PHYSICAL REVIEW A 106, 052605 (2022)

Basic elements for simulations of standard-model physics with quantum annealers:
Multigrid and clock states
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We explore the potential of D-Wave’s quantum annealers for computing some of the basic components
required for quantum simulations of standard model physics. By implementing a basic multigrid (including
“zooming”) and specializing Feynman-clock algorithms, D-Wave’s Advantage is used to study harmonic and
anharmonic oscillators relevant for lattice scalar field theories and effective field theories, the time evolution of
a single plaquette of SU(3) Yang-Mills lattice gauge field theory, and the dynamics of flavor entanglement in

four-neutrino systems.
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I. INTRODUCTION

Simulations of the dynamics of quantum matter, from
neutron stars to materials, which are beyond the reach of clas-
sical computation, are expected to become possible through
continued advances in quantum computation. While univer-
sal quantum computation [1-8] is essential in this quest
to simulate standard-model physics, the near-term devices
that define the noisy intermediate-scale quantum (NISQ) era
[9], without high-fidelity qubits and error correction, will
be challenged to provide results that can be quantitatively
compared with experiment (see, for example, Refs. [10-12]).
Much of the current research in this area is performed
on gate-based quantum computers, and the alternative adi-
abatic quantum computing [13-16] has not been explored
with as much detail. Applications for such devices, such as
D-Wave’s quantum annealers (QAs) [17-19], are optimiza-
tion [20-25], high-energy physics [26,27], machine learning
[28—40], spin systems [41-51], quantum chemistry [52-57],
biology [58-61], finance [62-64], graph equations [65-67],
multivariate equations [68], integer equations [69], linear
equations [70], and factorization problems [71-76], and more,
but a quantum advantage for scientific applications remains to
be demonstrated.

The first steps toward simulating quantum field theories
using QAs have been taken by finding the ground state of
modest SU(2) plaquette systems and the time evolution of
these systems [77] using the Feynman-clock algorithm [78].
Given that, modulo emergent fine-tunings, many standard-
model systems of interest are gapped, with finite correlation
lengths, quantum circuits for universal quantum computers
are expected to be able to have localized control structures
for which domain decomposition will be effective. This sug-
gests that QAs may provide efficient preconditioners for
preparing parametrizations of ground states and excited states
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for universal quantum computers (e.g., fast-forwarding time
evolution [79]) in the future. This of course remains to be
demonstrated.

Using D-Wave’s QAs (and simulators), we explore build-
ing blocks that are required for quantum simulations of
standard-model physics and its descendant low-energy effec-
tive field theories. Building upon the works of Refs. [70,77],
a “zooming” algorithm is used to converge coefficients of the
basis states defining annealing problem instances for ground
states. Second, we use a simple multigrid procedure that it-
eratively employs course grids to provide starting conditions
for finer grids to converge wave functions. Third, we general-
ize a previously implemented Feynman-clock algorithm [77]
to arbitrary Hermitian matrices. These algorithms are used
to simulate the harmonic oscillators (HOs) and anharmonic
oscillators (AHOs), the time evolution of the SU(3) Yang-
Mills plaquette [80], and neutrino flavor evolution [81], which
have been previously simulated using IBM’s superconducting
quantum computers.

II. MAPPING A HAMILTONIAN ONTO A QUADRATIC
UNCONSTRAINED BINARY OPTIMIZATION PROBLEM

In order to find the ground-state energy and wave function
of a given Hamiltonian using D-Wave’s QAs, a minimization
problem is mapped onto a quadratic unconstrained binary
optimization (QUBO) problem fp(g) =), ; 0ijqiq;j, where
g; are binary variables. Following techniques and protocols for
using D-Wave’s systems [82] and specific methods that users
have developed [55,77], an objective function of the form

F = (W|H|Y) — n(¥|¥) (1)

is minimized, where 1 is a parameter that is tuned to avoid
the null solution ((¥|¥) = 0). Expanding or approximating
the wave function |¥) in a finite-dimensional orthonormal
basis [{), |V) = ZZ‘ ay|¥y), with a, real numbers, F can

©2022 American Physical Society


https://orcid.org/0000-0003-3570-2849
https://orcid.org/0000-0001-6502-7106
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.052605&domain=pdf&date_stamp=2022-11-14
https://doi.org/10.1103/PhysRevA.106.052605

MARC ILLA AND MARTIN J. SAVAGE

PHYSICAL REVIEW A 106, 052605 (2022)

be written as

F =Zaaaﬁ<<wa|ﬁ|wﬂ> — n(Val¥p))
ap

Zzaaaﬁ(ﬁaﬁ - 7780[5) = Zaaaﬂhaﬂ- (2)
ap af

Mapping the minimization of F onto a QUBO problem ap-
propriate for solution using an annealer requires expressing
a, in terms of binary variables. Following previous works, the
fixed-point representation [55] of each a, in terms of K bits
g7 is used,

o

K—1
q;
g = —61% + § 2K—i’ 3)
i=1

where a, € [—1, 1). Finer digitizations of a,, accomplished
by the use of larger values of K, provide better resolution
of the a, and consequently higher precision and accuracy in
solution, but are limited by device performance with increas-
ing size of the QUBO matrix. This digitization of a, puts the
expression in Eq. (2) into QUBO form

o B
F = Z Qu.irp.jqi 49 » 4)

ap.ij

with Qg g j = 212K (—1)% ok The QUBO matrix
Qu.i-p,j» With dimensions Kn; x Kny, is subsequently passed
from the D-Wave application programming interface to a sim-
ulator or D-Wave’s QAs.

An adaptive QA eigenvalue (AQAE) solver, implemented
in Refs. [70,77], incorporates an algorithmic improvement
that reduces the required value of K to reach a given solve
precision and hence increases the size of problem instances
that can be addressed using any given QA (a similar idea was
applied in Ref. [83] for machine learning). After the initial
solve for coefficients a="), the range of search values for
altD are systematically reduced, guided by the previously
obtained a¥'. This permits not only a reduced value for K
but also a reduced number of anneals at each zoom level. We
implement a relation between successive zoom steps similar
to Ref. [70], of the form

K-1 4
@D _ 4@ _ - 9i
afth =@ — 2772 4 Z 2K:i+z, &)
i=1
An example of the progressive decimation of a coefficient
a1V with increasing zoom step is shown in Fig. 1. In form-
ing the QUBO matrix at each zoom step, the contributions

that are naively linear in ¢¥ in the product afj“)afgﬂ) are

changed to quadratic via g7 = (g7 )>. The derivation of the
QUBO matrix can be found in Appendix A, yielding

Qaﬁi;ﬂ,j — 2i+j72K72Z(_1)5u<+5_,1<haﬂ
+ 280827 K (=1 D " aPhy g (6)
14

As considered in Ref. [56], excited states can also be ad-
dressed with this same construction by including chemical
potentials for the states that are lower in the spectrum. The
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FIG. 1. Example of the convergence of a% from the iterative
zooming method discussed in the text using K = 3, for a true value
of a, = —0.33 (vertical dashed line). The closed circles denote the
sampled values of ¢ at each zoom step. The open circles correspond
to the points closest to the true value of a, and are used as input for
the subsequent zoom step.

Nth state in the spectrum can be obtained by including N — 1
chemical potentials p, that give an energy shift to each of the
nth states that place them higher in the spectrum than the Nth
state. To accomplish this, an effective Hamiltonian of the form

N—1

AN = T+ Y W) (W, (7)

is used. The u, depend upon the energy eigenvalues of
|W,-n), both of which are determined in earlier problem
solutions using H<N) in the workflow, and an approximate
knowledge of the energy of |Wy), determined possibly in
tuning or from other approximate solutions. Explicitly, to im-
plement Eq. (7) and find the (n + 1)th excited state, the wave
functions of the nth lowest-lying states are used to generate a
matrix contribution from the outer products |\W,) (¥, |, which
are multiplied by u, and added to the existing Hamiltonian
(see the Supplemental Material [84] for the practical imple-
mentation of these and subsequent algorithms).

Analyzing results from annealing simulator
and quantum devices

For any given QUBO matrix, annealing simulators or
QAs perform N4 anneals to locate the lowest-energy con-
figuration(s) and associated wave function(s). Outputs of the
annealing workflow include an ensemble of Ny results, and
generation of such ensembles can be repeated Ny, times to
provide estimates of associated uncertainties. As the lowest-
energy configuration in an ensemble provides the lowest upper
bound to the true energy of the target state, Ny, sets of such
measurements can yield a global minimum energy and wave
function, and also a mean and standard deviation, or a median
and 68% confidence interval (for robustness). These estima-
tors provide a measure of some uncertainties, including those
associated with zooming and fluctuations in the annealing
process.

Systematic studies of uncertainties associated with
D-Wave’s QAs have been previously performed, e.g.,
Refs. [85-87]. These contain detailed sets of measurements
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and discussions of device configuration and noise. The
D-Wave online documentation [88], in particular that related
to D-Wave’s quantum simulator neal, provides algorithms to
simulate the annealers, discussions of the noise model, and
provides codes.

To differentiate between results obtained with a noisy sim-
ulator and a QA that are shown in figures in the text, we will
assign one of the icons introduced in Ref. [89]: the yellow
square icon for results obtained using neal and the blue dia-
mond icon for those obtained using D-Wave’s QA Advantage
system 4.1 (which we will refer to simply as Advantage).

III. HARMONIC AND ANHARMONIC OSCILLATORS:
EIGENSTATES AND ENERGIES

Perhaps the simplest quantum field theory to consider is
A¢* scalar field theory. Jordan et al. have shown that state
preparation and simulating S-matrix elements resides in the
BQP-complete complexity class [90]. As a starting point for
exploring lattice scalar field theory using QAs, we examine a
single-site harmonic oscillator with and without the nonlinear
A¢* interaction. The Hamiltonian for a single site has the form

L Lo Ay
with the bare mass m and bare coupling A [all quantities are
in lattice units (L.u.)]. In the Jordan-Lee-Preskill (JLP) basis
[90-94], the field ¢ is digitized at each spatial site in a space
spanned by n, uniformly distributed states' with mapped val-
ues
2¢H13.X
¢ = _¢max + 54)18¢» 545 = (9)

ng—1’

where @pac is the maximum value of ¢(x) and By =
0,1,...,n,— 1. In ¢ space, while two of the terms in
Eq. (8) are diagonal, the conjugate momentum operator can be
computed with a finite-difference operator. However, this in-
troduces polynomial §4-discretization errors. A better way to
compute it is to use quantum Fourier transforms into and out
of conjugate momentum space [91,92], since (k¢|fl2|k(;) =
qu)a]%,kd'), with

. 1
k¢ = —k:;dx + </3¢ - §>(Sk¢,

2
3¢l’l5 '

T
max __ “°
k¢ = —,

Sky =
8y ¢

(10)
This has been shown to eliminate power-law corrections
to I12, giving exponentially convergent digitization via the
Nyquist-Shannon theorem [90-98]. A detailed comparison
between this operator and finite-difference versions can be
found in an Appendix of Ref. [94]. For a given number of
states n,, the Hamiltonian is an n, x n; real matrix, from
which the eigenstates and energies can be found via mappings
to a QUBO problem and annealing, as discussed in Sec. II.

'For a register of a universal quantum computer of ny qubits,
n, = 2"2.

A. Results from the annealer simulator neal

Available D-Wave annealer simulators were used to pre-
pare for working with D-Wave’s cloud-accessible QAs. In
particular, for the one-site system, the simulator was used
to perform parameter tunings and calibrations, including the
maximum and minimum values of the field ¢, the number
of states over which the field is digitized ng, 1 in the ob-
jective function [in Eq. (1)], the chemical potentials w, [in
Eq. (7)], the number of qubits per coefficient K, the number
of anneals per zoom step Ny, and the total number of zoom
steps z™**. These identified values, or initial tunings, for these
parameters, and measures of uncertainties, both systematic
and statistical, are a subset of those that will be present for
computations using QAs. Our workflow for the simulator
and quantum hardware was implemented with PYTHON [99]
using JUPYTER notebooks [100] after formulating the matrix
problem with Mathematica [101].

1. Tunings

We present only highlights of parameter tunings as they
generally behave as naively anticipated or as determined pre-
viously. Figure 2(a) shows the systematic deviation from the
true digitized ground-state energy of the HO determined us-
ing the annealing simulator for mp = 1, A = 0, and ¢pax = 5
digitized across n; = 32 states as a function of n for Ny =
103 and K = 3. The solid lines with points correspond to
minimum-energy solutions, while the solid bands correspond
to the 68% confidence intervals determined from N,,, = 200
samples. The accuracy in the energy is found to be optimized
for n ~ Ey. Figure 2(b) shows the deviations in energy for
different levels of zooming as a function of N4 for K = 3 and
n = 0.51. While the minimum-energy estimate is improved
with an increasing number of anneals, increasing the zoom
level leads to a more rapid convergence. Similarly, Fig. 2(c)
shows the energy deviation as a function of K for different
levels of zoom for Ny = 10° and 5 = 0.51. Although larger
values of K can increase the precision of the ground-state
energy, as is the case for N4, using more zoom steps can
also reach similar levels (without increasing the number of
qubits). Overall conclusions from these explorations of pa-
rameter space are that 1 should be close to the energy of the
ground state and that the use of “sloppy solutions,” where a
relatively small number of anneals N4 are used to iteratively
estimate subsequent zoom intervals for QUBO parameters,
can be used to make efficient use of computational resources.’
We consider it to be somewhat unfortunate that the depen-
dence on 7 is that shown in Fig. 2(a), as ideally quantities
would be independent of 7.

The systematic improvements in results with increasing
Ny, K, and number of zoom levels using the annealer simula-
tor do not persist indefinitely, which is attributed to the white
noise intrinsic to neal.

2The latter technique is in the spirit of all-mode averaging
techniques employed in some lattice quantum chromodynamics gen-
erations of light quark propagators, e.g., Refs. [102,103].
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FIG. 2. Ground-state energy (in l.u.) of the HO obtained with D-Wave’s neal as a function of (a) the parameter 71, (b) the number of
anneals Ny, and (c) the parameter K, for my = 1, A =0, and ¢« = 5 discretized across n, = 32 states, setting n = 0.51, Ny = 103, and
K = 3 when the corresponding parameter is not varied. The solid lines with points correspond to minimum-energy solutions, while the solid
bands correspond to the 68% confidence intervals determined from N,,, = 200 independent runs of the annealing workflow.

2. Harmonic oscillator: V (¢) = %(bz

For demonstrative purposes, through the use of appropri-
ately tuned parameters, we present the results for the lowest
six eigenstates of the HO with V(¢) = 1¢? (i.e., mo = 1).
The exact energies in the field-space continuum limit are

ESact = =13 3 79 " 1 with eigenfunctions given by

2°2°2°2°2° 27"

1/4
— ~(1/2)9*
m( ) e H,(9), an
where H,(x) are the Hermite polynomials. A systematic study
of the impact of digitization on the low-lying wave functions
and energies has been performed previously [94] and we
use that as a guide in selecting digitization parameters. We
work with ¢m. = 5 and ny = 64, resulting in §¢ = 0.1587

and kpax = 19.7920, and energies Ef?% % that are the same

as E,fg‘g‘ to better than approximately 107>, The value of
n, was set equal to the corresponding E**' 4 0.01, and the
chemical potentials were set to i, = 10 when appropriate, to
move each of the previously determined states to an energy
higher than the “next” ground state. The energies of the lowest
states found using neal are given in Table I and displayed in

Va(¢) =

TABLE I. Energies associated with the HO with my = 1 (in L.u.).
The exact energies are shown in the second column, the difference
between the diagonalization of the digitized Hamiltonian and exact
energies are shown in the third column, with ¢.x = 5 and n; = 64,
and the differences between the digitized energies and the corre-
sponding results obtained using D-Wave’s annealer simulator neal
are shown in the fourth (no MG) and fifth (with MG) columns, with
the uncertainties showing the 68% confidence intervals, with K = 3
and N, = 10%.

n E’fxacl |8E’<11ig—64| |8Eneal—64 |z:0 |8Enea]—64 |Z:8

0 1/2  35x107""  (492Hx107° (40728 x 107°
1 3/2 1.8x107° (9. 1f;‘019) x107°  (5.27%3) x 107¢
252 41x10% @7H5x 107 (4 4+2§) x 107°
372 6.6 x 1077 (0 79y x 1070 (5.3737) x 107°
4 92 6.6x107° (55772 x 107 (44121 x 107°
5 11/2  6.0x107° 7+1°°) x 1073 7+22) x 107°

Figs. 3(a) and 3(d) (with Ny = 10%) and recover the digitized
values with accuracy of approximately 10~3-107°.

In order to reduce the uncertainty bands, instead of in-
creasing N4 or K, we work with a (somewhat basic) multigrid
(MG) AQAE solver, inspired by the wide success of multigrid
algorithms [104], where a coarser (smaller) system is solved
first and that solution is used as an input parameter for the
finer (larger) system. Specific to our case, a coarser system
can be defined by using a smaller value of n; for the digiti-
zation of the field. With the coefficients %) extracted from
the ny, = 32 system, we interpolate (using cubic splines) to
find starting points for the n; = 64 system. To help guide the
annealer, it has been found that starting with z > 4 reduces
the uncertainty on the energies, as it limits the range of the
values that @) can assume. As shown in Figs. 3(b), 3(c), 3(e),
and 3(f), starting with z"' = 4 or 8 significantly reduces the
error compared to 7" = 0.

To display the convergence obtained with neal for an in-
creasing number of zoom steps, Figs. 3(a)-3(c) show the
deviation in the energy of the lowest six states as a function of
zoom steps. The convergence is consistent with exponential in
the number of zoom steps, as found in Ref. [70]. This result
is encouraging as the HO is one of the simplest systems to
consider.

The wave functions associated with the energies in Ta-
ble I are shown in Figs. 3(d)-3(f). The diagonalization of
the HO employed ¢ = 5, ny = 64, and my = 1 and repro-
duced the values of the continuum-field wave functions with
high precision, a well-known result. For the ground state, the
digitized wave function (squares) reproduces the continuum
wave function to better than approximately 107, as shown in
Fig. 4. Using neal, K = 3 and n = 0.51 were used with 14
levels of zoom. The wave functions, shown by the lines in
Fig. 3, reproduce the digitized wave functions to better than
approximately 1073, as shown for the ground state in Fig. 4.
Similar fidelity is obtained for the other wave functions.

Overall, the HO is amenable to simulation with neal. With
appropriate (and easy to identify) parameter tunings, the en-
ergies and wave functions of the lowest-lying states can be
determined with precision. Results for coarser and finer digi-
tizations behave in ways that are consistent with expectations.
While we have not performed a systematic exploration, we
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FIG. 3. (a)—(c) Convergence of the energy (in l.u.) of the first six HO states as a function of the number of zoom steps, where the solid
lines with points correspond to minimum-energy solutions, while the solid bands correspond to the 68% confidence intervals determined from
Nyun = 200 independent runs of the annealing workflow. (d)—(f) Lowest six HO wave functions [multiplied by (—1)"]. The squares denote
the exact values from the digitized Hamiltonian, while the lines show the N,,, = 200 independent runs obtained using D-Wave’s annealer
simulator neal with the maximal number of zoom steps. The results from neal are also sets of discrete points, and for display purposes we
have shown them as joined line segments. The initial coefficients for (a) and (d) are null coefficients, for (b) and (e) correspond to starting the
7" = 4 zooming for 1, = 64 states from the z™* = 14 values and their interpolations from n, = 32, and for (c) and (f) correspond to starting
with "' = 8. The maximum value of the field is ¢ = 5 digitized on n, = 64 states, with K = 3 and Ny = 10°.

expect that the primary limitation on the number of states of
the HO that can be isolated with precision is the accumulation
of errors through the iterative process of Eq. (7).

c T T T T T
’/% _ ‘\I,(cjligfiﬂ _ \1,8531764|
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§ S
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g 10°®
el .
T o
= . .
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10 —4 -2 0 2 4
¢

FIG. 4. Deviations between the digitized ground-state HO wave
function and the analytic continuum-field expression (squares) and
the wave functions determined using neal (lines, showing the
Nun = 200 independent runs). The digitized simulation employed
Gmax =35, ny=064, my=1, K=3, n=051, Ny=10% and
{Zinit’ Zmax} — {8, 22}

3. Anharmonic oscillator: V (¢) = %qﬁz + §¢4

Depending upon the size of the nonlinear interaction, the
low-lying spectrum of the AHO can differ significantly from
those of the HO. For the coupling of A = 32 that we have
chosen for demonstrative purposes, important differences are
present in both the energy and wave functions of the one-site
system. The value of 7, used to solve for nth eigenstate is
set, as in the HO case, to the corresponding E*** + 0.01, the
chemical potentials are set to i, = 20, K = 3, and the number
of anneals is Ny = 10°. Table II displays the exact energies,
the difference between the exact and digitized energies for
the system with ¢p.x = 2.6 and ny = 64, and the difference
between the results obtained using neal and the exact digitized
energies.

The convergence of the energy of the lowest-lying states
with increasing numbers of zoom steps determined using neal
are shown in Figs. 5(a)-5(c), with exponential convergence
seen up to approximately 12 zoom steps, beyond which there
are diminishing returns. The converged wave functions for
each level are shown in Figs. 5(d)-5(f). As in the case of
the HO, the MG AQAE method reduces the uncertainties in
the extracted energies. Further, the wave functions converge
well to the exact digitized wave functions (shown as the
squares in Fig. 5). Figures 5(d)-5(f) show the wave func-
tions resulting from N4 = 103 anneals compared to the exact
result.
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TABLE II. Energies associated with the AHO with my = 1 and
A =32 (in Lu.). The exact energies are shown in the second col-
umn, the difference between the diagonalization of the digitized
Hamiltonian and exact energies are shown in the third column, with
Pmax = 2.6 and n; = 64, and the differences between the digitized
energies and the corresponding results obtained using D-Wave’s an-
nealer simulator neal are shown in the fourth (no MG) and fifth (with
MG) columns, with the uncertainties showing the 68% confidence
intervals, with K = 3 and N, = 103.

n E:xacl |8E;lig—64| |8E:ealfé4 |Z:0 |8E'1:ealfﬁ4 |z:8

0 08597427 1.7 x 107 (0.9%3%) x 107 (1.7%53) x 107°
1 29493637 24x 107 (0.572%)x 10*  (1.870%) x 107°
256096611 2.0 x 1077 (0245 x 1075 (1.2%57) x 107°
3086270258 1.5x 107°  (0.57%) x 1075 (2.7745) x 10°°
4 11930637 8.0x 107° (0.277%) x 107° (1.4%5]) x 107°
5 15476155 4.4 x 107  (4.17%) x 107 (3.01]5) x 107°

B. Implementations and results from D-Wave annealers

We have run the codes used in Sec. III A with neal on D-
Wave’s QA Advantage, which has 5627 physical qubits, and
each qubit is connected with 15 other qubits (in a so-called
Pegasus topology). The system is accessible through the cloud
via D-Wave’s website [105].

The mapping between the QUBO problem and the pro-
cessor topology is performed automatically, via heuristics
algorithms [106], and is the most time-consuming part of the
simulation, as discussed in Appendix B (the embedding can
be computed at the beginning and it also can be reused for all
the zoom steps). During this process, as there is no all-to-all
connectivity, several physical qubits are chained together to
form a logical qubit with the required connectivity. To enforce
that the qubits in a certain chain have all the same value,
an extra parameter, the chain-strength value cy, is fixed. As
the elements of the QUBO matrix are rescaled to lie in the
range [—1, 1] when they are passed to Advantage, if ¢, >
max(]Q]), the QUBO elements will be rescaled closer to zero.
We set ¢; = w max(]Q]) and scan over w € [0, 1], finding that
o = 0.2 gives the lowest energies for these systems. Another
parameter that can be tuned is the annealing schedule and
annealing time #4 and we have used its default value of 74 =
20 ps in our calculations. It has been previously observed,
e.g., Ref. [63], that using different annealing schedules, like
reverse annealing, can increase the success rate (finding the
solution with minimum energy) of the QA. The exploration of
such improvements is left for future work. Due to Advantage’s
intrinsic noise, extracting energies and wave functions with
adequate precision for n; > 16 requires using the MG AQAE
solver. Compared to the neal simulator, a smaller initial value
of ny = 16 is required for Advantage to provide meaningful
results. These results are then used as starting values for the
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FIG. 5. (a)—(c) Convergence of the energy (in l.u.) of the first six AHO states as a function of the number of zoom steps, where the solid
lines with points correspond to minimum-energy solutions, while the solid bands correspond to the 68% confidence intervals determined from
Nun = 200 independent runs of the annealing workflow. (d)—(f) Lowest six AHO wave functions [multiplied by (—1)"]. The squares denote
the exact values from the digitized Hamiltonian, while the lines show the N, = 200 independent runs obtained using D-Wave’s annealer
simulator neal with the maximal number of zoom steps. The initial coefficients for (a) and (d) are null coefficients, for (b) and (e) correspond to
starting the z"' = 4 zooming for n; = 64 states from the z™ = 14 values and their interpolations from n, = 32, and for (c) and (f) correspond

to starting with z"* = 8. The maximum value of the field is ¢y, = 2.6 digitized on n, = 64 states, with K = 3 and N, = 10°.
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FIG. 6. (a)-(c) Convergence of the energy (in l.u.) of the first six HO states as a function of the number of zoom steps, where the solid
lines with points correspond to minimum-energy solutions, while the solid bands correspond to the 68% confidence intervals determined from
Nun = 20 independent runs of the annealing workflow. (d)—(f) Lowest six HO wave functions [multiplied by (—1)"]. The squares denote the
exact values from the digitized Hamiltonian, while the lines show the N, = 20 independent runs obtained using D-Wave’s Advantage with
the maximal number of zoom steps. The maximum value of the field is ¢y.x = 5 digitized on n; = {16, 32, 64} states, with K = {3, 3,2} and

Ny = 10%.

ny = 32 and 64 anneals, with results shown in Fig. 6 for the
HO and Fig. 7 for the AHO.? Interestingly, while a value of
K = 3 is sufficient for the ny; = 16 and 32 systems, K = 2 is
required for the n; = 64 system to permit an embedding of the
QUBO matrix into Advantage.

C. Delocalized fields: A¢* with m3 < 0 and
reflection symmetry in field space

In the situation where m3 < 0, corresponding to a double-
well potential, the ground state with a symmetric wave
function and the first-excited state with an antisymmetric
wave function are nearly degenerate for a large region in mass-
coupling space. For such parameters, the wave functions have
support mainly in regions localized around the two minima
of the potential, with exponential suppression of the energy
difference as the minima become increasingly separated. Con-
sequently, the results obtained with neal and Advantage are
generally unable to uniquely identify the ground states of such
systems. As the Hamiltonian has a reflection symmetry in field
space, the near degeneracy of the lowest two states can be
mitigated by solving the half space using boundary conditions
at the origin consistent with a symmetric or an antisymmetric
wave function. Using such implementations, the ground state

31t is interesting to note that the ground-state wave function ob-
tained with n, = 16 when interpolated to n; = 64 achieves 10~*
precision in the ground-state energy, without using the MG-AQAE
method (for higher-energy states, the precision is reduced).

and first excited state of the systems with mj < 0 can be
uniquely determined, as shown in Fig. 8. Results are obtained
with Advantage using the MG AQAE solver (with z"' = 3
and using the ny = 16 system as the preconditioner). It is
interesting to point out that the best solution is found to have a
smaller energy than one found with neal. The use of boundary
conditions at the origin reduces the dimensionality of the
Hamiltonian that is sent to the annealer simulator or quantum
hardware, and hence the problem itself, to one similar to
that of a HO with m3 > 0. Therefore, the implementation is
essentially the same as described previously. However, the
delocalization of the wave function means that the digitization
of the field requires an increased number of states to recover
the same level of precision in, say, the ground-state energy (by
maintaining a fixed §y).

The results obtained for these systems provide practical
insights into the generic performance of a QA for simulat-
ing systems with (near-)degenerate ground states. Without
the half-field truncation, each converged result of the system
provided, in general, a different linear combination of the
(two) degenerate states, as expected. While straightforward to
perform, we did not undertake a study of the m(z)-k parameter
space to identify regions where the energy gap was sufficient
for neal and Advantage to uniquely converge to the ground
state.

While there is significant importance in simulating scalar
fields exhibiting spontaneous symmetry breaking in 341 di-
mensions in high-energy (Higgs field) and nuclear physics (o
model and chiral perturbation theory), a detailed exploration
is beyond the scope of the present work.
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D. Scaling study

During this NISQ era, quantum processors are being char-
acterized to determine their strengths and weaknesses. For this
purpose, Fig. 9 shows the number of physical qubits required
for the Hamiltonian in Eq. (8) with different numbers of basis
states n;. Specifically, we compute the QUBO matrix with
K =2 for different values of ng, find the embedding using
the find_embedding command from minorminer [88], as
discussed in Sec. IIIB, and count the number of required
physical qubits, which are shown in Fig. 9. As it uses a
heuristic algorithm to find this mapping [106], the number
of qubits is generally different each time this command is
called, and the width of the bands represents a 68% confidence
interval determined from 20 different embeddings of the same
problem. Figure 9 also shows the number of qubits in the ideal
case with the gray line, assuming an all-to-all connectivity,
therefore requiring only Kn; qubits.

It is interesting to note that the improvement over the pre-
vious D-Wave’s QA 2000Q, with a total of 2048 qubits (and
a connectivity of six qubits), to the current one, Advantage,
allows for a reduction in the number of qubits by a factor of
2-3 (directly related to the increase in connectivity between
qubits, which increases from 6 to 15). However, the points for
both QAs follow a line with a similar slope, which is larger
than the ideal case.

Although the current limit to ny is 64, without the zooming
algorithm described in Sec. II, it would be smaller (assuming
the same precision on the eigenenergies), as K would have
to be larger. Further, using the symmetry properties of the

wave function, as in Sec. IIIC, the value of n; could be
doubled.

IV. REAL-TIME EVOLUTION OF PLAQUETTES AND
NEUTRINOS USING FEYNMAN CLOCKS

The real-time dynamics of physically interesting complex
quantum systems is an expected capability of future quan-
tum computers, which will advance the domain of sciences
beyond what is possible with classical computing. While for
universal gate-based quantum computers, the challenge to
implement time evolution is determining efficient quantum
circuits and mappings that can be executed on available de-
vices, the challenge for D-Wave’s QAs is in finding a viable
QUBO matrix that can be implemented. First formalized for
scientific applications in the context of quantum chemistry
[78,107], Feynman-clock states [108,109] provide a way to
time evolve quantum systems in a single run of a QA (its
first implementation on quantum hardware can be found in
Ref. [110]). The constraint of real entries in the QUBO matrix
can be circumvented by an appropriate change of basis that
transforms the Hamiltonian into a purely imaginary form,
rendering U, = e " real, for example, as used in Ref. [77].
Following the formulation of McClean et al. [78], called the
time-embedded discrete variational principle (TEDVP), the
objective function to be minimized has the form

F =Y (HWIClW) ) —n Y (W @)le),  (12)

1t 1t
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half-field-space Hamiltonian employed appropriate boundary condi-
tions at the origin to independently solve for wave functions with
definite reflection symmetry.

where the n parameter has the same purpose as in Eq. (1)
and |, )|t) are compound states formed of the physical wave
function |¥,) and the time register |¢). The clock Hamiltonian®
C is defined as

A .
C=Co+52t:(l®lt><t|—U,s,®|t+8t><t|

— 0 @)@t + 8t + Tt +8e)(t +5t]),  (13)

with Cy a penalty term to select a particular (input) state at a
time ¢. For our purposes, like previous works of others, we will
use it to select the initial state |W¥;,) at r = 0 with Cy = (I —

J

2i+j72K722(_1)8iK+8jkcg§ + 25,“38”2[71(71(—1)5”( Zy (al;e,(z)c)l}?} + a;m,(z)c;mﬁ)’

i+j —2K-2 Sik+8 1k 1
—Ditj 1(_1) K jKCanf;’

Qa,i;ﬂ,j: 2K — ) )
i +j—2K 21(_1)5,/K+5,Kcér§’

2T KT S + 28apbi 2K D R (O

where, to accommodate both real and imaginary parts of a,
the index i resides in the range 1 < i < 2K, with 1 <i <K

“This is constructed in the context of superpositions of time slices
via projectors formed from [t)_ = %(U) — |t +61)).

-
—
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FIG. 9. Numbers of physical qubits required to map the QUBO
matrix from the Hamiltonian in Eq. (8) as a function of n, for a
fixed K = 2. The bands show results for two available D-Wave QAs,
2000Q and Advantage, with the lighter bands being extrapolations
using the last two points. The gray dot-dashed line represents the
ideal scaling, with Kn, qubits.

[Win) (Win|) ® |0)(0]. One issue that arises in using this method
with a QA is that the matrix elements of Us, are required to be
computed explicitly.

We extend the formulation of the Feynman clock to al-
low for complex values in the QUBO elements, following
Ref. [111]. In such a situation, Eq. (2) becomes

ny Xng

F(C) = Z Eaaﬁ Ca/g,
a.p

(14)

where @, is the complex conjugate of a,. Here C,p are matrix
elements of C — nf between basis states spanning |W,)|t), of
which there are ny X n,, where ny is the number of time slices
and ny is the number of basis states of the Hamiltonian. Since
C is Hermitian, terms in Eq. (14) can be written as, after the
summations,
ayagCop = ageagec}jg — agealﬂmcgg
+ ag“agecgg + aLma};mC(];;, (15)

which involves only real numbers. With this form, together
with Eq. (5) for the fixed-point representation of the real and
imaginary parts of a,, the elements of the QUBO matrix,
Qu.i:p,j» become

1<i,j<K
1<i, <K
ShIS (16)
1</, j<K
—aReOeim) 1< <K

(

for a®¢ and (K + 1) <i < 2K for a™, with i/ =i — K (the
derivation of this expression can be found in Appendix A).
The dimension of the QUBO matrix using nr time slices
with the TEDVP formalism is 2Knrn; x 2Knrn, [a factor of
(2n7)? times larger than that used to determine wave functions
of the Hamiltonian, as described in Sec. II].
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In the following sections we examine two systems of
physical interest to standard-model research, the time evo-
lution of a single plaquette of SU(3) Yang-Mills lattice
gauge theory and of a four-neutrino system, using Advantage.
Both of these systems have been simulated previously using
IBM’s superconducting quantum computers, with two and
four qubits. In studying these systems with Advantage, the fol-
lowing values of parameters were found to be effective: Ny =
103, Npyn = 20, K = 2, n = 0, and {Z", z™*} = {0, 14}. The
chain strength coefficient is fixed to @ = 0.2 and the default
annealing-schedule parameters (f4 = 20 ps) are used.

A. One plaquette in SU(3) Yang-Mills lattice gauge theory

Quantum simulations of non-Abelian lattice gauge the-
ories are anticipated to become increasingly important in
standard-model research. Progress toward this objective is
at its earliest stages, with simulations of small systems in
low dimensions underway using the available NISQ-era de-
vices, e.g., Refs. [[10,77,80,112-151]]. The Kogut-Susskind
Hamiltonian [152,153] provides one concrete framework for
quantum simulations of lattice gauge theories and is being
actively pursued with superconducting devices, trapped ion
systems, optical systems, superconducting radio-frequency
cavities, and QAs. Simulations of small systems have been
performed in one and two spatial dimensions, with sim-
ulations of the smallest three-dimensional systems barely
within reach of today’s devices. Extensive efforts are un-
derway to develop techniques to make simulations with this
framework more practical, for instance, integrating over the
gauge spaces at each lattice site [131,137]. Other mappings
of the gauge fields, for instance, quantum link models (e.g.,
Refs. [154-157]), spin systems, and the discrete sampling of
gauge fields (e.g., Refs. [158,159]) are under active explo-
ration. While the formal construction for quantum simulations
of non-Abelian gauge theories has been established for more
than a decade and concrete protocols for implementation on
quantum devices known for a comparable period of time, first
implementations appeared in 2016 using trapped-ion systems
[125] and soon after using superconducting [132] and op-
tical systems [134]. More recently, the first simulations of
SU(3) Yang-Mills theories were performed [80] of one and
two plaquettes, building upon previous simulations of SU(2)
plaquette systems [137] and one-dimensional SU(2) chains
[146]. These small systems can be simulated using D-Wave’s
annealers, as was first demonstrated for the SU(2) plaquette
systems in the work of A Rahman et al. [77].

The time evolution of one and two plaquettes in SU(3)
Yang-Mills gauge theory has been simulated using IBM’s
Athens quantum computer [80]. Both a local basis and global
bases were simulated, with the single plaquette a particularly
simple system with a minimal qubit footprint in the global
basis due to Gauss’s law restrictions. In this work we focus on
a one-plaquette system in the color parity basis, including the
states {|1), |3%), |6"), |8)}, which has the following Hamilto-
nian when mapped to two qubits:

. 23. . 5 . 5. .
H=g2<gl®l——2®l——I®Z—EZ®Z>
1 . . -z
- (V22X +V2X o —=
22 2

D>
B>

1,
+ ® +§Y®Y

N

+ (I +

N U

)®(i—2)—6i®i}. (17)

Here X, ¥, and Z are the Pauli matrices. The utility of color
parity arises from the Hamiltonian containing only the sym-
metric combination of the plaquette operator [J + (0" and the
trivial vacuum being even under color parity transformation.
Simulations performed with IBM’s Athens used a strong cou-
pling constant of g = 1. The system was time evolved using
a Trotterized decomposition of the evolution operator to en-
able an efficient mapping onto quantum circuits [80]. Both
first- and second-order Trotterizations were employed, using
a single step (6t = t) and multiple steps (¢t = t/2) for both.
Applying standard error mitigation techniques [for controlled-
NOT (CNOT) errors] and fitting systematic error estimation,
the vacuum-to-vacuum probability |(1|U;|1)|? (the vacuum is
the plaquette in the |1) = |0) ® |0) state) and the expecta-
tion value of the electric energy [the g* terms in Eq. (17)]
were computed as a function of time, as shown in Fig. 8 of
Ref. [80].

In the present work, using exact matrix exponentiation
of the Hamiltonian to determine the evolution operator
over the time interval 6, a QUBO matrix describing the
Feynman-clock evolution of this system was formed. Using
the techniques described in previous sections to find eigen-
states and energies, Advantage was used to evolve the SU(3)
plaquette system forward in time from an initial state of the
trivial vacuum. Results obtained for the vacuum-to-vacuum
persistent probability and for the energy in the electric field
using Advantage are shown in Fig. 10. These results are found
to agree with exact theoretical curves within uncertainties.
Further, the precision of the results is significantly better than
that obtained previously using IBM’s Athens [80].

B. Neutrino flavor dynamics in beam-beam collisions

Neutrino flavor dynamics is a major focus of research
in standard-model physics. While neutrinos are rendered
massless by dimension-4 operators in the standard model,
a result of the local gauge symmetries and particle content,
in particular the absence of a right-handed neutrino field,
the unambiguous observations of neutrino flavor dynamics,
and nonzero mass differences, provides unique insight into
aspects of physics beyond the standard model and the struc-
ture of higher-dimension operators. The connection between
lepton-number violating Majorana neutrino masses and in-
teractions that induce neutrinoless 88 decay of nuclei is a
strong theoretical motivation driving the current experimental
program(s) searching for such processes (for a recent re-
view, see, e.g., Ref. [160]). Nonzero neutrino masses, when
combined with standard-model electroweak interactions, have
implications for matter under the extreme conditions of den-
sity and temperature that are found in the early universe (see,
e.g., Refs. [161-163]) and core-collapse supernova (see, e.g.,
Refs. [162,164]) (for recent works, see, e.g., Ref. [165]).
Decades of work on this subject continue to uncover
new phenomena in neutrino dynamics in these environ-
ments, including the recent identification of dynamical phase
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FIG. 10. (a) Vacuum-to-vacuum probability 1(110,11))* and
(b) energy (in units of g*) in the electric field of the one-plaquette
system as a function of time (in units of 1/g*). The circles corre-
spond to results obtained using D-Wave’s QA Advantage with the
maximal number of zoom steps (z™* = 14), K =2, N, = 10° an-
neals, different time shifts 6z, and ny = 3 time steps {0, 8¢, 25t}. The
uncertainties correspond to the 68% confidence intervals determined
from N, = 20 independent runs. The dashed curves correspond to
the exact theoretical curves.

transitions in collective dynamics and correlations with
quantum entanglement [166—174]. With their importance in
transport from within the core, high-precision simulations of
the evolution of supernova require the inclusion of three-
dimensional neutrino distributions with detailed quantum
kinetics, a problem that has been estimated to lie beyond clas-
sical exascale computing. This has prompted the increasing
number of explorations of neutrino dynamics using quantum
simulations [81,175,176] and modern theoretical tools using
entanglement as an essential ingredient, e.g., tensor networks
[173,174,177], and with, for example, classical simulations
utilizing symmetries and matrix sparsity [178] to study sys-
tems currently beyond the reach of matrix product states.
These works constitute important explorations of the roles of
quantum information, entanglement, and real-time dynamics
in dense neutrino systems and make inroads into unifying
previously identified collective phenomena while searching
for new behaviors.

One such recent detailed study, which we parallel, by Hall
et al. [81], performed quantum simulations of systems of
N = 4 neutrinos, restricted to two active flavors and without
the inclusion of electroweak interactions with matter (such as
e*, u¥, and ¢, g) but with self-interactions. Using the known
mapping of the two-flavor neutrino system to quantum spin
models, it was simulated using IBM’s Vigo superconducting
quantum computer for a selection of parameters, including
mass differences and neutrino densities, using the effective

Hamiltonian,
N
H = Z (—A,- c0s 20,07 + A;sin 291;0;6)

1

N
+ K Z(l —cosb;j)o; -0}, (18)

i<j

where 0, is the flavor mixing angle (which is set to 8, = 0.195
for this model) and A; = 8m?/2E; is the strength of the one-
body term determined by the difference in neutrino squared
masses 8m? and the energy of each neutrino E;. The strength
of the two-body term « depends on the neutrino density and
electroweak couplings and 6;; is the angle between the mo-
menta of the ith and jth neutrinos. The spin operators a; act
in the two-dimensional neutrino flavor space v; = (v; ¢, V;, u)T.

For the test-case model simulation presented in Ref. [81], a
monochromatic neutrino beam is assumed, with E; = 8m? /4K
and with an anisotropic distribution of momentum direc-
tions 0;; = arccos(¢)|i — j|/(N — 1), with¢ =0.9,i.e.,01» =
Or3 = O34 = %arccos(;), 013 = Oy = %arccos({), and 614 =
arccos(¢ ). The time evolution of the system was determined
by first-order Trotterization of the evolution operator derived
from the Hamiltonian separated into neutrino-pair terms (as
opposed to one- and two-body operators) [81]. One of the
observables examined was the probability of the ith neutrino
transforming between flavors v, <> v,

Pi(t) = 5(¥ |1 F o] | W), 19)

starting with |W¢) = [v,v.v,v,) and with the sign depending
on the initial state of the system v;, (—) or v;, (+). The
results of those simulations can be found in Figs. 3 and 4
of their paper [81]. The evolution of flavor entanglement in
the four-neutrino system was also studied in Ref. [81]. The
single-neutrino entanglement entropy is given by

Si(r) = =Tr{pi(t) log, [pi(1)]}, (20)

where p;(t) is the reduced density matrix for the ith neu-
trino, with p;(¢) = Tr 4[| \V;) (W;|]. The concurrence was also
studied [81], and in this work we consider the logarithmic
negativity

Nij(t) =log, o)l 1)

where p;;(t) is the two-neutrino reduced density matrix for
the ij neutrino pair, I" indicates the partial transposition of p,
and || - ||; is the trace norm. The logarithmic negativity, related
to the concurrence, is an upper bound on the distillable en-
tanglement. The neutrino Hamiltonian in Eq. (18) is invariant
under neutrino exchanges 1 <> 4 and 2 < 3 [81]. This gives
rise to relations between observables, such as P;(t) = P4(t),
Si(t) = Sa(t), and Ni2(t) = N3a(2).

The results of our quantum simulations obtained using
Advantage are shown in Figs. 11 and 12. The implementation
of the clock state using the matrix representation of the exact
evolution operator between time slices, without Trotteriza-
tion into products of unitaries associated with neutrino pairs,
eliminates a significant source of (“theory”) systematic error
imposed by circuit-volume limitations of available devices
with different architectures, as can be seen by comparing the
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FIG. 11. (a), (b), (e), and (f) Probability of flavor transitions and
(c), (d), (g), and (h) single-neutrino entanglement entropy for the (a),
(¢), (e), and (g) first and fourth and (b), (d), (), and (h) second and
third neutrinos as a function of time (in units of 1/«). The results are
obtained using D-Wave’s QA Advantage with the maximal number
of zoom steps, K = 2, Ny = 10* anneals, different time shifts 8¢, and
ny = 2 time steps {0, §t} (they have been shifted slightly along the x
axis for clarity). (a)—(d) show the raw results, while (e)—(h) show the
results after two iterations of the procedure described in the text. The
uncertainties correspond to the 68% confidence intervals determined
from Ny, = 20 independent runs. The dashed curves correspond to
the exact theoretical curves.

results shown in Figs. 11 and 12 and the results presented in
Figs. 3, 4, and 6 of Ref. [81]. Further, and equally impor-
tant, the absence of systematic errors associated with device
performance in the simulation, dominated by CNOT gates and
subsequent mitigation procedures, improves the accuracy of
the simulations of this system that are possible with Advan-
tage compared with other quantum devices.

The uncertainties associated with the dynamics of four
neutrinos are considerably larger than for those associated
with the single plaquette of SU(3) Yang-Mills lattice gauge
theory, discussed in the preceding section. This is due to a
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FIG. 12. Logarithmic negativity of pairs of neutrinos as a func-
tion of time (in units of 1/k). The results are obtained using
D-Wave’s QA Advantage with the maximal number of zoom steps,
K =2, Ny = 10? anneals, different time shifts 8z, and ny = 2 time
steps {0, 6¢}. (a)—(f) show the raw results, while (g)—(1) show the
results after two iterations of the procedure described in the text.
The uncertainties correspond to 68% confidence intervals determined
from N,,, = 20 independent runs. The dashed curves correspond to
the exact theoretical curves.

larger QUBO matrix that is passed to the annealer and is
one indication of the scaling of the capabilities of Advantage
with increasing system size. Adding one more neutrino to the
system renders the problem intractable for Advantage as the
QUBO matrix will not fit onto its QPU.> Additionally, it can
be seen that the uncertainties for the logarithmic negativity
in Fig. 12 are larger than those of the single-neutrino en-
tanglement entropy in Fig. 11, which are in turn larger than

SWe attempted to study the N = 5 neutrino system with Advantage
by setting K = 1, but the results (and uncertainty estimations) ob-
tained were unreliable. One of the issues is that a,, with K = 1, only
takes two values {—1, 0}, requiring a large value of 7 to prevent the
null solution.
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the neutrino flavor transition probability, also in Fig. 11. The
study of such quantum correlations requires high-precision
calculations. In some cases, the wave functions |W,) are
determined with 10~'-1072 precision, which is seen to be
insufficient.

One way of improving the results (and reduce uncertain-
ties) is to increase the number of anneals Ny by a factor &.
As this leads to only a 1/4/€ reduction in the uncertainty
in energies, this (brute force) approach demands excessive
computational resources. A better method for reducing the
uncertainties is analogous to the multigrid method used in
Sec. III. The challenge here is that it is not straightforward
to define the Hamiltonian for a smaller system to provide
interpolating wave functions for the larger system [the four-
neutrino case is not continuously connected to the two- and
three- (or five-)neutrino systems]. We have found that using
the solution from the QA as a starting point for a subsequent
anneal, but with z # 0 (to narrow the window of a, that
the QA can explore), leads to approximately a one-order-of-
magnitude reduction in the uncertainty in the energy (while
only doubling the number of anneals). As an example, the
results obtained after two steps of this iterative procedure are
shown (in panels below the raw results) in Figs. 11 and 12 and
show clear reductions in the uncertainties.

This iterative procedure can be repeated several times until
no further improvement is obtained. For the four-neutrino
system, we obtain an ultimate precision of 107'¢ in the energy
and 1078-1071 in the flavor transition probability, single-
neutrino entanglement, and logarithmic negativity (as shown

@;}10‘2-; * | | | | | | I(a) I-

1075 ; 1

1078} * 1
10—11 L _

10—14 L Ey ¢ 1
§ 1— K\I,exact(t — l.l) \I/Adv(t —

$ P(t=11)
I.T b § Sit=11) T
1041 ( ] “| “I # i N12(t:1.1) |
(b)

1076 J

5ot o]

I ”' !IL

0 2 4 6 8 10 12 14 1I6
iterative step

a
1072

‘Xexact _ XAdv|

1078 H

10—10 H

FIG. 13. (a) Convergence of the ground-state energy and wave
function and (b) flavor transition probability, single-neutrino entan-
glement, and logarithmic negativity as a function of the number of
steps of the iterative procedure described in the text. The results are
obtained using D-Wave’s QA Advantage with the maximal number
of zoom steps, K =2, and Ny = 10° anneals. The uncertainties
correspond to 68% confidence intervals determined from N, = 20
independent runs.

in Fig. 13 for r = 1.1, in units of 1/k). It appears that the
success of this iterative method is due in part to the ground-
state energy of the TEDVP objective function being a priori
known to vanish.

In contrast to the calculations with IBM’s superconducting
hardware, where scaling to larger problems is limited by qubit
and gate fidelity, along with connectivity, for increasing qubit
requirements, the qubit footprint on the annealing devices
naively scales exponentially with the number of neutrinos.
This is expected to be mitigated using techniques that have
enabled classical computing to provide a series of precision
calculations in these model systems.

V. CONCLUSION

We have explored the potential of D-Wave’s quantum
annealers for simulating some key basic aspects of standard-
model physics. In particular, the eigenstates and energies of
the lowest-lying states of the harmonic oscillator and an-
harmonic oscillator were studied using zooming and a basic
coordinate-space multigrid (MG AQAE). Deviations in the
extracted energies were less than approximately 10~#. These
simulations are the basic elements of lattice scalar field theory
of importance, for instance, low-energy chiral nuclear physics
or high-energy Higgs physics. The time evolution of a sin-
gle plaquette of SU(3) Yang-Mills gauge theory truncated to
{I1), 13%), |6T), |8)} in the color parity basis and of neutrino
flavor in a monochromatic beam with angular dispersion were
also studied through a refinement of the Feynman-clock al-
gorithm, with deviations that can be reduced below 1078,
The results of our quantum simulations of the plaquette and
neutrino evolution were found to compare favorably with
previous quantum simulations performed using IBM’s super-
conducting quantum computers.

Except for the cases in which the Hamiltonian of interest
directly maps (or can be efficiently transformed) onto the
annealer, which is optimal for transverse-field Ising models
(e.g., Ref. [45]), with the current formulation, the qubit re-
quirements on the device scale with size of the Hilbert space.
Therefore, the maximum dimensionality of the systems that
we have considered in this work that can be addressed with
Advantage remains small. For the harmonic and anharmonic
oscillators, the maximum number of states in the decimation
of the field wave function that we could reliably simulate was
n, = 64. For time evolution, due to the extra 2ny factor in the
dimensions of the QUBO matrix, this decimation is reduced
to 16. Further, there is a somewhat unfortunate dependence
on the n parameter, although this can be partially mitigated by
performing a more structured scan, as shown in Ref. [56]. It
seems that paths forward for simulating quantum field theo-
ries require efficiently utilizing the innate Ising-Hamiltonian
architectures of the annealers, including the dynamics of the
annealing process. A step in this direction has been taken
in Refs. [179,180], which utilize the JLP field mapping to
qubits but not the quantum Fourier transform onto conjugate
momentum space, and has the potential to improve the scaling
of ground-state preparation. With the current formulation, the
main application can be the preparation of states which are
later used in universal quantum computers to perform time
evolution, acting as preconditioners to speed up the process of
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TABLE III. Comparison of the (average) time (in seconds) taken
to perform N, = 10* anneals for a specific problem size (fixed n; and
K) and for a single zoom step between the simulator neal, run on a
2.40-GHz Intel Core i9-9980HK CPU, and the quantum processor
Advantage (t4 = 20 us), with and without including the time for the
embedding.

TABLE V. Differences between the digitized energies and the
corresponding results obtained using D-Wave’s Advantage for the
AHO with m(z) =—4, A =1, and ¢ = 9, shown in Fig. 8, with
n, = 32, K = 3, Ny = 10, and the maximum number of zoom steps.
The uncertainties correspond to 68% confidence intervals determined
from Ny, = 20 independent runs.

Problem Advantage (without Advantage

size neal (s) embedding) (s)  (with embedding) (s)
ng=16,K=3 0.7 0.15 10.15
ng=32,K=3 20 0.20 100.20
ng=64,K=2 26 0.25 200.25

finding ground states using domain decomposition techniques
to reduce the size of the problem (for example, by computing
the angles to set up the wave function for a scalar field the-
ory [181]). A somewhat different implementation employing
Floquet engineering also has promise [182].

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics, In-
Qubator for Quantum Simulation under Award No. DOE (NP)
DE-SC0020970 (M.J.S.) and the Quantum Science Center,
a National Quantum Information Science Research Center
of the U.S. Department of Energy (M.L.). All calculations
performed on D-Wave’s QAs were through cloud access
[105]. We made extensive use of Wolfram Mathematica [101],
PYTHON [99,183], and JUPYTER notebooks [100] in the CONDA
environment [184]. This work was enabled in part by the use
of advanced computational, storage, and networking infras-
tructure provided by the Hyak supercomputer system at the
University of Washington.

APPENDIX A: THE QUBO MATRIX

In this Appendix, an outline is presented of the derivation
of expressions for the QUBO matrix used in Sec. II to compute
eigenstates and energies of a given Hamiltonian and in Sec. [V
to determine the timeevolution of an SU(3) Yang-Mills pla-
quette and a system of four neutrinos.

Starting from the objective function in Eq. (2) for the
eigenstates and energies of a given Hamiltonian and using the

n |8E’.:\dv732|
0 (25539 x 1073
1 (1.2415) x 10

fixed-point representation for the zoom coefficients in Eq. (5),

F = Zaaaﬁhaﬂ = Z |:Cl§) + Zzi_l(_z(_l)amqlq:|

apf apf i
x [af;) - sz“(—l)sfkqj’]haﬂ, (Al)
J

which consists of three different types of terms. The first type
is the product of a@al?, without ¢¢ variables. It provides
a constant offset to F', which does not modify the position
of the minimum and thus can be omitted from the QUBO
matrix. The second type comes from the product of terms
with g and ¢, which is of the desired form in Eq. (4), and
multiplied with a 2~%% zooming factor. The last type originates
from the product of ¥ with qf , which, as it involves a single

qf , naively has the potential to be problematic for forming

a viable QUBO matrix. The difficulty is averted by using a
defining property of binary variables, qf = (qf )%, leading to,
for example,

Y a@ > (— 12Kzl g,
af J
-t (gen)
B.J

= > Sapdij(—1)x2 Ky

ap,ij

fza@h 5. (A2)

TABLE IV. Differences between the digitized energies and the corresponding results obtained using D-Wave’s Advantage for the HO

with my = 1 and ¢x = 5 and the AHO with my = 1, A = 32, and ¢pax = 2.6, shown in Figs. 6 and 7, with n; = {16, 32,64}, K =

{3,3,2},

N4 = 10°, and the maximum number of zoom steps. The uncertainties correspond to 68% confidence intervals determined from N, = 20

independent runs.

n [SEAY 10140 [SEAY 32 4 [SEAY 0440 [SEAY18) s 1o [8EAY=32| spo [SEAY=0% s 1o
(24791 x 107¢ (3.9178) x 107° (12403 x 107° (3.4+2) x 107 (1.5739 x 107 (1.9%)1) x 107°
(3.6132) x 107° (9.673%) x 107° (3.6%02) x 107° (2.61186) x 107 (1.9 x 107 (2.7%03) x 107°

(1. 9+5§) x 107°
0.8y x 1073
(0.57%) x 1073
(292 x 107°

(9.8t;i) x 107°
(9.7753) x 1073
(1.6%53) x 107
(4. 7+66) x 1073

W\ kA WD = O

Q2. 8+°;‘) x 107°
(30733 x 107°
(8.010%) x 1073
(1. 3+°§) x 1074

(0.7+3%87) x 1073
(1.755%) x 107°
(0.675%) x 107¢
(1. 5+2°7) x 107°

2. 2+2;‘)x 1073
0.7458) x 1073
(6.37)%) x 107
(6. 1+4§)x 10~*

(83109 x 107°
(6.0%2%) x 107°
(53114 x 1073

1+'g) x 1073
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TABLE VI. Number of physical qubits required to map the
QUBO matrix for the two available D-Wave’s QAs, shown in Fig. 9,
with K = 2. The uncertainties correspond to 68% confidence inter-
vals determined from 20 different embedding with the same problem.

ng 2000Q Advantage
228 1249

8 8375 39™

16 3378 14178

32 146473 528124

64 2077728

As hyg is symmetric, the two contributions of this form give
the same contribution, leading to a QUBO matrix of the form,

as given in Eq. (6),
Qa,i;ﬂ,j =

2i+j72K72Z(_ 1 )5;](4»5»,-1( haﬁ

+ 28058, 27K (= 1) D " aPhy,p.
Y

(A3)

In order to reduce this four-index array into a more manage-
able matrix form, following Ref. [77], the indices « and i are
combined inton = K(o — 1) + i.

To construct the QUBO matrix for time evolution using
the Feynman-clock method, discussed in Sec. IV, the starting
point is to use Eq. (15) to write the objective function in
Eq. (14) as a real function, as required for implementation on

TABLE VII. Vacuum-to-vacuum probability [(00]U,|00)|?> and
energy in the electric field (Hg) of the one-plaquette system, as
shown in Fig. 10, with K =2 and N, = 10°. The uncertainties
correspond to 68% confidence intervals determined from N,,, = 20
independent runs.

ot t 1(0010;100)|? (He)

0.2 0 0.9999881, (0.6753) x 107
0.2 0.2 0.98027} 0.0537*13
0.2 0.4 0.9271+% 0.2018%%;
0.5 0 0.999956 ¢ (2.0M13) x 107
0.5 0.5 0.892174 0.3030*53
0.5 1.0 0.7139*% 0.82873;
0.7 0 0.99995%3, (0.3%33) x 1073
0.7 0.7 0.816%7, 0.535%%
0.7 1.4 0.6750* 7 0.903*5)
0.9 0 0.999997}, 0.9779) x 107
0.9 0.9 0.7435"1% 0.73814!
0.9 1.8 0.768%2, 0.645%3*

1.1 0 0.9999807 7 (0.9%53) x 107
1.1 1.1 0.69491) 0.877t§l

1.1 22 0.9239130 0.2261],
1.3 0 0.9999075, 04433y x 1073
1.3 13 0.67015 0.926173
1.3 26 0.995™7, 0.02573°

D-Wave’s QA,
FO =3 (ak
af
+ aémagec(%

Caﬂ—a aﬂC

+ a;ma},mcj};).

The rows and columns of the QUBO matrix are doubled in
length to accommodate the real and imaginary parts of each
coefficient a, = aR® 4 ia™. This is accomplished simply by
increasing the range of the i index from [1, K] to [1, 2K],
with 1 < i < K used for a®¢ and (K + 1) < i < 2K for a™.
Obtaining the expression for the QUBO matrix associated
with F(© follows straightforwardly from its derivation given
above for the corresponding QUBO matrix for eigenstates and
energies. For example, the first term in Eq. (A4) is analogous
to that in Eq. (6),

Z ageagecRe
af

(A4)

K
=S [

af i,j=1

+ 250[[;8,]2[ K— Z( 1)8,1( ZaRe (Z)Cyﬁ]qt q/ , (AS)
Y

where the sum over the indices i, j is over the range [1, K].
The last term in Eq. (A4) is also analogous, but with i, j
summed over [K + 1, 2K],

Im Im~Re
a,"ag C

B3>

[zif+j/2K2Z (—1 )Si/,(+5jr[( CR;
o
af i, j=K+1

4 280”38 2 —K— Z( 1)51’1( Zalm (N)Cyﬂ:|ql q] , (A6)

where 7’ is defined by i’ =i — K.

For the second and third terms in Eq. (A4), we employ
the same binary identity ¢* = (¢%)*, but keep in mind that
the indices i, j run over different values. For example, for the
agea}gm term,

- Y adpet
ap

K 2K
X[ 3

af L i=1 j=k+1
2K
Y Bupdi 2 K- 1)5’KZaRe‘Z>CIm
i,j=K+1
+ Za 582K (— 1)"‘261[’“ <Z>clm]q, q’.
i,j=1

(AT)
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TABLE VIII. The (raw) probability of flavor transitions P;(¢) and single-neutrino entanglement entropy S;(¢), as shown in Fig. 11, with
K = 2 and N, = 10°. The uncertainties correspond to 68% confidence intervals determined from N, = 20 independent runs.

dt t Pi(t) P (1) Pi(t) Py(t) S1(7) $H(1) S3(1) S4(1)

1.1 0 0.006573% 0.007374% 0.0053*2 0.0054748 0.05279 0.054 140 0.04173 0.044133
1.1 1.1 0.16372 0.12173! 0.144™2 0.2007% 0.420M3 0.277% 021113 0.408™38
22 0 0.009273) 0.0077%3] 0.0062*% 0.0070"33 0.0717% 0.057%% 0.0517% 0.056"¢,
22 2.2 0.2761° 0.143722 0.159"% 0.285%3; 0.785768 0.413172 0.3347133 0.74675]
33 0 0.005473! 0.005773] 0.005713¢ 0.0067% 0.04177¢ 0.042153 0.0497° 0.05173%
3.3 33 0.40713 0.095%% 0.10172} 041173} 0.9537}% 0.42673%° 0.43178 0.958"}%
44 0 0.0078732 0.00757% 0.0056™ 13 0.0058™5, 0.058"12 0.05975, 0.043719 0.048"4,
44 4.4 0.542%57 0.21213 0.240735 0.559"% 0.961737 0.5697%° 0.5757%3 0.968")3
5.5 0 0.0088™7} 0.009273] 0.0060"3? 0.0066"% 0.051733 0.05813¢ 0.051733 0.04373
5.5 5.5 0.727+3% 0.229*% 0.23476 0.737+32 0.760*2! 0.71533 0.670+41° 0.752*+%
6.6 0 0.0085+4¢ 0.0086*3 0.0092%37 0.0092+38 0.064+13 0.066*28 0.059+2 0.06742
6.6 6.6 0.782*% 0.201*3% 0.220+3; 0.782+4) 0.727+5) 0.695%, 0.703*83 0.741+¢2
7.7 0 0.0123*7% 0.0133+% 0.0066 "33 0.0083%22 0.087+4 0.082*5¢ 0.054+3 0.051+%
7.7 7.7 0.665% 0.3261% 028613 0.632+% 0.87313 0.803*87, 0.750+4 0.89513)
8.8 0 0.009*} 0.0083+¢] 0.0081%% 0.0065%58 0.065"53 0.059+2 0.0557% 0.0533
8.8 8.8 0.606™%) 0.280"% 02733 0.603%5} 094532 0.813*3 0.793"4 0.939+%1
9.9 0 0.0104+42 0.0106*55 0.0106"2 0.0106™5 0.078*% 0.079132 0.0750)8 0.077+38
9.9 9.9 0.45573 0.298731 02465 0.422%7¢ 0954118 0.834730 0.78714% 0.949130

TABLE IX. Probability of flavor transitions P;(¢) and single-neutrino entanglement entropy S;(¢), as shown in Fig. 11, with K = 2 and
N, = 103, after two steps of the iterative procedure. The uncertainties correspond to 68% confidence intervals determined from N, = 20
independent runs.

ot t Pi(1) Py(t) P3(t) Py(t) Si(@) Sy(t) S3(1) S4(t)

1.1 0  000013*" 000015  0.00010*;  0.00011°%  0.0018 >  0.0020 % 0.0013 *}! 0.0013 *}°
L1 L1 0155373 0.1205 % 0.1242 74 0.1586 137 03154 7% 0.0843 1% 0.0832 1% 03143 75
220 0000137 0000127  0.00008 ¥ 0.00011 %  0.0016 1 0.0015 *J! 0.0011 *3 0.0014 *7
22 22 0261079 0.1240 *23 0.1256 ¥, 0.2639 732 0.7437 1132 023772 0239712 0.7408 178
33 0 0.00007 *; 0.00007 3 0.00009 3 0.00008 *3 0.0009 *8 0.0010 *2 0.0012 *8 0.0010 4
33 33 0415973 0.0811 733 0.0810 72 0.4164 122 0.9785 1 0.3958 70, 03933 12 0.9788 *1¢
4.4 0 0.00013 *3 0.00012 7}  0.00010 3  0.00010 *} 0.0018 3 0.0016 *}! 0.0012 *§ 0.0014 72
44 44 05871172 0.2185 138 0.2185 %  0.5859 * ¢ 0.9593 734 0.5328 73 0.53257%°  0.9603 7}
55 0 0.00010 *§ 0.00011 *§ 0.00009 5 0.00014 7] 0.0013 73 0.0014 73 0.0013 8 0.0017 T3
55 55 071747 0.2088 45 0.2101 77 0.7202 33 0.7996 733 0.6434 50 0.6396 7 0.7967 172
6.6 0  000011F7  0.00013%  0.00011%5  0.00013%]  0.0016 *; 0.0016 *7 0.0013 *7 0.0017 *§°
6.6 6.6  0.7846 3¢ 0.1996 T} 0201275 0.7843 749 0.7339 7% 07041 *5; 07057 )7 0.7356 ¥
7.7 0  0.00014* 000014 *4  0.00006*]  0.00010*]  0.0017 *¢ 0.0018 *4 0.0009 *7 0.0013 3
77 17 0.6550 42 0.2978 3] 0.2911 73 0.6510 *4 0.8612 *%) 0.7497 *8 0.7477 538 0.8592 &2
8.8 0  0.00009*° 0000127  0.00011*7 000010  0.0012 1 0.0015 *7 0.0013 *7 0.0012 !
8.8 88  0.5607 3% 0.2562 7% 0.2540 735 0.5614 *8 0.9881 3 0.7755 753 0.7732 75 0.9874 38
9.9 0 0.00011 *§ 0.00011 *3 0.00009 ¢ 0.00008 T}'  0.0015 7% 0.0015 7§ 0.0012 3 0.0011 T3¢
9.9 99  0.3740 3 0.2593 4 0.2576 72 0.3740 13} 0.9464 +31 0.7991 13 0.7980 F33°  0.9466 3]
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TABLE X. The (raw) logarithmic negativity for the different neutrino pairs N;;(¢), as shown in Fig. 12, with K = 2 and N4 = 10°. The
uncertainties correspond to 68% confidence intervals determined from N,,, = 20 independent runs.

8t t Nio(t) Nis(1) Nis(t) Nos (1) Nau(t) Na(t)
1.1 0 0.107+32 0.063*4 0.053733 0.048%43 0.078%% 0.054%%
1.1 1.1 0.212*%, 0.12875} 0.417+38 0.073*10 0.186177 0.045%79
2.2 0 0.103*5] 0.068™% 0.088"3 0.048"% 0.0461%5 0.028™4
2.2 2.2 0.078*4 0.23811% 0.61171% 0.07175 0.21535 0.026719
33 0 0.05613¢ 0.033742 0.038738 0.049%32 0.064778 0.085™%
3.3 3.3 0.063*%7 0.194+8 0.735™% 0.068%7%5 0.197*% 0.0717%
4.4 0 0.120*34 0.057+3 0.0452 0.066™5, 0.0361% 0.052%3%
4.4 4.4 0.143"42 0.188*2 0.637% 0.133+1% 0.14214 0.126112¢
5.5 0 0.089*3] 0.06273% 0.059™42 0.0517% 0.06473 0.04273
5.5 5.5 0.3657%% 0.0587% 0361738 0.220*37 0.053733 0.349133
6.6 0 0.056%] 0.06212 0.074+1% 0.07813 0.08174 0.0757%
6.6 6.6 0.32176¢, 0.000™2’ 0.36355, 0.285M%, 0.000728 0.303*7
7.7 0 0.146735 0.047% 0.06173 0.04218 0.05573 0.040738
7.7 7.7 0.006¢8 0 0.63173 0.513*83, 0 0.000*¢
8.8 0 0.0767% 0.056153 0.072*33 0.08375 0.065™35 0.031+3
8.8 8.8 0.00075 0 0.76673 0.66373 0 0
9.9 0 0.088733 0.069733 0.067+% 0.076%3 0.07173 0.068™%)
9.9 9.9 0 0 0.837+47 0.71873%° 0.00072} 0
Collecting together the contributions, the following QUBO matrix for the Feynman clock is obtained:
21+j—2K—2z(_ 1)6;1(-&-5,-,(6(1;;
+ 808127 K (1) 3 (2a50OCRS — almOCED + ™), 1<i,j<K
_2i+j’72K72Z(_1)81K+8j/,<cl££’ 1<, j/ <K
Quisp,j = 2i’+j—2K—21(_l)éi/,(-&-éjkcérg’ 1<, j<K (A8)
2i'+j’—2K—ZZ(_1)8,-r,<+8j/,(cll}§
+8ap8i 2 KT (= 1)k Y (2aimOCRE — aBe Oy + aBeOCT), 1< <K

This can be somewhat simplified because C(% is antisymmetric while ng is symmetric, leading to the expressions given in

Eq. (15),
22K (A CRE 4 28,58, 27 K2 (= 1)K 3 (aBECRE 4 al™CCl), 1<ij<K
— 2 KRy, LSLj<K
Qo] = | gr4i-2k-2_p prcimcly. <<k A
2T K2 ()R CRE 4 28,587 2 KT (— 1)k Y (alm@OCRe — gReGicIm) 1 <A <K

APPENDIX B: MORE ON OUR RESULTS

The (average) time it takes to perform Ny = 10° anneals on
both the neal simulator and Advantage for the HO and AHO
Hamiltonians for a single zoom step from Sec. III is reported
in Table III. Regarding the time specific to the quantum pro-
cessor, it takes into account two separate steps. The first one is
the programming time, during which the values of the QUBO
matrix are transferred to the quantum processor (same for all
problem sizes, 8—15 ms). The next step is the annealing phase,
repeated N4 times, which is further decomposed into three
steps: the annealing time (¢4 = 20 us), the readout time (size
dependent, varying between 100 and 200 us), and the delay

time (the same for all problem sizes, 20.54 us), during which
the system is allowed to cool and reinitialized. For Advantage,
the time spent finding the embedding should also be taken into
account (although this part is not computed on the quantum
processor, but locally); therefore its contribution is shown in a
separate column.

Although the time required to find the configuration with
minimum energy is around an order of magnitude smaller for
Advantage than neal (increasing 4 would reduce this differ-
ence), the overhead time spent computing the embedding (not
needed for the simulator) inverts the situation. As mentioned
in Sec. III B, the embedding can be reused for the multiple
zoom steps. This is possible because the required connectivity
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TABLE XI. Logarithmic negativity for the different neutrino pairs N;;(¢), as shown in Fig. 12, with K = 2 and N, = 10, after two steps
of the iterative procedure. The uncertainties correspond to 68% confidence intervals determined from Ny, = 20 independent runs.

St t Nio(t) Nis(t) Nua(0) Nas (1) Nau(t) Nau(t)
1.1 0 0.016475 0.0085*78 0.0068™%) 0.0073752 0.0069"% 0.0063 133
1.1 1.1 0.0015+% 0.1948+133 0.4851+6¢, 0.0420+18} 0.1945+13% 0.0007$
22 0 0.0089*% 0.0053%3} 0.0076132 0.0053+¢2 0.0077+%; 0.0070*73
22 2.2 0.0173%3$ 0.2683 118 0.7316%¢1 0.0649113¢ 0.26505; 0.0190%}]
3.3 0 0.0051%55 0.0058"3; 0.0027+3) 0.0064 13 0.0036"17 0.0089773
33 3.3 0.0847+3 0.24951,5° 0.7827+% 0.081675 0.2515*% 0.085113]
4.4 0 0.0154*7 0.0076158 0.0076743 0.007173¢ 0.007573 0.0065*73
44 4.4 0.201373% 0.18052 0.684775% 0.156371%3 0.18167% 0.2038715%
5.5 0 0.0066"2 0.0088™2% 0.010173 0.0054757 0.0105*2) 0.007417¢
5.5 5.5 0.3155337 0.0869"% 0.4790"41* 0.262373; 0.0888" 1% 0.30761 151
6.6 0 0.008213 0.0081% 0.0107+% 0.0105+% 0.0101+4 0.0070%7
6.6 6.6 0.2342*)73 0 0.4603+143 0.4220+3° 0 0.2423+1%2
7.7 0 0.0174+% 0.0066"31 0.0077+45 0.0076152 0.0091+33 0.0073+3%
7.7 7.7 0 0 0.7085+% 0.61585} 0 0

8.8 0 0.0088%2; 0.0066"5) 0.0082133 0.0065%%% 0.0076759 0.0070%$
8.8 8.8 0 0 0.89927% 0.7624742 0 0

9.9 0 0.0098™1% 0.0054132 0.007372 0.006573) 0.0082733 0.0071753
9.9 9.9 0 0 0.9397"% 0.85547%% 0 0

between the different logic qubits does not change; only the
entries of the QUBO matrix change. More specifically, look-
ing at Eq. (6), the additional term obtained from the zooming
is added in the diagonal part of the QUBO matrix, where
o = fandi = j [the same argument can be used for Eq. (15)].
Table III does not take into account the time spent building the
QUBO matrix or analyzing the results, since these steps are
the same for both cases.

All of the results shown in the main text can be found
in HDF5 format [185] in the file SSMQA_data.h5, where
each set is labeled by the figure number, with additional
metadata to specify the parameters used during its pro-
duction and the dimension of the array (like the value of

Nun or the number of zoom levels). For the results re-
lated to Figs. 10—12, only the compound states |W,)|t) are
included.

Additionally, in the following tables we provide the val-
ues plotted in the figures from the main text. The results
shown in Figs. 6 and 7 are given in Table IV. The results
shown in Fig. 8 are given in Table V. The results shown in
Fig. 9 are given in Table VI The results shown in Fig. 10
are given in Table VIL.The results shown in Fig. 11 are given
in Tables VIII (raw results) and IX (after two steps of the
iterative procedure) and the results shown in Fig. 12 are given
in Tables X (raw results) and XI (after two steps of the iterative
procedure).
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