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Distributing entanglement in first-generation discrete- and continuous-variable quantum repeaters
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Quantum repeaters are used to overcome the exponential photon loss scaling that quantum states acquire as
they are transmitted over long distances. While repeaters for discrete-variable encodings of quantum information
have existed for some time, approaches for continuous-variable encoding quantum repeaters have only recently
been proposed. In this work, we present a method of using a discrete-variable repeater protocol to distribute
continuous-variable states and utilize it to compare the rates of continuous-variable entanglement distribution
between first-generation continuous- and discrete-variable quantum repeaters. Such a comparison allows us to
begin to benchmark the two quite different approaches.
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I. INTRODUCTION

The development of technologies according to the princi-
ples of quantum mechanics allows promising real world appli-
cations, including secure communication [1,2] and quantum
information transfer [3]. However, utilizing these technologies
over long distances remains challenging due to fiber loss or
free space attenuation [4]. A proposed method for allowing the
long-distance distribution of quantum states is the quantum
repeater [5]. In this model, the long distance is segmented into
smaller, more manageable attenuation lengths. Entanglement
is distributed along these lengths, followed by nested entan-
glement purification [6–12] and swapping [13–16]. By using
a quantum repeater, the exponential error probability scaling
with distance that would arise from direct transmission can be
overcome [17] regardless of whether discrete- or continuous-
variable encoded information is being sent.

Quantum repeater protocols have existed for discrete-
variable (DV) encodings since the mid nineties [5], and have
been through various iterations of protocol improvements
since then [4,18]. The evolution of quantum repeater protocols
has been broadly categorized into three distinct generations
[18,19]. First-generation repeaters are characterized by their
use of heralded entanglement generation between repeater
nodes and nested entanglement purification protocols [5,20].
While first-generation repeater protocols were limited due to
the time associated with two-way communication of success-
ful generation and purification, they were also much easier to
implement, given the state of the current technology. Second-
[21–23] and third-generation [24–27] protocols utilize quan-
tum error correction to be much more efficient and can achieve
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much higher communication rates. However, all protocols
have mostly been focused on sending discrete variable infor-
mation. Continuous variables provide an alternate approach to
encoding information, but have also suffered from the inabil-
ity to transmit them over long distances.

Recently, there have been several proposals for repeater
protocols that work with continuous-variable (CV) encodings
for the first time [28–33]. Such approaches are at the earliest
stage of their development but share many similarities with
the initial first-generation DV schemes [5,17,20]. The DV
and CV regimes of quantum information are subject to their
own unique advantages and disadvantages. For example, CV
encodings offer, in principle, easier state generation, manip-
ulation, and detection [34], and also the possibility of more
compatibility with existing telecommunications infrastructure
[35]. In the DV regime maximally entangled states are a
physically realizable resource, however the CV counterpart is
unphysical and requires infinite energy [36]. In considering
long-distance communication, loss has the effect of adding
noise to CV states, which is not the case for DV encod-
ings, though loss does affect the probability of successfully
establishing entangled links between adjacent nodes [2]. It
is of significant interest, therefore, to determine how these
first-generation continuous-variable quantum repeaters per-
form compared to their existing DV counterparts.

This work aims to answer this question by performing
a comparison between the first-generation CV and DV re-
peaters. In this comparison, we will compare how efficiently
both CV and DV repeaters can distribute CV entangled re-
source states. The performance metric we will use is the
repeater rate Rrep, which is the rate of generation of entangled
states, in units of entangled pairs per second. To ensure a fair
comparison we will compare the repeater rates of both CV
and DV schemes distributing two-mode squeezed states of a
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FIG. 1. Illustration of how we compare rates of two-mode CV
entanglement distribution between CV and DV repeater protocols.
DV repeaters may be utilized to distribute CV entangled states via
multimode discretized teleportation [39]; we have shown here this
teleportation protocol operating with a single mode. The box labeled
“BSM” corresponds to a Bell-state measurement needed for DV
teleportation. In our comparison we ensure that the distributed states
have the same amount of entanglement.

similar entanglement level. Both repeaters will be modeled
distributing a two-mode squeezed vacuum (TMSV) state (oth-
erwise known as an Einstein-Podolsky-Rosen pair [37,38]) of
form

|χ〉 =
√

1 − χ2
∞∑

n=0

χn |n〉 |n〉 , (1)

in the Fock photon-number basis, where χ controls or de-
termines the strength of the squeezing. The mean photon
number of one mode of this state is n̄ = χ2/(1 − χ2). A basic
conceptual diagram of the comparison is shown in Fig. 1.
While the CV repeater may be used to distribute CV entangled
states, in order to distribute these states via DV repeaters,
we use a CV teleportation technique [39] discussed in more
detail in Sec. II A. The essentials of our comparison are the
following: (i) both protocols aim to distribute an equal amount
of CV entanglement (TMSV state); (ii) the DV protocol uses
qubit distillation, entanglement swapping, and teleportation
techniques; and (iii) the CV protocol uses CV entanglement
swapping and noiseless linear amplification (NLA). This pa-
per is arranged in the following way: in Sec. II we review the
discrete-variable repeater protocol, illustrating how it can be
used to distribute continuous-variable quantum states. Then in
Sec. III we review the continuous-variable repeater protocol
from Ref. [31], as this is the protocol our rate comparison
focuses on. We discuss specifics of the rate comparison and
present results in Sec. IV before we summarize and conclude
in Sec. V.

II. DISCRETE-VARIABLE REPEATERS

The 1998 paper by Briegel et al. [5] introduced the concept
of a quantum repeater with the goal of overcoming exponen-
tial loss scaling and creating an entangled pair over arbitrary
large distances. The Briegel model, now known as a first-
generation quantum repeater, consists of three core elements:
entanglement distribution, entanglement swapping [13], and
nested entanglement purification protocols [6]. It in principle
allows one to generate a high-quality entangled state between

two remote parties, involving many quantum repeaters con-
necting them, with a polynomial scaling in resources—even
when exponential channel loss and imperfect local gates are
included. The protocol begins with the distribution of a num-
ber of entangled pairs between adjacent nodes in the repeater
network. Ideal operation of the repeater would achieve distri-
bution of perfect Bell pairs between nodes of the form

|�+〉 = 1√
2

(|01〉 |01〉 + |10〉 |10〉), (2)

where we have used dual-rail encoding, with |01〉 and |10〉
being orthogonal basis vectors spanning the two-dimensional
Hilbert space of the qubit. This pair would then be used for
subsequent rounds of entanglement swapping until a final pair
is produced between both ends of the channel. This ideal situ-
ation is unrealistic as we are using the pair source to generate
our entangled state. There will be both the vacuum state and
higher-order photon numbers that contribute to our resulting
state. Photon loss in the channel will cause our entangled
state to become mixed. Further, local gate operations within
the repeater nodes themselves will cause errors. A convenient
model for the errors induced by imperfect production is the
Werner state [40],

ρw = 4F − 1

3
|�+〉 〈�+| + 1 − F

3
I4, (3)

where I4 is the identity matrix of the two-qubit Hilbert space.
The state in Eq. (3) has fidelity F for the required pair |�+〉
but also contains a mixture of all the other Bell states. We ac-
knowledge this is a crude approximation to the real entangled
state that will be generated, but serves the purpose to illustrate
that the resulting entangled state distributed will not have
unit fidelity. With two pairs (labeled ρw12, ρw34) distributed
between three nodes, entanglement swapping [13] proceeds
as follows: a local joint Bell-state measurement is conducted
between qubits 2 and 3. The results of that measurement are
then sent via a classical communication channel to qubit 4,
where a Pauli correction is made on qubit 4 based on the out-
come of the measurement. The result is that a single entangled
pair is now shared between the outer nodes ρw14. Beginning
with two Werner pairs, each of fidelity F , the fidelity of the
swapped pair is given by [18]

Fswap = F 2 + (1 − F )2

3
, (4)

which is always less than the fidelity of the initial pair F .
Further, as a linear optical Bell-state measurement is used to
perform the swapping operation, the probability of success is
at most 1/2. In this way, as the channel length increases, so too
does the number of repeater nodes and therefore the number
of swapping operations that need to be performed. To prevent
degradation of entanglement from the entanglement swapping
operations, entanglement purification protocols are necessary
[6]. Entanglement purification proceeds by distributing two
pairs between two repeater nodes (whether these be adjacent
or at longer ranges). Within each node, a unitary is applied to
the qubit of one pair and the qubit of the second. Following
those unitary operations, one of the pairs is measured, with
the first entangled pair being kept if the measurement results
are the same and discarded if the measurement results are
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FIG. 2. The quantum repeater operation for discrete variables.
This illustration shows how the repeater protocol from Ref. [5]
may operate. Beginning with the initial entanglement distribution
of many entangled pairs between each node, subsequent rounds of
entanglement purification and swapping follow, resulting in a single
entangled pair held between both ends of a long-distance channel.

different. In this way, two entangled pairs of fidelity F can
result in a single entangled pair of fidelity [6]

Fpur = F 2 + 1
9 (1 − F )2

F 2 + 2
3 (1 − F ) + 5

9 (1 − F )2
, (5)

where the fidelity of the purified pair Fpur is higher than that
of the initial two pairs. Entanglement purification is proba-
bilistic, and the probability of successful purification depends
on the fidelity of the initial pairs [6],

Ppur = 1

4

[
F 2 + 2

3
(1 − F ) + 5

9
(1 − F )2

]
, (6)

where we have included the factor of 1/4 that arises from
the use of linear optical gates. Therefore, while entanglement
swapping may be used to distribute entanglement over a long
channel using many repeater nodes, the unfortunate conse-
quence of using imperfect pairs means fidelity will degrade
for longer channels. Entanglement purification is required at
longer distances to circumvent this, the cost being the wait
time for the purification to succeed and the extra entangled
pairs that are needed.

In operating the entire repeater, the number of pairs ini-
tially distributed will depend on both the number of nodes
along the channel and the fidelities of the required final
pair and the initial distributed pairs. As an example of how
the entire repeater protocol might operate, consider Fig. 2.
The protocol begins by distributing many different copies of
entangled pairs between the nodes. The initial distribution is
followed by one round of purification, taking two entangled

FIG. 3. Scheme to teleport CV states using DV entangled re-
sources using the protocol from Ref. [39]. An input CV state is
split on an array of beam splitters, with each mode then teleported
individually using a qubit teleportation protocol (pictured in blue
inset). This qubit teleportation protocol consists of a Bell-state mea-
surement (BSM) after mixing the input state with the entangled pair,
followed by a unitary (U) conducted on the other mode according to
the results of the BSM. As the mean photon number of the input state
increases, so does the number of modes. When all qubit teleporters
are successful, the modes are recombined on another beam-splitter
array.

pairs to a single entangled pair of higher fidelity. A Bell-state
measurement is conducted at the second and fourth nodes,
and after the correction, depending on the measurement out-
come, entanglement is held between the first and third nodes
and the third and fifth nodes. Further rounds of entangle-
ment purification and swapping follow. After all rounds of
purification and swapping have succeeded, entanglement is
held between both ends of the long channel. We note that
with low-fidelity initial pairs, many rounds of entanglement
purification will be required to produce an end pair of high
target fidelity. Additionally, for operation with many repeater
nodes, the many rounds of entanglement swapping will de-
grade the fidelity such that entanglement purification will be
necessary to achieve an end pair of high target fidelity. Both
of these aspects will be important factors governing the rates
achievable with DV repeaters discussed later in Sec. IV.

A. Teleporting CV states using DV resources

Using the DV repeater protocol outlined in the previous
section, we may achieve distribution of discrete-variable en-
tangled resource states. By employing a specific teleportation
protocol, we may use these entangled resource states to tele-
port any continuous-variable quantum state. This teleportation
protocol, conceived by Andersen and Ralph in 2011 [39],
is pictured in Fig. 3 and proceeds as follows: An input CV
state to be teleported is split on an array of beam splitters
(N-splitter) which split the state evenly among many differ-
ent modes. The number of modes is dependent on the size
(average photon number) of the input state. Each mode is then
input into its own discrete teleportation protocol (pictured in
the blue inset in Fig. 3). Here, entangled states are distributed

052604-3



DIAS, WINNEL, MUNRO, RALPH, AND NEMOTO PHYSICAL REVIEW A 106, 052604 (2022)

FIG. 4. Quantum repeater for continuous variables from Ref. [31]. (a) Single-node implementation with asymmetric distribution of TMSV
entangled states. The arm of the entanglement that has passed through the lossy channel is then acted upon by a probabilistic NLA to distill the
entanglement. Results in this work focus only on NLA implementations with a single-photon quantum scissor, therefore NLAs are depicted
here by the yellow boxes labeled “QS.” The two entangled states are then combined in a dual homodyne detection, with classical signals sent
to both ends of the channel to make displacements accordingly. (b) The repeater is scaled up over larger distances using nested entanglement
swapping. Pictured here is the three-node implementation.

between both ends of the channel. Distributed dual-rail en-
tangled states are then converted to a single-rail encoding
such that (ideally) |01〉 |01〉 + |10〉 |10〉 → |0〉 |0〉 + |1〉 |1〉.
This transformation can be done deterministically using adap-
tive phase measurements [41]. Then, the sender mixes each
of the modes with their qubit of the Bell state and conducts
a Bell-state measurement. Results of the measurement are
communicated classically to the receiver, who then conducts a
unitary operation to the other qubit of the entangled pair. This
results in each reduced amplitude mode being teleported indi-
vidually. After successful teleportation of all the modes, they
are then coherently recombined on an N-splitter. When all the
ports of the N-splitter register |0〉, the output state has been
recombined and the teleportation is successful. In our com-
parison, we restrict ourselves to low energy states and so set
the number of modes to 1, significantly simplifying the setup.

III. CONTINUOUS-VARIABLE REPEATERS

Let us now briefly review the CV repeater protocol
from Ref. [31]. Like its discrete-variable counterpart, the
CV repeater from Ref. [31] contains entanglement distribu-
tion, entanglement swapping, and entanglement distillation.
However, each of these elements are different from the pre-
viously described discrete versions so as to be compatible
and effective on continuous-variable encodings of quantum
information.

This repeater protocol is based on an earlier CV repeater
protocol [28], which itself is based on a protocol to correct
CV states against loss errors [42]. The protocol begins by
distributing CV entangled resource states between ends of the
channel (or nodes of the repeater). These entangled resources
states are the TMSV states given in Eq. (1). Distribution of
these states is performed asymmetrically, with one arm of
the entangled state passing through the lossy channel while
the other arm of the entangled state remains in the repeater
node. Entanglement distillation is performed on the arm of
the entanglement that has been decohered by loss via the NLA

[43]. We focus on the single-photon (N = 1) quantum scissor
[44] implementation of the NLA. After successful operation
of the NLA, the entangled states are combined and a joint
homodyne detection is performed at the repeater node. Posts-
election is used on the measurement results, accepting results
that are close to zero. On successful outcomes, the results of
this measurement are sent to both ends of the channel and
a displacement is performed according to the results of the
homodyne detection.

As the total channel distance scales up, more segments
of the channel are required to overcome the drastic effect
of loss over very long distances. In this repeater, entangle-
ment is distributed in each segment, distilled via the NLA,
and then connected via nested entanglement swapping. Thus,
entanglement distillation only occurs directly after entangle-
ment distribution and not at any time after. This is shown in
Fig. 4(b), where three-repeater-node implementation is pic-
tured. In this setup, two copies of the protocol from Fig. 4(a)
are used to distribute entanglement between Alice and the
middle node and Bob and the middle node. Following this,
the modes at the central repeater node are then combined and
entanglement swapping is performed via homodyne detection
with postselection. For even longer distances and more seg-
ments of the channel, the repeater protocol is scaled up via
nesting the entanglement swapping in this way. We note that in
this CV repeater, entanglement distillation (via NLA) is prob-
abilistic, and due to the use of postselection, the entanglement
swapping is also probabilistic.

IV. RATE COMPARISON

We have now reviewed all the protocols utilized in our
comparison of DV and CV repeater rates. Our goal in this
work is to compare the rate of distribution of CV entanglement
[rather than quantum key distribution (QKD) key rates] that
can be achieved using CV and DV resources. While there are
many factors that can affect performance of the repeaters that
cannot be directly compared between CV and DV regimes,
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FIG. 5. Distributing CV states using DV repeaters. By employ-
ing the discretized teleportation protocol from Ref. [39], we may
distribute CV entangled states over large distances using only DV
entangled resources. First-generation DV repeaters may be used to
distribute DV entangled pairs over large distances. Once the DV
repeater is successful in distributing an entangled pair, the dual-rail
entangled pair will need be to converted to a single-rail encod-
ing. The boxes labeled “DSC” represent the dual-rail to single-rail
conversion [41]. The entangled pair may then be used for qubit
teleportation of a CV state provided the input photon number is low.
The qubit teleportation involves conducting a joint BSM on the input
and one qubit of the entangled pair, followed by a unitary (U) applied
to the other qubit in the entangled pair, depending on the outcome of
the measurement.

our efforts to make the comparison fair will be outlined in
this section. Before presenting a detailed discussion we give a
succinct summary of our assumptions:

(1) Photon production, squeezed state production, detec-
tion, and memory are assumed ideal in both cases.

(2) Propagation loss must be corrected by NLA in the CV
case. Propagation loss is heralded in the DV case but reduces
the probability of success.

(3) Operations in the DV system are more complicated
and require high-quality Bell pairs. We recognize this by
“handicapping” the DV system by limiting the fidelity of the
initially distributed Bell pairs.

Input states to both repeaters will be two-mode Gaussian
squeezed vacuum states [Eq. (1)]. Distribution of these states
using the DV repeater will follow the protocol pictured in
Fig. 5, whereby the DV repeater is used to generate entangled
pairs between ends of the channel, and those entangled pairs
are then used for teleportation of the CV input state. It is
worthwhile to note that teleportation of CV states in this
way requires multiple modes if the average photon number
is greater than 1. Therefore, this approach will require many
DV repeaters running in parallel to achieve distribution of CV
states of high mean photon number.

We are comparing the DV repeater distribution protocol
pictured in Fig. 5 to the CV protocol in Fig. 4. Here the

CV repeater is used to generate entanglement between both
ends of the channel. While the entangled states will be de-
cohered somewhat due to the elements in both repeaters, we
are comparing situations where the output of both DV and
CV protocols have the same amount of entanglement. The en-
tanglement measure we use is the entanglement of formation
(EOF) [46].

While the operations that take place at each node are dif-
ferent in the CV and DV protocols, we approximately allocate
the same resources to both repeaters by firstly ensuring we
compare the same number of nodes. Additionally, we make a
number of idealized assumptions about both protocols, includ-
ing perfect efficiency photon sources and perfect efficiency
detectors as well as ideal memories. We do, however, have to
be careful about how we treat the entangled source used in
the DV repeater. Here we consider two situations: the ideal
case where a deterministic source is available and a second
one built from the pair source (here we assume our entangled
state is generated with an either 10% or 1% probability). We
also only assume linear optics capabilities with these rate
comparisons. As an example, this means that each entangle-
ment swapping operation in the DV repeater carries an extra
1/2 factor in the probability of success due to the linear optics
construction of the Bell-state measurement. Our comparison
also takes into account the time needed for classical commu-
nication of successful results and allowing all probabilistic
operations to succeed assuming finite resources. This was
achieved following the methods in Refs. [47,48], respectively.

Given the previously outlined assumptions and restrictions
on this comparison, we present in Fig. 6 the repeater rate,
in units of entangled pairs per second as a function of total
channel distance in kilometers. The results in Fig. 6 show the
entanglement generation rates for both DV and CV repeaters
for varying numbers of repeater nodes along the channel and
varying initial infidelities of the DV entangled resource pairs.
Here, we have modeled both the DV and CV protocols dis-
tributing an entangled state of the same EOF. We emphasize
that the repeater rates of entangled pair distribution in Fig. 6
are not for pure, maximally entangled pairs; instead, each data
point produces the same EOF, and the rates among the CV
and DV schemes may be compared. The EOFs were chosen
to optimize the secret key rate of CV QKD [31]. That is, the
CV repeater is working in a high-fidelity and highly Gaussian
regime where the truncation noise due to the first-order NLA
is small.

In discussing the results of Fig. 6, let us acknowledge the
general behavior of the repeater rate and distributed EOF as
a function of the tunable parameters. For the CV scheme, the
tunable parameters are the gain of the NLA and the squeezing
of the TMSV sources in each node. For results in Fig. 6, the
CV repeater parameters have been roughly optimized over
gain and squeezing (optimized for secret key rate), and we
note that for longer distances optimal operation of the CV
repeater occurs for lower squeezing (7- and 15-node results
in Fig. 6 use χ = 0.11 and χ = 0.08, respectively). For the
DV scheme, there are two tunable parameters governing the
final EOF: the target fidelity of the final pair FT and the
squeezing χ of the TMSV state input into the discretized
teleporter (lower half of Fig. 1). In order to achieve as fair
a comparison as manageable, we aim to use TMSV sources
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FIG. 6. Entanglement generation rates for CV and DV repeaters. In all figures, the colored lines correspond to DV repeater rates, with the
red dotted line showing the outcome assuming deterministic (P0 = 1) pair production of all required entangled pairs. The green dashed lines
show the rates if this pair production was probabilistic with a success probability of 10%. The purple dot-dashed lines show the rates if this pair
production was probabilistic with a success probability of 1%. The black solid lines show the rates of the CV repeater from Ref. [31]. As we
wish to compare the rates fairly, we allocate the same number of repeater nodes to each scheme, with the number of nodes labeled accordingly.
(a) DV rates assuming an initial fidelity of all pairs to be F0 = 0.85. (b)–(d) DV rates for initial fidelities F0 = 0.90, F0 = 0.95, and F0 = 0.99,
respectively. Lower initial fidelities will require more rounds of purification to achieve the target output state, yielding lower repeater rates.
The CV (black solid) lines in all plots are the same. Also shown is the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound [45] assuming a
source rate of 1 MHz (gray dashed line).

of the same squeezing strength in both CV and DV schemes.
Then we match the output EOF of both schemes; this sets a
certain target fidelity FT of the final pair in the DV scheme,
where the final pair is used for qubit teleportation. In Fig. 6,
the one- and three-node results use the same squeezing for
both CV and DV schemes (χ = 0.32 and χ = 0.17, respec-
tively, corresponding to mean photon numbers of n̄ = 0.11
and n̄ = 0.03). However, at 7 and 15 nodes, the CV repeaters
use such low squeezing and produce relatively high EOF that
the DV repeaters were unable to achieve this same EOF (even
with a perfect fidelity final pair FT = 1, see Appendix). For

these results at 7 and 15 nodes, the CV squeezing used was
χCV = 0.11 and χCV = 0.08, respectively; however, the DV
squeezing was increased to χDV = 0.3. While the resource al-
location may not be perfectly the same in this specific aspect,
we emphasize that all the points in Fig. 6 produce entangled
output states of the same EOF. The EOF for all results in Fig. 6
ranges from 0.04 to 0.11 in units of ebits.

Now that we have established reasonable grounds for a fair
comparison, we can discuss the performance of the repeater
rate. For the DV schemes, this is heavily impacted by the
fidelity of the initial pairs generated between nodes, as low
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initial fidelities will require more rounds of purification. In
Fig. 6 we give the repeater rates for various initial fidelities
from F0 = 0.85 in Fig. 6(a) to F0 = 0.99 in Fig. 6(d). Note
that in Fig. 6, the CV rates (black solid lines) are the same in
Figs. 6(a)–(d), as we are only varying the initial fidelities of
the entangled pairs in the DV schemes. At F0 = 0.85, the most
drastic decrease in repeater rate is witnessed, with the 15-node
results needing a total of 10 rounds of purification, resulting
in a maximum repeater rate on the order of 10−22. Con-
versely, with an initial fidelity of F0 = 0.99, the DV repeater
can achieve the target EOF with no rounds of purification
needed at all, thus achieving the maximum rates. Further, the
one-node results in Figs. 6(a)–(d) are all the same, with no pu-
rification rounds needed to achieve the target EOF. However,
as distance is increased, so too is the need for more repeater
nodes and thus more rounds of entanglement swapping, which
then introduces the need for entanglement purification. In
this way, we can observe that while the single-node results
are the same for Figs. 6(a)–(d) (F0 � 0.85), the three-node
DV results are the same for Figs. 6(b)–(d) (F0 � 0.90), and
the seven-node results are the same for Figs. 6(c) and 6(d)
(F0 � 0.95). In all aforementioned cases, the results are the
same because no rounds of purification are needed to achieve
the target EOF from these initial fidelities.

From the results in Fig. 6, we can see that the single-node
CV repeater rate overlaps with the single-node DV determin-
istic rate. For higher distances using more repeater nodes, the
DV rates are either better or worse than the CV repeater rates,
depending on the initial fidelity of the distributed pairs and
the source probability. In particular, we can see that all the
DV repeater rates are significantly worse than the CV repeater
rates for 15-node operation with initial fidelity of F0 = 0.85
or F0 = 0.90. However, all DV rates are better than the CV
repeater rates for 15-node operation when the initial fidelity is
F0 = 0.99. From this, we can see that access to high-fidelity
pairs may produce faster entanglement distribution with DV
resources and operations; however, CV schemes may be more
useful when this is not the case.

Additionally, it can be seen in Fig. 6 that while we have
restricted the number of repeater nodes to certain fixed dis-
tances, this does not represent optimal operation in all cases.
For example, in Fig. 6(c), the repeater rate for the DV de-
terministic case (red dotted line) specifically for seven nodes
will achieve faster rates over three-node operation at some
distances less than 1200 km and also faster than 15-node
operation at some distances greater than 1800 km. This can
be seen by the position of the red dotted line for seven nodes
in Fig. 6(c), relative to the red dotted lines for 3 and 15 nodes.
In this specific case, optimizing the repeater rate would result
in seven-node use for a wider range of distances beyond what
is shown in the plot of Fig. 6(c). However, for simplicity and
ease of comparison between different initial fidelities, we have
fixed all the node operations to be within certain distances.

As the average photon number of one arm of this two-mode
squeezed state is less than one, the results in Fig. 6 present
the DV teleporter operating on one mode only, even though it
could operate with multiple modes (as in Fig. 3). Future work
in this comparison could benefit from examining distribution
of high-energy CV states requiring multiple DV modes to
distribute. Further, it should be mentioned that the DV scheme

is using significantly more Werner states than pair sources in
the CV situation. The design of the CV scheme requires one
TMSV source per node. The DV scheme we consider here
uses one TMSV source as input (which in principle could be
split among many physical modes if the photon number is
high), and it also requires many DV entangled pair sources.
The number of DV pair sources required depends on the num-
ber of nodes, which determines the number of entanglement
swapping rounds, but is predominately affected by the initial
fidelity, which determines the number of entanglement purifi-
cation operations needed. As an example, the DV results for
15 nodes shown in Fig. 6 are given for F0 = 0.99 in Fig. 6(d),
which require no purification, and thus 24 = 16 pairs are re-
quired for distribution along the 16 segments of the channel.
However, the results for 15 nodes at initial fidelity F0 = 0.85
in Fig. 6(a) require 11 rounds of purification, which results
in 211+4 = 215 total pairs needed for this protocol. This high
number of necessary purification rounds is due to the low ini-
tial fidelity compounded by the four rounds of entanglement
swapping needed to connect entanglement over the entire 16
segments. In light of the large variation in the number of DV
pair sources required, one may want to consider normalized
rates, but this is left for future work as it is not clear how a fair
comparison could be done in such a case.

V. CONCLUSION

In summary, there is no clear-cut answer as to which
repeater is more efficient in this highly simplified and ideal-
ized comparison. Our simplistic comparison assumes perfect
sources and detectors as well as infinite memory coherence
times. With single-node operation, the CV repeater rate over-
laps with the DV (deterministic source) repeater rates. At
larger distances and more nodes, the more efficient scheme
depends on the source probability and fidelity of the DV en-
tangled pair sources. If many rounds of purification are needed
in the DV scheme, the rates achievable via CV schemes will
easily surpass the DV rates. Therefore, if one is only able to
establish lower fidelity links between repeater nodes, employ-
ing DV strategies may not be more efficient at all.

We also emphasize that our comparison here is limited to
low-energy input states and low EOF distribution (E < 0.11
ebits). Attempting to distribute higher-energy CV states via
DV resources would require multiple DV repeater modes
running in parallel, which would undoubtedly slow rates. In
the CV protocol we consider in this work, this would re-
quire NLAs implemented with higher-order quantum scissors
(N > 1) [49]. This would also yield a significant reduction
in entanglement distribution rates, as the success probability
of the NLA decreases exponentially with order of quantum
scissors N . We expect the aforementioned effects would likely
also be the case for distribution of high EOF states. Nev-
ertheless, our result highlights how DV resources may be
effectively utilized to distribute CV states. While our compar-
ison is limited to early repeater protocols of both CV and DV
encodings, it would also be of considerable interest to examine
how optimizations of the protocols we consider in this work
affect the rate of entanglement distribution. In particular, we
expect significant performance increases as the second- and
third-generation CV repeater schemes are developed.
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APPENDIX: RATE COMPARISON

In this Appendix, we give further details of the calculations
necessary to achieve Fig. 6 of the main text—specifically, how
we match the amount of entanglement in the output states of
CV and DV repeater protocols. After matching the amount
of entanglement in the output states, we have calculated the
repeater rates for successful operation of the schemes, includ-
ing all necessary probabilistic operations with finite resources
and classical communication times following the methods
presented in Refs. [47,48].

1. Continuous variable

Firstly, the CV repeater results shown are the upper bound
results given in Ref. [31]. These results were produced in a
high-fidelity and highly Gaussian regime where the trunca-
tion noise due to the single-photon NLA is small. For each
data point, the first and second moments of the output state
yield the covariance matrix of an equivalent Gaussian state
from which we can calculate the Gaussian entanglement of
formation (GEOF) [50,51] of the distributed entangled state.
Recall that while the output states of the CV repeater are
not exactly Gaussian, as noted earlier, we are operating the
repeater in a highly Gaussian regime. Also note that for two-
mode Gaussian states, the exact entanglement of formation
coincides with the GEOF [51,52].

2. Discrete variable

In the DV case, teleportation of one arm of the TMSV state
[Eq. (1)] is performed using the CV teleportation protocol
from Ref. [39] with a Werner state [Eq. (3)] of target fidelity
FT as the entangled teleportation resource. We consider oper-
ating the teleportation protocol from Ref. [39] with a single
mode, which is possible as χ is kept small. The protocol is
pictured in Fig. 7. The input state to be teleported and the
entangled resource state have the combined form

ρ1234 = |χ〉12 〈χ |12 ⊗ ρw34, (A1)

FIG. 7. DV teleportation protocol with a TMSV state input. After
distribution of a noisy entangled pair [modeled by a Werner state ρW ,
Eq (3)] is completed via the DV repeater, that pair is used for CV
teleportation via the protocol from Ref. [39]. When this teleportation
protocol is implemented with a single mode, we have the scheme
pictured above. The input state (TMSV) is combined with one of the
entangled qubits of the distributed Werner state (ρW ) and a joint BSM
is conducted, followed by a unitary operation (U) on the other qubit
depending on the outcome of the measurement.

FIG. 8. Entanglement of formation of the output state [Eq. (A2)]
of the DV teleportation protocol. The entanglement of formation
depends on both the squeezing of the input state χ and the fidelity
of the Werner pair used as the resource state for teleportation. The
four values of χ shown here of χ = 0.32, 0.17, 0.11, and 0.08 were
used to generate the CV results in Fig. 6 for 1, 3, 7, and 15 nodes,
respectively.

where |χ〉12 is given by Eq. (1) and ρw34 is given by Eq. (3).
Recall that while we consider distributing dual-rail entangled
states (see Sec. II A), they are converted to a single-rail encod-
ing before teleportation.

A Bell-state measurement on modes 2 and 3 followed by
the corresponding unitary transformation on mode 4 gives the
following output state:

ρ14 = 1

χ2 + 1

⎡
⎢⎢⎣

2FT +1
3 0 0 χ

(
4F−1

3

)
0 2χ2

( 1−FT
3

)
0 0

0 0 2−2FT
3 0

χ
( 4FT −1

3

)
0 0 χ2

( 2FT +1
3

)

⎤
⎥⎥⎦,

(A2)

in the {|00〉 , |01〉 , |10〉 , |11〉} basis. Note that the output
[Eq. (A2)] is an entangled state of two qubits because of the
single-mode teleporter. Additionally, since the output is an
entangled state of two qubits, we can easily compute its exact
entanglement of formation [53].

The EOF of this output state of DV protocol output is
limited by the fidelity of the final pair FT and the strength
of the squeezing of the TMSV input state. In Fig. 8, we show
the EOF of this protocol as a function of the fidelity of the
distributed entangled resource state ρ̂W . The four lines given
in Fig. 8 are for χ = 0.32, 0.17, 0.11, and 0.08 and correspond
to the values used for the CV results in Fig. 6 for 1, 3, 5, and 15
nodes, respectively. It can be seen that the EOF for low values
of χ is limited even with perfect target fidelity pairs (FT = 1).
This is particularly evident in the curves for χ = 0.11 and
0.08, which are the values used for CV operation with 7 and
15 nodes, respectively, and this is the reason the DV schemes

052604-8



DISTRIBUTING ENTANGLEMENT IN FIRST-GENERATION … PHYSICAL REVIEW A 106, 052604 (2022)

were allowed access to squeezing of χ = 0.3 for the 7 and 15
node results—it was necessary in order to match the EOF of
the output to the CV scheme.

We need to remember that the initial EOF of the input
TMSV states with low squeezing is also low, however, the CV
repeater is able to output states of higher EOF than the EOF
of the TMSV input state. In the DV scheme, while we are able
to distill the DV pairs to arbitrary high fidelity, once we use

that pair for teleportation of one arm of an entangled state, the
output EOF of the teleported entanglement can never surpass
the EOF of the input state. In this comparison, by matching
the EOF of the DV output to the CV output, this sets a certain
target fidelity FT that is required for teleportation. The number
of rounds of purification needed to reach this target fidelity
thus varies according to the target fidelity itself as well as the
initial fidelty of the pairs distributed between nodes.
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