
between SKA, QDD, and NSDI are presented in Fig. 2.

III. SECURITY DEFINITION IN THE IID SCENARIO

In every DI secure key distillation protocol, the honest
parties perform several numbers of test runs to estimate the
nonlocal correlation present in the system and a (larger) num-
ber of key generation runs to generate the raw key. The raw
key is further processed to yield the final key only if the
device has passed the test run, i.e., the data are compatible
with a sufficiently nonlocal device. Aiming at upper bounds,
we study only the performance of the key generation runs. We,
therefore, assume that, on the N iid (identical, independently
distributed)5 copies of the shared device P(AB|XY )⊗N , the
honest parties perform full direct measurement [MF

x,y]⊗N , by

4Naturally however, the device can not be reused in composing the
protocols due to the threat of the memory attack [68].

5For QDI, it is known that any arbitrary device can not be expressed
in terms of the IID single use device, but the security proof for
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setting X = x (Alice) and Y = y (Bob) at their choice, fol-
lowed by any composition of classical post-processing of the
distribution P(AB|xy), and public communication (denoted
as Q). These operations result in a pair of random variables
(SA, SB) that represents the key. That is, on the outputs of
the measured device, the honest parties perform an LOPC
protocol. An operation performed on a device, that is a com-
position of the direct measurements and an LOPC operations
we call Measurement on device local operation and public
communication operation (MDLOPC).

In NSDI scenario Eve collects all the public commu-
nication Q, and then post-process her data represented by
P̃(E |Z, Q). She can also perform a wider class of operations
than the honest parties, including the general measurement
MG

z′ = ∑
z p(z|z′)MF

z . This is equivalent to a probabilistic
choice of the inputs for direct measurements. She can do so
by the general measurement MG

z′ , by wiring the output of
her local auxiliary device (a dice), that generates a random
conditional probability distribution p(z|z′), to the input of her
part of the device, i.e., Z of P̃(E |Z, Q). However, the ultimate
power of eavesdropping in this scenario is fixed by definition
of the class of operations that a hypothetical agent called
distinguisher could perform. It is assumed that distinghuisher
has access to both the output of the protocol (i.e., the keys
of the honest parties) and the Eve’s device P̃(E |Z, Q). By
his operations, distinguisher should be almost not able to tell
apart this so-called “real” device Preal(SA, SB, Q, E |Z ) from an
“ideal” one, i.e., containing perfectly uniform and correlated
keys, product with Eve’s system.

We can specify now what the key distillation protocol is.
A protocol of key distillation is a sequence of MDLOPC
operations � = {�N }, performed by the honest parties on N
iid copies of the shared devices. Each of this �N , consists
of a measurement stage {MN }, followed by post-processing
{PN }, on N iid copies of P(AB|XY ). Moreover, for each con-
secutive, complete extension of N copies of shared devices
E (P⊗N )(ABE |XY Z ), the protocol outputs a probability dis-
tribution in part of Alice and Bob and a device in part of Eve,
which is arbitrarily close to an ideal distribution, satisfies∣∣∣∣Pout − P(dN )

ideal

∣∣∣∣
NS � εN

N→∞−→ 0. (4)

Here Pout = �N (E (P⊗N )). Moreover A = A1A2 . . . AN , B, X
and Y are similarly defined.

The definition of the secret-key rate, based on the notion of
the (i) complete extension and (ii) the key distillation protocol,
satisfying the proximity in the NS norm security criterion
according to the Eq. (15), is given below.

Definition 1. Given a bipartite device P ≡ P(AB|XY ) the
secret-key rate of the protocol of key distillation �N , on
N iid copies of the device, denoted by R(�|P ) is a num-
ber lim supN→∞

log2 dN

N , where log2 dN is the length of a
secret key shared between Alice and Bob, with dN =
dimA[�N (E (P⊗N ))] ≡ |SA|. The device independent key rate

a broad range of cryptographic protocols can be performed via a
reduction to IID [69].

of the iid scenario is given by

K (iid)
DI (P) = sup

�

R(�|P ), (5)

where the supremum is taken over all MDLOPC protocols
{�}.

Later in this manuscript, we argue that the above definition
is equivalent in terms of security to the one adopted earlier
[11,15,17,23,24,63,64], which allows us to compare some of
the existing lower bounds with the upper bounds that we
provide.

IV. SQUASHING PROCEDURE

Let us suppose that M(A : B||E ) is a real-valued and
non-negative function, with domain in the set of tripartite
probability distributions P(ABE ), which is an upper bound on
secret-key rate S(A : B||E ) in SKA cryptographic paradigm
[2], i.e., ∀P(ABE ), M(A : B||E ) � S(A : B||E ). We will refer
to M(A : B||E ) as to secrecy quantifier. Additionally, if M(A :
B||E ) is monotonic with respect to LOPC and zero for prod-
uct distributions, we call it a secrecy monotone. Squashing
a secrecy monotone will not yield an MDLOPC monotonic
quantifier in general. The quantifiers of secret correlations in
the NSDI model can be constructed by mapping the tripartite
nonsignaling device R(ABE |XY Z ) to a joint probability dis-
tribution, as given in the definition.

Definition 2. Corresponding to each secrecy quantifiers in
SKA model M(A : B||E ), we associate a nonsignaling secrecy
quantifier M̂(A : B||E ) acting on the tripartite nonsignaling
devices:

M̂(A : B||E )R(ABE |XY Z )

:= max
x,y

min
z

M(A : B||E )(MF
x,y⊗MG

z )R(ABE |XY Z ), (6)

where (
MF

x,y ⊗ MG
z′
)
R(ABE |XY Z )

=
∑

z

p(z|z′)R(ABE |X = x,Y = y, Z = z). (7)

If R(ABE |XY Z ) ≡ E (P)(ABE |XY Z ) is the complete ex-
tension of a bipartite device P(AB|XY ), we call M̂(A :
B||E )E (P)(ABE |XY Z ) the nonsignaling squashed secrecy quan-
tifier. If M(A : B||E )R(ABE |XY Z ) is a secrecy monotone, we
call M̂(A : B||E )R(ABE |XY Z ) a nonsignaling secrecy monotone.
Additionally if R(ABE |XY Z ) is a complete extension, we call
it a nonsignaling squashed monotone.

Here, by maxx,y, we mean the maximization over all pos-
sible direct measurements, MF

x,y ≡ MF
x ⊗ MF

y by the honest
parties, whereas the minz implies that the eavesdropper will
try to minimize the function over all possible choices of
measurements, direct and general. Optimization over direct
measurements involves a fixed input choice, whereas for gen-
eral measurement, one needs to perform optimization over
all possible conditional probability distributions p(z|z′). In
our MDLOPC key distillation protocol, the eavesdropper
can choose her measurement adaptively, based on the public
communication variable Q. Hence the causal order of the op-
timization on the secrecy quantifier is that Alice and Bob first
choose their optimal measurements, and then Eve performs
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her part. This gives her the maximal operational power to
reduce the correlations between the honest parties.6

The motivation to use the term “squashed” in the above
measures, comes from the fact that the definition of squashed
entanglement, of an arbitrary quantum state ρAB, contains
an optimization over all possible extensions ρABE , where
trE (ρABE ) = ρAB. This arbitrary extension ρABE can be ob-
tained from the purification |ψ〉ABE of the quantum state [62].
In the analogy of these, here we use the complete extension
E (P), the nonsignaling equivalent of quantum purification,
which is the key ingredient to perform an optimization over
all possible nonsignaling extensions [56] of a given device
P. The secrecy quantifiers, we have used for squashing, are
the mutual information I(A : B), the conditional mutual in-
formation I(A : B|E ), the intrinsic information I(A : B ↓ E )
[58] and the reduced intrinsic information I(A : B ↓↓ E ) [70].
Among them, I(A : B|E ), I(A : B ↓ E ) and I(A : B ↓↓ E ) are
secrecy monotones. Hence Î(A : B|E ), Î(A : B ↓ E ) and Î(A :
B ↓↓ E ) are nonsignaling squashed secrecy monotones while
Î(A : B) is an example of a nonsignaling squashed secrecy
quantifier.

The inclusions between gray, green, and orange sets in
Fig. 3 follow directly from the definition of different classes
of functions. Namely, all n-s secrecy measures are necessarily
n-s secrecy monotones, and all n-s secrecy monotones are
necessarily n-s secrecy quantifiers, but not vice versa. The
strictness of the inclusions follows from a trivial example
of n-s mutual information (gray area), n-s intrinsic informa-
tion (orange area), and n-s intrinsic information shifted by
a nonzero constant (green area). Analogous relation is true
for the squashed version of the aforementioned functions.
Nevertheless, the squashing procedure does not imply that
the resulting function is automatically a secrecy measure or a
secrecy monotone; therefore, the representatives of squashed
functions are present in all three sets.

V. GENERIC UPPER BOUND AND
THE SQUASHED NONLOCALITY

Below, we use the aforementioned idea of squashing for
upper-bounding the secret key in the NSDI scenario with
MDLOPC operations.

Theorem 1. The secret-key rate, in the nonsignaling
device-independent iid scenario achieved with MDLOPC op-
erations, K (iid)

DI , from a device P, is upper bounded by any
nonsignaling squashed secrecy quantifier evaluated for the
complete extension of P:

∀P K (iid)
DI (P) � M̂(A : B||E )E (P), (8)

where P ≡ P(AB|XY ) is a single copy of a bipartite
nonsignaling device shared by the honest parties, and E (P) ≡
E (P)(ABE |XY Z ) is its complete extension to the eavesdrop-
per’s system.

Proof. For the proof, see Sec. F of Appendix.
Theorem 1, together with Definition 2, establishes a con-

nection between the secret-key rate in the SKA and NSDI

6One can also consider the reverse order of optimization, but that
opens up a different, uncommon paradigm of key distillation.

FIG. 3. The relative hierarchy of the squashed function M̂(A :
B||E ) of any bipartite device P(AB|XY ). Any M̂(A : B||E ) function,
which is positive semidefinite and vanishes for devices that are the
product of two local devices, is called a nonsignaling squashed se-
crecy quantifier, and the set of all such functions is the entire region
inside the black ellipse. The quantifiers that are generated from the
monotones of the SK paradigm are called nonsignaling squashed
secrecy monotones and are represented by the green region inside
the green ellipse, as a subset of the secrecy quantifiers. Î(A : B|E ),
Î(A : B ↓ E ), and Î(A : B ↓↓ E ) are the monotones belonging to this
category. If a function is additionally monotonic under MDLOPC
operations for devices, vanishes for local ones, then we call it the
nonsignaling squashed secrecy measure, and the set represented by
the red region in the figure. Any secrecy quantifier will be called
squashed secrecy quantifier if the extension of the device P(AB|XY )
has been taken to be the CE E (P)(ABE |XY Z ). The set of such
functions are denoted by the dashed blue region. The intersection of
the dashed blue region with the green region includes all squashed
secrecy monotones, whereas its intersection with the red contains
all squashed secrecy measures. The squashed nonlocality Nsq is a
particular function from that region, which is depicted as the black
dot.

scenario. The novelty of our approach is that not only it
connects at least two major security paradigms, but it also
opens up a new area of research—to study more tighter upper
bounds on the key rate in the NSDI scenario (for parallel, dif-
ferent approach see Ref. [31]). In this paper, we focus on the
secrecy monotone called intrinsic information I (A : B ↓ E ).
From this secrecy monotone via squashing we construct the so
called squashed nonlocality, as an upper bound on the NSDI
key. We then prove several important properties of squashed
nonlocality, which promotes it as a measure of nonlocality.
Secrecy monotone called the reduced intrinsic information
I (A : B ↓↓ E ), provide a tighter bound on the key rate in the
SKA scenario, as I (A : B ↓↓ E ) � I (A : B ↓ E ) for tripartite
probability distribution P(ABE ) [71]. Hence we open a pos-
sibility to study even tighter upper bound on the K (iid)

DI , upon
squashing the I (A : B ↓↓ E ). We focus now on the definition
of the aforementioned squashed nonlocality.

Definition 3. The squashed nonlocality Nsq(P), of a bipar-
tite nonsignaling device P := P(AB|XY ) is

Nsq(P) := Î(A : B ↓ E )E (P)(ABE |XY Z )

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE|XYZ),
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where E (P) := E (P)(ABE |XY Z ) is the complete extension of
the device P [56].

We note here, that the above definition is tuned to the
deifinition of K (iid)

DI . The order of the maxx,y and minz stems
from the fact that we consider the scenario of key distillation
in which Eve knows x, y beforehand. In our case, the inputs
(x, y) are fixed before the beginning of the protocol, but in
general it could be announced during the protocol’s execution.
This is important point, as alternative protocols exist in which
only one party announces the inputs, and the key is distilled
from output of all the inputs [14]. In the latter case, a positive
key rate can be obtained even from the quantum isotropic
devices in the scenario of two binary inputs and two binary
outputs, while in the scenario which we consider where both
inputs are known to the eavesdropper no positive lower bound
on the key rate is known. It is possible that the upper bounds
on the protocols such as those from Ref. [14] where x is not
announced, are provided in terms of the squashed nonlocality
where however maxy minz maxx appears in front instead of
maxxy minz.

From the definition of a complete extension of a device (see
Ref. [56]), we know that in order to construct it, one needs
to identify all possible so-called minimal ensembles of the de-
vice. For example, in the polytope of two binary input and two
binary output devices (2,2,2,2), a device lying on the isotropic
line between Popescu-Rohrlich and Tsirelson’s one7 has up to
354 minimal ensembles (achieved for the Tsirelson’s device).
However, a priori, there are 880 946 of ensembles that can
be potentially minimal [56]. Hence, obtaining all possible
minimal ensembles, and therefore finding out the complete
structure of the CE may be an arduous task. However, we
observe that to obtain a nontrivial upper bound on the Nsq,
not the whole complete extension has to be even known.

We collect below certain properties of the above measure.
Some of them are used in what follows, and some of them are
of independent interest in the context of Bell nonlocality.

Proposition 1. Besides being nonfaithful, the squashed
nonlocality satisfies the following properties:

(1) Positive. It is a non-negative real function of bipartite
nonsignaling devices, and equal to zero for local devices.8

(2) Monotonic with respect to MDLOPC class of opera-
tions.

(3) Convex with respect to the mixture of devices.
(4) Superadditive over joint nonsignaling devices.
(5) Additive for product devices.
(6) Subextensive. Nsq(P) � log2(min{dA, dB}).
Proof. For the proof, see Sec. G of Appendix. See also the

discussion in Sec. VI.
Note. On the completion of the main results (preliminary

version of this paper) contained in Secs. C-F, I and J in Ap-
pendix, we have noticed the preprint of the paper by E. Kaur,
M. Wilde, and A. Winter [31] also related to upper bounds on

7By Tsirelson’s device, we mean a one attaining maximal value
of violation of the CHSH inequality [60] among quantum (2,2,2,2)
devices [72].

8By local we mean devices which possess a local hidden variable
model [8].

device independent key. The proofs of monotonicity, subaddi-
tivity and additivity over tensor product devices (see Secs. G 4
and G 5 of Appendix), were inspired by the analogous result
for the squashed intrinsic nonlocality presented there.

Calculating Nsq for an arbitrary bipartite device P is a
nontrivial task, but we can use the convexity of this measure
to simplify the procedure of finding an upper bound of it. Pos-
itivity, monotonicity, and additivity of squashed nonlocality
lead to the following Corollary.

Corollary 2. The squashed nonlocality is a measure of
nonlocal correlation of the bipartite device P.

We describe now, how to use the convexity of the squashed
nonlocality (this technique proposed in this manuscript proved
already useful in context of upper bounds on the secure
key in QDI scenario [51]). Consider any set of functions
F = {Fi(P)}, that are convex w.r.t. the mixture of de-
vices, each of which upper bounds the squashed nonlocality
Fi(P) � Nsq(P),∀i. Then the lower convex hull (LCH) of
F denoted as F (P)(≡ LCH(F )) upper bounds Nsq(P), i.e.,
Nsq(P) � F (P), as a consequence of property (3). To ex-
emplify the above convexification process, let F = {̂I(A :
B)P(AB|XY ), Î(A : B|E )E (P)(ABE |XY Z )}, then Nsq(P) � F (P) ≡
LCH(̂I(A : B)P(AB|XY ), Î(A : B|E )E (P)(ABE |XY Z ) ). This fact is
used in order to construct Fig. 1: the orange curve is, in fact,
a convex hull of several upper bounds that are incomparable
with each other.

VI. QUANTITATIVE RESULTS

In Fig. 1, we construct numerically an upper bound on
the Nsq, with the help of above specified convexification
procedure. We also draw several other squashed quanti-
fiers for the set of (2,2,2,2) devices, lying in the isotropic
line, i.e., Piso = (1 − ε)PR + εPR. Where PR is the famous
Popescu-Rohrlich box [30], and PR is the anti-PR box.9

The nonfaithfulness of our measure, Nsq is visible from
the numerical results. The orange curve is the upper bound
on Nsq, and we have found that the bound reaches 0 for
ε = 0.2 (it remains equal to 0 for ε ∈ [0.2, 0.25] due to the
convexity of the measure). This is since, in MDLOPC pro-
tocol, Eve can perform adaptive general measurements and
post-process her output through a classical post-processing
channel to reduce the correlations between Alice and Bob. In
the range ε ∈ [0.2, 0.25], corresponding to each input (x, y)
of the honest parties, we have found a measurement and a
post-processing channel on Eve, which partitioned the device
into an ensemble of product distributions. This proves that
there exists nonlocality which can not be turned into secu-
rity via MDLOPC protocols. Interestingly, these devices are
quantum realizable ones. One can conjecture that even the
general operation, including the so-called “wirings”10 can not
help in distilling key out of these isotropic devices. Indeed,
using wirings that is necessary for the key to be nonzero,

9Anti-PR box is a binary input output device, satisfy PR(ab|xy) =
1
2 δa⊕b,x.y, ∀a, b, x, y ∈ {0, 1} [73].

10Operations of feeding input of one device with the output of the
other.
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FIG. 4. Plot of several nonsignaling secrecy quantifiers M̂(A :
B||E ), as an upper bound on secure key rate K (iid)

DI , for the bipartite bi-
nary input output device PHRW given in Eq. (9) (also in Ref. [17]). The
parameters used to draw plot (a) are δ = 0.01, ε = 1

16 (3.04 + 12ε),
and for plot (b) we used δ = 0.03, ε = 1

16 (3.12 + 12ε). The dashed
red line corresponds to the nonsignaling squashed mutual informa-
tion Î(A : B)PHRW . The blue straight line represents the nonlocality
cost, as well as the nonsignaling squashed conditional mutual infor-
mation Î(A : B|E )E (PHRW ) over the complete extension E (PHRW ) of the
given device P. The solid orange line represents the upper bound
on the nonsignaling squashed nonlocality Nsq which is in fact the
lower convex hull of the several other upper bounds on Nsq. The
magenta dotted line is the key rate R(P|PHRW ) of the protocol design
by Hänggi, Renner and Wolf [17]. The region with black stripes
corresponds to the devices that are quantum realizable ones.

which implies that we enter to some extent the general sce-
nario of key distillation for which there is a wide class of
attacks by employing the forward signaling attacks found in
Ref. [25,26].

In Figs. 4(a) and 4(b), we plot upper bounds on Nsq for
several other sets of (2,2,2,2) devices (nonisotropic), param-
eterized as in equation (9). In fact, the parametrization that
we use is the same as in Ref. [17] as we want to compare
our upper bound with the lower bound obtained therein. One
can see that there exists some region of nonlocal correlation
[Figs. 4(a) and 4(b)], which can be simulated by a quantum
device and for which the lower bound obtained by [17,63]
is positive, and therefore the secret-key can be generated.
As we observe and Nsq is also nontrivial and close to the
lower bound in the case considered here. We address the
interested reader to Sec. J of Appendix, where more plots are

provided.

PHRW(ab|xy)

=
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(9)

We note here, that the result presented in Fig. 1 exhibits that
in our approach the nonlocality measure based on the intrinsic
information can be nonfaithful, i.e., zero for some nonlo-
cal devices. This is inherited after the intrinsic information,
which is known to be zero for some tripartite distributions in
spite of the fact that the latter are not of the product form
P(A|E )P(B|E ). We note here, that [74] claimed, that the in-
trinsic information is nonzero for all devices violating Bell
inequality (cf. Ref. [16]). We reformulate the result of [74] as
follows:

∀P(ABE ) ∀�:E→E ′ ∃(x,y) P(ABE ′)

�= P(AE ′)P(BE ′) ⇔ I (A : B|E ′) > 0. (10)

The above implies that if we can adjust the inputs after the
attack by Eve represented by the map � is performed, we
will obtain nonzero conditional information. This implies also
nonzero intrinsic information as the map can realize the infi-
mum over such maps in the definition of the latter. However
this approach does not fit the usual cryptographic scenario: it
is that Eve is listening to Alice and Bob and adjusts her mea-
surement to their announcement and not vice versa. Owing
to that observation, one should consider the inputs (x, y) to
be chosen before the map � of the attack is performed. This
happens, e.g., whenever the input is fixed from advanced as
we assume, or when it is announced right after has been made.
This change in the paradigm has important consequences.
What both Ref. [50] and our result implies goes with no
contradiction with the above, as is based on the following fact:

∃P(ABE )�=P(AE )P(BE ) ∀(x,y)∃�:E→E ′ I (A : B|E ′) = 0. (11)

Indeed, in the case of the above mentioned quantitative results,
we adjust the measurement and post-processing of Eve to the
inputs of the honest parties.

Finally we note, that a more common approach to key
distribution in device independent scenarios is such that, fol-
lowing A. Ekert [5], one of the honest parties has one more
input, which is use to key generation. This so called (3,2,2,2)
scenario has been considered in Ref. [16] in context of a
nonsignaling adversary, along with a protocol of key distil-
lation and an upper bound on it in terms of the intrinsic
information. To see the relation between our results with that
of Ref. [16], we show the Eq. (3), that is max(x,y) IAMP,(x,y) =
Nsq (see Sec. G 1 of Appendix). We note here, that by this fact,
we show that the bound given in IAMP,(x,y) hold for any MD-
LOPC protocol using inputs (x, y) for generating key, closes
the problem left open in Ref. [16] concerning possibility of
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FIG. 5. Plot of nontrivial upper bound on the secret-key rate K (iid)
DI

given by Nsq, of PAMP(ab|xy) given in Eq. (J13) (see Appendix), by
the blue shaded region under the orange solid line and a red dashed
line. The red dashed line is the (segment of) lower convex hull of
the orange solid curve and the purple “big-dashed” straight line. The
solid orange line is obtained by the lower convex hull of several upper
bounds of Nsq, with the help of Eq. (339). Blue dashed-dotted line is
the squashed conditional mutual information Î(A : B|E )E (PAMP ). The
magenta dotted line is the lower bound on the key rate, whereas the
purple big-dashed line is the upper bound on intrinsic information
of the eavesdropping strategy used in Ref. [16]. We observe that
the convexification technique resulting in the convex-hull bound
allows to obtain tighter upper bound on Nsq, and therefore the tight-
est known upper bound on the secret-key rate in the nonsignaling
scenario.

key distillation from states that violate CHSH inequality but
have zero IAMP,(x,y) bound.

As we will see this fact proves useful, since we have shown
that Nsq is convex. This will enable us to use the convexifica-
tion method to obtain tighter upper bounds. Following [16], as
a noise model, we consider the isotropic state p|ψ+〉〈ψ+|AB +
(1−p)

4 1AB with |ψ+〉 = 1√
2
(|00〉 + |11〉) with p ∈ [0, 1]. The

bound outperforms existing one [16] in a wide range of a pa-
rameter p (see the orange curve in Fig. 5). In general, however,
it is incomparable (for the whole range of parameters) with
the one given in Ref. [16]. It is possible that a more refined
optimization procedure, involving all the extremal points of
the nonsignaling polytope in (3,2,2,2) scenario, would provide
a tighter bound. It is, however, computationally involved.

Moreover the convex hull of the bound given in Ref. [16]
and ours [which we got by convexification of two upper
bounds, given in Eq. (339)], is also an upper bound on the
distillable key. This is because Nsq is a lower bound to both
upper bounds, and is convex. Hence is less than the convex
hull of the latter two bounds. This gives to our knowledge the
tightest bound known so far in this scenario.

VII. REPHRASING THE KEY RATE OF THE SKA MODEL

In the SKA model of key distillation, the honest parties
and the eavesdropper share a joint probability distribution
P(ABE ). The task of the honest parties is to perform LOPC
operation to distill a secret key, in such a manner that the
eavesdropper’s knowledge about the key remains negligibly

small. In the following lines, we propose an alternative def-
inition of the key rate in the aforementioned scenario and
prove that it is equivalent to the definition of the secret-key
rate introduced in the literature [1,2,34,75]. Rephrasing, the
definition of the secret key in the SKA model to the form sim-
ilar to the one used in quantum cryptography serves not only
as a connection between different cryptographic paradigms.
Indeed, the theorem below, besides being interesting on its
own, is a crucial ingredient used to prove Theorem 1, i.e., our
main result.

Theorem 2 (Informal). The secret-key rate S(A : B||E ) of
SKA cryptographic model [1,2,34,75] is equivalent to the
following asymptotic expression:

S(A : B||E ) = sup
P

lim sup
N→∞

log2 dimA[PN (P⊗N (ABE ))]

N
,

(12)
with security condition∥∥PN

(
P⊗N (ABE )

) − Pideal
N

∥∥
1 � δN

N→∞−→ 0, (13)

where P = ∪∞
N=1{PN } is a cryptographic protocol consisting

of LOPC operations, acting on N iid copies of the classical
probability distribution P(ABE ), and Pideal

N is the distribution
containing ideal secret key, with adequate dimensions.

Proof. For the proof, see Sec. E of Appendix.
The aim of this rephrasing is to show and utilize a con-

nection between the definition of a secret-key rate in the SKA
and NSDI scenarios, as it was done in the case of quantum
cryptography [34].

The link we have made in the above theorem, is technical,
however important in our method for obtaining the upper
bound on the key rate in NSDI scenario. We rephrase the se-
curity definition of SKA proposed by U. Maurer [2], with the
one based on the trace norm ||.||1. What is crucial in the choice
of the latter criterion is the fact that it is equivalent to the NS
norm ||.||NS for tripartite probability distributions.11 We recall
here that the security definition in SKA is based on the control
of the correlations (in terms of the mutual information) of the
random variable of the honest parties with a random variable
representing Eve’s knowledge. These correlations should tend
to zero for a large number of copies N . Thus, in other words,
in the above theorem, we have modified the security criterion
of the SKA to an equivalent form, which is more useful for
our purpose. We have done so by demanding that the output
distribution of the protocol should be close to an ideal one.
The ideal is the distribution representing perfectly correlated
uniform random variables, of the honest parties close to being
product with the variable of Eve, in trace norm distance ||.||1.
As it will appear later, this technical change turns to be useful
when we pass to the case of devices because the NS norm of
a device is in fact a trace norm of a distribution coming from
this device after measurement.

11Note however that ||.||NS norm applies also to conditional dis-
tributions, i.e., devices. Only for devices with unary input, i.e.,
distributions, it is equivalent to ||.||1.
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VIII. EQUIVALENCE OF THE SECURITY CONDITIONS

In this section, we show the equivalence between two dif-
ferent known definitions of the security of the secret-key in the
NSDI scenario via showing that each of them is equivalent to
the one proposed by us. Indeed, we show that the security def-
inition proposed by us that bases on the NS norm is equivalent
both to the definition that employs secrecy and correctness as
well as the so-called distinguisher [17,24,63,64] and the other
one given in Refs. [11,15,23].

A. The definition and the properties of the NS norm

In this section, we provide the explicit description of the
NS norm that is an important ingredient of our security crite-
rion. The tensor product should be understood as an algebraic
tensor product in RN space [76]. To measure the closeness
between two devices P and P′, we use the newly defined
distance measure, the NS norm which reads

||P − P′||NS := sup
g∈G

1
2 ||g(P) − g(P′)||1, (14)

where G is a set of certain operations that map a device to
probability distributions and ||.||1 is a variational distance
between two distributions. More precisely, operations from G
are convex combinations of operations that can be composed
of the following basic ones (i) fetching an auxiliary device
that has single input and single output (a dice) (ii) connect-
ing the output of a device/dice to the input of a dice/device
respectively, called wirings (iii) pre-processing the inputs of
device(s) (iv) post-processing inputs and outputs of the de-
vices. We call them generating operations,12 and refer to
this norm as to nonsignaling norm. The set of generating
operations G is a subset of all linear operations L mapping
device to distribution, that were considered in Ref. [67]. Op-
erational characterization of the set L is interesting, yet, to
our knowledge, unresolved task. However, as we show (see
Proposition 2), the set G ⊆ L has enough power in discrim-
inating between devices, to be used in security definition in
place of L. Indeed, NS norm via Eq. (14) leads to security
definition, which is equivalent to the other two already present
in literature (Refs. [11,15,23] and [17,24,63,64]). For more
detailed discussion, see Sec. C of Appendix.

After the MDLOPC key distribution protocol, the output of
the honest parties reduces to a classical-classical-probability
distribution, whereas the part shared by Eve still remains
a device, of the form �N (E (P⊗N ))SA,SB,Q,E |Z (sA, sB, Q, E |Z ),
where sA and sB are the instances of the key shared between
Alice and Bob. We will denote random variables SA, SB for
the secret keys in possession of Alice and Bob, whereas
Q stands for all possible classical communications between
Alice and Bob; E , Z for Eve’s output and input (and the
lower case letters are for their values). This distribution, which
is, in part a probability distribution, and in part a condi-
tional probability distribution, i.e., device. Hence we will
refer to it as to “classical-classical-device” (cc-d) distribution

12Name for these operations stems from the fact that they are
proven in Ref. [56] to generate from the complete extension any
possible other nonsignaling extension of a conditional probability
distribution.

throughout the paper. The (P(dN )
ideal )SA,SB,Q,E |Z (sA, sB, Q, E |Z ) =

1
|SA|δsA,sB ⊗ ∑

s′
A,s′

B
�N (E (P⊗N ))(s′

A, s′
B, Q, E |Z ), is an ideal

cc-d distribution which contains uniform and perfectly cor-
related outcomes shared between the honest parties. Eve is
completely uncorrelated in case of this distribution, and it is
assumed that Eve’s system is the same as she possesses at the
end of the real protocol �N .

For the cc-d distribution shared at the end of the MDLOPC
protocol, the NS norm given in Eq. (14) takes a more simpli-
fied form, stated in the following proposition.

Proposition 2. For the cc-d states P and R shared at the end
of the MDLOPC protocol �N , the NS norm can be rephrased
with a simplified expression:

||PSA,SB,Q,E |Z − RSA,SB,Q,E |Z ||NS

= 1

2

∑
sA,sB,q

max
z

∑
e

|PSA,SB,Q,E |Z (sA, sB, q, e|z)

− RSA,SB,Q,E |Z (sA, sB, q, e|z)|, (15)

where maxz stands for the maximization over all possible
direct measurements performed by the eavesdropper.

Proof. For the proof, see Sec. C of Appendix.
In the above equality, one can see that the adopted

definition of security is equivalent to the one used in
Refs. [11,15,23] in the case of the NSDI scenario (the latter
is defined as in r.h.s. of the (15). This justifies our security
definition given in Eq. (4), in particular, the choice of the set
of operations G, that define the NS norm ||.||NS. However,
in literature, another definition of security is adopted, given
in Refs. [17,24,63,64]. This one is based on assuring high
correlations between the parties and low correlations with the
eavesdropper. In this approach, Eve can generate ensembles
of the device of the honest parties i.e., representation of a
device as probabilistic mixtures of devices. In later part of
this manuscript, we show that the latter definition is also
equivalent to the newly proposed one based on the NS norm.
By doing so, as a byproduct, we have also proven that our, and
the two definitions given in Refs. [11,15,23] and [17,24,63,64]
respectively, are equivalent.

B. Equivalence of security criteria

We show that in the NSDI scenario, in analogy to quan-
tum cryptography [77,78], there exist two different, however
equivalent definitions of security. One connected to the notion
of the so-called distinguisher and the other one based on the
proximity in norm [79,80]. In the case of NSDI, Renner,
Hänggi, and Wolf [17] present the approach via the notion of
distinguisher. Recall here, that to develop the latter approach,
we consider the nonsignaling norm, which is a total variational
distance for two devices mapped into probability distribution
with the so-called nonsignaling operations, over which we
take a supremum (see Refs. [17,67] in this context). We then
focus on tripartite cc-d distributions (classical distribution is
isomorphic to a device with unary input) as these are en-
countered at the end of an NSDI cryptographic protocol. The
two classical parts are in the hands of the honest parties,
while eavesdropper holds some device. We then show that
the NS norm takes for such cc-d distribution a closed-form
expression. In particular, we prove that the supremum over
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Eve’s operations reduces to a maximization over direct mea-
surements (for the proof, see Sec. C of Appendix).

We present below the theorem, which states that our def-
inition of NS norm security criterion is equivalent to the
criteria used by Renner, Hänggi, and Wolf [17]. We do it in
analogy to the results of Refs. [77,78] related to quantum
device-dependent security, but for nonsignaling devices.

Theorem 3 (Equivalence of the NSDI security criteria). For
an MDLOPC protocol �, the proximity in the NS norm secu-
rity criterion is equivalent to the criterion based on secrecy
and correctness of the protocol. That is for any εsec + εcor ≡
ε � εsec, εcor � 0 the following relation holds

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� O(ε) ⇐⇒ {(1 − pabort )P[SA �= SB|pass] � O(εcor )

∧ (1−pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� O(εsec)
}
, (16)

where pabort is the probability for the protocol to abort and
the constant O(ε) does not depend on any parameter of the
protocol.

Proof. For the proof, see Sec. D of Appendix.
Following arguments in Ref. [77], as a consequence of the

above Theorem, we can claim that our definition of security
is restricted composable [79–81] provided the device is not
reused. In that sense, our definition diverges from that of [17]
formally in two ways. First, we use the notion of the complete
extension. This encapsulates the access of the eavesdropper
to all ensembles of the device shared by the honest parties—
the fact used in Ref. [17]. Furthermore, in our approach, the
memory of Eve is finite and minimal without compromising
her eavesdropping power. Second, as we have mentioned,
we modify the security criterion, without losing the effect
of composability. We use the proximity in NS norm to the
ideal classical-classical-device distribution. We show that it is
equivalent to the statement that (as it was used in Ref. [17])
the distinguisher can not tell apart the real cc-d distribution
from the ideal one.

IX. DISCUSSION AND OPEN PROBLEMS

In this manuscript, we have contributed in three ways to
the topics of cryptographic security and Bell nonlocality. We
describe them below along with possible directions to follow
that naturally appears in consequence.

Firstly, we have initiated a systematic study on the upper
bounds on the secret-key rate on the NSDI scenario and de-
fined a computable function, the squashed nonlocality as one
of the bounds. We have also demonstrated a direct link be-
tween the Secrete Key Agreement scenario and that of NSDI
by systematic construction of the bounds in the latter case
from the secrecy monotones of the former. Interestingly this
method leads among others to a known measure of nonlocal-
ity, which is the nonlocality fraction. However, our approach
goes much beyond that by offering construction of alternative
nonlocality measures, which confirms the generality of our
paradigm. Looking for tighter upper bounds stemming from
(or even going beyond), the relationship between SKA and
NSDI scenarios is a new direction to study.

The numerical estimate of the upper bound suggests that
only a limited amount of key can be obtained from quantum

devices with two binary inputs and two binary outputs via
direct measurement followed by local operations and public
communication. For the family of devices studied here, it
is below 40%. Given characterization from Ref. [82] of the
boundary of the quantum set, one can find limitations on the
key rate obtained via quantum mechanics against a nonsignal-
ing adversary for the set of (2,2,2,2) devices. It appears
plausible that employing similar idea to the contextual set of
observables may also lead to a novel measure of contextuality
which upper bounds their private randomness content [83].

One of the most important problems which arise here is
a dual one—whether the isotropic devices in (2,2,2,2) sce-
nario with less than 80% weight of Popescu-Rohrlich box
are key undistillable in general. We have shown that one
can not distill them by MDLOPC operations, i.e., by direct
measurements on device and LOPC operations. However, one
might consider that grouping several of such devices together
and distilling one of them via the so-called “wirings,” could
lead to a positive key if followed by MDLOPC operations.
Although one can not exclude this case, it is rather improb-
able, because an action of wiring, within a group of wired
devices, opens a possibility of the forward-signaling attack,
as discovered in Ref. [25] and developed in Ref. [26] (the
two-way signaling case was excluded already in Ref. [24]).
This is the reason why the nonsignaling between individual
devices seems necessary precondition of security in NSDI.
In any case, extending presented results to a more general
class of operations, e.g., including wirings, is an important
open problem. As a step in this direction, one can consider
how the key rate changes if the honest parties have access
to randomness private from Eve. Such randomness could be
in principle used for performing general measurements. We
have also demonstrated applicability of our bound in the
(3,2,2,2) scenario, giving a tighter bound to the one provided
in Ref. [16]. A more careful study, which takes into account
all the extremal points of the nonsignaling polytope in the
(3,2,2,2) scenario could be a basis for further tighter bounds.

As the second of the main contributions, we have provided
a method of constructing novel measures of nonlocality and
proved several important properties for one of them—the
squashed nonlocality. Among these properties are the
monotonicity, convexity, and additivity. One property which
is not considered here, the asymptotic continuity of the
squashed nonlocality, will be presented in the forthcoming
contribution [84].

Comparing it with the other measure—the relative entropy
of nonlocality [55,85,86] may lead to interesting results and
possibly the proof that the latter is also an upper bound on the
distillable device-independent key. Exploring further the anal-
ogy between squashed entanglement and squashed nonlocal-
ity may lead to novel analogous results in the realm of quan-
tum devices. We also notice that the squashing procedure can
be naturally extended to an arbitrary number of parties. This
can be achieved by following Ref. [37], where the multipartite
version of the intrinsic information in SKA has been shown to
upper bound the conference key in the latter scenario.

As the third contribution, we have realized a idea of in-
corporating the eavesdropper in the scenario by applying the
newly introduced concept of the complete extension [56]. Eve
controls the additional interfaces of the extended part. This
provides the NSDI protocol a structural definition like the
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quantum purification did for QDD and QDI. Although the
security condition derived from this approach is equivalent
to the former, it shows a direct structural analogy between
NSDI and QDD paradigms. In consequence, the complete ex-
tension models an adversary with minimal memory required
for ultimate eavesdropping power. The amount of memory
needed for a given attack in a nonsignaling scenario to best
our knowledge has not been studied so far and deserves at-
tention in the future. To formalize security, we considered
the NS norm analogous to the trace norm in quantum me-
chanics. We have proven that this approach is equivalent to
the two former ones [11,15,17,23,24,63,64]. We obtained that
our definition of security is composably secure if the same
device is not reused in composing the protocols (restricted
composable). The properties of this NS norm computed for
classical-classical devices may become useful also in the
context of generalized probabilistic theory [65,66,87]. In this
context, it is an important open problem if the class of oper-
ations G, over which supremum is taken in the definition of
the NS device norm, is equal to the set of all linear operations
L considered in Ref. [67]. Finding an answer to this problem
may lead to the full operational characterization of the set of
maps that can be performed on devices.
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APPENDIX A: DEFINITIONS OF ENTROPIC FUNCTIONS

Notation. In Appendix A, we adapt two different notations
for conditional probability distributions (devices). We do this
to avoid small fonts in multilevel mathematical expressions
that appear in forthcoming parts of this work and hence to
make them more readable. For the convenience of the reader,
we also provide a table of symbols used throughout the paper
(Table I).

In this section, we recall definitions of basic quantities
associated with random variables. Suppose A, B, and E are
discrete random variables, with outcomes a ∈ A, b ∈ B and
e ∈ E . Let P(ABE ) be the joint probability distribution of
random variables A, B, and E . Similarly, let P(A = a, B =
b, E = e) ≡ p(abe) be the probability for obtaining the out-
come A = a, B = b, and E = e.

(i) The Shannon entropy of a random variable (variables)
is defined as

H (A) = −
∑

a

p(a) log2 p(a), (A1)

H (AB) = −
∑

ab

p(ab) log2 p(ab), (A2)

H (ABE ) = −
∑
abe

p(abe) log2 p(abe), (A3)

where, p(ab) = ∑
e p(abe) and p(a) = ∑

b p(ab) are the
marginal probabilities of the joint probability distribution
P(ABE ).

(ii) The conditional Shannon entropy of any random vari-
able A with respect to the random variable B, quantifying the
lack of knowledge about the outcome of A when one already
knows the value of B, is given by

H (A|B) =
∑

b

p(b)H (A|B = b) = H (AB) − H (B).

(A4)

(iii) The mutual information I (A : B), measuring the corre-
lations between A and B, is defined as

I (A : B) = H (A) + H (B) − H (AB). (A5)

(iv) The conditional mutual information I (A : B|E ), quan-
tifying the correlation remaining between variables A and B
conditioned upon the knowledge about value of third variable
E , is given by

I (A : B|E ) =
∑

e

I (A : B|E = e) (A6)

= H (A|E ) + H (B|E ) − H (AB|E ). (A7)

(v) The intrinsic mutual information [58,59] I (A : B ↓ E )
is

I (A : B ↓ E ) = inf
	E ′ |E

I (A : B|E ′), (A8)

where I (A : B|E ′) is the conditional mutual information
of the probability distribution P(ABE ′) = ∑

e 	E ′|E (E ′|E =
e)P(AB, E = e), while the infimum is taken over all possible
conditional channels 	E ′|E .

(vi) The reduced intrinsic information [70,88] of random
variables A, B and E , denoted by I (A : B ↓↓ E ) is defined as

I (A : B ↓↓ E ) = inf
	U |ABE

(I (A : B ↓ EU ) + H (U )), (A9)

where the infimum is taken over all possible conditional chan-
nels 	U |ABE .

APPENDIX B: THE WORLD OF NONSIGNALING
DEVICES AND THE NSDI CRYPTOGRAPHIC SCENARIO

In the NSDI cryptographic scenario, we consider that the
honest parties, Alice and Bob, share a cryptographic device
of unknown internal structure, identified with a nonsignaling
conditional probability distribution P(AB|XY ) (we use also
PAB|XY notation). We refer to P(AB|XY ), as to a nonsignaling
device throughout our paper. Here A, B, X , and Y are random
variables and a ∈ A, b ∈ B, x ∈ X , and y ∈ Y are respectively
their values. The indices x and y are considered to be choices
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TABLE I. List of symbols and abbreviations.

Symbol Meaning Symbol Meaning

P(AB|XY) Bipartite non-signaling device. P(ABE|XYZ) Tripartite non-signaling device.
P(ABE) Tripartite probability distribution. |ψ〉ABE A pure tripartite quantum state.
S(A : B||E) Secure key rate in SKA model. I(A : B) Mutual information.
I(A : B|E) Conditional mutual information. I(A : B ↓ E) Intrinsic information.
KD(ρAB) Key rate in QDD scenario. I(A : B ↓↓ E) Reduced intrinsic information.
Isq(ρAB) Quantum squashed entanglement. KDI Non-signaling Device independent key rate
Nsq(P) Non-signaling squashed nonlocality. E(P) Complete extension of a device P .
MF Full direct measurements. MG General measurements.

Λ The set of all MDLOPC protocol {ΛN} Ẽ(P) Overcomplete extension of the device P .
||P − Q||resNS Restricted NS norm of two devices. NC Nonlocality cost of a non-signaling device.
H(S) Entropy of the final key S. ε Error in the CHSH game.
Q Classical communication variable. PR Popescu Rohrlich box
{pi,P

i} An ensemble of a device P . {pi,P
i
E} Pure members ensemble of the device P .

P(AB|XY)⊗N Tensor product of N iid copies of the de-
vice P .

||P − Q||NS Non-signaling device norm of two devices
P and Q.

ΛN MDLOPC protocol of key distribution act-
ing on N iid copies of a device.

M Measurements, maps devices to
distributions.

E P⊗N Complete extension of N iid copies of the
device P .

PdN
ideal Ideal cc-d distribution of dimension dN .

O All possible linear operations which map a
device to a distribution.

SA The set of all possible key string in part of
Alice after the MDLOPC operation.

R(Λ|P) NSDI key rate for a particular MDLOPC
protocol.

SB The set of all possible key string in part of
Bob after the MDLOPC operation.

M(A : B||E) Secrecy quantifiers of probability distribu-
tion P (ABE)

M(A : B||E) Non-signaling squashed secrecy quantifiers
of the device P .

PR Complementary box to Popescu Rohrlich
box.

Piso Device lying on the isotropic line connect-
ing PR and P̄R box.

PE Extremal device in the polytope of all non-
signaling devices.

D A dice, source of additional randomness.

W Variable designate wirings between two
devices.

PN LOPC operations on N copies of the
distribution.

P Class of LOPC operations {PN}∞N=1, also
a protocol for SKA model.

PB,A1|X1
A classical-device distribution.

SABE Total state of the system after the MD-
LOPC protocol.

Preal
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of a real protocol.

pabort Probability of aborting the protocol. P
real|abort
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of a real protocol condition-
ing of aborting.

P
real|pass
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of a real protocol condition-
ing of not aborting.

P
ideal|pass
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of an ideal protocol condi-
tioning of not aborting.

SAE State of the system after the protocol in
part of Alice and Eve.

D(P,Q) Distance of two devices P and Q.

P[SA �= SB] Probability of not having the same key
strings between Alice and Bob.

Ci Message sent from Alice to Bob as part of
SKA protocol or vice versa.

Ct Collection of all messages Ct = C1C2 . . . Ct

sent between Alice and Bob in the tth step.
I(S : CtEN) Mutual information between the final key

string and Eve’s information.
Λη

N η optimal MDLOPC protocol on N iid
copies of the device.

Pη
N η optimal LOPC protocol on N iid copies

of the distribution.
x,yPη

N Measurement dependent η optimal LOPC
protocol on N iid copies of the distribution.

ΩGMDLOPC LOPC operations involve general measure-
ments on the devices.

ΛMDLOPC LOPC operations involve direct measure-
ments on the devices.

C(P) Nonlocality fraction of a non-signaling de-
vice P .

dimA(PN (P(ABE))N Dimension of part A after the
LOPC operation on the N copies of the
probability distribution.
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of inputs of the honest parties, whereas the respective out-
comes are denoted by a and b. The nonsignaling condition for
PAB|XY (ab|xy), that roughly speaking forbids faster than light
communication between the two parties, is defined as

PA|X (a|x) =
∑

b

PAB|XY (ab|xy)

=
∑

b

PAB|XY (ab|xy′)∀a, x, y, y′, (B1)

PB|Y (b|y) =
∑

a

PAB|XY (ab|xy)

=
∑

a

PAB|XY (ab|x′y)∀b, x, x′, y. (B2)

We incorporate the no-signaling eavesdropper (Eve) in the
system by giving her the access to the additional interfaces
of the complete extension (CE) [56], of the shared tripartite
nonsignaling device (see next Appendix B 1 for reference on
CE). We denote the complete extension of a bipartite device
P(AB|XY ) as E (P)(ABE |XY Z ), where the additional input
z ∈ Z and the corresponding output e ∈ E , are controlled by
Eve. Extending a bipartite device with CE ensures that the
nonsignaling constraints also hold between Eve and Alice’s
and Bob’s joint subsystem. Additionally, Eve can also apply
local randomness in both her input and output to generate gen-
eral measurements and to post-processing the output, which
gives her the ultimate operational eavesdropping power, as
then by construction of CE, she can access all possible en-
sembles of the extended device [56].

1. The notion of the complete extension

For an arbitrary device P(A|X ), one can always find its
extension P(AE |XZ ) in the space of a larger dimension, such
that the nonsignaling constraints are satisfied [see Eqs. (B1)
and (B2)]. Some extensions of bipartite nonsignaling boxes
have been studied in the past [14–17]. The complete extension
defined in Ref. [56], is an extension of the lowest possible
dimension, that possesses all basic properties of quantum
purification except extremality.

Let us consider a polytope (state space) of nonsignaling
devices, with a fixed number of parties and fixed cardinalities
of inputs and outputs. An arbitrary device P, in that polytope,
can always be expanded as a convex combination of the ex-
tremal (pure) devices {Pi

E }, as P = ∑
i piPi

E . The ensemble
{pi, Pi

E } will be called a pure members ensemble (PME). The
decomposition {pi} is not unique in general [56].

Definition 4 (Minimal ensemble). A pure members en-
semble, {pi, Pi

E }i∈I will be called a minimal ensemble of P,
if all the members are pure and if any proper subset of {Pi

E }i∈I
for any new choices of the corresponding probabilities {p′

i}i∈I
is not an ensemble of the device P.

We can now invoke the definition of a complete extension.
Qualitatively, it is such an extension of a device, which en-
ables to produce all minimal ensembles of it, with the choice
of input in the extending part resolving which minimal en-
semble will be generated. The complete extension is, by its
definition a nonsignaling extension, which makes it a perfect
tool for the NSDI cryptography (see Ref. [17] in this context).

Definition 5 (Complete extension [56]). Given a device
PA(A|X ), we say that a device E (P)AX (AE |XZ ) is its

complete extension to system X if for any z ∈ Z and e ∈ E
there holds

E (P)AX (A, E = e|X, Z = z) = p(e|z)Pe,z
A (A|X ), (B3)

such that the ensemble {p(e|z), Pe,z
A (A|X )} is a minimal en-

semble of the device PA(A|X ), and corresponding to each
minimal ensemble of PA(A|X ), there is exactly one z ∈ Z
which generates it.13

Here we slightly abuse the notation, so by PA(A|X ), we
mean the device P(A|X ) with random variables A and X .
The subscript A denotes that the device is in possession of
party A. Similarly, the subscript X , for the complete exten-
sion E (P)AX (AE |XZ ), stands for the extending party X , who
controls the additional interfaces Z and E .

The complete extension satisfies the following properties
alike the quantum purification, what makes CE its counterpart
[56].

(1) ACCESS. A complete extension of a device P, to-
gether with access to arbitrary randomness, gives access to
any ensemble of a device P.

(2) GENERATION. The complete extension can be trans-
formed to any other extension.

2. Possible eavesdropping actions

In this section, we define the building blocks of the set
of allowed operations that the nonsignaling eavesdropper can
perform. In every device-independent key distribution proto-
col, the honest parties hold a device, the internal structure of
which is completely unknown to them. Their task is to share at
the end of the protocol a cryptographically secure key, which
is perfectly correlated between the honest parties and com-
pletely secret with respect to the eavesdropper [78], by use of
several copies of the device P(AB|XY ). As we are interested
in finding the upper bound on the key rate, we consider the
attacks by the eavesdropper as an independent and identically
distributed (iid) attack as a choice of particular eavesdrop-
ping strategy. In this attack, the eavesdropper prepares N iid
devices (P(AB|XY ))

⊗N ≡ P⊗N (AB|XY ) for Alice and Bob
and holds the extending part of the CE E (P⊗N )(ABE |XY Z ),
where A = A1A2 · · · AN , and similarly for B, X , and Y . At this
point we are ready to describe the possible actions of Eve on
input and output of the extending system.

(1) Full direct measurement, {MF
z } defined by choice of

input Z = z. The inputs correspond to the choices of different
minimal ensembles. In a cryptographic sense, some inputs are
in favour of Eve, and some are not.

(2) General measurement, {MG
z }, defined by a proba-

bilistic choice of direct measurements MG
z = ∑

z′ p(z′|z)MF
z′ .

Upon each choice of general measurement on the CE of the
shared device, Eve can generate any pure members ensemble
of the device. Here {p(z′|z)} represents the dice, an external
randomness.

(3) Classical post-processing channel 	E ′|E on the output
of the extending subsystem that can also be conditioned upon

13The calligraphic X stands here for the extending system and
should not be confused with the input of the system A.
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values of inputs and outputs of the dice. These operations
when considered together with a general measurement gives
access to all ensembles (possibly mixed) of the part of the
device shared by the honest parties.

(4) Eve can also monitor the communication, i.e., col-
lect the classical information exchanged between the honest
parties.

The most general strategy of the eavesdropper is to utilize
both the general measurement and the post-processing chan-
nel. Any other strategy is a specific case of the general one
described above. For example, the full direct measurement can
be considered as a combination of deterministic dice and an
identity post-processing channel.

3. Cryptographic protocol

In this section, we describe the building blocks of the set
of operations that the honest parties can perform to generate
a cryptographically secure key. In the case of nonsignaling
device-independent protocol, the honest parties can perform
the following operations on their shared devices.

(1) Full direct measurements on the input, i.e., setting
certain values x, y of their inputs X , Y , followed by any
composition of operations 2 and 3 below.

(2) Classical post-processing of the distribution.
(3) Public communication.
We call this class of operations as Measurement on de-

vices followed by local operations and public communications
(MDLOPC) [23]. Here we do not allow the honest parties to
perform wirings between their subsystems because the for-
ward signaling between the subsystems has been proved to be
an insecure procedure for many important examples of post-
processing [25,26]. Limitation from a general measurement
to a direct one is because, in the former case, Eve does not
have access to correlation with the whole system of Alice
and Bob.

In our cryptographic protocol, we prove the security when
the Eve’s attacking strategy is to prepare N iid copies of a
nonsignaling device P(AB|XY ) and hands them over to the
honest parties. Eve controls the CE of the full system, i.e.,
P⊗N (AB|XY ). It is important to note that CE of a tensor
product of devices is not a tensor product of CE’s of these
devices. This is the most general eavesdropping strategy (in
the iid case) since it gives Eve access to all possible statisti-
cal ensembles of the shared device. Incorporating CE in this
NSDI scenario encompasses a structural way to access to all
ensembles of the extended device, which is the key point in
all NSDI security protocol [13–17,21–23].

APPENDIX C: PROPERTIES OF THE NS NORM

The NS norm introduced in Eq. (14) that has its main
application in Proposition 2 strongly relies on the notion of the
so-called distinguishing system [17,24,63]. The distinguishing
system, also dubbed as the distinguisher, is an external black
box type device having the same interfaces as the original
device (with one extra output) however, its inputs are inter-
changed into outputs and vice versa. The structure of the
distinguishing system allows it then to be connected to the
interfaces of the original device. For each pair of systems

to be distinguished, the distinguisher is devised in such a
way that it attains maximal guessing advantage to distinguish
between two examined devices. The extra output is used to
communicate the guess. For a far more detailed description of
the distinguishing system, we refer the reader to Ref. [63].

In this section, we show that in the heuristic approach, the
NS norm is a maximal guessing advantage for a distinguisher
to distinguish between two devices and plays a role of a
distance D between two conditional probability distributions
[63,77]. Devices with unary inputs are isomorphic to proba-
bility distributions. For them, the NS norm, is by definition,
proportional to the total variational distance.

||P − Q||NS = D(P, Q), (C1)

For the sake of cohesion we introduce the NS norm for-
mally.

Definition 6 (Of the NS norm). Let P and P′ be any two
nonsignaling devices. The following distance measure be-
tween P and P′ is called the NS norm.

||P − P′||NS := sup
g∈G

1
2 ||g(P) − g(P′)||1, (C2)

where ||.||1 is a variational distance between two distributions.
Furthermore G, is a set of generating operations that consists
of:

(1) adding an auxiliary device that has single input and
single output (a dice),

(2) connecting the output of a device/dice to the input of a
dice/device respectively, called wirings,

(3) pre-processing the inputs of device(s),
(4) post-processing inputs and outputs of the devices.
The results of this section, although seem to be highly

technical, have a direct implication in distinguishability of
the states of devices at the end of the protocol. For an initial
tripartite device P(ABE |XY Z ), when the honest parties finish
the MDLOPC protocol on it, i.e., perform measurements in
their respective parts and post-process their data by local op-
erations and public communication, the device is transformed
into a classical-classical-device probability distribution (cc-
d state). In fact, it is enough to consider classical-device
states (c-d states) PB,A1|X1 , and the result still holds for any
c-d states, i.e., consisting of many classical subsystems (see
Fig. 6). This is because one can always claim that classi-
cal variable B is the Cartesian product of many classical
variables.

We identify the operations g ∈ G that the distinguisher
can perform to discriminate between the devices. These can
always be decomposed into several basic operations belonging
to disjoint sub-classes of different operational meaning, i.e.,
g = P ◦ MG ◦ W considered together with external random-
ness D. This decomposition guarantees adequate causal order
of operations.

(i) The distinguisher can make use of external random-
ness, which in general may depend on the output of the
classical part of the system B. We incorporate this randomness
by combining systems to be distinguished with an external
system, DA2|X2,B called a dice.

(ii) A composition of wirings and prior to input classical
communication (WIPCC), we denote this operation with W .
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FIG. 6. Schematic diagram of deterministic wiring between the cc-d distribution PA1|X1B and an arbitrary external device (called a dice)
DA2 |X2 . (a) represents the wiring from the cc-d distribution to the external device, W→, and (b) represents the converse one, i.e., wiring from
an external device to the cc-d distribution, W←. The diagram is motivated by Ref. [89].

In general, wirings can be adaptive to the outcome of classical
variable B, and can be constructed in different manners.

(a) W→: deterministic wirings from c-d system to dice.
(b) W←: deterministic wirings from a dice into the

input of the c-d system.
(c) A mixture of the above.

(iii) Direct or general measurements
(a) Full direct measurement MF

x : A full direct mea-
surement acting on a device P(A|X ) ≡ PA|X , is equivalent
to choosing an input x ∈ X , resulting with a conditional
probability distribution,

MF
x (P(A|X )) = P(A|X = x). (C3)

Different x correspond to different measurements (inputs).
(b) General measurement MG

x : A general mea-
surement is a mixture of direct measurements, MG

x′ =∑
x p(x|x′)MF

x , and its action is described as

MG
x′ (P(A|X )) =

∑
x

p(x|x′)MF
x (P(A|X ))

=
∑

x

p(x|x′)P(A|X = x), (C4)

with a conditional probability distribution p(x|x′) satisfying∑
x p(x|x′) = 1 ∀x′. Here different x′ indicate different

choices of a general measurement.
(iv) Classical data post-processing we denote with P .
In the proof of the following proposition, we consider

supremum over external systems DA2|X2B. Hence without loss
of generality, we can consider only wirings employing deter-
ministic functions. The notation for wirings is adapted from
Ref. [89], as depicted in Fig. 6 above. The domains and
codomains of functions fb and gb, which determine wirings,
are always adapted to the sizes of inputs and outputs. We
consider deterministic wiring, so the sets of { fb} and {gb}
are always finite. For the sake of simplicity, in the proof, we
omit a unary input in the places where it does not lead to any
ambiguity.

Proposition 2. For the c-d states (alike those shared at the
end of the MDLOPC-protocol �N ), i.e., the many parties
nonsignaling device for which only a single party has not
unary input, the NS norm takes the form∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
MF

x1

∑
a

∣∣MF
x1

(
P1

B,A1|X1

)
(b, a)

−MF
x1

(
P2

B,A1|X1

)
(b, a)

∣∣, (C5)

where b ∈ B is a multivariable corresponding to outputs of c
part of the c-d distribution.

From now on, for the sake of the ease of notation we
make the following identification: MF ≡ MF

x and MG ≡
MG

x , where x should be understood from the context. Note
that wherever fiducial measurements are considered the sup
operator can be used here interchangeably with max operator,
as they act in the set with a finite number of elements.

Proof. To attain the supremum over all operations given
in Eq. (14), we have to consider all possible actions of the
distinguisher. For the proof, it is sufficient to consider the
single most general operation instead of a mixture. This is
because a norm defined with supremum of some distance is
a convex function and attains maximum at the boundaries of
the set over which the supremum is evaluated.

sup
g∈G

‖g(P) − g(Q)‖1

= sup
{λi}

sup
{g̃i}⊆G̃

∥∥∥∥∥∑
i

λig̃i(P) −
∑

i

λig̃i(Q)

∥∥∥∥∥
1

� sup
{λi}

sup
{g̃i}⊆G̃

∑
i

λi‖g̃i(P) − g̃i(Q)‖1 (C6)

� sup
{λi}

∑
i

λi sup
g̃∈G̃

‖g̃(P) − g̃(Q)‖1 = sup
g̃∈G̃

‖g̃(P) − g̃(Q)‖1,

(C7)
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where g̃ ∈ G̃ are pure operations, i.e., they are not a mixture
of others.

Following the arguments of the previous paragraphs the NS
norm can be phrased as∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= sup
g∈G

1
2

∣∣∣∣g(P1
B,A1|X1

) − g
(
P2

B,A1|X1

)∣∣∣∣
1

(C8)

= sup
D

sup
W

sup
MG

sup
P

1
2

∣∣∣∣(P ◦ MG ◦ W )
(
P1

B,A1|X1
⊗ DA2|X2,B

)
− (P ◦ MG ◦ W )(P2

B,A1|X1
⊗ DA2|X2,B)

∣∣∣∣
1, (C9)

where the suprema are taken over operations being adaptive
with respect to the output B. When acting on the systems
with a fixed value of classical output B, with a little abuse
of notation, this can be rephrased using the same symbols for
nonadaptive operations.∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
D

sup
W

sup
MG

sup
P

∣∣∣∣(P ◦ MG ◦ W )

× (
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (P ◦ MG ◦ W )

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1
. (C10)

The first step to simplify the expression above is to notice
that || · − · ||1 is contractive under classical post-processing
on probability distributions. Since the trivial post-processing
is always accessible, we obtain∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
D

sup
W

sup
MG

∣∣∣∣(MG ◦ W )
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W )

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1
. (C11)

As it was stated informally above, the general wiring, W , can
be constructed adaptively upon the knowledge of the values
of the output B, as a probabilistic combination of two types of
wirings conv{W→,W←} (see Fig. 6). In the following lines,
we show that the strategy of mixing is not optimal. However,
in general, the cardinalities of inputs and outputs in different
(types) of wiring can be different. In order to overcome this
obstacle, we consider a common supremum over a convex set
of wirings composed with measurements. From an operational
point of view, this procedure means that the knowledge about
the preparation was discarded after the optimal measurement
for each type of wiring had already been chosen.

∣∣∣∣P1
B,A1|X1

− P2
B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
D

sup
{p←

b ,p→
b }

sup
MG◦W←

sup
MG◦W→

∣∣∣∣(p←
b (MG ◦ W←)

(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
+ p→

b (MG ◦ W→)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)) − (
p←

b (MG ◦ W←)
(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)
+ p→

b (MG ◦ W→)
(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

))∣∣∣∣
1 (C12)

� 1

2

∑
b

sup
D

sup
{p←

b ,p→
b }

(
sup

MG◦W←
p←

b

∣∣∣∣(MG ◦ W←)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W←)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1 + sup

MG◦W→
p→

b

∣∣∣∣(MG ◦ W→)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W→)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1

)
(C13)

� 1

2

∑
b

sup
D

max
{

sup
MG◦W←

∣∣∣∣(MG ◦ W←)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W←)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1, sup

MG◦W→

∣∣∣∣(MG ◦ W→)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W→)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1

}
. (C14)

In the two following paragraphs, we investigate probability distributions, obtained after the wirings W→ and W←.
W→) The first thing to do now is to identify a probability distribution we obtain after wiring. The state of the system

after distinguisher obtains a classical output B = b, which is prior to input in the considered scenario, is given by PA1|X1,B=b ⊗
DA2|X2B=b, see Fig. 6(a). The distinguisher can apply wirings from P to D, controlled by fb, gb, which can depend on outcome b.
The probability distribution after the wiring W→ (for a fixed value of outcome B) is given by

W→(PA1|X1,B ⊗ DA2|X2,B)A′
1|X1,B

(a′
1|x′

1, b) =
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

PA1|X1,B(a1|x′
1, b)DA2|X2,B(a2|fb(a1, x′

1), b) (C15)

Hence the probability distribution for the device after a wiring is given by

Pfb,gb B,A′
1|X ′

1
(b, a′

1|x′
1) : = PB|X1 (b|x′

1)
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

PA1|X1,B(a1|x′
1, b)DA2|X2,B(a2|fb(a1, x′

1), b) (C16)

=
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

PB,A1|X1 (b, a1|x′
1)DA2|X2,B(a2|fb(a1, x′

1), b). (C17)
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W←). The first thing to do is again to identify a probability distribution after wiring. However, we are now in a comfortable
situation, as it is enough to interchange inputs of PA1|X1,B and DA2|X2,B systems, see Fig. 6(b).

Pfb,gb B,A′
1|X ′

1
(b, a′

1|x′
1) :=

∑
a1,a2:gb(a1,a2,x′

1 )=a′
1

PB,A1|X1 (b, a1|fb(a2, x′
1))DA2|X2,B(a2|x′

1, b). (C18)

At this point, we are ready to calculate both terms in Eq. (C14) separately.
(a) In the first term ∀b∈B∀D, we have

sup
MG◦W→

∣∣∣∣(MG ◦ W→)(P1
B=b,A1|X1

⊗ DA2|X2,B=b) − (MG ◦ W→)(P2
B=b,A1|X1

⊗ DA2|X2,B=b)
∣∣∣∣

1
(C19)

= sup
fb,gb

sup
MG

∑
a′

1

∣∣MG
(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MG
(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C20)

= sup
fb,gb

sup
{ωi}

∑
a′

1

∣∣∣∣∣∑
i

ωiMF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) −
∑

i

ωiMF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)

∣∣∣∣∣ (C21)

� sup
fb,gb

sup
{ωi}

∑
a′

1

∑
i

ωi

∣∣MF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C22)

� sup
fb,gb

max
x′

1

∑
a′

1

∣∣P1
fb,gb B,A′

1|X ′
1
(b, a′

1|x′
1) − P2

fb,gb B,A′
1|X ′

1
(b, a′

1|x′
1)

∣∣ (C23)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P1
B,A1|X1

(b, a1|x′
1)DA2|X2,B(a2|fb(a1, x′

1), b)

−
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P2
B,A1|X1

(b, a1|x′
1)DA2|X2,B(a2|fb(a1, x′

1), b)

∣∣∣∣∣∣ (C24)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

DA2|X2,B(a2|fb(a1, x′
1), b)

(
P1

B,A1|X1
(b, a1|x′

1) − P2
B,A1|X1

(b, a1|x′
1)

)∣∣∣∣∣∣ (C25)

� sup
fb,gb

max
x′

1

∑
a′

1

∑
a1,a2:gb(a1,a2,x′

1 )=a′
1

DA2|X2,B(a2|fb(a1, x′
1), b)

∣∣P1
B,A1|X1

(b, a1|x′
1) − P2

B,A1|X1
(b, a1|x′

1)
∣∣ (C26)

= sup
fb,gb

max
x′

1

∑
a1,a2

DA2|X2,B(a2|fb(a1, x′
1), b)

∣∣P1
B,A1|X1

(b, a1|x′
1) − P2

B,A1|X1
(b, a1|x′

1)
∣∣ (C27)

= max
x′

1

∑
a1

∣∣P1
B,A1|X1

(b, a1|x′
1) − P2

B,A1|X1
(b, a1|x′

1)
∣∣ (C28)

= sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣. (C29)

The important point is to notice that
∑

a′
1

∑
a1,a2: gb(a1,a2,x′

1 )=a′
1

h(a1, a2) = ∑
a1,a2

h(a1, a2).
(b) Now in the second term ∀b∈B∀D, we have

sup
MG◦W←

∣∣∣∣(MG ◦ W←)(P1
B=b,A1|X1

⊗ DA2|X2,B=b) − (MG ◦ W←)(P2
B=b,A1|X1

⊗ DA2|X2,B=b)
∣∣∣∣

1
(C30)

= sup
fb,gb

sup
MG

∑
a′

1

∣∣MG
(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MG
(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C31)

= sup
fb,gb

sup
{ωi}

∑
a′

1

∣∣∣∣∣∑
i

ωiMF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) −
∑

i

ωiMF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)

∣∣∣∣∣ (C32)

� 1

2
sup
fb,gb

sup
{ωi}

∑
a′

1

∑
i

ωi

∣∣MF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C33)
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� 1

2
sup
fb,gb

max
x′

1

∑
a′

1

∣∣P1
fb,gb B,A′

1|X ′
1
(b, a′

1|x′
1) − P2

fb,gb B,A′
1|X ′

1
(b, a′

1|x′
1)

∣∣ (C34)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P1
B,A1|X1

(b, a1|fb(a2, x′
1))DA2|X2,B(a2|x′

1, b) (C35)

−
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P2
B,A1|X1

(b, a1|fb(a2, x′
1))DA2|X2,B(a2|x′

1, b)

∣∣∣∣∣∣ (C36)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

DA2|X2,B(a2|x′
1, b)

(
P1

B,A1|X1
(b, a1|fb(a2, x′

1)) (C37)

− P2
B,A1|X1

(b, a1|fb(a2, x′
1))

)∣∣ (C38)

� sup
fb,gb

max
x′

1

∑
a′

1

∑
a1,a2:gb(a1,a2,x′

1 )=a′
1

DA2|X2,B(a2|x′
1, b)

∣∣P1
B,A1|X1

(b, a1|fb(a2, x′
1)) (C39)

−P2
B,A1|X1

(b, a1|fb(a2, x′
1))

∣∣ (C40)

= sup
fb

max
x′

1

∑
a1,a2

DA2|X2,B(a2|x′
1, b)

∣∣P1
B,A1|X1

(b, a1|fb(a2, x′
1)) − P2

B,A1|X1
(b, a1|fb(a2, x′

1))
∣∣ (C41)

= sup
fb

max
x′

1

∑
a2

DA2|X2,B(a2|x′
1, b)

∑
a1

∣∣P1
B,A1|X1

(b, a1|fb(a2, x′
1)) − P2

B,A1|X1
(b, a1|fb(a2, x′

1))
∣∣ (C42)

� sup
fb

max
x′

1

∑
a2

DA2|X2,B(a2|x′
1, b) max

a′
2

∑
a1

∣∣P1
B,A1|X1

(b, a1|fb(a′
2, x′

1)) − P2
B,A1|X1

(b, a1|fb(a′
2, x′

1))
∣∣ (C43)

= sup
fb

max
x′

1

max
a′

2

∑
a1

∣∣P1
B,A1|X1

(b, a1|fb(a′
2, x′

1)) − P2
B,A1|X1

(b, a1|fb(a′
2, x′

1))
∣∣ (C44)

= max
x1

∑
a1

∣∣P1
B,A1|X1

(b, a1|x1) − P2
B,A1|X1

(b, a1|x1)
∣∣ (C45)

= sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣. (C46)

From (a), (b), and Eq. (C14), we conclude that∣∣∣∣P1
B,A1|X1

− P2
B,A1|X1

∣∣∣∣
NS

(C47)

� 1

2

∑
b

sup
D

max

{
sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣
, sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣} (C48)

� 1

2

∑
b

sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣. (C49)

As the right-hand side (r.h.s.) of the expression above realizes
a particular strategy of the distinguisher within considered
NS norm, the above inequality can be always saturated, what
yields: ∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1)

−MF
(
P2

B,A1|X1

)
(b, a1)

∣∣. (C50)

�
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Corollary 1. For the cc-d states shared at the end of the
MDLOPC protocol �, the NS norm can be rephrased with a
simplified expression:

||PSA,SB,Q,E |Z − QSA,SB,Q,E |Z ||NS

= 1

2

∑
sA,sB,q

max
z

∑
e

|PSA,SB,Q,E |Z (sA, sB, q, e|z)

−QSA,SB,Q,E |Z (sA, sB, q, e|z)|, (C51)

where maxz stands for the maximization over all possible
direct measurements performed by the eavesdropper.

Proof. The proof follows directly from substituting B ≡
(SA, SB, Q), A1 ≡ E and X1 ≡ Z in the result of Proposition
(9). In this way, we obtain cc-d states that are shared at the
end of the MDLOPC protocol �, and hence we arrive at the
claim:

||PSA,SB,Q,E |Z − QSA,SB,Q,E |Z ||NS

= 1

2

∑
sA,sB,q

max
z

∑
e

|PSA,SB,Q,E |Z (sA, sB, q, e|z)

−QSA,SB,Q,E |Z (sA, sB, q, e|z)|, (C52)

where the maxz is the maximization over direct measurements
in the part of Eve. �

Remark 1. The norm on the space of no-signaling con-
ditional probability distributions based on trace distance
introduced by M. Christandl and B. Toner [67] is based on
a supremum over all possible linear operations. According to
our best knowledge, these operations have not been charac-
terized yet in the literature. In this section, we do not target
to describe this class of operations. Instead, via the set G, we
constructed a particular action of the distinguishing system on
c-d states, which is sufficient for cryptographic purpose as it
yields equivalent security criterion to [23].

APPENDIX D: EQUIVALENCE BETWEEN SECURITY
CRITERIA FOR NSDI PROTOCOLS

The iid NSDI key rate in Definition 1 is implicitly de-
pendent on proximity in the NS norm security criterion in
Eq. (4). In the quantum case, it was shown that the proximity
in the norm (of a state to the ideal one) is equivalent to
the correctness and secrecy of a protocol [77,78]. These two
notions are employed in a protocol independent definition of
security [80]. In this section, we show that security criterion
based on NS norm is equivalent to the one based on secrecy
and correctness of MDLOPC protocol.

In what follows, we employ the notions of real, ideal, and
intermediate systems. A real system is a device shared by
the parties at the end of a protocol. An ideal device is the
one which possesses the same distribution on Eve’s side as a
real device, however, possesses perfect (uniform) correlations
between Alice and Bob, that are completely uncorrelated with
Eve. An intermediate device is another kind of device in which
Alice and Bob always share fully correlated keys. However,
the distribution of the keys is not uniform (Eve’s part stays
unchanged). The usual part of any protocol employing nonlo-
cal correlations is an acceptance phase in which honest parties

decide (upon some test) whether to abort or to proceed with
the protocol.

Composability concept in security is an area of research
concerned with composing cryptographic primitives into more
complex ones while keeping high security level. In the univer-
sal composability approach, a cryptographic primitive is said
to be universally composable if any functionality using this
primitive is as secure as an ideal one [80,81]. The compos-
able security is considered as the strongest notion of security
[80,81]. However, in the device independent scenario, so far,
it was not rigorously proven that this scheme is ultimately
secure. Furthermore, the results of Ref. [68] strongly suggest
that it is not the case, so the problem arises when one wants to
reuse the device. In particular, if the device used for composi-
tion has some memory, then it can leak the key of the previous
use. This implies that, in general, the protocol is composably
secure as long as the same device is not reused in the protocol.
We refer to this notion of security to be restricted composable.

Theorem 3 is essential to compare the secret key of our sce-
nario to these of other cryptographic schemes or even certain
protocols, in particular to the results of Hänggi, Renner, and
Wolf [17], with the upper bounds that will be presented in this
paper. We start with a few definitions.

Definition 7 (State of the device at the end of protocol).
The state of the device after the MDLOPC protocol is a
conditional probability distribution (c-d state) denoted by
Preal

SA,SA,Q,E |Z :

Preal
SA,SB,Q,E |Z = pabortP

real|abort
SA,SB,Q,E |Z + (1 − pabort )P

real|pass
SA,SB,Q,E |Z .

(D1)

The random variables SA, SB, andE are respectively out-
puts of Alice, Bob, and Eve conditioned upon input Z of Eve.
SA and SB are the key strings hold by Alice and Bob after
the protocol, respectively. Q is the random denoting public
communication. During the protocol, Q is shared by the three
parties, although Alice and Bob use it only to distill the final
key and discard it after the protocol is finished. For this reason,
we treat Q to be the random variable of Eve that she can
use for the choice of her input. Despite the fact that in the
notation adopted by as variables of outputs are conditioned
upon variables of inputs, Eve’s choice of input Z can still
depend on the value of Q. The superscripts abort and pass
indicate whether protocol passed the acceptance phase.

Definition 8 (Ideal output state). The ideal output state of
the device is the one that possesses perfect correlations be-
tween honest parties that are completely uncorrelated with
the eavesdropper. Local outcomes of the eavesdropper and
communication simulate the real system.

Pideal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

= δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z). (D2)

Since the honest parties are uncorrelated with Eve, the ideal
system can be decomposed according to tensor rule formula
for independent systems in the following way:

Pideal|pass
SA,SB,Q,E |Z = Pideal|pass

SA,SB
⊗ Pideal|pass

Q,E |Z . (D3)
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Definition 9 (State of the intermediate system). An
intermediate system is the one that bears fully correlated
key strings between the honest parties, but the distribution
they possess is not uniform; hence correlations are not perfect
in a cryptographic sense. The eavesdropper is not completely
uncorrelated with the honest parties.

Pint|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

= δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z). (D4)

Since the states of the intermediate and the ideal systems
are constructed with respect to the state of the real system, the
pabort is the same in all cases (later, we consider the protocol
after the acceptation phase, for which pabort = 0). The same
is true for all states conditioned on aborting, i.e., they are
trivially the same.

For the sake of cohesion, we provide definitions of secrecy,
correctness, and security of a cryptographic protocol in case
of nonsignaling devices.

Definition 10 (ε-secrecy of a protocol). An MDLOPC key
distribution protocol is ε-secret if it outputs a device for
which conditional probability distribution shared between Al-
ice (Bob) and Eve at the end of the protocol (and the protocol
does not abort) satisfies

(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� ε, (D5)

where

Preal(ideal)|pass
SA,Q,E |Z (sA, q, e|z) :=

∑
sB

Preal(ideal)|pass
SA,SB,Q,E |Z (sA, sB, q, e|z).

(D6)

Definition 11 (ε correctness). An MDLOPC key distribu-
tion protocol is ε-correct if the probability (and the protocol
does not abort) for Alice and Bob not to share the same output
keys satisfies

(1 − pabort )P[SA �= SB|pass] � ε. (D7)

Definition 12 (ε-security of a protocol). Let Preal|pass
SA,SB,Q,E |Z be

the state of the system shared between Alice, Bob, and Eve
after the protocol (and the protocol does not abort). Then the
protocol is ε-secure if

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε, (D8)

where pabort is the probability of aborting (which is the same
for the real and ideal protocols).

To prove the equivalence between security criterion based
on NS norm and the one based on security and correctness,
we provide technical Lemmas, showing that proximity in NS
norm implies secrecy and correctness, and vice versa.

Observation 1. The following equality holds.∣∣∣∣Preal
SA,SB,Q,E |Z − Pideal

SA,SB,Q,E |Z
∣∣∣∣

NS
= (1 − pabort )

∣∣∣∣Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∣∣∣∣

NS
. (D9)

Proof. ∣∣∣∣Preal
SA,SB,Q,E |Z − Pideal

SA,SB,Q,E |Z
∣∣∣∣

NS

= ∣∣∣∣pabortP
real|abort
SA,SB,Q,E |Z + (1 − pabort )P

real|pass
SA,SB,Q,E |Z − pabortP

ideal|abort
SA,SB,Q,E |Z − (1 − pabort )P

ideal|pass
SA,SB,Q,E |Z

∣∣∣∣
NS

(D10)

= ∣∣∣∣pabort
(
Preal|abort

SA,SB,Q,E |Z − Pideal|abort
SA,SB,Q,E |Z

) + (1 − pabort )
(
Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

)∣∣∣∣
NS

(D11)

(I )= (1 − pabort )
∣∣∣∣Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∣∣∣∣
NS

, (D12)

(I ) - we use the fact that Preal|abort
SA,SB,Q,E |Z and Pideal|abort

SA,SB,Q,E |Z are the same when the protocol is aborted [78]. �
Lemma 1. The NS norm evaluated for real and intermediate states quantifies the probability of Alice and Bob to share different

key strings at the end of the protocol.∥∥Preal
SA,SB,Q,E |Z − Pint

SA,SB,Q,E |Z
∥∥ = (1 − pabort )P[SA �= SB|pass]. (D13)

Proof. From Observation 1, we have∥∥Preal
SA,SB,Q,E |Z − Pint

SA,SB,Q,E |Z
∥∥

NS

(I )= (1 − pabort )
∥∥(Preal|pass

SA,SB,Q,E |Z − Pint|pass
SA,SB,Q,E |Z )

∥∥
NS

. (D14)

Now, using Proposition 2:∥∥Preal|pass
SA,SB,Q,E |Z − Pint|pass

SA,SB,Q,E |Z
∥∥

NS

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − Pint|pass

SA,SB,Q,E |Z (sA, sB, q, e|z)
∣∣ (D15)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣ (D16)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣δsA,sB
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+ 1

2

∑
sA,q

∑
sB �=sA

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣ (D17)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣
+ 1

2

∑
sA,q

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D18)

(I )= 1

2

∑
sA,q

max
z

∑
e

(∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − Preal|pass

SA,SB,Q,E |Z (sA, sA, q, e|z)

)

+ 1

2

∑
sA,q

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D19)

= 1

2

∑
sA,q

max
z

∑
e

∑
sB �=sA

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) + 1

2

∑
sA,q

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D20)

(II )=
∑
sA,q

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) (D21)

= P[SA �= SB|pass], (D22)

where (I) and (II) are due to nonsignaling condition on Eves’s input z. Finally we obtain∥∥Preal
SA,SB,Q,E |Z − Pint

SA,SB,Q,E |Z
∥∥

NS
= (1 − pabort )P[SA �= SB|pass]. (D23)

�
Lemma 2 (Secrecy and correctness imply security). If a protocol is εsec-secret and εcor-correct then the protocol is ε-secure,

where ε = εsec + εcor.{
(1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� εsec and (1 − pabort )P[SA �= SB|pass] � εcor

}
⇒ (1 − pabort )

∥∥Preal|pass
SA,SB,Q,E |Z , Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
� εsec + εcor = ε. (D24)

Proof. To prove the security of the protocol, we can decompose the left-hand side (l.h.s.) of Eq. (D8) in the following way:∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
�

∥∥Preal|pass
SA,SB,Q,E |Z − Pint|pass

SA,SB,Q,E |Z
∥∥

NS
+ ∥∥Pint|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

, (D25)

where we used the triangle inequality for the NS norm. From proposition 2, we have∥∥Pint|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
(D26)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣∣δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D27)

= 1

2

∑
sA,sB,q

max
z

∑
e

δsA,sB

∣∣∣∣∣∣
∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D28)

= 1

2

∑
sA

max
z

∑
e

∣∣∣∣∣∣
∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) −

∑
sB

δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D29)

= ∣∣∣∣Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∣∣∣∣

NS
. (D30)

Using now Lemma 1 and Eq. (D25), we have∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
� P[SA �= SB|pass] + ∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D31)

Hence,

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )P[SA �= SB|pass] + (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D32)

Using the above inequality if a protocol is εsec secret and εcor correct it is also at least (εsec + εcor ) secure.{
(1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� εsec and (1 − pabort )P[SA �= SB|pass] � εcor

}
(D33)

⇒ (1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z , Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� εsec + εcor = ε. (D34)
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We proved that if the protocol is εsec secret and εcor correct then its output is εsec + εcor close to ideal device in NS norm, and
by definition is εsec + εcor secure. To prove equivalence of security criteria, we now show the proof in the opposite direction, i.e.,
we show that if an output device of the protocol is ε close in NS norm to the ideal one, then the protocol is at least ε secret and
ε correct.

Lemma 3 (Security implies secrecy and correctness). If a protocol is ε-secure, then it is at least ε-secret and ε-correct.

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε

⇒ {
(1 − pabort )P[SA �= SB|pass] � ε and (1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� ε

}
(D35)

Proof of Lemma 3. Let us prove the following first.∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
� P[SA �= SB|pass]. (D36)

To proceed with this task we employ Definition 8 of the ideal system and Proposition 2.∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
(D37)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D38)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D39)

(I )
� 1

2

∑
sA,q

max
z

∣∣∣∣∣∣
∑

e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑

s′
A,s′

B,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D40)

(II )
� 1

2

∑
sA,q

∣∣∣∣∣∣
∑

e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑

s′
A,s′

B,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D41)

(III )
� 1

2

∣∣∣∣∣∣
∑
sA,q

⎛⎝∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑

s′
A,s′

B,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

⎞⎠∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D42)

= 1

2

∣∣∣∣∣∣
∑
sA,q,e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sA

1

|SA|
∑

s′
A,s′

B,q,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D43)

= 1

2

∑
s′

A

∑
s′

B �=s′
A

∑
e,q

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z) + 1

2
P[SA �= SB|pass] (D44)

= P[SA �= SB|pass], (D45)

where we used the triangle inequality used in (I) and (III), and the nonsignaling condition in the Eve’s subsystems used in (II).
Hence

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )P[SA �= SB|pass]. (D46)

The above inequality verifies that ε security implies ε correctness.
In the next step, we prove

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D47)
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Let us use Proposition 2 again.∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
(D48)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D49)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D50)

(I )= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D51)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣
(

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

)

+
( ∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

)∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D52)

(II )
� 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣
∣∣∣∣∣Preal|pass

SA,SB,Q,E |Z (sA, sA, q, e|z) −
∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣
−

∣∣∣∣ ∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣
∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D53)

(III )
� 1

2

∣∣∣∣∣∑
sA,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣
−

∑
sA,q

max
z

∑
e

∣∣∣∣∣∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣
∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D54)

(IV )=
∣∣∣∣1

2
P[SA �= SB|pass] − ∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

∣∣∣∣ + 1

2
P[SA �= SB|pass], (D55)

where in (I) the second component is treated like in the previous step, reverse triangle inequality has been used in (II), triangle
inequality in (III) and in (IV) we use the results given in Eqs. (D22) and (D30). We have

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

(D56)

�
∣∣ 1

2 (1 − pabort )P[SA �= SB|pass] − (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

∣∣ + 1
2 (1 − pabort )P[SA �= SB|pass]. (D57)

One should now go through two separate cases:
Case 1. ( 1

2 P[SA �= SB|pass] � ‖Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z ‖
NS

):

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� 1
2 (1 − pabort )P[SA �= SB|pass]

−(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

+ 1
2 (1 − pabort )P[SA �= SB|pass] (D58)

= (1 − pabort )P[SA �= SB|pass] − (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

(D59)

� 2(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

− (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

(D60)

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D61)
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Case 2. ( 1
2 P[SA �= SB|pass] < ‖Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z ‖

NS
):

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

(D62)

− 1
2 (1 − pabort )P[SA �= SB|pass] + 1

2 (1 − pabort )P[SA �= SB|pass]

= (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D63)

Finally,

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D64)

If protocol is ε-secure, we see from (D36) and (D47) that

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε

⇒ {
(1 − pabort )P[SA �= SB|pass] � ε and (1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� ε

}
. (D65)

�
Once we proved the above Lemmas, we can state the Theorem regarding the equivalence between the secrecy and correctness

and proximity in NS norm criteria of security for a protocol we have considered.
Theorem 3 (Equivalence of security criteria). For an MDLOPC protocol �, the proximity in the NS norm security criterion

is equivalent to the criterion based on security and correctness. That is for any εsec + εcor ≡ ε � εsec, εcor � 0 the following
equivalence relation holds:

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� O(ε) ⇐⇒ {(1 − pabort )P[SA �= SB|pass] � O(εcor )

∧ (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� O(εsec)
}
, (D66)

where pabort is the probability for the protocol to abort and the constant in O(ε) does not depend on any parameter of the protocol.
Proof. From Lemma 2, we have{

(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� εsec and (1 − pabort )P[SA �= SB|pass] � εcor
}

⇒ (1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z , Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� εsec + εcor = ε, (D67)

and from Lemma 3,

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε

⇒ {
(1 − pabort )P[SA �= SB|pass] � ε and (1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� ε

}
(D68)

By combining the above implications under εsec + εcor ≡ ε � εsec, εcor � 0 constraints, we obtain

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� O(ε) ⇐⇒ {(1 − pabort )P[SA �= SB|pass] � O(εcor ) (D69)

∧(1 − pabort )(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� O(εsec)
}
, (D70)

hence the corresponding notion’s are cryptographically equivalent. �

Remark 2. In the rest of this paper, we assume that the
protocol is after the acceptance phase. However, for the full
generality in this section, we took a step back and also con-
sidered the possibility of aborting. From now, we set the
probability of aborting to zero.

APPENDIX E: REPHRASING THE KEY RATE IN THE
SECRET-KEY AGREEMENT SCENARIO

The secret-key agreement (SKA) scenario is a cryp-
tographic scheme in which the honest parties and the
eavesdropper share many copies of a classical joint probability
distribution P(ABE ) [1,2]. The honest parties task is to agree
on the secret key, by employing local operations and public

communication (LOPC), in such a manner that the eavesdrop-
per’s knowledge about the key is negligible. In the following
lines, we propose an alternative definition of the secret-key
rate S(A : B||E ) in the aforementioned scenario and prove that
the definition we propose is equivalent to those present in the
literature [2,70,75]. This technical result intends to show and
utilize a connection between the definition of secret-key rate
in SKA and NSDI scenarios, as it was done in the case of
quantum cryptography [34].

Before we begin with the proof of Theorem 2, let us recall
two definitions of secret-key rate in SKA scenario [2,75].

Definition 13 (The weak secret-key rate [2,75]). The
(weak) secret-key rate of A and B with respect to E, denoted
S(A : B||Z ), is the maximal R � 0 such that for every ε > 0
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and for all N � N0(ε) there exists a protocol, using public
communication over an insecure but an authenticated channel,
such that Alice and Bob, who receive AN = [A1, . . . , AN ]
and BN = [B1, . . . , BN ], can compute keys SA and SB,
respectively, with the following properties. First, SA = SB

hold with probability at least 1 − ε, and second,

1

N
I (SA : CEN ) � ε and

1

N
H (SA) � R − ε (E1)

hold. Here, C denotes the collection of messages sent over the
insecure channel by Alice and Bob.

Definition 14 (The strong secret-key rate [75]). The strong
secret-key rate of A and B with respect to E, denoted by

S(A : B||Z ), is defined in the same way as S(A : B||Z ) with
the modifications that Alice and Bob compute strings SA and
SB which are with probability at least 1 − ε both equal to a
string S with the properties

I (S : CEN ) � ε and H (S) = log2 |S| � N · (R − ε).
(E2)

The above definitions of the secret-key rate were proven

to be equivalent [75], i.e., S(A : B||Z ) = S(A : B||Z ), for ev-
ery distribution P(ABE ) shared between the parties before
the protocol. We propose an alternative definition of the
secret-key rate based on proximity in the trace distance (total
variational distance).

Definition 15 (The secret-key rate). Let P(ABE ) be the
joint distribution of three discrete random variables A, B, and
E. The secret-key rate S(A : B||E ) is given by

S(A : B||E )P(ABE ) := sup
P

lim sup
N→∞

log2 dimSA [PN (P⊗N (ABE ))]

N
,

(E3)

where P = ∪∞
N=1{PN } is a LOPC protocol that satisfies∥∥Preal

N − Pideal
N

∥∥
1 � δN

N→∞−→ 0, (E4)

for

Preal
N ≡ Preal

N (SASBCEN ) := PN (P⊗N (ABE )), (E5)

Pideal
N ≡ Pideal

N (SASBCEN )

:=
(

δsA,sB

|SA|
)

⊗
∑
sA,sB

Preal
N (SA = sA, SB = sB,CEN ).

(E6)

Theorem 2. The secret-key rate S(A : B||E ) introduced in

Definition 15 is equal to secret-key rates S(A : B||E ) and S(A :
B||Z ) provided in Definitions 13 and 14, respectively.

Before we show the proof of Theorem 2, we present the
basic tools that will be used. For two joint probability distribu-
tions P ≡ P(XY ) and Q ≡ Q(XY ), that are close by according
to the trace distance, their Shannon entropies, and the mutual
information functions satisfy the asymptotic continuity rela-
tions [90,91], which is

|H(X )P − H(X )Q| � ε log2 (dimX(P) − 1) + h2(ε), (E7)

|I(X : Y )P − I(X : Y )Q| � 2ε log2 d + 2g(ε), (E8)

where ε = 1
2 ||P(XY ) − Q(XY )||1 ∈ [0, 1], h2(ε) :=

−ε log2 ε − (1 − ε) log2(1 − ε) is the binary Shannon
entropy, g(ε) := −ε log2 ε + (1 + ε) log2(1 + ε), and
d = min{dimX(P), dimY(P)}. Functions h2 and g are equal at
ε = 0 and for ε > 0 h2(ε) < g(ε). It is also useful to observe
that ||P(X ) − Q(X )||1 � ||P(XY ) − Q(XY )||1 for P(X ) and
Q(X ) being marginal probability distributions of P(XY ) and
Q(XY ) respectively.

Another relation that we need is the so-called Pinsker’s
inequality. It states that if P and Q are two probability dis-
tributions, then

1

2
‖P − Q‖1 �

√
1

2
DKL(P||Q), (E9)

where DKL(P||Q) is the Kullback-Leibler divergence. One
of the properties of this function is its relation to mutual
information, i.e., for a joint probability distribution P(XY )
and P(X ), P(Y ) being its marginal distributions we have:
DKL(P(XY )||P(X )P(Y )) = I (X : Y )P(XY ).

The last mathematical property we describe before the
proof is the Fano’s inequality stating that

H (X |Y ) � h(e) + P(e) log2 (|X | − 1),

P(e) = Prob[X �= X̃ ], (E10)

where h(x) is the binary entropy and X̃ = f (Y ) is an approxi-
mate version of X .

In the proof, we also use the notions of real and ideal
systems. The real system Preal

N is a tripartite probability dis-
tribution shared by the honest parties after N th round of an
LOPC protocol P . The ideal system Pideal

N is the one in which
the honest parties are perfectly correlated (with uniform distri-
bution), and Eve’s marginal distribution is the same as for the
real system, however completely uncorrelated with the honest
parties.

Preal
N ≡ Preal

N (SASBCEN ) := PN (P⊗N (ABE )), (E11)

Pideal
N ≡ Pideal

N (SASBCEN )

:=
(

δsA,sB

|SA|
)

⊗
∑
sA,sB

Preal
N (SA = sA, SB = sB,CEN ),

(E12)

where P(ABE ) is tripartite probability distribution shared by
all parties at the beginning of SKA protocol, i.e., input state
of the protocol, |S| = dimS (Preal

N ) and dimensions of Preal
N and

Pdeal
N are equal. By (

δsA ,sB
|SA| ) we denote a distribution of perfectly

and uniformly correlated random variables SA and SB.
Proof of Theorem 2. We begin the proof by showing that

the weak secret-key rate S(A : B||Z ), constitutes an upper
bound on S(A : B||Z ). We do this by showing that every
protocol that satisfies the condition in Eq. (E4) also satisfies
conditions in Definition 13.

We denote protocol that satisfy security condition in
Eq. (E4) with P . From asymptotic continuity of the mu-
tual information and the fact that I (SA : CEN )Pideal

N
= 0 by the
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construction of Pideal
N , we read

∀P∀N I (SA : CEN )Preal
N

= I (SA : CEN )Preal
N

− I (SA : CEN )Pideal
N

�
∣∣I (SA : CEN )Preal

N
− I (SA : CEN )Pideal

N

∣∣
� 2δN log2 dSA + 2g(δN ), (E13)

where dSA := dimSA (Preal
N ) � min{dimSA (Preal

N ), dimCEN (Preal
N )}

and δN � 1
2‖Preal

N − Pideal
N ‖1. Because in any reasonable

LOPC protocol dimension of the output is smaller than the
dimension of the input, and we observe that14

∀P∀N dS

= dimSA

(
Preal

N

) = dimSA [PN ((P(ABE ))⊗N )]

� dimA[(P(ABE ))⊗N ]

= [dimA (P(ABE ))]N . (E14)

Hence,

∀P∀N
1

N
I (SA : CEN )Preal

N

� 2δN log2 [dimA (P(ABE ))]N + 2g(δN )

N

= 2δN log2 [dimA (P(ABE ))] + 2g(δN )

N
(E15)

Hence if a protocol satisfies the trace norm security condition

‖PN (P⊗N (ABE )) − Pideal
N ‖1 � δN

N→∞−→ 0 then

∀P∀ε>0∃N1(ε)∀N�N1(ε)
1

N
I (SA : CEN )Preal

N
< ε, (E16)

as r.h.s. of Eq. (E15) approaches 0 when N goes to infinity.
Another condition in Definition 13 we call correctness of a

protocol, requiring that SA = SB with probability at least 1 −
ε (equivalently Prob[SA �= SB] � ε) is satisfied15 by virtue of
Theorem 3, with |Z| = 1 and pabort = 0.

This is because the NS norm computed for classical prob-
ability distributions is equal to the trace distance. Therefore,
from the condition in Eq. (E4) and Theorem 3, we have

∀P∀ε∃N2(ε)∀N�N2(ε) Prob[SA �= SB] � δN . (E17)

Let us show now the upper bound. We first observe that for
all protocols the following is true:

∀P∀N H (SA)Preal
N

� H (SA)Pideal
N

= log2 dimSA

(
Pideal

N

) = log2 dimSA

(
Preal

N

)
, (E18)

where the inequality is due to the definition of ideal system in
which SA is uniformly distributed and of the same dimension

14This follows from: S(A : B||E )P � I (A : B ↓ E )P �
log2 dimA(P).

15Devices with unary input are isomorphic with unconditional
probability distributions.

as in real system. From asymptotic continuity of the Shannon
entropy, we have

∀P∀N
1

N
H (SA)Preal

N

� 1

N
H (SA)Pideal

N
− 1

N

(
δN log2

(
dimSA

(
Preal

N

) − 1
) + h2(δN )

)
(E19)

� 1

N
H (SA)Pideal

N
−

(
2δN log2 (dimA (P(ABE ))) + 2g(δN )

N

)
,

(E20)

where the second inequality is a consequence of the similar
arguments as in Eq. (E14) and the fact that ∀x>0 h2(s) < g(x).

Let us define L(N ) := log2 dimSA (Preal
N )

N . In particu-

lar there exists 0 < η(N )
N→∞−→ 0 such that L(N ) =

lim supN→∞
log2 dimSA (Preal

N )
N − η(N ). Hence, we have the

following inequality.

∀P∀ε>0∃N3(ε)∀N>N3(ε)
1

N
H (SA)Preal

N

� lim sup
N→∞

log2 dimSA (Preal
N )

N
− ε. (E21)

Let us define now N0(ε) := max{N1(ε), N2(ε), N3(ε)}. All
conditions in Definition 13, are now satisfied as for all ε > 0

and for all N � N0(ε), with R = lim supN→∞
log2 dimSA (Preal

N )
N .

The weak secret-key rate is by Definition 13 maximal R, for
which second inequality in Eq. (E1) is satisfied, hence to
achieve S(A : B||E ) one has to take a supremum over rates
of all protocols.

S(A : B||E )P(ABE ) = sup
P

R, (E22)

where P are the protocols that satisfy conditions in Definition
13. As we have shown that condition (E4) in Definition 15
implies conditions in Definition 13, it is clear that {P} ⊆ {P},
and hence:

S(A : B||E )P(ABE )

= sup
P

R � sup
P

R

= sup
P

lim sup
N→∞

log2 dimSA

(
Preal

N

)
N

. (E23)

Let us now show that the secret-key rate S(A : B||E ) is

lower bounded with the strong secret-key rate S(A : B||E ).
In this part, we refer again to results in Appendix D. It is
enough to show that conditions in Definition 14 imply secrecy
and correctness of a protocol, as by virtue of Theorem 3 and
the same arguments regarding the connection between the NS
norm and the trace distance, these conditions imply proximity
in the trace distance.

We start with the condition of secrecy (see Definition
10). Let Preal

N (SASBSCEN ) be an extension of Preal
N (SASBCEN ),
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such it satisfies conditions in Eq. (E2).

∀N εsec
N := 1

2

∥∥Preal
N (SACEN ) − Pideal

N (SACEN )
∥∥

1 = 1

2

∥∥∥∥Preal
N (SACEN ) −

(
1

|SA|
)

⊗ Preal
N (CEN )

∥∥∥∥
1

= 1

2

∥∥∥∥Preal
N (SACEN ) − Preal

N (SA) ⊗ Preal
N (CEN ) + Preal

N (SA) ⊗ Preal
N (CEN ) −

(
1

|SA|
)

⊗ Preal
N (CEN )

∥∥∥∥
1

� 1

2

∥∥Preal
N (SACEN ) − Preal

N (SA) ⊗ Preal
N (CEN )

∥∥
1 + 1

2

∥∥∥∥Preal
N (SA) −

(
1

|SA|
)∥∥∥∥

1

� 1

2

∥∥Preal
N (SASCEN ) − Preal

N (SAS) ⊗ Preal
N (CEN )

∥∥
1 + 1

2

∥∥∥∥Preal
N (SA) −

(
1

|SA|
)∥∥∥∥

1

, (E24)

where ( 1
|SA| ) denotes uniform distribution, and we identify |SA| with |S|. The first term in the equation above can be upper

bounded via Pinsker’s inequality, and the first inequality in (E2):

∀ε>0∃N0(ε)∀N>N0(ε)
1

2

∥∥Preal
N (SASCEN ) − Preal

N (SAS) ⊗ Preal
N (CEN )

∥∥
1 �

√
1

2
DKL

(
Preal

N (SASCEN )||Preal
N (SAS) ⊗ Preal

N (CEN )
)

(I )=
√

1

2
I (SAS : CEN )

Preal
N

= 1√
2

√
I (S : CEN )

Preal
N

+ I (SA : CEN |S)
Preal

N
� 1√

2

√
ε + I (SA : CEN |S)

Preal
N

, (E25)

where (I ) follows from the properties of the Kullback–Leibler divergence. Let us upper bound I (SA : CEN |S)
Preal

N
in the next step.

I (SA : CEN |S)
Preal

N
= H (SA|S)

Preal
N

− H (SA|S,CEN )
Preal

N

(II )
� H (SA|S)

Preal
N

(III )
� H (e)P(e) + P(e) log2 (|S| − 1)

(IV )
� h(ε)

+ ε log2 (|S| − 1), (E26)

where h(x) is the binary entropy and in (II ) we used non-negativity of the conditional entropy, (III ) follows from Fano’s
inequality for P(e) = Prob[S �= SA], and the last step (IV ) is a consequence of Prob[SA = SB = S] � 1 − ε and an assumption
that ε � 1

2 . This assumption is well justified in cryptography. From inequalities (E25) and (E26), we have

∀ 1
2 �ε>0∃N0(ε)∀N>N0(ε)

1

2

∥∥Preal
N (SASCEN ) − Preal

N (SAS) ⊗ Preal
N (CEN )

∥∥
1 � 1√

2

√
ε + h(ε) + ε log2 (|S| − 1). (E27)

In order to upper bound the second term, we make the following observations:

∀ε>0∃N0(ε)∀N>N0(ε)

(a) Prob[SA = SB = S] > 1 − ε ⇒ Prob[SA = S] > 1 − ε ⇔ Prob[SA �= S] < ε ⇔
∑

sA

∑
s �=sA

Preal
N (sAs) < ε, (E28)

(b) H (S) = log2 |S| ⇒ Preal
N (s) = 1

|S| , (E29)

(c) ∀s
1

|SA| =
∑

sA

Preal
N (sAs) =

∑
sA �=s

Preal
N (sAs) + Preal

N (ss) � Preal
N (ss). (E30)

Therefore we have

∀ε>0∃N0(ε)∀N>N0(ε)
1

2

∥∥∥∥Preal
N (SA) −

(
1

|SA|
)∥∥∥∥

1

= 1

2

∑
sA

∣∣∣∣Preal
N (sA) − 1

|SA|
∣∣∣∣ = 1

2

∑
sA

∣∣∣∣∣∑
s

Preal
N (sAs) − 1

|SA|

∣∣∣∣∣
= 1

2

∑
sA

∣∣∣∣∣∑
s �=sA

Preal
N (sAs) + Preal

N (sAsA) − 1

|SA|

∣∣∣∣∣ (I )
� 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

∑
sA

∣∣∣∣ 1

|SA| − Preal
N (sAsA)

∣∣∣∣
= 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

∑
s

∣∣∣∣ 1

|SA| − Preal
N (ss)

∣∣∣∣ (II )= 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

∑
sA

(
1

|SA| − Preal
N (sAsA)

)

= 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

(
1 −

∑
sA

Preal
N (sAsA)

)
=

∑
sA

∑
s �=sA

Preal
N (sAs) � ε, (E31)
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where (I ) follows from triangle inequality, (II ) is due to
observation (c), and in the last step, we used (a). From
eqs. (E24), (E25), and (E31), we conclude that εsec

N �
1√
2

√
ε + h(ε) + ε log2(|S| − 1) + ε.

The correctness of a protocol is explicitly stated in Defi-
nition 14, i.e., Prob[SA = SB = S] > 1 − ε (see Definition 11
for reference). Hence we have εcor

N := ε. From Theorem 3, we
obtain>

∀ 1
2 �ε>0∃N0(ε)∀N>N0(ε)

1

2

∥∥Preal
N (SASBCEN ) − Pideal

N (SASBCEN )
∥∥

1 � εcor
N + εsec

N

� 1√
2

√
ε + h(ε) + ε log2 (|S| − 1) + 2ε, (E32)

or equivalently ∥∥Preal
N − Pideal

N

∥∥
1 � δN

N→∞−→ 0. (E33)

From the second inequality (E2) and Eq. (E18), we have
that

∀ε>0∃N0(ε)∀N>N0(ε) L(N ) � R − ε, (E34)

for L(N ) = log2 dimSA (Preal
N )

N and hence by performing a limit
N → ∞, and condition of R being maximal number so that

the above is satisfied we have R = lim supN→∞
log2 dimSA (Preal

N )
N .

The strong secret-key rate is defined as

S(A : B||E )P(ABE ) = sup
P

R, (E35)

where P are protocols that satisfy conditions in Definition 14.
Because conditions in Definition 14 imply Condition (E4), we

have {P} ⊆ {P}, and therefore,

S(A : B||E )P(ABE )

= sup
P

R = sup
P

lim sup
N→∞

log2 dimSA (Preal
N )

N

� sup
P

lim sup
N→∞

log2 dimSA (Preal
N )

N
. (E36)

By combining equations (E23) and (E36), we have

S(A : B||E )P(ABE )

� sup
P

lim sup
N→∞

log2 dimSA (Preal
N )

N

� S(A : B||E )P(ABE ). (E37)

However, in Ref. [75], it was shown that ∀P(ABE ) S(A :
B||E )P(ABE ) = S(A : B||E )P(ABE ), hence we conclude that

S(A : B||E )P(ABE ) = S(A : B||E )P(ABE )

= S(A : B||E )P(ABE ), (E38)
with S(A : B||E )P(ABE ) = supP lim supN→∞
log2 dimSA [PN (P⊗N (ABE ))]

N , and therefore all three definitions
are equivalent.

APPENDIX F: UPPER BOUND ON DEVICE
INDEPENDENT KEY

In this section, we prove our main result. Namely, we
show that the secrecy quantifiers, that provide upper bounds
on the key rate in the SKA model [2,75], can serve us to
construct upper bounds in device-independent key agreement
scenario via operation of squashing. The secret-key agreement
scenario (SKA) is a well established area of cryptography,
where upper bounds on the key rate are well known and given
by entropic functions. The connection between upper bounds
in SKA and NSDI cryptographic paradigms that we show in
this section may simplify further studies on the latter.

Theorem 1. The secret-key rate, in the nonsignaling
device-independent iid scenario achieved with MDLOPC op-
erations, K (iid)

DI , from a device P is upper bounded by any
nonsignaling squashed secrecy quantifier evaluated for the
complete extension of P:

∀P M̂(A : B||E )E (P) � K (iid)
DI (P), (F1)

where P ≡ P(AB|XY ) is a single copy of a bipartite
nonsignaling device shared by the honest parties, and E (P) ≡
E (P)(ABE |XY Z ) is its complete extension to the eavesdrop-
per’s system.

Proof of Theorem 1. We start the proof by modifying the
equality in Eq. (E3), in Definition 15 in the following way:

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) = max
x,y

min
z

sup
Px,y,z

lim sup
N→∞

log2 dimSA

[
Px,y,z

N

((
(MF

x,y ⊗ MG
z )E (P)(ABE |XY Z )

)⊗N)]
N

,

(F2)

where Px,y,z is a LOPC protocol secure with respect to probability distribution that arises after x, y, z choice of inputs (see
Sec. E of Appendix for reference), and MF

x,y, MG
z are fiducial and general measurements of Alice, Bob, and Eve, respectively,

described before in Sec. B 2 of Appendix.
Let us notice that for each choice of x and y there exists z = z̄x,y such that

max
x,y

sup
Px,y,z̄x,y

lim sup
N→∞

log2 dimSA

[
Px,y,z̄x,y

N

(((
MF

x,y ⊗ MG
z̄x,y

)
E (P)(ABE |XY Z )

)⊗N)]
N

(F3)

:= max
x,y

min
z

sup
Px,y,z

lim sup
N→∞

log2 dimSA

[
Px,y,z

N

(((
MF

x,y ⊗ MG
z

)
E (P)(ABE |XY Z )

)⊗N)]
N

. (F4)
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Now, when the optimization domains are explicitly stated, we can make use of max-min inequality to obtain

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) (F5)

� max
x,y

sup
Px,y,z̄x,y

min
z

lim sup
N→∞

log2 dimSA

[
Px,y,z̄x,y

N

(((
MF

x,y ⊗ MG
z

)
E (P)(ABE |XY Z )

)⊗N)]
N

. (F6)

We notice that the minimization of Eve’s choice of input (minz) is void in the r.h.s. of the Eq. (F5) above. This is because the
value of r.h.s. depends only on the value of dimSA (·) that is determined by choice of x, y, and hence by the protocol. Therefore
we can write the following sequence of equalities where we swap from classical probability distributions to cc-d states:

∀x,y∀Px,y,z̄x,y minz lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

(((
MF

x,y ⊗ MG
z

)
E (P)(ABE |XY Z )

)⊗N)]
N

(F7)

= lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

((
(MF

x,y ⊗ 1)E (P)(ABE |XY Z )
)⊗N)]

N
(F8)

= lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

(
(MF

x,y ⊗ 1)⊗NE⊗N (P)(ABE |XY Z )
)]

N
(F9)

= lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

(
(MF

x,y ⊗ 1)⊗NE (P⊗N )(ABE |XY Z )
)]

N
(F10)

= lim supN→∞
log2 dimSA

[(
Px,y,z̄x,y

N ◦ (MF
x,y)⊗N

)
(E (P⊗N )(ABE |XY Z ))

]
N

. (F11)

In the third equality above, we again used the fact that
the dimension of Alice’s subsystem (when the protocol is
already fixed) is independent of Eve’s action and her marginal
distribution. This is the reason why we can substitute E (P⊗N )
in the place of E⊗N (P). Moreover, in the last equality we use
a notation that explicitly shows the composition between a
measurement and a LOPC protocol. With a little abuse of
notation 1 in Eve’s part is abandoned.

We notice now that each composition of measurement x,
y and protocol Px,y,z̄x,y is a candidate for MDLOPC protocol
� := {�N } = {Px,y,z̄x,y

N ◦ (MF
x,y)⊗N }. However we require that

the distribution after the protocol is secure in NS-norm, i.e.,

∥∥�N (E (P⊗N )) − P(dN )
ideal

∥∥
NS � εN

N→∞−→ 0, (F12)

what implies security not only with respect to Eve choosing
z̄x,y, but against eavesdropper that has access to all inputs of
E (P⊗N ), hence possibly more powerful attacks. This is also
a reason why we stay general even if there is any other good
choice of z̄x,y in Eq. (F3). Having this in mind, we can write
the inequalities below:

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) (F13)

� max
x,y

sup
Px,y,z̄x,y

lim sup
N→∞

log2 dimSA

[(
Px,y,z̄x,y

N ◦ (
MF

x,y

)⊗N)
(E (P⊗N )(ABE |XY Z ))

]
N

(F14)

� sup
�

lim sup
N→∞

log2 dimSA [�N (E (P⊗N )(ABE |XY Z ))]

N
= K (iid)

DI (P), (F15)

where the second inequality is due to the fact that now opti-
mization is over a smaller set (not larger), i.e., only these com-
binations of measurements and LOPC operations that satisfy
security condition in Eq. (F12). Moreover, in the equality we
identified MDLOPC (iid) secret-key rate from Definition 1.

For the second part of the proof, we need to recall some
properties of a family of secrecy quantifiers {M(A : B||E )} of
SKA model [88]. Each function that upper bounds secret-key
rate in the SKA paradigm can be squashed according to the
following procedure. For any function among them:

∀Q(ABE ) M(A : B||E )Q(ABE ) � S(A : B||E )Q(ABE ). (F16)

By extending the above inequality to any tripartite nonsignal-
ing device P(ABE |XY Z ) and general measurement for input
Z , one can write

∀P(ABE |XY Z )∀x,y,z M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z )

� S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F17)

Without loss of generality, we fix the device P(ABE |XY Z ) for
now. Let us denote z̃x,y as such an adaptive choice of z that

∀x,y M(A : B||E )(MF
x,y⊗MG

z̃x,y
)P(ABE |XY Z )

:= min
z

M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F18)
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The immediate consequence is

∀x,y min
z

M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z )

= M(A : B||E )(MF
x,y⊗MG

z̃x,y
)P(ABE |XY Z ) (F19)

� S(A : B||E )(MF
x,y⊗MG

z̃x,y
)P(ABE |XY Z )

� min
z

S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F20)

Employing a similar technique again, let us choose x̃, ỹ such
that

min
z

S(A : B||E )(MF
x̃,ỹ⊗MG

z )P(ABE |XY Z )

:= max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F21)

This yields

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z )

= min
z

S(A : B||E )(MF
x̃,ỹ⊗MG

z )P(ABE |XY Z ) (F22)

� min
z

M(A : B||E )(MF
x̃,ỹ⊗MG

z )P(ABE |XY Z )

� max
x,y

min
z

M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F23)

On the r.h.s. we recognize M̂(A : B||E )P(ABE |XY Z ) from Defi-
nition 2. Using the result in Eqs. (F13)–(F15) from the first
part of the proof, and substituting the complete extension of
P(AB|XY ) as a tripartite device, we obtain

∀P(AB|XY ) M̂(A : B||E )E (P)(ABE |XY Z ) � K(iid)
DI (P(AB|XY )).

(F24)

APPENDIX G: PROOF OF THE PROPERTIES OF
NONSIGNALING SQUASHED NONLOCALITY

In this section, we give the proofs of the properties of
the nonsignaling squashed nonlocality. Before we start with
the proof, let us recall the definition of intrinsic information
I(A : B ↓ E ), given in Sec. X. We will rewrite the definition in
two new ways. One of them is in full analogy to the forms of
the squashed entanglement [61,62]. Indeed, one can write the
latter measure in terms of the minimization over all possible
extensions: Esq(ρAB) := infσABE :TrE σABE =ρAB I (A : B|E )σABE . The
second form of the squashed nonlocality involves ensembles
induced by measurements on the extending system and re-
sembles the definition of the so-called classical squashed
entanglement [62].

The intrinsic information involves an optimization over
all possible conditional probability distributions 	E ′|E . More-
over, in the squashing procedure, an optimization over the
measurements on the CE of a bipartite device P(AB|XY ), has
been involved. The nonsignaling squashed intrinsic informa-
tion is

Î(A : B ↓ E )E (P)(ABE |XY Z )

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) (G1)

= max
x,y

min
z

inf
	z

E ′ |E
I(A : B|E ′)(	z

E ′ |E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ),

(G2)

where MF
x,y is the direct measurement on the inputs X and Y ,

and MG
z is a general measurement on Z . According to The-

orem 4 of Ref. [56], (	z
E ′|E )(1 ⊗ MG

z )E (P)(ABE |XY Z ) =∑
e 	z

E ′|E=e

∑
z p(z|z′)E (P)(ABE = e|XY Z = z) =

P̃(ABE ′|XY Z ′ = z′), is an arbitrary ensemble (possibly
mixed) of the device P(AB|XY ), where 1 is the identity
operator on the system of the honest parties. Hence, for a
fixed input randomizer (dice p(z|z′)) and a fixed channel,
one can generate an arbitrary extension P̃(ABE ′|XY ) with
unary input. All possible choices of input randomizer and
post-processing channel lead to all possible extensions,
hence minz inf	z

E ′ |E
= inf P̃(ABE ′ |XY ). And hence, it follows that

Definition 3 of the squashed nonlocality is equivalent to

Nsq(P(AB|XY )) = max
x,y

inf
P̃(ABE |XY )

I(A : B|E )MF
x,yP̃(ABE |XY ).

(G3)

This arbitrary extension of a form P̃(ABE |XY ), gives rise
to an arbitrary but fixed ensemble of the bipartite device
P(AB|XY ) = ∑

e P̃(ABE = e|XY ) = ∑
e p(e)Pe(AB|XY ),

where Pe(AB|XY ) is an arbitrary device corresponding to
each output E = e, and belongs to the same polytope (state
space) as P(AB|XY ). Moreover, all possible choices of
P̃(ABE |XY ) give rise to all possible ensembles of P(AB|XY ).
The set of all ensembles of a given device P(AB|XY ), reads

Sall :=
{

{pi, Pi(AB|XY )} :
∑

i

piP
i(AB|XY ) = P(AB|XY )

}
.

(G4)

Hence, inf P̃(ABE ′ |XY ) = inf {pi,Pi (AB|XY )}∈Sall , and by virtue of
Eq. (G3) we can rewrite definition 3 of the squashed nonlo-
cality in the following way:

Nsq(P(AB|XY )) = max
x,y

inf
{pi,Pi (AB|XY )}∈Sall

×
∑

i

piI(A : B)MF
x,yPi (AB|XY ). (G5)

From Eq. (G5), it is clear that the squashed nonlocality re-
duces to the convex roof extension of the mutual information
function. This is analogous to the definition of entanglement
for mixed quantum states [92], the only difference is that here
we are not restricting the device to be decomposable in terms
of only pure (extremal) devices (see in this context [37]).

1. Relation to the bound of Ref. [16]

To describe the relation between our results and the re-
sults in Ref. [16], we prove that maxx,y IAMP,(x,y) = Nsq. This
allows us to compare the bounds on equal footing, and by
showing that Nsq is convex, to use the convexification method
to achieve tighter bound than given in Ref. [16].

We first show that the � inequality. Indeed, let us fix
(x, y) arbitrarily. Let {p(E = e)∗, P(ABE = e|XY )∗} be an
optimal ensemble achieving IAMP,(x,y). By definition of the
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complete extension [56], there exists a measurement16 z on
its Eve’s system E that generates this ensemble: {P(E =
e|Z = z), P(ABE = e|XY, Z = z)} so that P(E = e|Z = z) =
P(E = e)∗ and P(ABE = e|XY, Z = z) = P(ABE = e|XY )∗.
Since (x, y) was arbitrary and the z could be suboptimal for
the definition of Nsq we get the inequality maxx,y IAMP,(x,y) �
Nsq. To see that maxx,y IAMP,(x,y) � Nsq, let x, y be fixed
arbitrarily and z(x, y) such that the value of infz I (A :
B ↓ E )P(ABE |X=x,Y =y,Z=z) is minimal. Then {P(E = e|Z =
z(xy)), P(ABE = e|X = x,Y = y, Z = z(x, y) is a particular
ensemble of P(AB|XY ), which may be suboptimal, i.e., not
attaining infimum in definition of IAMP,(x,y), we get that
IAMP,(x,y) � infz I (A : B ↓ E )P(ABE |X=x,Y =y,Z=z). Since (x, y)
was arbitrary, we can take max over (x, y) on both sides, and
on the r.h.s. we obtain Nsq while the bound max(x,y) IAMP,(x,y)

is on the l.h.s., which proves the claimed equality.

2. Positivity of the measure

Proposition 3. The squashed nonlocality is a positive
semidefinite function of bipartite nonsignaling devices
P(AB|XY ),

Nsq(P(AB|XY )) � 0, (G6)

andthe equality holds if the device P admits a local hidden
variable model [8].

Proof. The intrinsic conditional mutual information satisfy
I(A : B ↓ E ) � 0 for all distributions P(ABE ), hence the pos-
itive semi-definiteness directly follows from its definition:

Nsq(P(AB|XY ))

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z )

� max
x,y

min
z

0 = 0. (G7)

Now we have to show that it is zero for all local de-
vices. Let us assume PL(AB|XY ) is a local device, i.e., there
exists a hidden variable model λ, such that PL(AB|XY ) =∑

λ P(A|X, λ) ⊗ P(B|Y, λ)ρ(λ). This leads to an ensemble
{ρ(λ), P(A|X, λ) ⊗ P(B|Y, λ)} whose members are tensor
products of local devices, hence from Eq. (G5), we can di-
rectly write

Nsq(PL(AB|XY ))

= max
x,y

∑
i

ρ(λi )I(A : B)MF
x,y (P(A|X,λi )⊗P(B|Y,λi )) = 0. (G8)

�

3. Convexity

Proposition 4. Nsq(P) is a convex function, i.e., if
P(AB|XY ) and Q(AB|XY ) are two bipartite nonsignaling de-
vices in the same polytope, then

Nsq(λP(AB|XY ) + (1 − λ)Q(AB|XY ))

� λNsq(P(AB|XY )) + (1 − λ)Nsq(Q(AB|XY )) (G9)

16Here, we mean the generalized measurement that gives the eaves-
dropper the access to any ensemble of the device (see Appendix B 2
for details).

∀λ ∈ [0, 1].
Proof. Consider the convex combination of the devices

P̄(AB|XY ) = λP(AB|XY ) + (1 − λ)Q(AB|XY ). (G10)

In particular there exists an extension P̄ext (ABE�|XY ) of
P̄(AB|XY ), such that

P̄ext (ABE� = 0|XY ) = p(� = 0)P̃(ABE |XY ), (G11)

P̄ext (ABE� = 1|XY ) = p(� = 1)Q̃(ABE |XY ), (G12)

with p(� = 0) = λ and p(� = 1) = 1 − λ. We consider that
the devices P̃(ABE |XY ) and Q̃(ABE |XY ) are arbitrary exten-
sions of the devices P(AB|XY ) and Q(AB|XY ) respectively,
as discussed above.

Hence, from Eq. (G3), we have

∀x, y inf
P̄(ABE |XY )

I(A : B|E )MF
x,yP̄(ABE |XY )

� I(A : B|E�)MF
x,yP̄ext (ABE�|XY ) (G13)

= λI(A : B|E )MF
x,yP̃(ABE |XY )

+(1 − λ)I(A : B|E )MF
x,yQ̃(ABE |XY ), (G14)

where P̄(ABE |XY ) are such that
∑

e P̄(ABE = e|XY ) =
P̄(AB|XY ). The above relation holds for an arbitrary ex-
tensions of P and Q, the P̃(ABE |XY ) and Q̃(ABE |XY )
respectively. Hence, it is also true for the optimal extensions

∀x, y inf
P̄(ABE |XY )

I(A : B|E )MF
x,yP̄(ABE |XY )

� λ inf
P̂(ABE |XY )

I(A : B|E )MF
x,yP̂(ABE |XY )

+ (1 − λ) inf
Q̂(ABE |XY )

I(A : B|E )MF
x,yQ̂(ABE |XY ), (G15)

where P̂(ABE |XY ) are such that
∑

e P̂(ABE = e|XY ) =
P(AB|XY ) and Q̂(ABE |XY ) are such that

∑
e Q̂(ABE =

e|XY ) = Q(AB|XY ). Consider direct measurements x̄ and ȳ
that maximize l.h.s. of inequality (G15). Then from Eq. (G3),
we have

Nsq(P̄(AB|XY ))

= max
x,y

inf
P̄(ABE |XY )

I(A : B|E )MF
x,yP̄(ABE |XY )

= inf
P̄(ABE |XY )

I(A : B|E )MF
x̄,ȳ P̄(ABE |XY ) (G16)

(I )
� λ inf

P̂(ABE |XY )
I(A : B|E )MF

x̄,ȳ P̂(ABE |XY )

+(1 − λ) inf
Q̂(ABE |XY )

I(A : B|E )MF
x̄,ȳ Q̂(ABE |XY ). (G17)

(II )
� λ max

x,y
inf

P̂(ABE |XY )
I(A : B|E )MF

x̄,ȳ P̂(ABE |XY )

+(1 − λ) max
x,y

inf
Q̂(ABE |XY )

I(A : B|E )MF
x̄,ȳ Q̂(ABE |XY ). (G18)

= λNsq(P(AB|XY )) + (1 − λ)Nsq(Q(AB|XY )), (G19)

where in (I), we use the inequality (G15), with x = x̄
and y = ȳ. In (II), we use the fact that direct measure-
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FIG. 7. Schematic diagram of the �GMDLOPC operation, where the inputs of the devices shared by the honest parties are chosen by
a local randomizer DL

XY |X ′Y ′ (xy|x′y′) as given in Eq. (G28). Similarly, the outputs are also connected through a post-processing channel
PCL

A′B′ |ABXY (a′b′|abxy) which also depends on the inputs x, y and has a local hidden variable model given in Eq. (G29).

ments x̄ and ȳ, may not maximize terms at r.h.s. of the
inequality (G15). �

4. Inheritance of monotonicity: Monotonicity
under MDLOPC class of operation

In this section, we will show that any secrecy mono-
tone (functional, nonincreasing under LOPC operations), after
squashing procedure yields a functional which is monotonic
under MDLOPC operations.

Proposition 5. (Inheritance of monotonicity) Any secrecy
quantifier M(A : B|E ), which is nonincreasing under LOPC
operations, after the squashing procedure is nonincreasing
under MDLOPC operations.

Proof. Let us consider arbitrary MDLOPC operation
�MDLOPC. By definition it is a composition of the form
�MDLOPC = �LOPC ◦ MF

x0,y0
. Let us also choose arbitrary de-

vice P(ABE |XY Z ) and let us fix arbitrarily z = z0. As a
consequence we can write a sequence of (in)equalities which
we comment below, where for the sake of clarity of the proof
we will use a short notation: M(A : B|E ) ≡ M and M̂(A :
B|E ) ≡ M̂.

M̂(�MDLOPC(P(ABE |XY Z )))

= max
x,y

min
z

M(�MDLOPC(P(ABE |X = x,Y = y, Z = z)))

(G20)

= min
z

M(�LOPC(P(ABE |X = x0,Y = y0, Z = z)))

(G21)

� M(�LOPC(P(ABE |X = x0,Y = y0, Z = z0))) (G22)

� M(P(ABE |X = x0,Y = y0, Z = z0) (G23)

� max
x,y

M(P(ABE |X = x,Y = y, Z = z0)) (G24)

= max
x,y

min
z

M(P(ABE |X = x,Y = y, Z = z)) (G25)

= M̂(P(ABE |XY Z )). (G26)

In the first equality, we use the definition of M̂. In Eq. (G21),
we use the fact that the device P after measurement MF

x0,y0

has unary inputs in part of the honest parties (it becomes a
distribution in that part), hence there is no parameter x, y to
maximise over. The inequality (G22) follows from the prop-
erty of minimum (over z). The inequality (G23) is due to the
monotonicity of M under �LOPC. The inequality (G24) is be-
cause x0, y0 may be suboptimal in maxx,y over M(P(ABE |X =
x,Y = y, Z = z0)). The equality (G25) comes from the fact
that the choice of z0 was arbitrary, so it is true for the z0 that
attains minz in (G25). The last equality comes from definition
of M̂ ≡ M̂(A : B|E ), which ends the proof. �

From Proposition 5, it directly follows that the squashed
nonlocality, is monotonic under �MDLOPC, as it is defined
based on the secrecy quantifier, intrinsic mutual information
I(A : B ↓ E ). And it is monotonic under LOPC operation
[34,70].

Without using the above proposition, we can also in-
dependently prove that Nsq is monotonic under MDLOPC
operation, or in principle, under a larger class of operations,
the GMDLOPC. We have mentioned in the main text, that
the MDLOPC class of operations involve (i) direct mea-
surement, changing devices into distributions followed by
(ii) Local operations and Public communication. If we relax
the measurement procedure and include all possible general
measurements, then we will have the GMDLOPC class of op-
erations, as shown in the schematic diagram in Fig. 7. Clearly
MDLOPC ⊂ GMDLOPC, and one particular operation of
GMDLOPC class will be denoted as �GMDLOPC. Hence the
monotonicity:

Proposition 6. 17 The nonsignaling squashed nonlocality
of any nonsignaling bipartite device P satisfies

∀�GMDLOPC Nsq(�GMDLOPC(P)) � Nsq(P), (G27)

Proof. To prove the monotonicity under GMDLOPC, we
will use the equivalent definition of Nsq given in Eq. (G5).

17The result of this section is partially based on Ref. [31].
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Under the GMDLOPC operation �GMDLOPC ∈ GMDLOPC,
the honest parties can choose general measurements in
the input of the shared device P(AB|XY ). The general
measurements can be chosen by using a public shared lo-
cal randomeness generator DL

XY |X ′Y ′ (xy|x′y′) (as depicted in
Fig. 7), with x′ ∈ X ′, y′ ∈ Y ′ the input and x ∈ X, y ∈ Y are
the output. As the output of DL will be feeded to the input
of P(AB|XY ), hence, we will assume without any loss of
generality that both cardinality are same. Moreover, as DL is

local randomness generator, hence

DL
XY |X ′Y ′ (xy|x′y′) =

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1), (G28)

where λ1 ∈ �1 is the local hidden variable and
∑

λ1
μ(λ1) =

1. Similarly, the outputs are also passed through a local
post-processing channel PCL

A′B′ |ABXY (a′b′|abxy), which also
depends on the inputs of the initial device, as shown in Fig. 7.
Additionally, the locality condition give rise to

PCL
A′B′ |ABXY (a′b′|abxy) =

∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2), (G29)

with λ2 ∈ �2 and
∑

λ2
ν(λ2) = 1. Hence, under �GMDLOPC, the given device P(AB|XY ) transforms into

P′
A′B′|X ′Y ′ (a′b′|x′y′) = �GMDLOPC(P(AB|XY )) (G30)

=
∑

xy

DL
XY |X ′Y ′ (xy|x′y′)

∑
ab

PAB|XY (ab|xy)PCL
A′B′|ABXY (a′b′|abxy) (G31)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

P(ab|xy)
∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2). (G32)

Now the Nsq of P′ as in Eq. (G5) is

Nsq(P′) = Î(A′ : B′ ↓ E )E (P′ )(A′B′E |X ′Y ′Z ) = max
x′y′

inf
{pi,P′i}∈Sall (P′ )

∑
i

piI(A
′ : B′)P′i , (G33)

where E (P′)(A′B′E |X ′Y ′Z ), is the CE of P′(A′B′|X ′Y ′), and Sall (P′) denotes all possible ensembles of P′.
Consider the following tripartite device, resulting upon performing the �GMDLOPC on the CE of P(AB|XY ),

�GMDLOPC ⊗ 1E (E (P)(ABE |XY Z )) =
∑

xy

DL
XY |X ′Y ′ (xy|x′y′)

∑
ab

E (P)(abe|xyz)PCL
A′B′ |ABXY (a′b′|abxy) (G34)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

E (P)(abe|xyz)

×
∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2). (G35)

Here 1E means the identity operator in Eve’s subsystem.
Consider the ensemble {p(e|z)μ(λ1)ν(λ2), Pezλ1λ2 (a′b′|x′y′)}, where

Pezλ1λ2 (a′b′|x′y′) =
∑

xy

D1(x|x′λ1)D2(y|y′λ1)
∑

ab

Pez(ab|xy)PC1(a′|axλ2)PC2(b′|byλ2). (G36)

Now we will show that the above ensemble will be an ensemble of P′(A′B′|X ′Y ′), if {p(e|z), Pez
AB|XY } is an ensemble of P(AB|XY ).

Suppose {p(e|z), Pez
AB|XY }, is an ensemble of P, then∑

eλ1λ2

p(e|z)μ(λ1)ν(λ2)Pezλ1λ2 (a′b′|x′y′) (G37)

=
∑
eλ1λ2

p(e|z)μ(λ1)ν(λ2)
∑

xy

D1(x|x′λ1)D2(y|y′λ1)
∑

ab

Pez(ab|xy)PC1(a′|axλ2)PC2(b′|byλ2) (G38)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

(∑
e

p(e|z)Pez(ab|xy)

)∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2) (G39)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

P(ab|xy)
∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2) (G40)

= P′
A′B′|X ′Y ′ (a′b′|x′y′), (G41)

by using Eq. (G32) and the fact that
∑

e p(e|z)Pez(ab|xy) = P(ab|xy).
Moreover, {p(e|z), Pez

AB|XY } is an arbitrary ensemble, and Eve can easily access it once she has the CE E (P)(ABE |XY Z ):
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Because {p(e|z)μ(λ1)ν(λ2), Pezλ1λ2 (a′b′|x′y′)} is an ensemble of P′,

∀x′,y′ inf
{pi,Pi}∈Sall (P′ )

∑
i

piI(A
′ : B′)P′i �

∑
eλ1λ2

p(e|z)μ(λ1)ν(λ2)I(A′ : B′)Pezλ1λ2 (A′B′ |X ′=x′,Y ′=y′ ) (G42)

(I )
�

∑
eλ1λ2

p(e|z)μ(λ1)ν(λ2)I(AX : BY )Pezλ1λ2 (AXBY |X ′=x′,Y ′=y′ ) (G43)

(II )=
∑
eλ1

p(e|z)μ(λ1)(I(A : B|XY ) + I(X : B|Y ) + I(A : Y |X ) + I(X : Y ))Pezλ1 (AXBY |X ′=x′,Y ′=y′ )

(G44)
(III )=

∑
eλ1

p(e|z)μ(λ1)I(A : B|XY )Pezλ1 (AXBY |X ′=x′,Y ′=y′ ) (G45)

=
∑
exyλ1

p(e|z)μ(λ1)D1(x|x′λ1)D2(y|y′λ1)I(A : B)Pezλ1 (AB|X=x,Y =y,X ′=x′,Y ′=y′ ) (G46)

(IV )
� max

xy

∑
e

p(e|z)I(A : B)Pez (AB|XY ), (G47)

where in (I) we use the data processing inequality and also
use the fact that the distribution Pezλ1λ2

AXBY |X ′Y ′ (axby|x′y′) =
D1(x|x′λ1)D2(y|y′λ1)Pez

AB|XY (ab|xy)
∑

a′b′ PC1(a′|axλ2)PC2

(b′|byλ2) is independent of λ2. The chain rule of mutual
information has been used in (II) whereas in (III), we use
the fact that given x′, y′ and λ1, the random variables X
and Y are independent, hence I(X : B|Y ) = I(A : Y |X ) = 0,
which follows from the nonsignaling condition. In (IV) we
simply write Pezλ1 (AB|X = x,Y = y, X ′ = x′,Y ′ = y′) =
Pez(AB|X = x,Y = y).

The r.h.s. of (G47) is valid for an arbitrary ensemble
{p(e|z), Pez} ∈ Sall (P), so it is still valid when taking infimum
over all ensembles. Hence,

max
x′y′

inf
{pi,P′i}∈Sall (P′ )

∑
i

piI(A
′ : B′)P′i (A′B′|X ′Y ′ )

� max
xy

inf
{pi,Pi}∈Sall (P)

∑
i

piI(A : B)Pi (AB|XY ), (G48)

⇒ Nsq(�GMDLOPC(P)) � Nsq(P). (G49)

�
As MDLOPC ⊂ GMDLOPC, so we have
Corollary 3. The nonsignaling squashed nonlocality of

any nonsignaling bipartite device P satisfies

∀�MDLOPC Nsq(�MDLOPC(P)) � Nsq(P), (G50)

The above monotonicity property also holds for the
nonsignaling squashed conditional mutual information Î(A :
B|E )E (P)(ABE |XY Z ).

5. Superadditivity and additivity

Proposition 7.18 If two bipartite nonsignaling devices
P(A1B1|X1Y1) and Q(A2B2|X2Y2) are the marginals of a four
partite nonsignaling device P̄(A1A2B1B2|X1X2Y1Y2), then the

18The result of this section is partially based on Ref. [31].

nonsignaling squashed nonlocality Nsq is superadditive,

Nsq(P̄(A1A2B1B2|X1X2Y1Y2))

� Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)), (G51)

and additive for tensor product of devices P(A1B1|X1Y1) ⊗
Q(A2B2|X2Y2), that is

Nsq(P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2))

= Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G52)

Proof. Superadditivity on joint device: Let us consider
two devices P(A1B1|X1Y1) and Q(A2B2|X2Y2), which are
the marginals of a big four party nonsignaling device
P̄(A1A2B1B2|X1X2Y1Y2), i.e.,∑

a2b2

P̄(a1, a2, b1, b2|x1, x2, y1, y2)

= P(a1, b1|x1, y1) ∀a1, b1, x1, x2, y1, y2, (G53)∑
a1b1

P̄(a1, a2, b1, b2|x1, x2, y1, y2)

= Q(a2, b2|x2, y2), ∀a2, b2, x1, x2, y1, y2. (G54)

where P̄(A1=a1, A2=a2, B1=b1, B2 = b2|X1 = x1, X2 = x2,

Y1 = y1,Y2=y2) ≡ P̄(a1, a2, b1, b2|x1, x2, y1, y2), P(A1=a1,

B1 = b1|X1 = x1,Y1 = y1) = P(a1, b1|x1, y1), and Q(A2 =
a2, B2 = b2|X2 = x2,Y2 = y2) = Q(a2, b2|x2, y2). Moreover,
P̄(A1A2B1B2|X1X2Y1Y2) is also satisfy nonsignaling conditions
among all of its parties, as defined in Eqs. (B1) and (B2).

Consider an arbitrary nonsignaling extension of
P̄(A1A2B1B2|X1X2Y1Y2) → P̄(A1A2B1B2E |X1X2Y1Y2Z ), with
unary input |Z| in the extended part. The input is unary, so
the nonsignaling condition is automatic and we can omit the
Z . The conditional mutual information of the distribution
after performing an arbitrary pair of direct measurements,
i.e., MF

x1,y1
⊗ MF

x2,y2
on the inputs X1,Y1 and X2,Y2

052612-35



WINCZEWSKI, DAS, AND HORODECKI PHYSICAL REVIEW A 106, 052612 (2022)

reads

∀x1, x2, y1, y2

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

(I )= (I(A1 : B1|E ) + I(A2 : B1|EA1) + I(A1 : B2|EB1) + I(A2 : B2|EA1B1))(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G55)

(II )
� I(A1 : B1|E )MF

x1 ,y1
P̄(A1B1E |X1Y1 ) + I(A2 : B2|EA1B1)(MF

x1 ,y1
⊗MF

x2 ,y2
)P̄(A1A2B1B2E |X1X2Y1Y2 ), (G56)

where we use the chain rule of mutual information in (I) and in (II), we use positivity condition of mutual information.
MF

x1,y1
P̄(A1B1E |X1Y1) is the marginal of the device (MF

x1,y1
⊗ MF

x2,y2
)P̄(A1A2B1B2E |X1X2Y1Y2) after the direct measurements

on the inputs. Recall that(
MF

x1,y1
⊗ MF

x2,y2

)
P̄(A1A2B1B2E |X1X2Y1Y2) = P̄(A1A2B1B2E |X1 = x1, X2 = x2,Y1 = y1,Y2 = y2). (G57)

Noticing that P̄(A1B1E |X1Y1) is an arbitrary extension of P(A1B1|X1Y1) and similarly P̄(A1A2B1B2E |X1X2Y1Y2) is for the
device Q(A1B1E |X1Y1), we can write

∀x1, x2, y1, y2

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ) � inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ), (G58)

I(A2 : B2|EA1B1)(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) � inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ). (G59)

From inequalities (G56), (G58), and (G59), we have

∀x1, x2, y1, y2

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

� inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ) + inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ). (G60)

The above inequality holds for all extensions of P̄(A1A2B1B2|X1X2Y1Y2), hence also for an optimal extension on the l.h.s., so

∀x1, x2, y1, y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

� inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̃(A1B1E |X1Y1 ) + inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ). (G61)

Suppose that x̄1, ȳ1 are the optimal direct measurement choice for Nsq(P) and x̄2, ȳ2 are for Nsq(Q),

Nsq(P(A1B1|X1Y1)) = max
x1,y1

inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ) = inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x̄1 ,ȳ1

P̄(A1B1E |X1Y1 ), (G62)

Nsq(Q(A2B2|X2Y2)) = max
x2,y2

inf
P̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ) = inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x̄2 ,ȳ2

P̄(A1B1E |X1Y1 ). (G63)

Finally,

Nsq(P̄(A1B1A2B2|X1X2Y1Y2)) = max
x1,y1,x2y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G64)

(I )
� inf

P̄(A1B1A2B2E |X1X2Y1Y2 )
I(A1A2 : B1B2|E )(MF

x̄1 ,ȳ1
⊗MF

x̄2 ,ȳ2
)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G65)

(II )
� inf

P̄(A1B1E |X1Y1 )
I(A1 : B1|E )MF

x̄1 ,ȳ1
P̃(A1B1E |X1Y1 ) + inf

Q̄(A2B2E |X2Y2 )
I(A2 : B2|E )MF

x̄2 ,ȳ2
Q̄(A2B2E |X2Y2 ),

(G66)
(III )= Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G67)

In (I ), we use an specific choice of direct measurement, MF
x̄1,ȳ1

⊗ MF
x̄2,ȳ2

, which may not be optimal for device
P̄(A1B1A2B2|X1X2Y1Y2). We use Eq. (G61) for the direct measurements MF

x̄1,ȳ1
⊗ MF

x̄2,ȳ2
in (II ) and finally in (III ), Eqs. (G62)

and (G63) has been used.
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Additivity for tensor product of devices: Let us assume that the joint nonsignaling four party device (two random variables
for input and output in the honest parties’ part) is the tensor product [76] of two bipartite devices,

P̄(A1B1A2B2|X1X2Y1Y2) = P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2). (G68)

Consider the (nonsignaling) extensions with unary inputs of both the devices, P(A1B1|X1Y1) → P̄(A1B1E1|X1Y1) and
Q(A2B2|X2Y2) → Q̄(A2B2E2|X2Y2), which are the optimal extensions for calculating Nsq for both the devices, as given
in Eq. (G3), for all x and y. Hence, their tensor product P̄(A1B1E1|X1Y1) ⊗ Q̄(A2B2E2|X2Y2) is an extension of
P̄(A1B1A2B2|X1X2Y1Y2), which may not be optimal one, resulting in

∀x1, x2, y1, y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

� I(A1A2 : B1B2|E1E2)(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1B1E1|X1Y1 )⊗Q̄(A2B2E2|X2Y2 ) (G69)

= I(A1 : B1|E1)MF
x1 ,y1

P̄(A1B1E1|X1Y1 ) + I(A2 : B2|E2)MF
x2 ,y2

Q̄(A2B2E2|X2Y2 ) (G70)

= inf
P(A1B1E1|X1Y1 )

I(A1 : B1|E1)MF
x1 ,y1

P(A1B1E1|X1Y1 ) + inf
Q(A2B2E2|X2Y2 )

I(A2 : B2|E2)MF
x2 ,y2

Q(A2B2E2|X2Y2 ). (G71)

Considering the optimal direct measurements MF
x̄1,ȳ1

⊗ MF
x̄2,ȳ2

in the l.h.s. of the above relation, gives

Nsq(P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2))

= max
x1,x2,y1,y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G72)

= inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x̄1 ,ȳ1

⊗MF
x̄2 ,ȳ2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G73)

� inf
P(A1B1E1|X1Y1 )

I(A1 : B1|E1)MF
x̄1 ,ȳ1

P(A1B1E1|X1Y1 ) + inf
Q(A2B2E2|X2Y2 )

I(A2 : B2|E2)MF
x̄2 ,ȳ2

Q(A2B2E2|X2Y2 ) (G74)

� max
x1,y1

inf
P(A1B1E1|X1Y1 )

I(A1 : B1|E1)MF
x1 ,y1

P(A1B1E1|X1Y1 ) + max
x2,y2

inf
Q(A2B2E2|X2Y2 )

I(A2 : B2|E2)MF
x2 ,y2

Q(A2B2E2|X2Y2 ) (G75)

= Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G76)

Using relation (G67), we finish the proof with equality:

Nsq(P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2)) = Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G77)

6. Subextensivity

Proposition 8. Nonsignaling squashed nonlocality is
bounded by log2(min{dA, dB}).

Proof. From the definition of nonsignaling squashed non-
locality given in Eq. (G5), we have

Nsq(P(AB|XY ))

= max
x,y

inf
{pi,Pi (AB|XY )}∈Sall

∑
i

piI(A : B)MF
x,yPi (AB|XY ) (G78)

(I )
� max

x,y
inf

{pi,Pi (AB|XY )}∈Sall

∑
i

pi log2

(
min

{
dx

A, dy
B

})
(G79)

� log2 (min {dA, dB}). (G80)

where in (I ), we use the fact that I(A : B)Mx,y (Pi (AB|XY )) �
log2(min{dx

A, dy
B}) for all i, and dx

A = suppP(A|X = x) and
dy

B = suppP(B|Y = y) and dA = maxx suppP(A|X = x) and
dB = maxy suppP(B|Y = y).

APPENDIX H: NONLOCALITY COST
AS AN UPPER BOUND

Definition 16. The nonlocality cost of bipartite nonsignal-
ing device is

NC(P) := C(P) log2 (min {dA, dB}), (H1)

where dA = maxx(suppMF
x (P(A|X ))) and dB =

maxy(suppMF
y (P(B|Y )) are dimensions of the outputs,

and C(P) is the nonlocality fraction of P [93,94].
Proposition 9. The secret-key rate K (iid)

DI (P) of a device is
upper bounded by

NC(P) � K (iid)
DI (P). (H2)

Proof. Suppose Alice and Bob share a nonsignaling device
P ≡ P(AB|XY ), and Eve has access to its complete extension
[56]. The device P can be decomposed into a nonlocal vertex
and a local device,

P = αPV
NL + (1 − α)PL, (H3)

where PV
NL is the nonlocal vertex and PL is any local device.

Let us denote the nonlocality fraction

C(P) := min
All decompsitions as in Eq. (H3)

α. (H4)

Eve can always get access to this ensemble,
{(C(P), P̄V

NL), (1 − C(P), P̄L)}, in part of the honest parties.
We assume that Eve works in favor of Alice and Bob, and

informs them about her output when she obtains the above
ensemble. The key rate K̃ , in this scenario, must be greater
than in NSDI-iid scenario, since in the latter case Eve does
not work on account of Alice and Bob,

K (iid)
DI (P) � K̃ (P). (H5)

052612-37



WINCZEWSKI, DAS, AND HORODECKI PHYSICAL REVIEW A 106, 052612 (2022)

With a probability C(P) the honest parties share the nonlocal
correlations, useful for secret-key agreement and with proba-
bility 1 − C(P), they share a local device with zero key rates.
Since the key satisfying Maurer’s security definition is upper
bounded by mutual information function, and both of them are
nonincreasing under the LOPC operations, we obtain

K̃ (P) � C(P)(max
x,y

I(A : B)MF
x,yPV

NL (AB|XY ) ). (H6)

Furthermore,

I(A : B)MF
x,y (P(AB|XY )) � log2 (min {dx

A, dy
B}), (H7)

where dx
A = suppP(A|X = x) and dy

B = suppP(B|Y = y). Em-
ploying Eq. (H5), we finally obtain

K (iid)
DI (P) � C(P)

(
sup
MF

x,y

log2 (min {dx
A, dy

B})

)
(H8)

= C(P) log2 (min {dA, dB}) = NC (P), (H9)

by Definition 16,with dA = maxx suppP(A|X = x) and dB =
maxy suppP(B|Y = y). �

APPENDIX I: EXAMPLES OF SECRECY MONOTONES,
CONVEXIFICATION OF̂I(A : B ↓ E )

AND A NONTRIVIAL BOUND

Monotones, based on mutual information functions, are
used to upper bound the secret-key rate on the SKA scenario.
However, the only one amongst them, which is easily com-
putable, is the mutual information itself. All of them can be
“squashed” and used to generate the upper bounds for K (iid)

DI .
Fact 1. The secrecy quantifiers and monotones [34] (and

the mutual information function) are the upper bounds on
S(A : B||E ):

I(A : B)P(ABE ) � S(A : B||E )P(ABE ), (I1)

I(A : B|E )P(ABE ) � S(A : B||E )P(ABE ), (I2)

min {I(A : B)P(ABE ), I(A : B|E )P(ABE )} � S(A : B||E )P(ABE ),

(I3)

I(A : B ↓ E )P(ABE )

� I(A : B ↓↓ E )P(ABE ) � S(A : B||E )P(ABE ). (I4)

We can use all of the functions displayed in Fact 1 to
construct the nonsignaling squashed secrecy quantifiers and
monotones for the devices. See Appendix A for the proper
definition of the above functions.

Corollary 4. The following upper bounds on K (iid)
DI (P) hold

Î(A : B)E (P)(ABE |XY Z ) � K (iid)
DI (P), (I5)

Î(A : B|E )E (P)(ABE |XY Z ) � K (iid)
DI (P), (I6)

min{̂I(A : B)E (P)(ABE |XY Z ), Î(A : B|E )E (P)(ABE |XY Z )}
� K (iid)

DI (P), (I7)

Î(A : B ↓ E )E (P)(ABE |XY Z ) � Î(A : B ↓↓ E )E (P)(ABE |XY Z )

� K (iid)
DI (P). (I8)

The proof of the above Corollary is straightforward
from Theorem 1. It is important to note that, the com-
plete extension of a device, P(AB|XY ), has been denoted
as E (P)(ABE |XY Z ), where the extended systems are in full
control of Eve.

The intrinsic information Î(A : B ↓ E ) and the reduced
intrinsic information Î(A : B ↓↓ E ) are functions without
closed-form expression, and hence they cannot be computed
straightforwardly. We present a technique for finding a non-
trivial bound using the properties of one of them. First, we
notice that for any fixed bipartite device and its complete
extension, the following is true.

Observation 2 (Hierarchy between different mutual infor-
mation functions).

Nsq(P) = Î(A : B ↓ E )E (P)(ABE |XY Z ) � Î(A : B)E (P)(ABE |XY Z ),

(I9)

Nsq(P) = Î(A : B ↓ E )E (P)(ABE |XY Z )

� Î(A : B|E )E (P)(ABE |XY Z ). (I10)

The squashed nonlocality is upper bounded by
the squashed conditional mutual information Î(A :
B|E )E (P)(ABE |XY Z ), and also with squashed mutual information
Î(A : B)E (P)(ABE |XY Z ), hence:

Observation 3. Nonsignaling squashed nonlocality is
upper-bounded by the following expression.

Nsq(P) � min{̂I(A : B)E (P)(ABE |XY Z ), Î(A : B|E )E (P)(ABE |XY Z )}.
(I11)

Unfortunately, the squashed nonlocality lacks a closed-
form expression for an arbitrary nonsignaling device. It
involves optimization over general measurement and post-
processing channels in the eavesdropper side. This makes it
hard to compute for a generic nonsignaling device. Moreover,
we obtained the squashed nonlocality to be a convex function
over the mixture of devices, see Appendix G 3, whereas the
intrinsic information is not a convex function. This might be
due to the fact that it was constructed in the same way as
the nonsignaling squashed entanglement, and the latter is a
convex function of quantum states [62]. In this section, we
will show how convexity of squashed nonlocality can be used
not only to calculate nontrivial upper bounds on K (iid)

DI , but
also how it can be used to define new nonsignaling squashed
secrecy quantifiers.

Observation 3, brings the idea of how to use the con-
vexity property of squashed nonlocality. Since the squashed
nonlocality is an upper bound on K (iid)

DI , hence, the r.h.s. of
Eq. (I11) must also be an upper bound on secret-key rate as
well. Together with the convexity property, it implies that a
lower convex hull of Î(A : B|E ) and Î(A : B) also bounds K (iid)

DI
from above.

Theorem 4. Within a family of functions {Fi}, which are
convex with respect to mixtures of devices, and

Fi(P) � Î(A : B)E (P)(ABE |XY Z ), (I12)

Fi(P) � Î(A : B|E )E (P)(ABE |XY Z ), (I13)

052612-38



LIMITATIONS ON A DEVICE-INDEPENDENT KEY … PHYSICAL REVIEW A 106, 052612 (2022)

there exists a function F that upper bounds any function in {Fi}
and for which the following relation holds

F(P) � K (iid)
DI (P). (I14)

Proof. Since Î(A : B ↓ E ) ∈ {Fi} because of Proposition 4
and Î(A : B ↓ E )E (P) � K (iid)

DI (P), then, for a function F which
lies above the values of the squashed intrinsic mutual infor-
mation, satisfies F(P) � K (iid)

DI (P).
Theorem 4, can be easily generalized by imposing different

constraints than Eqs. (I12) and (I13), for example, by using
other upper bounds on the squashed nonlocality and also an
arbitrary number of them.

Remark 3. The lower convex hull of plots of an arbitrary
number of functions, each being an upper bound on a convex
function which upper bounds K (iid)

DI , is an upper bound on the
key rate itself.

This observation automatically yields a recipe on how to
construct nontrivial upper bounds on K (iid)

DI . We come up with
the following Corollary, being a direct consequence of Theo-
rem 4 and Remark 3.

Corollary 5. A nontrivial upper bound is given by the
lower convex hull (LCH) of plots of nonsignaling squashed
secrecy quantifiers.

Nsq(P) � F(P)

:= LCH{̂I(A : B)E (P)(ABE |XY Z ), Î(A : B|E )E (P)(ABE |XY Z )}.
(I15)

Proof. We prove by contradiction. If there would be a func-
tion which at any point is greater than the lower convex hull
of Î(A : B) and Î(A : B|E ), either it would not be convex or it
would be greater (at least at a single point) then at least one
from the above nonsignaling squashed nonlocality quantifiers.
Therefore it is not in the set {Fi}. �

The upper bound on K (iid)
DI introduced in the above corollary

can be computed much more easily than the nonsignaling
squashed nonlocality. We will refer to the procedure of cal-
culating upper bounds via this technique as convexification.
Observation 2 and Proposition 9 provide a collection of func-
tions which are upper bounds for Nsq. Hence, there exists a
convex (in the same sense) function, which is an upper bound
on the squashed nonlocality, but at the same time, it is a lower
bound on any function in this group, which is very clear from
the proof of Theorem 4.

APPENDIX J: NUMERICAL UPPER BOUNDS
ON SQUASHED NONLOCALITY

In this section, we will provide the upper bound on the Nsq,
for some exemplary family of devices, namely, two binary
input and two binary output devices (2,2,2,2) and for a device
which has ternary input for one subsystem and binary input for
the other subsystem but all the outputs are binary (3,2,2,2). We
have obtained that there exist some devices that are not MD-
LOPC key distillable, although they are nonlocal. Describing
the procedure of convexification, we focused on obtaining
upper bounds by employing a lower convex hull of the upper
bounds on Nsq. The reason behind such an approach is to
simplify our calculations. In this Section, we present a specific
example of upper bounds on Nsq, which we have obtained via
this technique for some bipartite binary input output nonlocal
devices. Let us recall here that Nsq is defined as

Nsq(P) = max
x,y

min
z

inf
	E ′ |E

I(A : B|E ′)(MF
x,y⊗MG

z )E (P). (J1)

The core strategy is based on the observation that the
definition of nonsignaling squashed nonlocality involves two
minimizations: one in the measurement process and another
one in applying suitable post-processing channel, in part of
the eavesdropper. We notice that one can obtain upper bounds
also in the case in which used measurement and channels
are not optimal, which follows from the property of infimum.
Knowing this, we can run a three-step strategy to obtain an
upper bound on K (iid)

DI for the desired set of devices.
(1) Choose an (arbitrary, possibly continuous) set of de-

vices, for which an upper bound is to be calculated.
(2) Calculate the values of upper bounds on nonsignaling

squashed nonlocality employing different devices, different
measurement choices, and different post-processing channels.
These can be obtained either via educated guess, some heuris-
tic method or with computer aid, including a random search
over the space.

(3) Construct lower convex hull of all previously gener-
ated plots, and the result is the convex hull of the chosen set
of points.

1. Upper bound for the nonsignalling device
used by Hänggi, Renner and Wolf

We will now employ the above technique to bound the
K (iid)

DI . As we have argued, the notion of security employed
by us is equivalent to that used by Hänggi, Renner, and Wolf
[17]. The protocol proposed by them yields a positive key
rate for devices exhibiting quantum correlations, we compare
our upper bounds with the lower bound presented by them
[17,63], in Fig. 8. The nonsignaling device we consider, as in
Ref. [17], is given by

PHRW(ab|xy) =

x 0 1

y b
a 0 1 0 1

0
0 1

2 − δ
2

δ
2

3
8 − ε

2
1
8 + ε

2

1 δ
2

1
2 − δ

2
1
8 + ε

2
3
8 − ε

2

1
0 3

8 − ε
2

1
8 + ε

2
1
8 + ε

2
3
8 − ε

2

1 1
8 + ε

2
3
8 − ε

2
3
8 − ε

2
1
8 + ε

2

. (J2)
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FIG. 8. Plot of several nonsignaling secrecy quantifiers M̂(A : B||E ), as an upper bound on secure key rate K (iid)
DI , for the bipartite binary

input output device PHRW given in Eq. (J2) (also in Ref. [17]). The parameters chosen for drawing these figures are provided in Table II. The
dashed red line corresponds to the nonsignaling squashed mutual information Î(A : B)PHRW . The blue dashed-dotted straight line represents the
nonlocality cost, as well as the nonsignaling squashed conditional mutual information Î(A : B|E )E (PHRW ) over the complete extension E (PHRW )
of the given device P. The solid orange line represents the upper bound on the nonsignaling squashed nonlocality Nsq which is in fact the lower
convex hull of the several other upper bounds on Nsq. The magenta dotted line is the key rate R(P|PHRW ) of the protocol design by Hänggi,
Renner, and Wolf [17].

It remains a valid nonsignaling probability distribution in
the parameter range 0 � δ � 1 and − 1

4 � ε � 3
4 . It exhibits

nonlocal correlation for a very small range of parameters,
quantified by the parameter ε, probability of not wining the
CHSH game [60], which is

ε = Pr(a ⊕ b �= x · y) = 1
4

(
3
4 + δ + 3ε

)
. (J3)

The device is nonlocal when the error ε ∈ [0, 1
4 ), and there

are multiple choices of δ and ε to attain this. Without loss
of generality, we choose 0 � δ � 1 and − 1

4 � ε � 1
12 − δ

3 .

TABLE II. Table of the different values of the parameters δ and
ε, for the sub-figures as given in Fig. 8. δ and ε are the parameters of
bipartite nonsignaling device PHRW given in Eq. (J2).

Figure δ ε

(a) 0.01 1
16 (3.04 + 12ε)

(b) 0.03 1
16 (3.12 + 12ε)

(c) 2
5 ε 6

5 ε − 1
4

(d) ε ε − 1
4

The nonlocality fraction of these devices in the above range
of parameters is C(P) = 1

4 − δ − 3ε.
The polytope of PHRW, bipartite binary input-output de-

vices, consists of 24 extremal devices [95], among which 16
are local or deterministic devices, and the remaining 8 are
nonlocal. The local devices are given by

Lαβγσ (ab|xy) =
{

1 if a = αx ⊕ β, b = γ y ⊕ σ ,

0 otherwise,
(J4)

where α, β, γ , σ ∈ {0, 1}. And the nonlocal devices are

Brst (ab|xy) =
{

1/2 if a ⊕ b = xy ⊕ rx ⊕ sy ⊕ t,

0 otherwise,
(J5)

where r, s, t ∈ {0, 1}.
In Fig. 8, we plot several nonsignaling squashed secrecy

quantifiers and monotones M̂(A : B||E ) for different choices
of the parameters δ and ε, with respect to the ε, which forms
the upper bound on K (iid)

DI . Different plots correspond to dif-
ferent choices of the parameters ε and δ, as given in Table II.
The last row of Table II, give rise to the isotropic device, i.e.,
Piso = (1 − ε)PR + εPR, described in the main text.
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In all the four figures, the red dashed line represents the
squashed mutual information Î(A : B)P between Alice and
Bob. The optimal choices of the measurements by Alice
and Bob in the squashing process varies with δ and ε. For
Figs. 8(a) and 8(b), the optimum direct measurement choice is
(x = 0, y = 0) for δ < ε, and any one of the other three input
choices for δ � ε. The measurement choice (x = 0, y = 0) is
optimal in the entire range of ε for Fig. 8(c), and all measure-
ments choices give the same mutual information for the choice
of δ and ε in Fig. 8(d).

The nonlocality cost NC (PHRW) is plotted with the dashed-
dot blue line in all the figures.

Figure 8(d) clearly shows that our measure, nonsignal-
ing squashed nonlocality Nsq is not a faithful measure
of nonlocality. The orange curve is the upper bound on
Nsq, and we have found that the bound reaches to 0 for
ε = 0.2 (it remains equal 0 for ε ∈ (0.2, 0.25] due to the
convexity of the measure). It strongly suggests that there
exists nonlocality which can not be turned into security.
Indeed, for these devices, no protocol of distribution is
known. Using wirings that is necessary for the key to be
nonzero, imply that we enter to some extent the general
scenario of KDI for which there is a wide class of attacks
[26]. Since our scenario is restricted, we can not postulate

nonequivalence between nonlocality and secrecy in NSDI
paradigm.

a. Method to obtain the upper bound on Nsq

The nonsignaling squashed nonlocality defined in
Eq. (J1), is the optimal conditional mutual information
I(A : B|E ′)E (PHRW ), between Alice and Bob, when Eve holds
the complete extension of the device PHRW. It involves
a maximization over the measurement (input) choices of
Alice and Bob. In our cryptographic protocol, we assume
that Eve will perform an adaptive choice of measurements
after learning Alice and Bob’s measurements, followed by a
post-processing channel. We also observed that an arbitrary
adaptive measurement by Eve, direct or general, with any
post-processing channel, provides an upper bound on Nsq,
which remains convex over ε, in the entire range of ε.

We calculate the CE [56] of PHRW numerically in the entire
range of δ and ε, where the device is nonlocal. The most
tighter upper bound we have obtained numerically, involve a
direct measurement by Eve. This direct measurement is no
doubt is a function of Alice and Bob’s input choice, which
is intended to reduce the correlation shared by them. This
measurement on Eve’s system creates the following minimal
ensembles in part of Alice and Bob,

v =
[

1

4
− δ − 3ε,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,
δ

2
,
δ

2

]
, (J6)

Ez0 = [B000, L0000, L0010, L0101, L0111, L1000, L1101, L1011, L1110]. (J7)

The same measurement leads us to the nonsignaling squashed conditional mutual information Î(A : B|E )E (P) for all input choices
of Alice and Bob, which we have plotted by the dashed-dotted blue line in all the figures of Fig. 8. We have obtained that
nonlocality cost of the shared device is NC (PHRW) = Î(A : B|E )E (P).

The classical discrete post-processing channel 	E ′|E , that we have obtained is different for different input choice of Alice and
Bob. And they are

	0,0
E ′|E =

Device B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 1 0 0

, (J8)

	0,1
E ′|E =

Box B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1

, (J9)
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	1,0
E ′|E =

Device B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1

, (J10)

	1,1
E ′|E =

Device B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1

. (J11)

Hence, the upper bound on the key, according to our numerical findings is

K (iid)
DI � Nsq(P) � LCH{̂I(A : B|E )E (PRH )(ABE |XY Z ), Î(A : B|E )Q(ABE|XYZ)}, (J12)

where Q(ABE |XY Z ) = 	X,Y
E |E ′ (E (PHRW)(ABE ′|XY Z )), an ar-

bitrary optimal extension, which is obtained from CE by
applying the above post-processing channel.

The plot of the r.h.s. of the above inequality is given by
the solid orange curve in Fig. 8. The color shade is used
to separate the two regions, where the optimal measurement
choices of the honest parties are coming from two different
inputs. The light blue shade in Figs. 8(a) and 8(b) represents
the choices of optimal inputs to be (x = 0, y = 0), whereas
the dark blue shade is for the other choices of input (all of
them give rise to the same value). In Fig. 8(c), the optimal
input by the honest parties is (x = 0, y = 0), and in Fig. 8(d)
all the other set of inputs are equally likely, and the color shed
has been chosen to light blue.

We compare our upper bound with the key rate R(P|PHRW ),
generated by Hänggi, Renner, and Wolf [17], which is the
magenta dotted line in all the figures in Fig. 8. It lies below
the solid orange line, as it represents the NSDI key rate for a
particular protocol, and we provide the upper bound over all
possible protocols.

Moreover, if we compare the bounds among the sub-
figures of Fig. 8, we observe that for a fixed ε, the bound is
almost decreasing if one goes from Fig. 8(a) to 8(d). This is
because in Fig. 8(a), the choices of the parameters δ and ε are
such that the probability of not winning the CHSH game is
smaller for one choice of the input compared to the other input
choices of the honest parties. In Fig. 8(d), all the distribution
has the same error ε, depicting the lowest bound, i.e., all the
inputs give rise to the same error, which leads to no specific
choice of inputs.

The nonfaithfulness of our measure is visible from
Fig. 8(d). We have found that the bound reaches to 0 for
ε = 0.2 (it remains equal 0 for ε ∈ (0.2, 0.25] due to the
convexity of the measure). It strongly suggests that there exists
nonlocality which can not be turned into security. Indeed, for
these devices, no protocol of distribution is known. Using
wirings that is necessary for the key to be nonzero, imply that
we enter to some extent the general scenario of KDI for which
there is a wide class of attacks [26].

2. Upper bound for the nonsignaling device used by Acín,
Massar, and Pironio

In this section, we will find an upper bound on the
nonsignaling squashed nonlocality, for a device, which
the honest parties Alice and Bob can obtain by perform-
ing quantum measurements on a shared bipartite quantum
state, given in Ref. [16]. The shared quantum state is the
Werner state ρAB = p|ψ+〉〈ψ+|AB + 1−p

4 IAB, where |ψ+〉AB =
1√
2
(|0〉A|0〉B + |1〉A|1〉A), and p ∈ [0, 1]. One of the honest

parties, Alice consider three possible measurement choices
x ∈ {0, 1, 2}, whereas Bob chooses only two possible mea-
surements y ∈ {0, 1}. Among those set of measurements when
both the measurement settings are x = 0 and y = 0, the
measurement bases coincides and only that choice of mea-
surement has been used for the key distribution run. The
other two measurements x ∈ {1, 2}, for Alice and two mea-
surements y ∈ {0, 1},for Bob, are for the test of nonlocal
correlation present in the system, i.e., for the violation of Bell
inequality, of the shared state.
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The shared probability distribution by both the parties, or the device obtained after the possible set of measurements is given
by

PAMP(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1+p

4
1−p

4
2+√

2p
8

2−√
2p

8
2+√

2p
8

2−√
2p

8

1 1−p
4

1+p
4

2−√
2p

8
2+√

2p
8

2−√
2p

8
2+√

2p
8

1
0 1

4
1
4

2+√
2p

8
2−√

2p
8

2−√
2p

8
2+√

2p
8

1 1
4

1
4

2−√
2p

8
2+√

2
8

2+√
2p

8
2−√

2p
8

. (J13)

In the entire range of p, the device is a valid probability distribution but it exhibit nonlocal correlation only for an small range
of p. To compute the range of p, where let us quantify the probability of not wining the CHSH game [60], by the parameter ε,
which is

ε(PAMP) = Pr(a ⊕ b �= (x − 1) · y)PAMP = 1
4 (2 −

√
2p). (J14)

Note that for PAMP, Alice will use her inputs x ∈ {1, 2} for the detection of nonlocality. Now the device is nonlocal when
0 � ε < 1

4 , hence the device may be useful for secure key agreement protocol in presence of nonsignalling Eve in the range of
1√
2

< p � 1.
To make a rough estimation on the upper bound of Nsq, of PAMP(ab|xy), we first focus on the squashed conditional mutual

information Î(A : B|E )E (PAMP ), where E (PAMP) is the complete extension of the given quantum device. In general, obtaining the
complete extension of a given box, in this new (3,2,2,2) polytope is an extremely difficult task and hence, we have found here
only one exemplary minimal ensemble which up to our numerical search is an optimal eavesdropping strategy, i.e., achieving
the minz [see Eqs. (6) and Appendix A for the definition of Î(A : B|E )E (PAMP )], for the chosen values of the measurement setup
by the honest parties for key sharing x = y = 0. The minimal ensemble is

v =
[

p√
2

− 1

2
,

p√
2

− 1

2
,

2 − √
2p

8
,

2 − √
2p

8
,

2 − √
2p

8
,

2 − √
2p

8
,

2 − √
2p

8
,

2 − √
2p

8
,

1 − p

4
,

1 − p

4
,

(2 − √
2)p

8
,

(2 − √
2)p

8

]
, (J15)

Ez0 = [B0, B1, L0, L1, L2, L3, L4, L5, L6, L7, L8, L9], (J16)

where B0 and B1 are the two nonlocal extremal devices and L0, . . . , L9 are the local deterministic devices (extremal), in the
polytope of the devices where PAMP) lies, and they are given by [96]

B0(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1

2 0 1
2 0 1

2 0

1 0 1
2 0 1

2 0 1
2

1
0 1

2 0 1
2 0 0 1

2

1 0 1
2 0 1

2
1
2 0

, B1(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1

2 0 1
2 0 1

2 0

1 0 1
2 0 1

2 0 1
2

1
0 0 1

2
1
2 0 0 1

2

1 1
2 0 0 1

2
1
2 0

; (J17)

L0 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 1 0 1 0

1 0 0 0 0 0 0

1
0 1 0 1 0 1 0

1 0 0 0 0 0 0

, L1 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 1 0 0 1

1 0 0 0 0 0 0

1
0 1 0 1 0 0 1

1 0 0 0 0 0 0

,
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L2 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 0 1 0 1

1
0 0 0 0 0 0 0

1 0 1 0 1 0 1

, (J18)

L3 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 0 1 0 1

1
0 0 1 0 1 0 1

1 0 0 0 0 0 0

, L4 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 1 0 0 1

1
0 0 1 1 0 0 1

1 0 0 0 0 0 0

,

L5 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 0 1 1 0

1 0 0 0 0 0 0

1
0 0 0 0 0 0 0

1 1 0 0 1 1 0

, (J19)

L6 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 1 0 0 1 1 0

1
0 0 0 0 0 0 0

1 1 0 0 1 1 0

, L7 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 1 1 0 1 0

1 0 0 0 0 0 0

1
0 0 0 0 0 0 0

1 0 1 1 0 1 0

,

L8 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 1 0 1 0

1 0 0 0 0 0 0

1
0 0 0 0 0 0 0

1 1 0 1 0 1 0

, (J20)

L9(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 0 1 1 0

1
0 0 0 0 0 0 0

1 0 1 0 1 1 0

. (J21)

For the given decomposition of the device PAMP(ab|xy), the squashed conditional mutual information reduces to Î(A :
B|E )E (PAMP ) = √

2p − 1, which is equal to the nonlocality cost of the shared device i.e., NC (PAMP). It reaches to
√

2 − 1, for
p = 1, i.e., when the Bell state is shared.

To obtained the upper bound on Nsq(PAMP), we will again apply some post-processing channel 	E |E ′ , on the output of Eve
E , and apply the procedure of getting the lower convex hull, by the relation

Nsq(PAMP) � LCH
{̂
I(A : B|E )E (PAMP )(ABE |XY Z ), Î(A : B|E )QAMP (ABE |XY Z )

}
, (J22)
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FIG. 9. Plot of nontrivial upper bound on the nonsignaling squashed nonlocality Nsq, of PAMP(ab|xy) given in Eq. (J13), by the blue shaded
region under the orange solid line and a red dashed line. The red dashed line is the (segment of) lower convex hull of the orange solid curve and
the purple long-dashed straight line. The solid orange line is obtained by the lower convex hull of several upper bounds of Nsq, with the help
of Eq. (339). Blue dashed-dotted line is the squashed conditional mutual information Î(A : B|E )E (PAMP ). The magenta dotted line is the lower
bound on the key rate, whereas the purple long-dashed line is the upper bound on intrinsic information of the eavesdropping strategy used in
Ref. [16]. We observe that the convexification technique resulting in the convex-hull bound allows to obtain tighter upper bound on Nsq, and
therefore the tightest known upper bound on the secret-key rate in the nonsignaling scenario.

where QAMP(ABE |XY Z ) = 	E |E ′ (E (PAMP)(ABE ′|XY Z )) is an arbitrary extension of PAMP, upon applying the post-processing
channel 	E |E ′ , given by

	E |E ′ =

Device B0 B1 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

e
e′

0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 0 0 0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 0 0 0 1

. (J23)

Note that here we need only one post-processing channel, be-
cause in the squashing procedure unlike Appendix J 1, Eve’s
know which outcomes of Alice and Bob are used for the key
generation run.

The upper bound on Nsq(PAMP), i.e., the right-hand side of
(339), has been plotted in Fig. 9, by the orange line, which
vanishes for p ≈ 0.783, and from the procedure of lower

convex hull we will consider it 0, for all p < 0.783. The
magenta dotted line is the lower bound on the key rate of
Ref. [16], whereas the violate dashed line is the upper bound
on the intrinsic information I (A : B ↓ E ), of Ref. [16], for
a particular eavesdropping strategy. We have found that our
bound on Nsq is better than the bound on I (A : B ↓ E ), by
[16], for p > 0.853.
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