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Controlled quantum teleportation in the presence of an adversary
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We present a device-independent analysis of controlled quantum teleportation where the receiver is not trusted.
We show that the notion of genuine tripartite nonlocality allows us to certify control power in such a scenario.
By considering a specific adversarial attack strategy on a device characterized by depolarizing noise, we find
that control power is a monotonically increasing function of genuine tripartite nonlocality. These results are
relevant for building practical quantum communication networks and also shed light on the role of nonlocality
in multipartite quantum information processing.
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I. INTRODUCTION

Controlled quantum teleportation (CQT) is a paradigmatic
multipartite quantum communication protocol where a third
party (or parties) determines the success or failure of quantum
teleportation [1]. In the standard quantum teleportation proto-
col [2], an arbitrary qubit is teleported from Alice to Bob using
maximally entangled Einstein-Podolsky-Rosen (EPR) states.
This idea has found applications in several quantum informa-
tion schemes such as quantum gate teleportation [3], cluster
state quantum computing [4], and quantum repeaters [5].
Controlled quantum teleportation is an important multipartite
extension of bipartite quantum teleportation [1]. CQT is an
integral part of the design of quantum teleportation networks
(QTN) that could form the backbone of the future quantum
internet [6–9].

In the simplest CQT scheme, the success or failure of
teleportation of a qubit from the sender to the receiver can
be decided by a third party, also known as the controller,
Charlie [1]. This scheme works under the assumption that all
parties are trusted, i.e., their devices and measurements are
working exactly according to the specifications provided by
the supplier. However, this is often not the case in real applica-
tions. There may be physical imperfections in the devices and
measurement directions, which can not only lead to a lower
teleportation fidelity but also can be used by an adversary
to control the success or failure of teleportation. In scenarios
where the precise knowledge of the underlying quantum state
and measurement settings is not available, the framework of
device-independent (DI) quantum information processing can
be useful [10].

Traditionally, the notion of Bell nonlocality has been
used for DI quantum information applications [11]. Bell
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nonlocality refers to the phenomenon in which correlations
obtained by performing local measurements on distant entan-
gled states cannot be explained by any local hidden variable
(LHV) model [12]. Bell nonlocality is often quantified by the
violation of Bell inequalities. In applications such as DI quan-
tum key distribution (DIQKD) [13], the violation of a Bell
inequality strictly bounds the information leaked to an eaves-
dropper. Other notable applications of DI analysis include
randomness amplification [14] and obtaining computational
advantages [15]. What makes the DI formulation so powerful
is the minimalism in assumptions regarding the functioning of
the devices involved; it relies only on the observed measure-
ment outcome correlations.

Recently, a stronger form of Bell’s inequality has been
used in the DI study of a multipartite quantum communication
protocol called secret sharing [16]. A secret bit is split among
n − 1 parties in such a way that at least m � n − 1 parties
must collaborate to reveal it. Moreover, up to n − 2 parties
can be untrusted. It was shown that the maximal violation
of Svetlichny’s inequality [17] guarantees that no information
is leaked to an untrusted receiver. For nonmaximal violation,
it was observed that the larger the Svetlichny inequality vi-
olation, the smaller the information leaked to the untrusted
parties. In Ref. [16], the secret message was a classical bit,
whereas a quantum secret sharing protocol can also share
qubits. In the tripartite case, a quantum secret sharing (QSS)
protocol becomes equivalent to a CQT protocol where Alice’s
secret qubit can be recovered by Bob if and only if Charlie
assists [18]. This naturally leads one to ask what the role and
nature of nonlocality is in the DI analysis of QSS where the
secret is quantum. A first step towards that goal would be
to study DI tripartite QSS or equivalently, DI CQT. While
DI quantum teleportation of a qubit was published close to a
decade ago [19], a DI study of CQT is still an open question.

In this work, we consider a CQT scenario where the re-
ceiver is untrusted. The receiver can collude with an external
eavesdropper to increase the fidelity of teleportation beyond
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the classical limit even when the controller has not allowed it.
Despite the allowed collusion and depending on the nature of
the device used, it might still be impossible for Bob to achieve
a teleportation fidelity as high as that with Charlie’s participa-
tion. Therefore, an untrusted receiver may lead to a decrease in
control power but not entirely nullify it. We quantify the effec-
tive control power in this scenario and show that the maximal
violation of the Svetlichny inequality guarantees maximum
control power. We also show that the effective control power
is nonzero for a significant range of the Svetlichny inequality
violation where it is monotonically increasing. Finally, we
emphasize the necessity of genuine tripartite nonlocality in the
DI certification of the CQT scheme. We discuss the relevance
and importance of these results in Sec. V.

II. BACKGROUND

A. Control power in CQT

The controlled quantum teleportation protocol is similar
to the standard quantum teleportation protocol with an added
step. The objective is to teleport an unknown qubit from Alice
to Bob only with the permission of the controller, Charlie.

(1) Let Alice, Bob, and Charlie share a GHZ state of the
form (|000〉ABC + |111〉ABC )/

√
2. It can be equivalently ex-

pressed as (|φ+〉AB|+〉C + |φ−〉AB|−〉C )/
√

2. Henceforth, the
subscripts A, B,C will be dropped.

(2) Charlie performs a projective measurement in the σX

basis and gets an outcome γ ∈ {±1}. His measurement oper-
ators are given by

Mγ

C = (I2 + γ σX )

2
; γ ∈ {±1}. (1)

After Charlie’s measurement, Alice and Bob’s joint state can
be written as

ρAB
γ = trC

[
ρGHZ

(
I ⊗ I ⊗ Mγ

C

)]
(2)

= |φγ 〉〈φγ |. (3)

(3) Let the arbitrary state to be teleported be

ρa = I2 + �a · �σ
2

. (4)

Alice performs a Bell state measurement on the first two
qubits of the state ρa ⊗ ρAB

γ . The Bell state measurement is

described by the following measurement operators:

MA
c0c1

= |φc0c1〉〈φc0c1 |, (5)

where

|φ00〉 = |00〉 + |11〉√
2

; |φ01〉 = |00〉 − |11〉√
2

,

|φ10〉 = |01〉 + |10〉√
2

; |φ11〉 = |01〉 − |10〉√
2

.

After Alice’s measurement, Bob’s state is projected into

ρB
c0c1

= I2 + (Rc0c1γ �a) · �σ
2

, (6)

where

R0,0,+1 = I3; R0,1,+1 = Rz(π ),
R1,0,+1 = Rx(π ); R1,1,+1 = Ry(π ),

R0,0,−1 = Rz(π ); R0,1,−1 = I3,

R1,0,−1 = Ry(π ); R1,1,−1 = Rx(π ). (7)

Rx(π ), Ry(π ), Rz(π ) represent rotations by π along the three
orthogonal directions.

(4) Now Bob performs an R−1
c0c1γ

rotation to retrieve ρa,

ρB = I2 + (
R−1

c0c1γ
Rc0c1γ �a

) · �σ
2

= I2 + �a · �σ
2

= ρa. (8)

The average fidelity of teleportation between the unknown
pure state (ρa) and Bob’s final state (ρB) is calculated as

F =
∫

d�a
4π

〈a|ρB|a〉, (9)

where the averaging has been performed over all pure qubit
states. Henceforth, we will refer to the average fidelity of
teleportation performed with Charlie’s participation as FC and
that without Charlie’s participation as FNC . From Eqs. (8)
and (9),

FC =
∫

d�a
4π

〈a|I2 + �a · �σ
2

|a〉 = 1. (10)

Suppose Charlie does not reveal γ . Bob will randomly per-
form either R−1

c0c1,+1 or R−1
c0c1,−1. In that case, the average

teleportation fidelity is given by

FNC =
∫

d�a
4π

∑
γ ,γ ′∈{1,−1}

∑
c0,c1∈{0,1}

P(γ , γ ′, c0, c1)〈a|I2 + (
R−1

c0c1γ
Rc0c1γ ′ �a

) · �σ
2

|a〉 = 2

3
. (11)

The higher the difference between the above fidelities,
the higher the control. The control power (P) of Charlie is
therefore expressed as follows [20]:

P = FC − FNC = 1 − 2
3 = 1

3 . (12)

B. Device-independent certification of quantum resources used
in teleportation

In the usual two-party teleportation protocol using EPR
states, Bancal et al. [19] suggested a construction by which

it is possible to device-independently certify whether a tele-
portation device is using quantum resources. Alice and Bob
are given a pair of black boxes that supposedly perform the
quantum teleportation of a qubit. The input of each box is a
unit vector of the Bloch sphere. Alice’s box takes the state
to be teleported as the input given by the vector �a and out-
puts two bits (c0c1) ∈ {0, 1}2. In the black box scenario of
teleportation, it is assumed that Alice knows the state to be
teleported. Bob’s box takes a vector �b as input and gives one
bit output β ∈ {+1,−1}. �b represents a measurement of the
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teleported state in the �b · �σ direction. The vendor claims that
their boxes contain EPR states, using which the teleportation
is performed on each run. Alice and Bob wish to verify the
vendor’s claim. In Ref. [19], it was shown that it is possible
to infer a posteriori whether the black boxes used quantum
resources to perform the teleportation from the input/output
statistics of the boxes.

In a teleportation protocol, Alice is typically required to
send (c0, c1) to Bob such that he can perform the appropriate
corrective rotation based on some preestablished agreement
to prepare the unknown qubit. However, it was shown [21]
that two classical bits of information are enough to simulate
the statistical correlations of the maximally entangled singlet
state. Hence, a black box certification of quantum resources
is not possible if Alice communicates with Bob. There-
fore, Alice and Bob do not reveal any of their measurement
input/output until several (ideally infinite) rounds have been
completed. Each round consists of the pair of boxes taking
inputs (�a, �b) and giving outputs (c0c1, β ). In the end, they can
construct the probability distributions P(c0c1, β|�a, �b). Alice
and Bob have no knowledge of the inner working of the com-
posite black boxes except that they are not communicating. It
is also assumed that Alice and Bob have free will. At the end
of the protocol, the only information they have is the data table
of inputs and outputs (c0c1, β|�a, �b) for each round. Using this,
they must test whether the source of correlations is quantum.
This scenario can be easily mapped into a Bell scenario.

Let Alice choose from state settings { �a1, �a2} and Bob
choose from measurement setting { �b1, �b2}. Alice’s black box
gives two bits (c0, c1) as the output, which must be mapped
to one bit. This can be done by choosing α = 2c j − 1 if
Alice’s input is a j . Thus, one can construct the distributions
P(α, β| j, k) from P(c0c1, β|�a, �b). Finally, the Clauser-Horne-
Shimony-Holt (CHSH) Bell function can be calculated as

CHSH =
∑

j,k∈{0,1}
P(α = β| j, k) − P(α 	= β| j, k). (13)

If CHSH > 2, it is guaranteed that the pair of black boxes
generate statistical correlations that are not possible to ob-
tain using only classical resources [12]. In other words, if
CHSH > 2, it is certified that quantum resources are being
used for teleportation.

III. DEVICE-INDEPENDENT CONTROLLED
TELEPORTATION OF A QUBIT TO AN UNTRUSTED

RECEIVER

Here we consider the controlled teleportation scenario
where a qubit in the possession of Alice (sender) is teleported
to Bob (receiver) only when Charlie (controller) participates.
However, we assume that Bob is not a trusted party. Bob
can collude with external agents henceforth labeled Derek
to extract extra information that can increase the fidelity of
teleportation beyond the classical limit of 2/3 even without
Charlie’s participation. The presence of an untrusted receiver
does not necessarily imply that the controller has no impact on
the teleportation fidelity. In spite of the allowed collusion and
depending on the nature of the device used, it might still be
impossible for Bob to achieve a teleportation fidelity as high

as that with Charlie’s participation. In this section, we address
the question of how to device-independently certify control
power in such a scenario.

The goal of a CQT protocol is to ensure that Charlie can
control whether quantum resources are being used for tele-
portation. Hence, it is necessary to first certify that the given
device is capable of using quantum resources for teleportation.
We will present a construction using which it is possible to
certify whether quantum resources are being used for con-
trolled teleportation to an untrusted receiver.

The idea of certification of quantum resources used in
black box teleportation described in Sec. II B can be adapted
for black box controlled teleportation.

A. Scenario

Derek supplies three black boxes to Alice, Bob, and
Charlie that can allegedly perform controlled quantum tele-
portation of a qubit such that Charlie is the controller, Alice is
the sender, and Bob is the receiver. The ideal functions of the
three black boxes are as follows:

(1) Charlie’s black box accepts a measurement setting
�c ∈ S2 as input and upon measurement gives an outcome
γ ∈ {+1,−1}.

(2) Alice’s black box accepts the state to be teleported
�a ∈ S2 as input and upon Bell measurement [Eq. (5)] gives
an outcome s0s1 ∈ {0, 1}2.

(3) Bob’s black box performs a corrective rotation R−1
s0s1�cγ

which is specified in the instruction manual of the device.
It accepts a measurement setting �b ∈ S2 as input and upon
measurement gives an outcome β ∈ {+1,−1}.

In an ideal CQT scheme, the shared state of Alice’s, Bob’s,
and Charlie’s black boxes is the Greenberger—Horne—
Zeilinger (GHZ) state (|000〉 + |111〉)/

√
2. The analysis of

this ideal scheme has been shown in Sec. II A. The control
power of Charlie for the ideal CQT scheme is P = 1

3 .
However, we do not assume anything a priori regarding the

inner working of the black boxes—including the underlying
composite state of Alice, Bob, and Charlie and their individual
measurement basis. Additionally, we do not trust the receiver
Bob. Therefore, Alice and Charlie are trusted and Bob is
untrusted.

B. The adversary

In the above scenario III A, let Bob be the untrusted part
and Derek be the eavesdropper. Together, they play the role of
an adversary.

1. Adversarial goal

The goal of the adversary is to maximize the average
teleportation fidelity when Charlie has not allowed the tele-
portation, i.e., not revealed the input setting �c and the outcome
γ of his measurement.

2. Adversarial capabilities

(1) The eavesdropper Derek is restricted to acting on indi-
vidual signals separately.
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(2) Derek can generate the shared states of the black
boxes, i.e., hold the common source of correlations, but has no
direct access to the input/output variables of the three parties.

(3) The untrusted party, Bob, can correlate his inputs with
that of the common source of correlations held by Derek.

(4) Derek and Bob can jointly extract another outcome δ

that can be potentially used to increase the fidelity of tele-
portation. This means that the corrective rotation performed
by Bob can also depend on δ. This extra capability of the
adversary allows us to write Bob’s corrective rotations as
R−1

s0s1�cγ δ
in contrast to R−1

s0s1�cγ in the ideal scenario.

C. Device-independent test of quantum resources

In order to account for the adversary, we consider here a
modification of the ideal scenario of Sec. III A:

1. Device-independent test scenario

(1) Derek is the manufacturer and supplier of the black
boxes of Alice, Bob, and Charlie.

(2) Alice’s, Bob’s, and Charlie’s black boxes cannot com-
municate with each other.

(3) Charlie’s black box accepts a measurement setting out
of two distinct choices �c ∈ { �c0, �c1} as input and upon mea-
surement gives an outcome γ ∈ {+1,−1}.

(4) Alice’s black box accepts the state to be teleported
out of two distinct states �a ∈ { �a0, �a1} as input and, upon Bell
measurement [Eq. (5)], gives an outcome s0s1 ∈ {0, 1}2.

(5) Bob’s black box performs a corrective rotation R−1
δ

given to him by Derek. It accepts a measurement setting
out of two distinct choices �b′ ∈ { �b′

0,
�b′
1} as input and, upon

measurement, gives an outcome β ∈ {+1,−1}. Equivalently,
the corrective rotation can be included in the measurement of
Bob such that the new measurement choices are �b = { �b0 =
R−1

δ
�b′
0,

�b1 = R−1
δ

�b′
1}.

(6) Alice and Charlie independently choose their individ-
ual measurement setting. Their choice of measurement setting
depends only on their free will. However, Bob’s choice of
measurement setting can be influenced by Derek. Therefore,
the untrusted receiver does not have free will.

(7) We require that the announcement of inputs and mea-
surement outcomes be made simultaneously by all parties
after several rounds of the experiment have been completed.
This ensures that the inputs or outcomes of the trusted parties
are not used to the advantage of the untrusted party.

(8) The announcements at the end of several rounds of
sending in inputs and recording outcomes from each black box
will be a table of (s0s1, β, γ ) given ( j, k, l ) for each round
where j, k, l denote the input setting (0 or 1) of Alice, Bob,
and Charlie, respectively. From this data, the joint probability
distribution p(s0s1, β, γ | j, k, l ) can be computed.

For the purpose of device-independent testing, we require
that Alice’s output s0s1 be mapped into a single bit α in the
following way:

α = 2s j − 1 , where Alice’s input is �a j .

Using this map, one can construct the distributions
P(α, β, γ | j, k, l ) from P(s0s1, β, γ | j, k, l ). We note that the
choice of input merely indicates that each party can choose to

FIG. 1. DAG representation of the causal model where 
 is the
common source of correlations supplied by Derek. In a classical
model, 
 is a shared random variable, whereas in a quantum model,

 is a potentially entangled quantum state ρ. Here J, K, L denote the
inputs of Alice, Bob, and Charlie, respectively. A, B, C denote the
outcomes of Alice, Bob, and Charlie, respectively. Note that since
Bob is untrusted, he can correlate his inputs with that of the common
source of correlations.

press one out of two buttons. It is assumed that the parties do
not know which measurement basis the buttons correspond to.

2. Causal structure of the device-independent test scenario

The formalism of directed acyclic graphs (DAG) [22] will
be used in later sections to characterize the correlations gen-
erated in the DI scenario of CQT with an untrusted receiver.
The causal structure of inputs, outcomes, and common source
of correlations of the different parties involved can be rep-
resented in the following way using DAG: In Fig. 1, each
directed edge represents a causal relation between two nodes.
The start of each edge is called the parent node and the
arrival of each edge is called the child node. In a classical
causal model, the source of correlations and all other nodes
are random variables such that the parent nodes completely
characterize a child node.

The explanation of how to interpret the DAG in Fig. 1 is as
follows:

(1) The node 
 represents the common source of correla-
tions (the underlying state in the black boxes) supplied by the
eavesdropper Derek.

(2) J, K, L denote the inputs (measurement choices) of
Alice, Bob, and Charlie, respectively. A, B, C denote the
outcomes α, β, γ of Alice, Bob, and Charlie, respectively.

(3) The arrows from 
 to A, B, and C represent the fact
that the outputs of Alice, Bob, and Charlie depend on the
underlying state of their black boxes.

(4) The arrows from J, K, L to A, B, C respectively rep-
resent the dependence of the outcomes of each party on the
choice of their measurement setting.

(5) There are no arrows from the input or outcome of one
party to another because their black boxes are not allowed to
communicate with each other (Sec. III C 1).

(6) Since the inputs of the trusted parties Alice and Charlie
can be independently chosen (measurement setting choice
independence/free will), J and L have no parent nodes.

(7) Since Bob is untrusted, his input may be correlated
with that of the common source of correlations. Hence, Bob
does not have measurement independence. The arrow from
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 to K represents the fact that Bob’s choice of measurement
setting depends on the information he receives from Derek
through the black box.

(8) Extra arrows from inputs/outcomes from one party
to another were avoided due to the requirement that all an-
nouncements be made simultaneously at the end of several
rounds.

If {vi}n
i=1 denotes the nodes of the graph,

p(vk|v1, v2, ..., vn) = p[vk|pa(vk )], where pa(vk ) denotes all
parent nodes of vk . Thus, the joint probability distribution of
all the nodes is given by p(v1, v2, ..., vn) = �vi p[vi|pa(vi )].

Therefore, in the causal structure with an untrusted receiver
(Fig. 1), if 
 is a classical random variable then the joint
probabilities must admit the following decomposition:

p(αβγ | jkl ) =
∑

λ

p(α| jλ)p(β|kλ)p(γ |lλ)
p(k|λ)p(λ)

p(k)
.

(14)

3. Bell inequality characterizing the device-independent test
scenario

In Ref. [22], it was shown that the following DAGs are
equivalent:

This means that the DAG representing the device-
independent scenario of controlled teleportation with an
untrusted receiver (leftmost DAG) is equivalent to the broad-
casting scenario (rightmost DAG). Broadcasting represents a
scenario where one or more parties can openly communicate
their choice of input to other parties. Here, in the rightmost
DAG it is seen that Bob communicates his choice of input to
Alice and Charlie.

In Ref. [23], the Bell inequalities characterizing the broad-
casting scenario were studied. In the case of n parties, out of
which n − m parties broadcast their inputs to all other parties
and the remaining m parties do not communicate their input
to any other party, the tight bound to a specific Bell inequality
called the Svetlichny inequality was found.

The Svetlichny function involves distributions of the form
p(αβγ | jkl ) which is obtained from the device-independent
test rounds.

S =pA(+1 | 0)CHSH(+1)0 − pA(−1 | 0)CHSH(−1)0

+ pA(+1 | 1)CHSH′
(+1)1 − pA(−1 | 1)CHSH′

(−1)1,

(15)

where pA(α | j) is the marginal probability of Alice, CHSHα j

and CHSH′
α j refer to symmetries of the CHSH inequal-

ity given by CHSHα j = Eα j
(+1)0 + Eα j

(+1)1 + Eα j
(−1)0 − Eα j

(−1)1

and CHSH′
α j = Eα j

(+1)0 − Eα j
(+1)1 − Eα j

(−1)0 − Eα j
(−1)1, and Eα j

kl =∑
β,γ=+1,−1 βγ p(β, γ | j, α, k, l ) is the expectation value of

the measurement outcome of Bob and Charlie conditioned on
a given outcome α and the input j of Alice.

The result from Ref. [23] that we will use in this chapter is
given by the following statement:

For the broadcasting scenario where n − m is odd, |S| �
2(n−m)/2+3/2.

Moreover, this bound is tight, i.e., there exists a classical
strategy (
) such that |S| = 2(n−m)+3/2.

In the broadcasting scenario of our interest (rightmost DAG
in Fig. 2), n = 3 and n − m = 1. Therefore, in this case,

|S| � 4. (16)

Using this result [Eq. (16)] and the equivalence of DAG
(Fig. 2), we can immediately state the following:

Theorem 1. Any probability distribution p(αβγ | jkl ) ad-
mitted by the DAG representing the device-independent test
scenario of controlled quantum teleportation with an untrusted
receiver (as defined in Sec. III C 1) using classical strategies
must satisfy the Svetlichny inequality |S| � 4. Moreover, this
bound is tight.

Condition for certification of quantum resources: If
the Svetlichny inequality |S| � 4 is violated, it is guaranteed
that the observed probability distribution p(αβγ | jkl ) was not
generated entirely by classical means. Hence, the source of
correlations (
) must be quantum.

4. Comparison with the device-independent scenario of fully
trusted controlled quantum teleportation

In controlled quantum teleportation where all parties are
trusted, it is easy to see that the device-independent test
scenario is represented by the DAG given in Fig. 3. This
device-independent scenario is certified to be quantum if
the obtained correlations violate Mermin’s inequality [24].
A maximal violation of Mermin’s inequality implies that the
underlying state is the GHZ state, therefore guaranteeing max-
imum control power. However, it was shown in Ref. [16]
that there exists a local model in the broadcasting scenario
of Fig. 2 that violates Mermin’s inequality maximally. Since
the device-independent scenario of controlled teleportation
with an untrusted receiver is equivalent to the broadcasting
scenario (Fig. 2), Mermin’s inequality is not sufficient for its
certification.

The presence of an untrusted part makes it necessary to use
a stronger notion of nonlocality also known as genuine tripar-
tite nonlocality/Svetlichny nonlocality for the certification of
controlled teleportation.

5. When is the controller’s authority maximum?

Theorem 2. Controller’s authority is maximum with P = 1
3

in the controlled quantum teleportation scheme if S = 4
√

2 is
obtained from the device-independent test.

Because of the normalization of pA(a | j), to achieve the
maximum quantum violation S = 4

√
2, we must necessarily

have CHSH(−1)0 = CHSH′
(−1)1 = −2

√
2 and CHSH(+1)0 =

CHSH′
(+1)1 = 2

√
2. For any given α and j, Charlie and Bob’s

joint state must maximally violate the CHSH. Only maximally
entangled two-qubit pure states can generate such a correla-
tion.

Thus, by the monogamy of entanglement, ρBCD = ρBC ⊗
ρD, where ρBC is a maximally entangled pure state of Bob
and Charlie. This means that if S = 4

√
2, then Derek cannot

remain entangled to Bob’s and Charlie’s devices.
Now suppose the same device which yielded S = 4

√
2

during the device-independent test is used for the standard
controlled quantum teleportation scheme (Sec. II A). If Char-
lie does not give permission to teleport, i.e., does not reveal

052433-5



GANGOPADHYAY, WANG, MASHATAN, AND GHOSE PHYSICAL REVIEW A 106, 052433 (2022)

FIG. 2. DAG equivalence.

γ l , then p(δ = γ l ) = 1
4 . This reflects the fact that Derek’s

state is separate from Bob and Charlie’s composite state
and therefore cannot obtain information about their systems
by performing local operations on his system. Essentially,
it means that Bob has no extra information about what the
corrective rotations R−1

s0s1γ l are beyond what the trusted parties
Alice and Charlie choose to reveal.

Alternatively, we note that only the maximally entangled
GHZ state |000〉+|111〉

2 (up to local unitary operations) violates
the Svetlichny inequality maximally, i.e., gives S = 4

√
2. It

directly follows that Derek’s state must be separated from the
tripartite state of Alice, Bob, and Charlie since the maximally
entangled GHZ state is a pure quantum state. The controller’s
authority for the GHZ state was derived in Sec. II A and P was
shown to be 1/3.

IV. CONTROLLER’S AUTHORITY FROM NONMAXIMAL
VIOLATION OF SVETLICHNY INEQUALITY

In Sec. II B we proposed a setup using which the Svetlichny
function can be computed. We showed that a maximal vi-
olation of the Svetlichny inequality [Eq. (16)] implies that
Bob can get no useful information from Derek to increase
the average teleportation fidelity without Charlie’s permis-
sion. This ensures that the controller’s authority is maximized.
However, one can expect that the controller’s authority will
not be maximized in case of nonmaximal violation of the
Svetlichny inequality.

In this section, we study the quantitative relationship be-
tween genuine three-way nonlocality and the controller’s
authority using the example of two specific families of quan-

FIG. 3. DAG for the device-independent test scenario of fully
trusted controlled quantum teleportation. Note that there are no
arrows from 
 to K , unlike the scenario of untrusted receiver consid-
ered earlier. Here, all parties have measurement choice independence
and there is no communication between each other.

tum states. We consider two noise models of the tripartite
GHZ state—the total depolarizing channel and the qubit
depolarizing channel—and compute the controller’s authority
as a function of Svetlichny inequality [Eq. (16)] violation.
We consider a specific attack strategy using which Bob can
try to increase the average fidelity of teleportation without
Charlie’s permission. This strategy is based on the assumption
that Alice, Bob, Charlie, and Derek are restricted to per-
forming quantum operations on their respective systems—no
joint quantum operations allowed between any two parties.
Charlie’s authority will be quantified by the effective control
power (Peff ), which we define as

Peff = F NE
C − F E

NC . (17)

Here, F NE
C indicates the average fidelity of teleportation with

Charlie’s permission and no eavesdropping. F E
NC indicates the

average fidelity of teleportation without Charlie’s permission
but with eavesdropping (i.e., Derek’s participation). The gen-
eral definition of the controller’s authority would be

P = F E
C − F E

NC . (18)

The superscript E indicates that eavesdropping has been con-
sidered in both cases of control (with and without Charlie’s
permission). We shall leave the more general quantification
of the controller’s authority as future work and focus on the
Peff of Charlie in this section. Note that F E

C � F NE
C because

eavesdropping will always increase fidelity. Therefore, Peff is
a lower bound to the more general definition of the controller’s
authority quantified by Eq. (18). It is guaranteed that for the
adversarial strategy under consideration, Charlie has at least
Peff amount of control.

A. Adversarial strategy

The ideal CQT scheme (Sec. II A) using the tripartite GHZ
state allows teleportation with perfect average fidelity with
Charlie’s permission. Alice and Bob’s composite state is pro-
jected into one of the EPR states after Charlie performs a
measurement and reveals the measurement setting and out-
come to Bob. When Charlie does not make his measurement
information known to Bob, i.e., does not give permission to
teleport, Bob does not know which EPR state the telepor-
tation channel has been projected into. This prevents Bob
from achieving an average teleportation fidelity higher than
2/3. Recall that the goal of the adversary (Sec. III B) is to
maximize the average teleportation fidelity when Charlie has
not allowed the teleportation. Also, note that the standard
teleportation protocol works optimally when Alice and Bob
share an EPR state. Therefore, we expect that the average
teleportation fidelity will be maximized when the fidelity of
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Alice and Bob’s shared state with an EPR state is maximized
after Derek’s measurement on his system. Bob’s best option
is to ask Derek to perform a measurement in a suitable basis
and reveal its outcome (δ) to Bob such that Alice and Bob’s
composite state is projected close to one of the four EPR
states. This gives Bob some relevant information regarding
the corrective rotations, using which he can recover the state
to be teleported with higher fidelity (see point 4 of Adversarial
Capabilities, Sec. III B 2). Our goal is to find the maximum
fidelity of teleportation that Bob can achieve without permis-
sion from Charlie using this extra information (δ). This will
allow us to evaluate the worst-case Peff of Charlie.

The adversarial strategy can thus be formulated as the
following problem: Find the optimal positive operator-valued
measure (POVM) operators of Derek such that the fidelity
between the bipartite postmeasurement state of Alice and Bob
and one of the EPR states is maximized.

1. Execution of adversarial strategy

The adversarial strategy in Sec. IV A can be executed in the
following way:

Let {Mi} denote Derek’s POVMs, and Pr(i) denote the
probability of getting an outcome i. ρABD is the joint state of
Alice, Bob, and Derek. Note that Charlie’s state is irrelevant
in this case since he is not participating.

Then, the post measurement state of Alice and Bob is given
by

ρAB
i = TrD[ρABD(I ⊗ I ⊗ Mi )]

Pr(i)
. (19)

Let F (ρ1, ρ2) denote the fidelity between two density matrices
ρ1 and ρ2. Then the problem of finding the optimal POVMs
can be formulated as follows:

Maximize
∑

i

Pr(i)F (ρAB
i , |φi〉〈φi|)

subject to Mi � 0,
∑

i

Mi = I,
(20)

Pr(i)F (ρAB
i , |φi〉〈φi|)

= Tr{TrD[ρABD(I ⊗ I ⊗ Mi )]|φi〉〈φi|}
= Tr[(|φi〉〈φi| ⊗ I)ρABD(I ⊗ I ⊗ Mi )]

= Tr[TrAB[(|φi〉〈φi| ⊗ I)ρABD]Mi].

(21)

Let ρ̃i= TrAB[(|φi〉〈φi| ⊗ I)ρABD].
After substituting ρ̃i in Eq. (20), we get

Maximize
∑

i

Tr(ρ̃iMi )

subject to Mi � 0,
∑

i

Mi = I, Mi = M†
i

variable Mi.

(22)

The optimization problem in Eq. (22) can be cast into
a semidefinite program (SDP) using the procedure given in
the Appendix. The SDP can be solved numerically using the
CVX module [25,26] on MATLAB to obtain the optimal POVM
measurements.

B. Examples of controller’s authority with nonmaximal
Svetlichny inequality violation

A useful approach to analyze the adversarial strategy and
Derek’s role is to describe the problem using the framework
of decoherence and noise models in open systems. The ideal
CQT scheme assumes that the tripartite state shared by Al-
ice, Bob, and Charlie is a pure GHZ state [|ψ〉 = (|000〉 +
|111〉)/

√
2]. More generally, in a realistic scenario, the pure

GHZ state would undergo decoherence due to entanglement
with the environment. This environment could be the adver-
sary Derek, and hence the decoherence model can be used to
analyze Derek’s effect on CQT as follows. The state ρ f after
a decoherence process ε is given by ρ f = ερi. The action of ε

can be described using Kraus operators {Ej} j in the following
way [27,28]:

ερi =
M∑

j=1

EjρiE
†
j . (23)

First, we will consider the case where the whole state is
affected by the same decoherence process described by the
total depolarizing channel. It is a process in which the ideal
GHZ state is mixed with white noise with probability p. Thus,

ρ total
f = pI

8 + (1 − p)|ψ〉〈ψ |. (24)

Next, we will consider the decoherence process in which each
qubit of the tripartite GHZ state undergoes a depolarizing
channel. Note that the qubit depolarizing process is physically
more appropriate than the total depolarizing process because
the three qubits are distributed to three different parties who
are usually at different locations. Each qubit is coupled to its
local environment and undergoes depolarizing independently,
though they were initially entangled at a single location. The
qubit depolarizing channel is described by the Kraus operators

E0 = √
1 − p′I; Ei =

√
p′
3 σi, where p′ = 3p

2 [28]. The final
state after the qubit depolarizing process, assuming the same
depolarizing parameter for each qubit, is given by

ρ
qubit
f =

∑
i jk

Ei ⊗ Ej ⊗ Ek|ψ〉〈ψ |[Ei ⊗ Ej ⊗ Ek]†. (25)

ρ total
f , ρ

qubit
f are mixed states unless p = 0. One can think of

these mixed states as a part of a bigger pure quantum state
|ψABCD〉 comprising Alice, Bob, Charlie, and Derek such that
TrD(|ψABCD〉〈ψABCD|) = ρ

qubit/total
f . In the language of quan-

tum cryptography, one would say Derek “holds” a purification
of the mixed tripartite state. Since |ψABCD〉 is a pure state,
Derek is the most general eavesdropper. Any larger quantum
system ρABCD� with more eavesdroppers �1,�2, . . . , �N

will be of the separable form ρABCD� = |ψABCD〉〈ψABCD| ⊗
ρ�1,�2,...,�N , which means that �1,�2, . . . ,�N cannot be
correlated with |ψABCD〉.

In this paper, we will use the spectral decomposition of a
density matrix to obtain a purification of |ψABCD〉 [29] from
ρ

total/qubit
f . The purification |ψ total/qubit

f 〉 of ρ
total/qubit
f is there-

fore given by

∣∣ψ total/qubit
f

〉 =
∑

k∈{1,2,...,8}

(
ρ

total/qubit
f ⊗ I8

)|
k〉|
k〉√
Tr

(|
k〉〈
k|ρ total/qubit
f

) , (26)
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where ρ
total/qubit
f = ∑

k∈{1,2,...,8} αk|
k〉〈
k|. It can be easily

verified that TrD(|ψ total/qubit
f 〉〈ψ total/qubit

f |) = ρ
total/qubit
f .

1. Computing the Peff for the depolarized GHZ state

We have all the necessary ingredients to compute F NE
C and

F E
NC (defined in Sec. IV) for the total depolarized and qubit

depolarized GHZ states.
Let ρB

s0s1γ l denote Bob’s state when Alice’s and Charlie’s
boxes have revealed the outputs s0s1 and γ l after performing

the measurements {MaA
s0s1

}s0s1 and {MC
γ l}γ l , respectively.

ρB
s0s1γ l = TraAC

[(
I+�a·�σ

2 ⊗ ρ
total/qubit
f

)(
MaA

s0s1
⊗ I ⊗ MC

γ l

)]
Tr

[(
I+�a·�σ

2 ⊗ ρ
total/qubit
f

)(
MaA

s0s1
⊗ I ⊗ MC

γ l

)] .

(27)
After the application of corrective rotation, Bob’s qubit can

be expressed as R−1
s0s1γ lρ

B
s0s1γ l (R

−1
s0s1γ l )

†. Then the fidelity of
teleportation with Charlie’s permission for a pure state |a〉〈a|
is given by

F NE
C (a) =

∑
s0,s1,l ∈ {0,1}; γ∈ {±1}

P(s0s1γ l ) F [|a〉〈a|, R−1
s0s1γ lρ

B
s0s1γ l

(
R−1

s0s1γ l

)†
]. (28)

Here P(s0s1γ l ) represents the joint probability that Alice’s and Charlie’s boxes have revealed s0s1 and γ l , respectively. The
fidelity function in the above equation simplifies to F [|a〉〈a|, R−1

s0s1γ lρ
B
s0s1γ l (R

−1
s0s1γ l )

†] = Tr[|a〉〈a|R−1
s0s1γ lρ

B
s0s1γ l (R

−1
s0s1γ l )

†], for a
pure state, |a〉〈a|. After averaging over all pure qubit states and simplifying the trace,

F NE
C =

∫
d�a
4π

∑
s0,s1,l ∈ {0,1}; γ∈ {±1}

P(s0s1γ l )〈a|R−1
s0s1γ lρ

B
s0s1γ l

(
R−1

s0s1γ l

)†|a〉. (29)

The calculation of F NE
C has been done assuming that the set

of corrective rotations {R−1
s0s1γ l}s0s1γ l of Bob are those that are

required to exactly recover the qubit to be teleported, had the
shared tripartite state (ρ total/qubit

f ) been the perfect GHZ state.
In this paper, the set of rotation matrices have been assumed
to be fixed. We have not considered variable rotations condi-
tioned on the underlying tripartite state. To compute F E

NC , we
first need to determine the optimal POVMs of Derek which
will execute the adversarial strategy (Sec. IV A).

ρABD can be obtained from ρ
total/qubit
f by first purifying

it into |ψ total/qubit
f 〉 [Eq. (26)] and then tracing out Charlie’s

system,

ρABD = TrC
(∣∣ψ total/qubit

f

〉〈
ψ

total/qubit
f

∣∣). (30)

By substituting ρABD in the expression ρ̃i = TrD((|φi〉〈φi| ⊗
I)ρABD), one can set up the optimization given in Eq. (22).

Derek can then use the optimal POVMs {Mi}i to measure
his system and reveal δ = i ∈ {(+1)0, (+1)1, (−1)0, (−1)1}
to Bob. Hence, Alice and Bob’s joint state (ρAB

i ) con-
ditioned on the result of Derek’s measurement is given
by

ρAB
i = TrD[ρABD(I2 ⊗ I2 ⊗ Mi )]

Tr[ρABD(I2 ⊗ I2 ⊗ Mi )]
. (31)

Now Alice performs the Bell measurement {MaA
s0s1

}s0s1 on
the state to be teleported and her share of the composite state
ρAB

i . After Alice reveals her measurement outcome, Bob’s
qubit is prepared in the following state:

ρB
s0s1i = TraA

[(
I+�a·�σ

2 ⊗ ρAB
i

)(
MaA

s0s1
⊗ I

)]
Tr

[(
I+�a·�σ

2 ⊗ ρAB
i

)(
MaA

s0s1
⊗ I

)] . (32)

Finally, the average fidelity of teleportation without Charlie’s
permission but with Derek’s assistance (F E

NC) can be computed

using a similar procedure as that for F NE
C (Eq. 29):

F E
NC =

∫
d�a
4π

∑
s0,s1∈{0,1}; i∈{0,1}2

P(s0s1i)〈a|R−1
s0s1iρ

B
s0s1i

(
R−1

s0s1i

)†|a〉.

(33)

2. Svetlichny inequality violation for depolarized GHZ states

We use the physical interpretation of the total depolarized
GHZ state (TDGHZ) and the qubit depolarized GHZ state
(QDGHZ) to derive the maximum Svetlichny inequality vi-
olation that can be obtained for a given depolarizing channel
parameter.

As mentioned earlier, the total depolarized GHZ state can
be seen as a probabilistic mixture of the perfect GHZ state
( |000〉+|111〉√

2
) and the completely mixed three qubit state ( I8 ).

The qubit depolarizing channel can be described by the
process in which each qubit can get replaced by the com-
pletely mixed single qubit state ( I2 ), with probability p. For the
GHZ state, it means that with probability (1 − p)3 the state
is unaltered; with probability 3p(1 − p)2, the GHZ state is
transformed into a bipartite entangled state; and with prob-
ability 3p2(1 − p) + p3, it is transformed into a separable
state.

It was shown in Ref. [17] that tripartite entangled states
are required for violating the Svetlichny inequality (S � 4).
Bipartite entangled states and separable states do not violate
this inequality, while the tripartite entangled perfect GHZ
state ( |000〉+|111〉√

2
) violates it maximally (S = 4

√
2). Moreover,

according to Theorem 1 it is possible to achieve the (S = 4)
bound using classical strategies. Therefore, the maximum
Svetlichny inequality violation is given by the following equa-
tions:

STDGHZ = (1 − p)SGHZ + pSClassical (34)

= (1 − p)4
√

2 + 4p. (35)

SQDGHZ = (1 − p)3SGHZ + [1 − (1 − p)3]SClassical (36)

= (1 − p)34
√

2 + 4[1 − (1 − p)3]. (37)
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Peff

Peff

FIG. 4. Peff , average fidelity of teleportation with controller’s permission (F NE
C ), and average fidelity of teleportation without controller’s

permission but with eavesdropper’s participation (F E
NC) as a function of maximum Svetlichny inequality violation (S) given by Eq. (34) for both

the qubit depolarized and total depolarized GHZ states with parameter p ∈ (0, 1).

C. Numerical calculation of the relationship between effective
control power and Svetlichny violation

For a given depolarizing parameter p ∈ (0, 1), the max-
imum Svetlichny inequality violation was computed using
Eq. (34). The Peff was computed using the method described
in Sec. IV B 1 and plotted against the maximum Svetlichny
violation corresponding to the given value of parameter p in
Fig. 4. It is interesting to note that Peff is positive only when
S > 4.84 for the total depolarized GHZ state and when S >

4.90 for the qubit depolarized GHZ state. The plots clearly
show that Peff is a monotonically increasing function of S.
The highest value of Peff is reached at the maximal viola-
tion of Svetlichny’s inequality, which confirms our Claim 2.
It is important to note that the violation of the Svetlichny
inequality [Eq. (16)] does not necessarily imply that Charlie
has positive control power. For nonmaximal violation, there is
a small window in the range 4.84 < S < 4

√
2 for the qubit-

depolarized GHZ states and 4.90 < S < 4
√

2 for the total
depolarized GHZ states, where Peff is positive, and hence
Charlie maintains some level of control.

V. SUMMARY AND OUTLOOK

In this paper, we have performed a device-independent
study of controlled teleportation of a qubit with an untrusted
receiver. We constructed a device-independently testable sce-
nario in a way that allowed us to certify, in the context of
controlled teleportation, whether quantum resources were be-
ing used by the device despite the receiver being untrusted. We
found in this case that the well-known Svetlichny inequality
must be violated to certify quantum correlations. A maximal
violation of the Svetlichny inequality guarantees maximum
control power. This is in contrast to the controlled telepor-
tation with all trusted parties, where the maximal violation
of Mermin’s inequality was sufficient to certify maximum
control power. This indicates that a stronger form of non-

locality, also known as “genuine tripartite nonlocality,” is
required to device-independently test the controlled quantum
teleportation with an untrusted receiver. Until recently [16],
there was no application of higher-order Bell’s inequalities in
DI quantum cryptography. Our work demonstrates one of the
first instances of the usefulness of stronger forms of Bell’s
inequalities (Svetlichny inequality in this case) in DI quantum
communication protocols.

We proposed an adversarial strategy which, while not
proven to be optimal, can effectively decrease the controller’s
authority by taking advantage of a nonideal device that
nonmaximally violates Svetlichny inequality. By taking the
example of two families of quantum states characterized by
the total depolarized and the qubit-depolarized GHZ states,
we showed that the controller’s authority is a monotonically
increasing function of the maximal Svetlichny inequality vi-
olation. For the given family of depolarized GHZ states,
adversarial strategy, and a Svetlichny inequality violation,
one can infer the controller’s authority from our numeri-
cally obtained plot. We found a window of nonmaximal
Svetlichny inequality violation where the controller’s author-
ity is nonzero. This shows that the controlled teleportation
scheme with an untrusted receiver is robust to depolarizing
noise present in the device. This result can be a guiding
framework for practical implementations of DI CQT. Since
the tripartite CQT network can be the fundamental component
of a large-scale quantum communication network [7], our
results are relevant for building practical communication net-
works where quantum information is shared among distrustful
parties.

In this paper we have used effective control power as the
figure of merit in DI CQT, whereas the authors of Ref. [16]
used (1 − pguess) (probability of the untrusted receiver guess-
ing the wrong secret bit) as the figure of merit in the DI
secret sharing of a bit. However, we see that in both cases,
the relationship of these figures of merit with that of genuine
tripartite nonlocality is very similar. From this observation,
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intuition suggests that the von Neumann entropy of the quan-
tum information revealed to the untrusted receiver would
show similar trends to that of effective control power in
DI CQT. The translation from effective control power to an
entropic measure of quantum information would help to gen-
eralize our work to a multipartite QSS protocol.
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APPENDIX: SDP OPTIMIZATION

Consider the optimization program given in Eq. (22). We
can cast it into a semidefinite program in the following way:

Let X be a Hilbert space of dimension D, where D is also
the dimension of Derek’s quantum system. Define � as a
Hermitian preserving map T (X ,X ). Then the optimization
problem is given by

Primal problem

maximize: 〈(ρ̃1, ρ̃2, ..., ρ̃n), (M1, M2, ..., Mn)〉

subject to: �(M1, M2, ..., Mn) �
n∑

i=1

Mi = ID

(M1, M2, ..., Mn) ∈ Pos(X )n

(A1)

Dual problem

minimize: 〈ID,Y 〉
subject to: �†(Y ) 
 (ρ̃1, ρ̃2, ..., ρ̃n)

Y ∈ Herm(X ).

(A2)
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