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Robust three-qubit search algorithm in Rydberg atoms via geometric control
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Rydberg atoms possess long coherence time and inherent scalability, which makes it promising to implement
quantum algorithms. An exact and robust quantum search algorithm (SA) is essential to some practical applica-
tions. Here we propose a multisolution three-qubit SA by employing quantum circuit and geometric operations,
in which the target states can be successfully searched with the fidelity of at least 99.8% and the geometric
operators guarantee robustness against systematic errors. In particular, the geometric three-qubit gate operators
employed reduce the implementation time and help to resist against the detrimental influence of decoherence.
Moreover, our scheme can be straightforwardly extended to multiqubit cases. We have carried out numerical
simulations based on the master equation to illustrate the superiority of our scheme. We consider that our study
provides an alternative method for executing quantum SAs with high success probability.
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I. INTRODUCTION

Rydberg atoms possess a relatively long coherence time
and inherent scalability, which makes them a promising plat-
form for quantum information processing [1]. When excited
to high-lying Rydberg states, the neutral atoms exhibit strong,
long-range, and controllable Rydberg-Rydberg interactions
[1,2], leading to Rydberg blockade [3–12] and antiblockade
[13–18] associated with many potential applications, such as
quantum computation [19–22], entangled state preparation
[5,23], and quantum simulators [24–26]. Recent studies have
demonstrated the advantage of studying quantum algorithms
in Rydberg atoms. For example, with Rydberg atom arrays,
Ebadi et al. [27] executed experimentally the quantum al-
gorithm for solving the maximum independent set problem,
Graham et al. [28] achieved the quantum phase estimation
algorithm and the quantum approximate optimization algo-
rithm, and Dlaska et al. [29] proposed a scheme to implement
the quantum approximate optimization algorithm for small-
scale test problems via a four-body Rydberg parity gate.

Quantum computation can solve some problems expo-
nentially faster than its classical counterpart [30,31]. Taking
Grover’s algorithm as an example, which aims to search in
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an unsorted database with N elements, we may accomplish
the search with O(

√
N ) steps, quadratically faster than the

classical search algorithm [32–39]. There have been some
experimental reports for executing the Grover search us-
ing different physical systems, such as nuclear magnetic
resonance [40], cavity quantum electrodynamics [41–43],
trapped ions [44–47], and optical system [48]. For the orig-
inal Grover’s algorithm, however, the successful probability
of searching the targeted state is not exactly of unity. In
practice, the certainty for the search result is very impor-
tant for some problems, e.g., quantum pattern recognition
[49] and divide-and-verify strategy [50]. Although there have
been some quantum circuits (QCs) used to realize a quantum
search algorithm with high success probability, how to search
a multisolution multiqubit target state with a high success
probability is still challenging.

Systematic errors arising from inaccurate control of pa-
rameters inevitably affect the implementation efficiency of
quantum operations. Geometric quantum computation has
been proposed to realize high-fidelity quantum manipulation,
which is robust to control errors due to the intrinsic char-
acteristics of the geometric phases [51–57]. Early geometric
quantum computation was executed in an adiabatic fashion,
e.g., the adiabatic holonomic quantum computation based on
Abelian and non-Abelian geometric phases [58–60]. Now
geometric quantum computation can be carried out nona-
diabatically [61–64], which helps to reduce the detrimental
influence of decoherence. Many geometric control schemes
have been put forward to improve the efficiency of quantum
operations [65–83].
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In this work, we propose a scheme to exactly realize a
multisolution three-qubit quantum search algorithm (SA) us-
ing QCs, in particular with Rydberg atoms via the geometric
control method. Our scheme has the following favorable fea-
tures: (i) In contrast to the previous QCs, the implementation
process of our scheme is simpler because the complex de-
sign of quantum logic operations in QCs is avoided. (ii) Our
scheme is robust to decoherence since the total evolution time
is reduced. (iii) Our scheme is robust to systematic errors due
to geometric quantum operations involved. (iv) Our scheme
can be straightforwardly extended to realize multisolution
multiqubit SAs. In addition, our research has implications for
implementing other quantum algorithms using Rydberg atoms
and other quantum platforms.

The outline of this paper is as follows. In Sec. II, the im-
proved three-qubit SA based on QCs is illustrated. In Sec. III,
we show how to realize a three-qubit SA via geometric con-
trol. Numerical simulation results are given to verify the
robustness against decoherence and control errors in Sec. IV.
Finally, Sec. V presents the conclusion and outlook.

II. IMPROVED THREE-QUBIT SA

In this section, we first talk about the basic theory used
for exactly realizing one- and multisolution quantum SAs, and
then we design the relevant QCs.

A. Basic theory

For the N-item (N = 2n, where n is the number of qubits)
search problem, we prepare the system initially in the uniform
superposition state,

|�0〉 = U ⊗n|s〉 = 1√
N

N−1∑
x=0

|x〉

=
√

M

N
|α〉 +

√
N − M

N
|χ〉

= sβ |α〉 + cβ |χ〉, (1)

where |s〉 = |1〉⊗n is the product state for the n-qubit system
with sx = sin x and cx = cos x, U is the Hadamard-like opera-
tor, M is the number of the target items, |α〉 = 1/

√
M

∑
t |t〉,

and |χ〉 = 1/
√

N − M
∑

l �=t |l〉, in which |t〉 represents target
items and |l〉 represents nontarget items.

One cannot search the target items for certainty using
the original Grover’s algorithm, where the phase oper-
ators in a quantum oracle and diffusion are based on
the phase inversion. Here we replace the phase inversion
of the oracle and the diffusion operators by phase rota-
tions: Pφ (|t〉) = I − (1 − eiφ )|t〉〈t | and Rη(|s〉) = I − U (1 −
eiη )|s〉〈s|U †, and the Grover transformation can be expressed
as G = −Rη(|s〉)Pφ (|t〉). For our purpose, we set η = φ

[84–87]. After one iteration of the Grover transformation
|�1〉 = G|�0〉, the successful probability is

P = s2
βc4

β (5 − 4cφ ) − 2c2
β (−2cφ + c2φ )s4

β + s6
β. (2)

The relationship among P, M/N , and φ is shown in Fig. 1.
We see that, for a one-solution three-qubit SA (M = 1, N =
8), we cannot search the target state for certainty with one

FIG. 1. Probability P as functions of M/N and φ for a quantum
SA with one iteration (a) and two iterations (b) of the Grover trans-
formation, where M is the number of targets and N = 2n, with n the
number of qubits.

iteration of the Grover transformation no matter how large the
phase value φ is. But we can search two- and multisolution
target states (M � 2) with definite success probability using
the iteration of the Grover transformation.

To exactly realize the one-solution three-qubit SA, we im-
plement the Grover transformation again, i.e., |�2〉 = G|�1〉,
with the successful probability

P = [2(−1 + 4e−3iφ + 5e−4iφ )sβ + (−1 + e−iφ )4

× s5β + 8e−2iφs3βs2
φ/2(3 + 3cφ − 2isφ )]

× [2(−1 + 4e3iφ + 5e4iφ )sβ + (−1 + eiφ )4s5β + 8e2iφs3β

× s2
φ/2(3 + 3cφ + 2isφ )]/256. (3)

The variation of the successful probability P with M/N and φ

is presented in Fig. 1(b), from which we find that for the three-
qubit SA, the one-solution target state can be searched exactly
with an appropriate phase value φ after two iterations of the
Grover transformation. From Fig. 1, we also find more than
one value of φ for searching the target state, which may be
useful for executing a quantum SA experimentally. Besides,
we have no restriction on M and N , thus for a multisolution
multiqubit SA, there may exist several phase values that can
be used to exactly realize it within two iterations. Otherwise,
we have to increase the number of iterations. Table I presents
the specific implementation of three-qubit SAs.

B. QC design for a one-solution three-qubit SA

According to Sec. II A, we design the QC to exactly search
a one-solution target state, as shown in Fig. 2 [88–90], includ-
ing the following three steps.

TABLE I. The number of iterations, i.e., W , of the Grover trans-
formation and the value of φ used for exactly searching one- and
multisolution three-qubit SAs, where M is the number of the target.

M 1 2 3 4 5 6 7

W 2 1 1 1 1 1 1
φ

π
0.677 1 0.608 0.498 0.436 0.392 0.361
1.323 1.392 1.502 1.564 1.608 1.639
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FIG. 2. QC for one- and multisolution three-qubit SAs, in which the operators Pφ (|t〉) and Qη are accomplished by three-qubit gate
operators, instead of a series of single- and two-qubit gate operators.

(i) Operator U k
π/4,−π/2 is applied to each qubit with the

initial state of |1〉, where

U k
θ,ϕ =

(
cθ −isθe−iϕ

−isθeiϕ cθ

)
, (4)

with respect to the basis spanned as {|0〉, |1〉}, and the super-
script k denotes the operator acting on the kth atom. U k

π/4,−π/2

rotates the qubit from |1〉 to 1/
√

2(|0〉 + |1〉), resulting in the
state

|�0〉 = 1

2
√

2
(|000〉 + |001〉 + |010〉 + |011〉

+|100〉 + |101〉 + |110〉 + |111〉). (5)

(ii) Perform the operator Pφ (|t〉), in which φ = 1.323π

for a one-solution SA according to II A, |to〉 represents the
one-solution target state, and we use the subscript j ( j ∈
[1, 8]) to distinguish different target states, i.e., |toj〉. We have
P1.323π (|to〉) = I − (1 − ei1.323π )|to〉〈to| for rotating the phase
of the target state. If |to1〉 = |000〉, then

P1.323π (|to1〉) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei1.323π 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

If |to2〉 = |001〉, we have

P1.323π (|to2〉) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 ei1.323π 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

Other oracle operators P1.323π (|toj〉) used to search the
remaining one-solution target states are similar to those
above. We have noticed other three-qubit gates realized in
experiments [4], which guarantees the feasibility of our
above-proposed gate operators.

(iii) Perform the operator Rη(|s〉) = I − U (1 −
eiη )|s〉〈s|U †, which is realized by

Rη(|s〉) = U 1
π/4,−π/2U

2
π/4,−π/2U

3
π/4,−π/2Qη

×U 1
π/4,π/2U

2
π/4,π/2U

3
π/4,π/2, (8)

where

Qη =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 eiη

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

in the one-solution three-qubit SA, and we set the phase value
η = φ = 1.323π .

Finally, we successfully search our desired one-solution
target state with certainty when G = −R1.323π (|s〉)P1.323π (|t〉)
is applied twice to the initial state according to Sec. II A. In
a previous scheme of the quantum SA, the operators Pφ (|to〉)
and Qη were realized by combining different single-qubit and
three-qubit gate operators [88–91], which implies lengthy gate
time and thus is more sensitive to decoherence. In contrast, the
operators Pφ (|to〉) and Qη employed here can be accomplished
directly, and thus for a faster performance. In addition, our
scheme can search the target states with definite success prob-
ability.

C. QC design for two- and multisolution three-qubit SAs

For a two-solution three-qubit SA, we can exactly search
the target state by choosing the phase value φ = π and im-
plementing the Grover transformation only once according to
Sec. II A. The difference in the QC between two-solution and
one-solution SAs is that we need to verify the phase rotation
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operator P1.323π (|to〉) to flip the sign of the two-solution
target state Pπ (|tt 〉), where |tt 〉 represents the two-solution
target state, and we use the subscript f ( f ∈ [1, 28]) to dis-
tinguish different target states, i.e., |tt f 〉. Supposing |tt1〉 =
1/

√
2(|000〉 + |001〉), we have

Pπ (|tt1〉) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiπ 0 0 0 0 0 0 0
0 eiπ 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

If |tt2〉 = 1/
√

2(|000〉 + |010〉), then

Pπ (|tt2〉) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiπ 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 eiπ 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Other oracle operators Pπ (|tt f 〉) used to search the re-
maining two-solution target states are similar to the above
operators. In our scheme, the operator Pπ (|tt 〉) can be achieved
by combining two three-qubit controlled-phase gates, and
these gate operators can be easily obtained. Compared with
Ref. [91], in which the operator Pπ (|tt 〉) is realized by a
series of single- and two-qubit gates, our scheme improves
the efficiency of the two-solution three-qubit SA and exactly
searches the two-solution target state.

A multisolution three-qubit SA can be exactly realized
when choosing the approximate phase value and appropriate
number of iterations of the Grover transformation. For dif-
ferent target states, the operator Pφ (|t〉) can also be easily
obtained in our scheme, similar to cases of one- and two-
solution quantum SAs mentioned above. The advantage of our
scheme is that the operator Pφ (|t〉) is directly constructed by
three-qubit gates without the combination of a series of single-
and two-qubit gates, and the target states can be searched
exactly. This allows us to implement the multisolution three-
qubit SA more simply.

III. IMPLEMENTATION OF THE THREE-QUBIT SA

In this section, we first illustrate how to realize the uni-
versal single-qubit gates via geometric control, and then we
expand to directly achieve multiqubit controlled-phase gates
without resorting to a series of single- and two-qubit gate
operators. Then we demonstrate how to exactly realize one-
and multisolution three-qubit SAs via geometric control.

A. Geometric single- and multiqubit gates

Considering a quantum system consisting of three lev-
els {|0〉, |1〉, |r〉}, we drive the transition |0〉 → |r〉 (|1〉 →
|r〉) using a resonant control field with the Rabi frequency
�0(t )eiφ0(t ) (�1(t )eiφ1(t ) ). Under the rotating-wave approx-

imation, the Hamiltonian in the interaction picture can
be written as H (t ) = ∑1

i=0[�i (t )
2 eiφi (t )|i〉〈r| + H.c.]. Defining

a bright state |b〉 = −s θ
2
e−iφ |0〉 + c θ

2
|1〉, in which tan θ

2 =
�0(t )/�1(t ) and φ = φ1(t ) − φ0(t ) − π , we keep θ and φ

time-independent, and thus state |b〉 is time-independent,
too. Then the Hamiltonian can be rewritten as H (t ) =
�(t )

2 eiφ1(t )|b〉〈r| + H.c., with �(t ) =
√

�0(t )2 + �1(t )2. Pa-
rameters of the Hamiltonian used to construct universal gate
operators are chosen as [79]

∫ τ
8

0
�(t )dt = π/2, φ1 = 0, t ∈ [0, τ/8],

∫ 3τ
8

τ
8

�(t )dt = π, φ1 = −π/2, t ∈ (τ/8, 3τ/8],

∫ τ
2

3τ
8

�(t )dt = π/2, φ1 = 0, t ∈ (3τ/8, τ/2],

∫ 5τ
8

τ
2

�(t )dt = π/2, φ1 = γ + π, t ∈ (τ/2, 5τ/8],

∫ 7τ
8

5τ
8

�(t )dt = π, φ1 = γ + π/2, t ∈ (5τ/8, 7τ/8],

∫ τ

7τ
8

�(t )dt = π/2, φ1 = γ + π, t ∈ (7τ/8, τ ]. (12)

At the end of the evolution, the evolution operator is given
in the computational subspace by U (θ, φ, γ ) = ei γ

2 e−i γ

2 n·σ
with n = (sθcφ, sθ sφ, cθ ) and σ = (σx, σy, σz ).

The three-qubit gates can be directly realized utilizing the
Rydberg blockade mechanism, as shown in Fig. 3. Both the
target atom and the control atoms include two ground states
{|0〉, |1〉} and one Rydberg excited state |r〉. The interac-
tion Hamiltonian is HI = Vc1,t |rr〉c1,t 〈rr| + Vc2,t |rr〉c2,t 〈rr| +
Vc1,c2|rr〉c1,c2〈rr|, where the subscripts “c1(2)” and “t” repre-
sent the control atom 1(2) and the target atom, respectively.
For simplicity, we set Vc1,t = Vc2,t = Vc1,c2 = V denoting the
dipole-dipole or van der Waals interaction strength, and V 	
�. As long as one of the atoms is excited to the excited
state |r〉, other atoms will not be excited due to the Rydberg
blockade mechanism [8,11]. Three-qubit gate operators can
be realized by the following three steps:

Step 1: The resonant pulses couple two control atoms suc-
cessively, in which the Rabi frequency satisfies

∫
�cdt = π .

Step 2: The universal operator U (θ, ϕ, γ ) is performed on
the target atom, which is realized by the coupled pulses as in
Eq. (12). Besides, there are two possible cases: (i) if there is
a control atom in the Rydberg state, the target atom cannot
perform the desired operation due to the Rydberg blockade
mechanism, and thus these states remain unchanged; (ii) the
target atom can perform the desired operator if both of the two
control atoms are not in the state |r〉.

Step 3: The reverse operations of Step 1 are performed
on the control atoms to deexcite the control atoms from the
excited state to ground states, in which we need to inverse the
phase of the pulses.

We can obtain our desired three-qubit operator after these
steps. In addition, we need to verify the driven pulses
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FIG. 3. Illustration of multiqubit gate operators, in which both transitions |0〉 → |r〉 and |1〉 → |r〉 of the control atoms are resonantly
driven by �ceiφ , transitions |0〉 → |r〉 and |1〉 → |r〉 of the target atom are resonantly driven by �0(t )eiφ0(t ) and �1(t )eiφ1(t ), respectively, and
V denotes Rydberg-Rydberg interaction between two atoms.

in the control atoms to obtain our desired gate opera-
tors in the realization of the quantum SA, as shown in
Fig. 3. For Case 1, we have the three-qubit gate opera-
tor U = |00〉c1c2〈00| ⊗ Ut (θ, φ, γ ) + (Ic1Ic2−|00〉c1c2〈00|) ⊗
It ; for Case 2, we acquire U = |01〉c1c2〈01| ⊗ Ut (θ, φ, γ ) +
(Ic1Ic2 − |01〉c1c2〈01|) ⊗ It ; for Case 3, U = |10〉c1c2〈10| ⊗
Ut (θ, φ, γ ) + (Ic1Ic2 − |10〉c1c2〈10|) ⊗ It ; and for Case 4,
U = |11〉c1c2〈11| ⊗ Ut (θ, φ, γ ) + (Ic1Ic2−|11〉c1c2〈11|) ⊗ It .

B. Realizing three-qubit SA via the geometric control

In the process of realizing one-solution three-qubit SA, the
necessary single-qubit gate operators Uπ/4,−π/2 and Uπ/4,π/2

can be achieved by the parameter values θ = γ = π/2, φ =
−π/2, and θ = φ = γ = π/2 according to Sec. III A. For the
operator P1.323π (|to1〉), the driven pulses of the control atoms
are the same as in the Case 1 of the three-qubit gate opera-
tor in Sec. III A, and parameters of the target atom are θ =
0, φ = 0, and γ = 1.323π . For the operator P1.323π (|to12〉),
the driven pulses of control atoms are also the same as in Case
1 and the parameters of the target atom are θ = π, φ = 0,
and γ = 1.323π . Other gate operators P1.323π (|to〉) used to
search the remaining one-solution target states are carried
out by changing the driven pulses of the control atoms as in
Cases 2–4 of three-qubit operators in Sec. III A and by the
parameters of the target atom. For the operator Q1.323π , the
driven pulses of the control atoms are the same as in Case 4,
and the parameters of the target atom are set as θ = π, φ =
0, and γ = 1.323π . With these operations, all the one-
solution target states can be searched with definite success
probability.

For two-solution three-qubit SA, the operator Pπ (|tt 〉)
is realized by combining two three-qubit gate operators.
For example, Pπ (|tt1〉) can be realized by Pπ (|tt1〉) = U1U2,
where U1 = |00〉c1c2〈00| ⊗ (eiπ |0〉t 〈0| + |1〉t 〈1|) + (Ic1Ic2 −
|00〉c1c2〈00|) ⊗ It and U2 = |00〉c1c2〈00| ⊗ (|0〉t 〈0| +
eiπ |1〉t 〈1|) + (Ic1Ic2 − |00〉c1c2〈00|) ⊗ It . The operator
Rπ (|tt2〉) is realized by the controlled-phase gates U1 and
U3, in which U3 = |01〉c1c2〈01| ⊗ (eiπ |0〉t 〈0| + |1〉t 〈1|) +
(Ic1Ic2 − |01〉c1c2〈01|) ⊗ It , in which the driven pulses of
the control atom are realized in Cases 1–4 of three-qubit
operators in Sec. III A, and the parameters of the target atom

are set as θ = π, φ = 0, γ = π or θ = 0, φ = 0, γ = π . For
the operator Qπ , the driven pulses of the control atoms are
the same as in Case 4, and the parameters of the target atom
are θ = π, φ = 0, and γ = π . These gate operators can be
easily obtained in our scheme. Based on the above operations,
all two-solution target states can be exactly searched with the
QC design in Sec. II C.

IV. PERFORMANCE OF THE THREE-QUBIT SA

To implement the three-qubit SA using the Rb
atoms, we choose the relevant energy levels as |0〉 =
|5S1/2, F = 1, mF = 0〉, |1〉 = |5S1/2, F = 2, mF = 0〉, and
|r〉 = |83S, J = mJ = 1/2〉. The two identical atoms are
separated by d = 4 μm, and the dispersion parameter C6 of
the Rb atom is 9.7 × 103 GHz μm6. The Rydberg interaction
intensity can then be evaluated as V/2π = 2.368 GHz [1,92].
At the temperature 0 K, the lifetime of the Rydberg state is
about τ = 696.35 μs and the decay rate is � = 1/τ [9,93].
The frequency of the Rabi oscillations between the ground
states and the Rydberg state is �/2π = 10 MHz, which can
be varied by adjusting the waists and optical powers of the
lasers as well as the relevant detuning from the intermediate
state [94,95].

Taking into account the spontaneous decay of the Rydberg
state, we evaluate the performance of the quantum SA by the
Lindblad master equation

ρ̇ = i[ρ, H ′] + �

2

3∑
j=1

1∑
i=0

(2LjρL†
j − L†

j L jρ − ρL†
j L j ), (13)

where H ′ is the total Hamiltonian of the quantum SA, ρ is
the density operator of the systematic state, and Lj = |i〉 j〈r|
denotes the atomic spontaneous emission from |r〉 to |i〉 ( j
labels the jth atom). We define the fidelity F = |〈ψideal|ψ〉|2,
where |ψideal〉 denotes the ideal target state and |ψ〉 denotes
the evolved state calculated by numerically solving the master
equation.

For the one-solution three-qubit SA, the operator Pφ (|to〉)
for different target states can be realized directly in
our scheme, which avoids some redundant quantum logic
operations. To show the advantage of our scheme, we compare

052610-5



BING-BING LIU et al. PHYSICAL REVIEW A 106, 052610 (2022)

|000 |001 |010 |011 |100 |101 |110 |111

target state

0.9978

0.9979

0.9980

0.9981

F
id

el
ity

FIG. 4. Fidelity of the three-qubit SA for all one-solution target
states, where the blue triangles represent our result and the red
diamonds are from a previous work of SA. These two schemes are
realized with the same geometric control, in which the decay rate
� = 1.4 kHz and the Rabi frequency �/2π = 10 MHz.

it with the scheme of the previous quantum SA under the same
geometric quantum control method. As shown in Fig. 4, we
see that our scheme can search the target state with higher
fidelity, i.e., at least 99.8%. As a result, the performance of our
scheme in realizing the quantum SA is improved compared
with the previous scheme.

In addition, the total evolution time of our scheme is re-
duced, thus the influence of the decoherence can be further
suppressed. We have numerically simulated the fidelity as a
function of the decay parameter � for the one-solution three-
qubit SA, as shown in Figs. 5(a) and 5(b), in which the target
states are |to1〉 and |to2〉, respectively. We compare our scheme
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FIG. 5. Fidelity of the three-qubit SA for (a) |to1〉 target state and
(b) |to2〉 target state as functions of the decay rate �, where the solid
line with blue triangles represents our results, and the dotted line
with red diamonds is realized by the QC of a previous SA. These
two schemes are realized with the same geometric control, in which
the Rabi frequency is �/2π = 10 MHz.
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FIG. 6. (a) Numerical results for the robustness to control errors
of the three-qubit SA for the one-solution target state |111〉, where
the relative pulse deviation is ε ∈ [−0.1, 0.1], the blue solid line is
the fidelity of the three-qubit SA realized by our scheme, and the
black dashed line is realized by conventional geometric control. The
QCs of these two schemes are shown in Fig. 3. (b) The fidelity of the
three-qubit SA for all one-solution target states, where the relative
pulse deviation ε is 0.05, the blue triangles represent our scheme, and
the black diamonds are the three-qubit SA realized by conventional
geometric control. We use the following values: the decay rate � =
1.4 kHz and the Rabi frequency �/2π = 10 MHz.

with the previous quantum SA scheme, from which we see
that our scheme has better robustness against the decoherence.

Finally, the control error is also a crucial factor for re-
alization of quantum algorithms. To show the advantage of
our scheme, we first compare the robustness between our
scheme and the scheme using conventional geometric control
in the search of the target state |111〉, where the relative pulse
deviation ε varies in the range ε ∈ [−0.1, 0.1]. As shown in
Fig. 6(a), our scheme has great robustness against the control
error. To further show the generality of our scheme, we have
numerically simulated the fidelity for all the one-solution tar-
get states under the existence of the control error, where we
assume the relative pulse deviation ε to be 0.05, as shown in
Fig. 6(b). We find that our scheme has an obvious advantage
for suppressing the control error in the realization of the one-
solution three-qubit quantum SA.

For the two-solution three-qubit SA, the fidelity dynam-
ics of the system state is depicted in Figs. 7(a) and 7(b),
where the target states are |tt1〉 and |tt2〉, and we find that
target states can be searched with a fidelity of 99.97% and
99.95%, respectively. So our scheme is feasible, and the
two-solution three-qubit quantum SA can be realized with
high fidelity in the presence of decoherence. In addition, the
fidelities as functions of the control error for the quantum
SA with two-solution target states |tt1〉 and |tt2〉 are pre-
sented in Figs. 7(c) and 7(d), from which we see that our
scheme can greatly suppress the influence of the systematic
error.
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FIG. 7. Fidelity of three-qubit SA varying with time for two-
solution target states |tt1〉 (a) and |tt2〉 (b), where the total time is
τ = 3 μs. Fidelity of three-qubit SA as a function of the control error
for two-solution target states |tt1〉 (c) and |tt2〉 (d), where the decay
rate � = 1.4 kHz and the Rabi frequency �/2π = 10 MHz.

V. CONCLUSION AND OUTLOOK

In conclusion, we have proposed a scheme to exactly re-
alize a multisolution three-qubit SA, where the number of

iterations and phase values can be obtained directly and the
corresponding QCs in our scheme are easily designed. This
enables us to avoid unwanted complex quantum logic oper-
ators. Multiple phase values and fewer logic gate operations
may be more helpful for achieving quantum SAs experimen-
tally. We can search the target state with a fidelity of at least
99.8%, and our scheme can better suppress the influence of
decoherence. In addition, the numerical simulation results
indicate that our scheme can greatly suppress the influence
of control errors. Our scheme can also be easily generalized
to multisolution multiqubit SAs with definite success proba-
bilities using Rydberg atoms. Finally, we have demonstrated
the idea of combining geometric control with a quantum algo-
rithm, which may be of great interest in implementing other
quantum algorithms for Rydberg atoms or other quantum
platforms.
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