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Quantum dense coding network using multimode squeezed states of light
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We present a framework of a multimode dense coding network with multiple senders and a single receiver
using continuous variable systems. The protocol is scalable to arbitrary numbers of modes with the encoding
being displacements while the decoding involves homodyne measurements of the modes after they are combined
in a pairwise manner by a sequence of beam splitters, thereby exhibiting its potentiality to implement in
laboratories with currently available resources. We compute the closed form expression of the dense coding
capacity for the cases of two and three senders that involve sharing of three- and four-mode states, respectively.
The dense coding capacity is computed with the constraint of fixed average energy transmission when the modes
of the sender are transferred to the receiver after the encoding operation. In both the cases, we demonstrate
the quantum advantage of the protocol using paradigmatic classes of three- and four-mode states. The quantum
advantage increases with the increase in the amount of energy that is allowed to be transmitted from the senders
to the receiver.
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I. INTRODUCTION

Nonclassical correlations play a crucial role in building
quantum information technologies like quantum cryptogra-
phy [1–7], dense coding (DC) [8–12], teleportation [13–15],
one-way quantum computation [16–22], and random number
generation [23,24], to name a few. Among them, the dense
coding protocol is essential for transmitting classical informa-
tion without security from one place to another with the help
of a shared entangled state, which exhibits improvements in
capacity over its classical counterparts. The original DC pro-
posal with point-to-point communication was later extended
to multiparty networks involving multiple senders and a single
as well as two receivers [25–29], although such design of
networks is mostly limited to finite-dimensional systems (cf.
[30,31]). Interestingly, it was shown that, even in the case of
quantum key distribution, it is beneficial to apply the secure
dense coding protocol as it doubles the rate of secure key
per transmitted qubit between the honest parties, and also
increases the chance of detecting the presence of a malicious
eavesdropper up to two senders in the single-receiver scenario
[32–34].

Continuous variable (CV) systems provide an important
platform for realizing quantum protocols. It can overcome
several limitations arising in the finite-dimensional case, a
prominent one being the distinction of four orthogonal Bell
states with linear optical elements required in the stage of
decoding of classical information [35–39]. However, these
drawbacks can be overcome when one considers CV systems,
in particular, the mode-entanglement of multiphoton quantum
optical systems, where the average number of photons in a

mode is taken to be arbitrary. The pioneering work on dense
coding in the field of CV systems (which we refer to as
CVDC) was first proposed by Braunstein and Kimble [40]
in which the Einstein-Podolsky-Rosen (EPR) state [41] is
shared between a single sender and a single receiver to transfer
classical information. The encoding operation is performed
by applying the displacement operator, which is distributed
according to a Gaussian distribution of vanishing mean and
variance σ . In recent years, many developments have been
made for the successful realization of classical information
transmission in CV systems [42,43], particularly with shared
Gaussian entangled states between the sender and the receiver
[44–48].

In this paper, we design a framework for the dense coding
protocol, involving an arbitrary number of senders and a sin-
gle receiver, with quantum optical fields. Each of the senders
performs local unitary encoding with the help of the displace-
ment operator, drawn uniformly from a Gaussian distribution
with variance σ . Thereafter, the modes are transmitted to the
receiver, who combines the modes pairwise with the help of
the beam splitters for decoding the message sent by the sender.
The transmission coefficients of the beam splitters were kept
arbitrary, so as to determine the decoding configuration which
can overcome the classical bound. The proposed procedure
works with an arbitrary number of senders and a single re-
ceiver.

When two and three senders share three- and four-mode
genuinely entangled Gaussian states with a single receiver,
respectively, we exhibit quantum advantage, i.e., when the
capacity of the quantum protocol beats the classical threshold
value for a given energy, which can be obtained between the
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FIG. 1. Schematic diagram for the CVDC protocol involving two
senders and a single receiver. The schematic has two components in
DC: encoding at the senders’ ends, which involve the displacement
operators, denoted by D(αk ) (k = 1, 2), and the decoding part in the
receiver’s side after obtaining modes from the sender upon encoding.
The second one requires a combination of beam splitters, BS12, and
BS23 and homodyne measurements of quadratures, R̂a, R̂b, and R̂c at
the receiver’s end.

arbitrary number of senders and a receiver without any shared
entanglement. Specifically, we identify the region character-
ized by the state parameters which lead to quantum advantage.
The DC protocol in CV systems, required to obtain a valid
classical capacity, is typically implemented with a fixed av-
erage number of photons in the sender modes, which bounds
the energy of the system. We report here the threshold pho-
ton number necessary for outperforming the classical routine.
Moreover, the initial squeezing strength leading to a quantum
benefit is determined for some classes of paradigmatic three-
and four-mode states, which manifest that the current state of
the art experiments can achieve quantum advantage in a DC
network.

The paper is organized in the following way. The multi-
mode dense coding scenario is introduced in Sec. II which
includes the encoding and decoding of classical information,
the capacity of DC via quantum protocol, and the corre-
sponding classical scheme without the shared entangled state.
We then illustrate the DC capacities when the senders and
a receiver share three- and four-mode channels in Secs. III
and IV, respectively. The comparisons of DC capacities with
classical protocols are also discussed in these sections, while
concluding remarks are in Sec. V.

II. FRAMEWORK FOR MULTIMODE DENSE CODING
NETWORK

We now introduce the formalism of the multimode dense
coding network involving multiple senders and a single re-
ceiver necessary for our investigation (see Fig. 1 for the case
of two senders and a single receiver). We start by briefly
recapitulating the basic properties of Gaussian states and
describe how they can be characterized by their first two
moments in the phase-space formalism. We also elucidate
on the Wigner function formalism, which turns out to be
useful in the study of DC in continuous variable systems
and present the dense coding routine for classical information
transfer between multiple senders and a single receiver. We

focus on the multimode entangled states, which are necessary
for successful implementation of the process and move on to
construct the encoding and decoding schemes to arrive at an
expression for the multimode dense coding capacity. Finally,
we derive the classical capacity for multisender dense coding
using continuous variable states without entanglement, which
sets a benchmark on the classical bound for accessing the
quantum advantage of the protocol.

A. Multimode Gaussian states as resources

Gaussian states are completely characterized by their dis-
placement vector d and covariance matrix � [44], given by

di = 〈R̂i〉, (1)

and

�i j = 1
2 〈R̂iR̂ j + R̂ j R̂i〉 − 〈R̂i〉〈R̂ j〉, (2)

where R̂is are the phase-space quadrature operators, R̂ =
(q̂1, p̂1, . . . , q̂N , p̂N )T , satisfying the canonical commutation
relation (CCR), [R̂i, R̂ j] = iJkl . Here J is the N -mode sym-
plectic form J = ⊕N

i=1 �, where

� =
[

0 1
−1 0

]
.

Therefore, the transformations which preserve the CCR are
symplectic, i.e., SJST = J .

In the phase-space formalism of CV systems, the states can
equivalently be characterized by the characteristic function
[49], which reads, for an N -mode state ρ, as

χρ (α) = Tr[ρD̂(α)], (3)

where α = (α1, α2, . . . , αN ) and D̂(α) = ⊗N
i=1 D̂(αi ) with

D̂(αk ) = exp(αkâk
† − α∗

k âk ) being the displacement operator
for mode k. The Fourier transform of the characteristic func-
tion is the well-known Wigner function [50], which for an
N -mode Gaussian state, turns out to be a 2N -variable Gaus-
sian function, given by [44]

W (R)

=exp[− 1
2 (R − d)T �−1(R − d)]

(2π )N
√

det(�)
.

(4)

Operationally, the reduced Wigner function obtained by in-
tegrating over the quadrature variables of m modes gives the
marginal probability distribution for the rest of the modes.

B. Elements of CV dense coding with multiple senders

Let us present here important constituents of the DC net-
work with CV systems. One of the main ingredients of the
prescribed protocol involving multiple senders and a single
receiver is the class of the (N − 1)-parameter family of N -
mode Gaussian states shared between (N − 1) senders and
a single receiver. To implement successful DC, we require
suitable encoding of classical information by the senders and
the corresponding decoding procedure by the receiver after all
the modes have been transferred to the receiver. The success
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FIG. 2. Schematics to generate an N -mode entangled state to
be used for dense coding between N − 1 senders and a single
receiver. Initially, we start with an N -mode vacuum state denoted
as |0〉1|0〉2 . . . |0〉N . Each mode is squeezed by a degree r, with
alternate modes being squeezed in different quadratures. Specifically,
modes undergoing momentum squeezing are denoted as |r〉 and are
prepared by acting S(r) on the initial vacuum mode while modes
squeezed in the position quadrature are denoted as |(−1)i−1r〉, which
are prepared by acting S[(−1)i−1r] on the vacuum mode. Further, the
modes are combined pairwise using beam splitters, i.e., modes i and
i + 1 are combined using BSi,i+1 of transmittivity τi. This results in
the N -mode entangled state. In the figure, Mis represent mirrors.

of the protocol can be measured by computing the multimode
dense coding capacity. The quantum advantage of the protocol
can only be guaranteed when the DC capacity crosses the
classical threshold on the capacity for a multimode channel.

1. Shared states between multiple senders and a receiver

We consider an (N − 1)-parameter family of N -mode en-
tangled states for the DC network between (N − 1) senders,
denoted as S1,S2, . . . ,SN−1, and a single receiver R. We
now briefly mention a preparation procedure of such states
starting from single-mode squeezed states and linear optical
elements, namely, the beam splitters. In particular, we start
from N single-mode squeezed states of identical squeezing
strengths r but with alternately squeezed quadratures. These
modes are entangled by the pairwise action of (N − 1) beam
splitters with transmission coefficients, τ1, τ2, . . . , and τN−1

which leads to a family of (N − 1)-parameter genuinely
multimode entangled states which serve as resources for dis-
tributed dense coding between (N − 1) senders and a single
receiver. The generation of the resource states is schemat-
ically depicted through Fig. 2. The entanglement between
the senders and the receiver [in the (N − 1) : 1 bipartition]
depends upon the values of the parameters τi and we will show
that the dense coding capacity does so as well.

2. Encoding and decoding

The aim of the DC scheme is to transmit classical messages
via an N -mode entangled state, which is distributed between
(N − 1) senders and the lone receiver. In particular, the pro-
tocol allows us to transmit N real numbers (which constitutes
the classical message) through this state. Suppose the sender
i encodes the classical message αi in his or her mode with the
help of a suitable displacement operator D̂(αi ). Note that the

αis are, in general, complex. Since we attempt to send only N
real numbers, all but one chooses the {αi} to be real. Without
loss of generality, we assume that the first sender encodes
messages in both his or her input quadratures, i.e., α1 is chosen
to be complex while the remaining senders encode a single
message, i.e., a real number, which is in either the position
or the momentum quadrature of the available mode. Thus, we
have N encoded messages. Each sender encodes αi from a
Gaussian distribution of zero mean and standard deviation σ .
Since local operations and classical communication (LOCC)
is allowed between the senders, we can assume that the stan-
dard deviation is fixed among all the senders. The probability
distribution of the input messages reads as

p(α) = 1

(2πσ 2)N /2
exp

[
−

N∑
i=1

α2
i

2σ 2

]
. (5)

Upon encoding, the senders’ modes are transmitted to
the receiver along a noiseless quantum channel. The re-
ceiver then applies (N − 1) beam splitters to combine the
modes in a pairwise manner to start the decoding process.
Therefore, the decoding essentially comprises the action of
[B̂(N−1)N (τN−1) . . . B̂23(τ2)B̂12(τ1)]† on all the modes with
B̂i j being the action of the beam splitters combining the modes
i and j. This is followed by the homodyne measurements of
suitable quadratures, which is performed to estimate the mes-
sages encoded by the senders. The decoding process yields the
conditional probability distribution p(β|α) where β stands for
the messages interpreted by the receiver upon decoding. The
unconditional probability distribution of the decoded mes-
sages is then computed as

p(β ) =
∫

dNαp(β|α)p(α), (6)

and the mutual information quantifying the information
achievable from the N -mode states at the receiver’s side is
given by

I (S1 . . .SN−1 : R) =
∫

dNαdNβp(β|α)p(α) ln
[ p(β|α)

p(β )

]
.

(7)
Maximizing Eq. (7) with respect to σ under the constraint that
the total number of photons at the modes of (N − 1) senders
is fixed to N̄ , we obtain the capacity. We observe that for an
N -mode state, the total photon number of the senders’ modes
after encoding is given by

N̄ = (N − 1) sinh2 r + Nσ 2, (8)

and the capacity of dense coding reads

CS1...SN−1:R(τ1 . . . τN−1) = max
σ∑N−1

i=1 n̄i=N̄

I (S1 . . .SN−1 : R),

(9)

where the constraint involved in the maximization routine is∑N−1
i=1 n̄i = N̄ .
The mutual information is optimized when

N̄ = (N − 1)er sinh r. (10)
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Choosing σ as (N−1
2N sinh 2r)1/2 by substituting Eq. (10) in

Eq. (8) for a given N -mode state with sender signal strength
N̄ , we can find the classical capacity of the quantum channel.

3. Classical threshold

The advantage of a quantum protocol in dense coding is
assured if its capacity surpasses that of the corresponding
classically available scheme. Therefore, we need to set a
benchmark with which the classical capacity of a quantum
channel can be compared. According to Holevo’s theorem, if a
classical message, say α, taken from a probability distribution
p(α) is to be transmitted via a quantum state ρ̂α , the mutual
information I (S : R) between the sender S and the receiver
R is bounded above by the Holevo quantity [51]

I (S : R) � S(ρ̂ ) −
∫

d2αp(α)S(ρ̂α ) � S(ρ̂ ), (11)

where S(ρ̂ ) = −tr(ρ̂ ln ρ̂) is the von Neumann entropy of the
density operator ρ̂ = ∫

d2αp(α)ρ̂α .
Considering a legitimate constraint of having a fixed mean

number of photons N̄ (which can be modulated), the required
task is to find the configuration of a single-mode bosonic field
to maximize the mutual information, I (S : R). It was shown
[52,53] that the optimal channel capacity via the classical
protocol is achieved by photon counting measurement from
an ensemble of number states having maximum entropy, i.e.,∑

n P(n) |n〉 〈n| with P(n) = N̄n(1 + N̄ )−(n+1).
With this optimal configuration of a single-mode bosonic

channel, the channel capacity for a single sender and a single
receiver without entanglement is found to be [53]

CS:R
cl (N̄ ) = (1 + N̄ ) ln(1 + N̄ ) − N̄ ln N̄ . (12)

In a similar spirit, the capacity with N − 1 senders and a
single receiver yields

CS1...SN−1:R
cl ({N̄i}) =

N−1∑
i

[(1 + N̄i ) ln(1 + N̄i ) − N̄i ln N̄i],

(13)
where N̄i is the mean photon number of the sender’s mode
i. Imposing the constraint of having a fixed mean photon
number N̄ at the senders’ mode, where N̄ = ∑(N−1)

i N̄i, the
capacity in the classical scenario where the entanglement
between senders and a receiver is absent can be obtained by
maximizing CS1...SN−1:R

cl ({N̄i}) over {N̄i} with the constraint
N̄ = ∑(N−1)

i N̄i. The condition for achieving the maximum
capacity turns out to be N̄i = N̄/(N − 1) with an equal
distribution of photons being taken at all senders’ modes.
Substituting N̄i = N̄/(N − 1) in Eq. (13), we obtain the ex-
pression for capacity in the classical case with an arbitrary
number of senders and a single receiver as

CS1...SN−1:R
cl = (N − 1)

[(
1 + N̄

N − 1

)
ln

(
1 + N̄

N − 1

)

− N̄

N − 1
ln

N̄

N − 1

]
. (14)

Comparing CS1...SN−1:R
cl with the capacity obtained via a

shared entangled state, we can confirm the quantum advan-

tage, which we will demonstrate explicitly for the shared
three- and four-mode states in the succeeding sections.

III. CLASSICAL CAPACITY FOR THREE-MODE
CHANNEL INVOLVING TWO SENDERS AND A SINGLE

RECEIVER

To derive the expression for the classical capacity between
two senders, and a single receiver, S1,S2, and R, respectively,
a three-mode squeezed state is initially distributed among
them. A three-mode genuinely multimode entangled state is,
in general, prepared with the help of a tritter. The class of
such states constitute a two-parameter family, characterized
by the transmittivities τ1 and τ2 of two beam splitters, which
comprise the tritter. The three-mode entangled state identified
by its displacement vector and covariance matrix can be rep-
resented as

d0 = (0, 0, 0, 0, 0, 0)T , (15)

�0 =

⎛
⎜⎜⎜⎜⎜⎝

A 0 R 0 T 0
0 B 0 −R 0 −T
R 0 C 0 −S 0
0 −R 0 D 0 S
T 0 −S 0 E 0
0 −T 0 S 0 F

⎞
⎟⎟⎟⎟⎟⎠, (16)

where

A = 1
2 e−2r[(e4r − 1)τ1 + 1],

B = 1
2 [e−2rτ1 + e2r (1 − τ1)],

C = 1
2 [sinh 2r(1 − 2τ1τ2) + cosh 2r],

D = 1
2 e−2r[(e4r − 1)τ1τ2 + 1],

E = 1
2 {sinh 2r[1 − 2τ1(1 − τ2)] + cosh 2r},

F = 1
2 e−2r[1 + τ1(e4r − 1)(1 − τ2)],

R =
√

τ1τ2(1 − τ1) sinh 2r,

S = τ1

√
τ2(1 − τ2) sinh 2r,

T =
√

τ1(1 − τ1)(1 − τ2) sinh 2r. (17)

All the initial single-mode squeezed states are considered to
have equal squeezing strength r. For τ1 = 1/3 and τ2 = 1/2,
we obtain the well-known basset-hound state [54–56].

A. Encoding by the senders

Since the state comprises three modes, two senders can
send, at most, three real numbers accurately. Without loss of
generality, we assume that S1 sends two real numbers α1x and
α1y, encoded through a suitable displacement operation D̂1(α)
where α1 = α1x + iα1y while S2 chooses to send a single real
number α2y with the help of the displacement D̂2(α2) having
α2 = iα2y. Both the senders resort to a Gaussian distribution
of their respective real numbers, having the same standard
deviation σ . The input probability distribution is then given
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by

p(α) = 1

2πσ 2
exp

(
− |α1|2

2σ 2

)
1√

2πσ
exp

(
− |α2|2

2σ 2

)
.

(18)
The encoding process gives rise to the displacement vector
and covariance matrices, given by

den = (
√

2α1x,
√

2α1y, 0,
√

2α2y, 0, 0)T , (19)

�en = �0. (20)

B. Decoding by the receiver

After the encoding process, the senders send their respec-
tive modes to the receiver, and hence the receiver possesses
the three-mode state. Towards recovering the classical in-
formation, two beam splitters are used to combine modes 1

and 2 as well as modes 2 and 3, through [B̂23(τ2)B̂12(τ1)]
†
.

Such a decoding routine results in a three-mode state with the
displacement vector and covariance matrix, respectively, as

ddec = (√
2τ1α1x,

√
2τ2(1 − τ1)α2y +

√
2τ1α1y,√

2(1 − τ1)α1x,
√

2(1 − τ1)α1y −
√

2τ1τ2α2y,

0,
√

2(1 − τ2)α2y
)T

, (21)

�dec = diag
(

1
2 e2r, 1

2 e−2r, 1
2 e−2r, 1

2 e2r, 1
2 e2r, 1

2 e−2r
)
. (22)

The receiver requires to undertake a homodyne detection to
measure p1, x2, and p3 since these quantities have the lowest
variance in �dec. It results in the probability distribution of the
output variables (conditioned on the input) as

p(β|α) =
∫

dx1d p2dx3WρS1S2R
(x1, β1, β2, p2 : x3, β3)

= 1

π3/2
[exp{3r − e2r (β2 − α1x

√
2(1 − τ1))2}]

× [exp{−e2r[β1

−
√

2(α1y
√

τ1 + α2y

√
τ2(1 − τ1))]2}]

× [exp{−e2r (β3 − α2y

√
2(1 − τ2))2}], (23)

where WρS1S2R
is the Wigner function of the state after the

modes are combined by the receiver using the beam splitter
setup described above [30]. βi (i = 1, 2, 3) represent the ho-
modyne outcomes obtained by the receiver upon measuring on
the mode i. The unconditioned probability of the homodyne
variables from Eq. (6) in this case reads

p(β ) =
∫

d2α1dα2 p(β|α)p(α). (24)

Using Eqs. (18) to (24), the mutual information corresponding
to this channel can be computed as

I (S1S2 : R) =
∫

d3βd2α1dα2 p(β|α)p(α) ln
[ p(β|α)

p(β )

]

= 1

2
ln[(4e2rσ 2 + 1)(4e2rσ 2(1 − τ1) + 1)]

+ 1

2
ln[(4e2rσ 2τ1(1 − τ2) + 1)]. (25)

Since the decoding scheme is fixed to homodyne detection,
the dense coding capacity is obtained by maximizing Eq. (25)
over the standard deviation of the encoding displacement op-
erations subject to a fixed average photon number constraint.
This condition can be represented as

n̄1 + n̄2 = 2 sinh2 r + 3σ 2 = N̄ . (26)

For a fixed N̄ , the mutual information is maximized when
σ 2 = 1

3 sinh 2r and r = (1/2) ln(1 + N̄ ), leading to the ex-
pression for the dense coding capacity

CS1S2:R(τ1, τ2) = max
σ

n̄1+n̄2=N̄
I (S1S2 : R)

= 1
2 ln

[
1

27 [2N̄ (N̄ + 2) + 3][2N̄ (N̄ + 2)(1 − τ1) + 3][2N̄ (N̄ + 2)τ1(1 − τ2) + 3]
]
. (27)

Substituting various values of τ1 and τ2, we obtain the CVDC capacity for different states belonging to the two-parameter family.
Notice that, although the basset-hound state obtained with τ1 = 1/3 and τ2 = 1/2 possesses the maximum genuine multimode
entanglement in this set of states, we find that there exist states (obtained with other values of τ1 and τ2) which furnish a greater
CV dense coding capacity than that obtained via the basset-hound state (cf. [28]). For example, with τ1 = τ2 = 1/2, the DC
capacity takes the form as

CS1S2:R(1/2, 1/2) = 1
2 ln

[
1

54 [N̄ (N̄ + 2) + 3][N̄ (N̄ + 2) + 6][2N̄ (N̄ + 2) + 3]
]
, (28)

which increases monotonically with the increase of N̄
and for a given N̄ , we notice that CS1S2:R(1/2, 1/2) >

CS1S2:R(1/3, 1/2).

C. Quantum advantage in DC

To guarantee the quantum advantage, it is important to
compare the classical capacity of a quantum channel with the

capacity in a classical protocol. From Eq. (14), the optimum
capacity in the classical case for a channel with mean pho-
ton number N̄ shared between two senders and one receiver
reduces to

CS1S2:R
cl = 2(1 + N̄/2) ln(1 + N̄/2) − 2(N̄/2) ln(N̄/2). (29)
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FIG. 3. Region plot of the state space bounded by τ1 and τ2 which
provides quantum advantage of DC (in bits) having two senders and
a single receiver with states belonging to the two parameter family
of the three-mode states defined in the main text. The abscissa and
ordinate represent τ1 and τ2, respectively. The blue, orange, green,
and red curves (from below) correspond to N̄ = 7, N̄ = 10, N̄ = 15,
and N̄ = 20. Note that all the states bounded by each curve can
provide quantum advantage in DC. All the axes are dimensionless.

Let us define the quantum advantage in the DC network in-
volving an arbitrary number of senders and a single receiver
as

�S1S2···SN−1:R

= CS1S2SN−1:R(τ1, τ2, . . . , τN−1) − CS1S2···SN−1:R
cl , (30)

for a fixed photon number. The positivity of the above ensures
quantum advantage in the shared channels.

Let us identify the range of τ1 and τ2 for which the three-
mode state provides quantum advantage, i.e., �S1S2:R > 0 for
a fixed N̄ as illustrated in Fig. 3. We find that, with increasing
N̄ , the region bounded in the (τ1, τ2) plane providing quantum
advantage also grows in size. Furthermore, with τ1 = 0.5, we
find the largest range of τ2 which provides quantum advantage
for a given N̄ . This indicates that states prepared with τ1 = 0.5
are more suitable for multimode DC between two senders and
a lone receiver.

1. Threshold energy for quantum advantage

For any given values of τ1 and τ2, there exists a threshold
energy, say, N̄S1S2:R

th (τ1, τ2), above which the quantum advan-
tage can be achieved. Although it is very hard to find such
an analytical expression of N̄S1S2:R

th (τ1, τ2), we can find the
threshold energy numerically for a given τ1 and τ2 by solving
the equation CS1S2:R(τ1, τ2) = CS1S2:R

cl for N̄ . For example,
we find the value of N̄S1S2:R

th (1/2, 1/2) = 8.15, i.e., the three-
mode entangled state having the state parameters τ1 = τ2 =

1/2 can offer a quantum advantage in the DC protocol at the
minimum expense of energy N̄S1S2:R

th (1/2, 1/2) = 8.15. For a
given energy N̄ , we find that

τ1

∣∣max
min

= 0.5

±
√

16[N̄ (N̄ + 2) + 3]2 − 27N̄−2N̄ (N̄+2)2N̄+4

2N̄ (N̄+2)+3

8N̄ (N̄ + 2)
, (31)

and for a given τ1 and N̄ ,

τ2

∣∣
max = 1 + 3

2(N̄2τ1 + 2N̄τ1)

− 27N̄−2N̄−1(N̄ + 2)2N̄+3

32τ1[2N̄ (N̄ + 2) + 3][2N̄ (N̄ + 2)(1 − τ1) + 3]
,

(32)

where τi|min
max

represents the region bounded by τi which pro-

vides quantum advantage. Moreover, the minimum number of
photons at the senders’ mode required to avail the quantum
advantage is then given by

N̄S1S2:R
th

∣∣
min

{τ1,τ2}
= 5.38,

where minimization is performed over all possible values of
τ1 and τ2.

2. Quantum advantage with large squeezing strength

Let us now investigate the ratio of classical capacity of a
quantum channel and the capacity in the classical protocol for
large-resource squeezing r. Substituting N̄ = 2er sinh r [see
Eq. (10)] into Eq. (27), we obtain CS1S2:R ∼ 6r, whereas the
same substitution in Eq. (29) yields CS1S2:R

cl ∼ 4r for large r.
Hence the ratio becomes

CS1S2:R

CS1S2:R
cl

= 3

2
(at large r). (33)

Knowing that the quantum protocol for τ1 = τ2 = 1/2
can overcome the classical threshold value when the total
photon number of the senders’ modes is N̄ � 8.15, we can
find that the minimum squeezing required for quantum ad-
vantage in the two sender-one receiver scenario, denoted by
rS1S2:R

break−even(τ1 = 1/2, τ2 = 1/2), is 1.10685. Note, however,

that rS1S2:R
break−even(1/2, 1/2) is higher than that for the single

sender-single receiver regime [40]. It is due to the fact that
CS1S2:R

cl is much higher than the classical bound for the DC
protocol with a single sender-receiver duo.

IV. MULTIMODE DENSE CODING NETWORK WITH
FOUR-MODE STATES

Akin to the case for three-mode channels, let us consider
a general class of four-mode genuinely entangled Gaussian
states, characterized by three parameters, τ1, τ2, and τ3, shared
between three senders Si, (i = 1, 2, 3) and a receiver R.

052607-6



QUANTUM DENSE CODING NETWORK USING MULTIMODE … PHYSICAL REVIEW A 106, 052607 (2022)

A. Encoding

Three senders, S1,S2, and S3, perform displacement op-
erators on their respective modes as a part of the encoding
process. The displacement amplitude for each sender is pro-
portional to the message they wish to send. Like in the
previous three-mode situation, we assume, without loss of
generality, that S1 incorporates displacement in both the
quadratures of his or her available mode with an amplitude
α1 = α1x + iα1y. S2 chooses to displace only the momentum
quadrature by α2y while the position displacement α3x is
performed by S3. The input messages belong to a Gaussian
ensemble characterized by the probability distribution

p(α) = 1

(2πσ 2)2
exp

[
− 1

2σ 2

(
α2

1x + α2
1y + α2

2y + α2
3x

)]
.

(34)

The senders then transfer their modes, postencoding, to the
receiver R via noiseless quantum channels.

B. Decoding

To decode the messages, the receiver combines all the four
modes at his disposal, with the help of the beam splitter setup,
represented as

[B̂34(τ3)B̂23(τ2)B̂12(τ1)]†.

The homodyne detection by the receiver on modes p1, x2, p3,
and x4 leads to the conditional probability on the decoded
message (here, the subscripts on the numbers indicate the
quadrature on which the homodyne detection is performed),
given by

p(β|α) =
∫

dx1d p2dx3d p4WρS1S2S3R
(x1, β1, β2, p2, x3, β3 : β4, p4)

= 1

π
exp(4r − e2r{[β2 −

√
2(α1x

√
1 − τ1 − α3x

√
τ1τ3(1 − τ2)]2 + [β1 −

√
2(α1y

√
τ1 + α2y

√
(1 − τ1)τ2)]2})

× 1

π
exp{−e2r[(β3 −

√
2α2y

√
1 − τ2)2 + (β4 −

√
2α3x

√
1 − τ3)2]}. (35)

Here, WρS1S2S3R
again represents the Wigner function of the state after the beam-splitter operation by the receiver and βi are

the homodyne outcomes for the mode, i. Following the same steps as in the case of the three-mode states, one can calculate the
unconditioned decoding probability distribution p(β ) using Eq. (6), whereafter, the mutual information can be estimated as

I (S1S2S3 : R)

=
∫

d4βd2α1dα2dα3 p(β|α)p(α) ln
[ p(β|α)

p(β )

]

= 1

2
ln

[
σ 8

(
e2r4(1 − τ1τ2) + 1

σ 2

)(
(4e2rσ 2 + 1)[4e2rσ 2τ1(1 − τ2) + 1]

σ 2(4e2rσ 2(1 − τ1τ2) + 1)

)(
1

σ 2
+ 4e2r[τ1(1 − τ2)τ3 + (1 − τ3)]

)]

+ 1

2
ln

[16e4rσ 4(1 − τ1)(1 − τ3) + 4e2rσ 2[τ1(1 − τ2)τ3 − τ1 − τ3 + 2] + 1

σ 2 + 4e2rσ 4[τ1(1 − τ2)τ3 − τ3 + 1]

]
. (36)

Optimization of Eq. (36) subject to a fixed photon number N̄ at the senders’ ends, i.e., N̄ = n̄1 + n̄2 + n̄3 = 3 sinh2 r + 4σ 2

leads to the DC capacity of a network involving three senders and one receiver. With the aid of optimal conditions given by
σ 2 = 3

8 sinh 2r and r = (1/2) ln (1 + 2N̄
3 ), we obtain the capacity in terms of the photon strength of the senders and the state

parameters as

CS1S2S3:R(τ1, τ2, τ3) = max
σ

n̄1+n̄2=N̄
I (S1S2S3 : R)

= 1

2
ln

(
1

81
[N̄ (N̄ + 3) + 3][N̄ (N̄ + 3)τ1(1 − τ2) + 3]

)

+ 1

2
ln[([N̄ (N̄ + 3) + 3][3 + N̄ (N̄ + 3)(1 − τ1)] + N̄ (N̄ + 3)τ3{[N̄ (N̄ + 3) + 3](τ1 − 1) − 3τ1τ2})].

(37)

C. Classification of multimode states according to their DC capacities

Motivated from the three-mode results, let us first consider a symmetric situation, i.e., when τ1 = τ2 = τ3 = 1/2, the DC
capacity becomes

CS1S2S3:R(1/2, 1/2, 1/2) = 1
2 ln[[N̄ (N̄ + 3) + 3][N̄ (N̄ + 3) + 12]{N̄ (N̄ + 3)[2N̄ (N̄ + 3) + 27] + 72}] − ln[36

√
2]. (38)

Instead of equal τis, let us choose τ1 = 1/3, τ2 = 1/4, τ3 = 4/5, in which case the DC capacity reads as

CS1S2S3:R(1/3, 1/4, 4/5) = 1
2 ln[[N̄ (N̄ + 3) + 3][N̄ (N̄ + 3) + 12]{2N̄ (N̄ + 3)[N̄ (N̄ + 3) + 24] + 135}] − ln[18

√
15] (39)
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FIG. 4. Quantum advantage (in bits) in the DC scheme involving
three senders and a single receiver in the state space characterized by
τ1 (x axis), τ2 (y axis), and τ3 (z axis). The orange, blue, and green
planes represent N̄ = 15, N̄ = 20, and N̄ = 25, respectively. Note
that the volume enclosed by the surfaces represents states which can
provide quantum advantage, i.e., �S1S2S3:R > 0. All the axes are
dimensionless.

Comparing Eqs. (38) and (39), we find

CS1S2S3:R(1/2, 1/2, 1/2) > CS1S2S3:R(1/3, 1/4, 4/5).

To demonstrate it more explicitly, we vary τis and find the
hierarchies among states which are beneficial for classical in-
formation transmission by using Eq. (37) with a fixed photon
number N̄ (see Fig. 4).

D. Outperforming quantum network with four-mode
classical scheme

For the classical information transmission involving three
senders and a single receiver without having any shared en-
tangled state, the classical threshold reduces to

CS1S2S3:R
cl = 3(1 + N̄/3) ln(1 + N̄/3) − 3(N̄/3) ln(N̄/3).

(40)
Analyzing �S1S2S3:R in the τ1, τ2, τ3 hyperplane, we observe
that the quantum protocol can outperform the classical one
for a given N̄ as depicted in Fig. 4. The volume of states
having quantum benefit increases with the increase of N̄ as
is also seen in the case of shared three-mode states and it is
bounded by the surface in the figure. Moreover, we notice
that all such favorable states are centered around τ1 = 1/2,
which indicates that such a configuration is well suited for the
proposed CVDC protocol between three senders and a single
receiver. Furthermore, for small signal strength at the senders’
end, states with small values of τ2 and τ3 are more helpful over
the classical scheme compared to the states with high values
of transmission coefficients of the beam splitters.

Like the three-mode entangled case, the solution of the
equation, CS1S2S3:R(τ1, τ2, τ3) = CS1S2S3:R

cl for N̄ can give
the threshold energy N̄S1S2S3:R

th (τ1, τ2, τ3) for the shared state
comprising state parameters τ1, τ2, and τ3, above which
�S1S2S3:R > 0. For example, N̄S1S2S3:R

th (1/2, 1/2, 1/2) =
24.87 and

N̄S1S2S3:R
th

∣∣
min

{τ1,τ2 ,τ3}
= 11.45,

for the shared four-mode genuinely multimode entangled
states. In this situation, let us identify the range of state pa-
rameters, i.e., τ1, τ2, and τ3 for a given energy N̄ so that the
quantum advantage can be prevailed. They turn out to be

τ1

∣∣max
min

= 0.5 ±

√√√√9(N̄ (N̄ + 3) + 6)2 − 4N̄−2N̄ (N̄+3)2N̄+6

[N̄ (N̄+3)+3]2

36N̄2(N̄ + 3)2
, (41)

while for given N̄ and τ1,

τ2

∣∣
max =

(N̄+3)2N̄+6N̄−2N̄

[N̄ (N̄+3)+3]2[N̄ (N̄+3)(τ1−1)−3] + 9(N̄ + 3)N̄τ1 + 27

9N̄ (N̄ + 3)τ1
. (42)

When N̄ , τ1, and τ2 are fixed, the third transmission coefficient takes the form as

τ3

∣∣
max = 9[N̄ (N̄ + 3) + 3]2[N̄ (N̄ + 3)(τ1 − 1) − 3][N̄ (N̄ + 3)τ1(τ2 − 1) − 3] − N̄−2N̄ (N̄ + 3)2N̄+6

9N̄ (N̄ + 3)[N̄ (N̄ + 3) + 3][N̄ (N̄ + 3)τ1(τ2 − 1) − 3]{[N̄ (N̄ + 3) + 3](τ1 − 1) − 3τ1τ2} . (43)

Substituting N̄ = 3er sinh r into Eqs. (37) and (40), we ob-
tain CS1S2S3:R ∼ 8r and CS1S2S3:R

cl ∼ 6r, respectively, for
large r. Therefore, the ratio between the quantum and
classical protocols for three senders and a single receiver

becomes

CS1S2S3:R

CS1S2S3:R
cl

= 4

3
(at large r). (44)
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In this case, the break-even squeezing strength of the quan-
tum protocol, given in Eq. (38), required to defeat the classical
threshold with the DC capacity for a given senders’ pho-
ton number N̄ reads rS1S2S3:R

break−even(τ1 = τ2 = τ3 = 1/2) = 1.433
which is 1.107 for the three-mode case with τ1 = τ2 = 1/2.
It implies that the squeezing strength required to obtain im-
provement in the mentioned quantum protocol increases with
the increase of the number of modes. Thus for the three
senders-one receiver scenario, there is a quantum advantage
beyond rS1S2S3:R

break−even(τ1, τ2, τ3).
At this point, it can possibly be argued that, for N senders

and a single receiver, the ratio between the capacities of the
quantum and classical channels takes the form

CS1S2S3:R

CS1S2S3:R
cl

= N + 1

N , (45)

at large r, where we used Eqs. (33) and (44) to present this
conjecture.

V. CONCLUSION

In quantum communication, which includes both classical
information transmission as well as quantum state transfer,
shared entangled states are necessary to exhibit any quantum
advantage. To transfer classical information, say two bits, the
classical protocol where no shared entangled state is avail-
able requires four-dimensional objects for encoding while it
reduces to a two-dimensional system with the help of shared
entangled states, and hence the scheme is called dense coding
(DC). In finite-dimensional systems, the capacity of dense
coding for an arbitrary shared state is known when there are
an arbitrary number of senders and a single or two receivers.

For continuous variable (CV) systems, since the dimension
of the systems involved is infinite, the DC capacity can only be
meaningful when it is obtained by fixing the amount of energy
that can be sent from the sender to the receiver. Without
this constraint, the capacity would simply diverge. Using this
energy-constrained capacity, quantum advantage in CVDC
was demonstrated for a single sender and a single receiver
scenario [40].

In this work, we went beyond the single sender-receiver
scenario and proposed a design for continuous variable DC
network with multiple senders and a single receiver. In par-
ticular, we presented a possible blueprint of the encoding
as well as decoding strategies, computed the corresponding
classical energy-constrained capacities of a quantum channel,
and optimum classical threshold, which can be achieved in the
absence of a shared entangled state. We fixed the encoding
strategies to be local displacement operations in the senders’
side, while the decoding involves the use of beam splitters and
the homodyne measurement of quadratures.

We demonstrated the efficacy of the CVDC network in-
volving two as well as three senders and a single receiver
when the shared states are the three- and four-mode states. In
both cases, we showed that the quantum protocol can benefit
over the classical one, thereby establishing the usefulness of
multimode entangled states as resources. With the increase
of energy, we found that the quantum advantage also got
enhanced. Moreover, we computed the critical energy which
is required for the successful implementation of CVDC with
an entangled resource.

A practical communication technology demands the trans-
fer of data among various nodes in a network. Hence the
construction of the protocol presented here may shed light on
establishing a network for transmitting classical information
involving multiple nodes using squeezed states of light which
can be implementable in laboratories.
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