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Quantifying coherence in terms of Fisher information
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In quantum metrology, the parameter estimation accuracy is bounded by quantum Fisher information. In
this paper we present coherence measures in terms of (quantum) Fisher information by directly considering the
postselective nonunitary parametrization process. This coherence measure demonstrates the apparent operational
meaning by the exact connection between coherence and parameter estimation accuracy. We also discuss the dis-
tinction between our coherence measure and the quantum Fisher information subject to unitary parametrization.
The analytic coherence measure is given for qubit states.
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I. INTRODUCTION

Quantum coherence, as a fundamental feature in quantum
physics, has attracted a great deal of attention in recent years.
Many works have investigated the role of coherence in quan-
tum optics [1–4], quantum thermodynamics [5–7], quantum
phase transitions [8], quantum biology [9,10], and quantum
information science [11–18]. These works have promoted not
only the development of related applications but also the
development of the resource theory of coherence [19,20],
where coherence is treated as a physical resource under some
limited conditions. Benefiting from an operational view and
axiomatic approach, one can quantify coherence in a rigorous
manner, study the transformation of coherence, and reveal the
connection between coherence with other fundamental quan-
tum features [21–32]. In particular, some coherence measures
contain obvious operational meanings, which provide us with
a way to understand (interpret) coherence from the viewpoint
of quantum information processes (QIPs) and find the poten-
tial relation between coherence with some characteristics in
QIPs [33–39].

It has been shown that the coherence of the probing state in
many quantum metrology processes is often a key ingredient
[11–13]. For instance, in the usual phase estimation for the pa-
rameter θ with unitary parametrization Uθ (·) = e−iθH (·)eiθH

[40–44], coherence with regard to the eigenvectors of the
Hermitian operator H is necessary. Furthermore, the optimal
estimation accuracy of an unknown parameter could be ob-
tained by the state with maximal coherence in the sequential
protocol [13]. The estimation accuracy is bounded by quan-
tum Fisher information (QFI), a crucial ingredient in quantum
metrology [45–48]. A simple calculation can show that QFI
subject to unitary parametrization Uθ (·) in the qubit case [44]
is monotonic with some coherence measures (such as l1-norm
coherence). Many works have investigated the relation be-
tween quantum coherence with Fisher information (FI) and
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QFI [49–58]. Coherence within some particular settings could
be understood by QFI (or FI) [51,52,57]. Significantly, QFI
in unitary parametrization is closely connected with unspeak-
able coherence [52,59], a special case of resource theory of
asymmetry [60–62]. In addition, based on QFI concerning
the dephasing parameter, coherence measure has been given
in the sense of strictly incoherent operations as free opera-
tions [51]. However, up to now, the estimation accuracy and
FI (or QFI) has not been used to directly quantify quantum
coherence in general scenarios. An intuitive challenge is that
QFI with unitary parametrization Uθ (·) in the usual sense
is not a coherence measure in the general resource theory
of coherence [20]. For example, two-dimensional maximally
coherent states (MCSs) could be obtained under incoherent
operations from three-dimensional MCSs [33,53,63], but the
QFI of the former is strictly larger than the latter, which di-
rectly violates the monotonicity of a good measure. Therefore,
it is significant to find an appropriate parametrization process
for establishing coherence measures and further investigating
the role of coherence in quantum metrology.

In this paper we successfully establish several equivalent
coherence measures in the general resource theory of coher-
ence by the FI (and QFI) subject to a type of nonunitary
parametrization. Since the optimal estimation accuracy is
bounded by FI which is asymptotically attained with max-
imum likelihood estimators [45–47], our measure naturally
inherits the operational meaning of FI through the optimal
estimation accuracy with non-unitary parametrization. We
also show that in the qubit case, our coherence measure can
be equivalently understood through unitary parametrization
and the analytic expression can be obtained. Our coherence
measure not only builds a direct relation between coherence
and parameter estimation accuracy (or FI) but also sheds new
light on the roles of the nonunitary parametrization process.
The remainder of this paper is organized as follows. In Sec. II
we first introduce the fundamental concepts of resource theory
of coherence and our parametrization process and then present
several main theorems to build the coherence measure based
on FI. In Sec. III we give the analytic result of the coherence
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measure in the qubit case and discuss the difference from the
QFI with unitary parametrization. We summarize in Sec. IV.

II. COHERENCE IN TERMS OF QFI

In this section we first introduce the resource theory of
coherence established mainly based on the incoherent (free)
operations and incoherent (free) states [20]. Considering the
preferred basis {|n〉}, the incoherent state is defined by � =∑

n qn|n〉〈n|, with I denoting the set of incoherent states, and
the incoherent operations (IOs) with the Kraus representation
{Kn :

∑
l K†

l Kl = I} is a special type of completely positive

and trace-preserving map defined by Kl�K†
l

tr(Kl �K†
l )

∈ I for � ∈ I.

In this sense, a good coherence measure C(ρ) for any state ρ

should satisfy the following conditions.
(i) Non-negativity. C(ρ) � 0 is saturated if and only if ρ ∈

I.
(ii) Monotonicity. C(E (ρ)) � C(ρ) for any incoherent op-

eration E (·).
(iii) Strong monotonicity.

∑
n pnC(KnρK†

n /pn) � C(ρ) for
any IO {Kn}, with pn = Tr(KnρK†

n ).
(iv) Convexity. C(ρ) � ∑

i piC(ρi ) for any ρ = ∑
i piρi.

To present a valid coherence measure, we begin with the
following parametrization process. Considering a state ρ un-
dergoing quantum channel Eθ depending on parameter θ , the
unknown parameter could be estimated from measurements
on Eθ (ρ). Here we are interested in the free parametrization
processes Eθ = {Ex(θ )},

Ex(θ ) =
∑

n

bx
n(θ )|gx(n)〉〈n|,

∑
x

Ex(θ )†Ex(θ ) = I, (1)

where {|n〉} is the preferred incoherent basis and gx(·) is a map
from one integer to another.

In order to focus on the role of coherence, we desire
that within the parametrization process, the incoherent probe
cannot affect parameter estimation. That is, the measurement
outcomes Eθ (�) and {�x, px} obtained from an incoherent
probe (� ∈ I) do not depend on parameter θ , where px =
tr[Ex(θ )�Ex(θ )†] and �x = Ex(θ )�Ex(θ )†/px. Thus |bx

n(θ )|
does not depend on the parameter θ and Ex(θ ) can be rewritten
as

Ex(θ ) =
∑

n

cx
neihx

n (θ )|gx(n)〉〈n|, (2)

where cx
n is parameter independent and hx

n is a real function. In
fact, it is very similar to the case of the usual phase estimation
Uθ (·) = e−iθH (·)eiθH mentioned in the Introduction. One can
find that the measurement outcomes of an incoherent probe
in the phase estimation do not depend on the parameter θ

either. In addition, Uθ can be expressed based on e−iHθ =∑
n e−ihnθ |n〉〈n| (hn is eigenvalue of H), which is analogous

to Eq. (2). In this sense, the parametrization process Eθ can be
understood as a generalization of unitary phase estimation to
the nonunitary case.

In addition, we could restrict ∂θhx
n(θ ) ∈ [0, 1] and the con-

clusion in a more general case could be derived from this
case (a detailed discussion is given in Appendix A). Based
on the Stinespring dilation theorem [64], the operations could
be implemented by a controlled unitary operator [65–67] and

an operation swapping specified states. The details are given
in Appendix B. All the operations of interest (operations in
Eq. (2) with ∂θhx

n(θ ) ∈ [0, 1]) comprise a set denoted by G.
We note that an IO satisfying rank[Ex(θ )†Ex(θ )] = 1 is of
particular interest in the paper, so we use G1 to represent the
IO set with this particular property.

If the postselection is allowed, the IO Eθ performed on a
quantum state ρ will directly lead to the probability distribu-
tion

PE (x|θ ) = tr[Ex(θ )ρEx(θ )†]. (3)

If the postselection is not allowed, the state after the IO
will become Eθ (ρ). We can operate a positive-operator-valued
measure (POVM) M = {Mx} on the state Eθ (ρ) and obtain
the probability distribution family as

PE
M(x|θ ) = tr[MxEθ (ρ)], (4)

where the subscript M denotes the general POVM.
The FI of the distribution P(x|θ ) is given by

F (P, θ0) =
∑

x

P(x|θ0)

[
∂ ln P(x|θ )

∂θ

∣∣∣∣
θ0

]2

(5)

and the QFI of PE
M(x|θ ) for any given θ0 can be written as

FQ(ρ, E, θ0) = max
M

F
(
PE
M, θ0

)
. (6)

Based on above the FI and QFI, we can establish two co-
herence measures, respectively, which will be given by the
following two theorems.

Theorem 1. The coherence of a state ρ can be quantified by
the maximal FI for a given parameter θ0 as

Cθ0 (ρ) = max
E∈G

F (PE , θ0), (7)

where F (PE , θ0) is the FI of the distribution in Eq. (3).
Proof. We need to prove Cθ0 (ρ) by satisfying conditions

(i)–(iv).
(i) Non-negativity. If ρ is incoherent, for any E and x we

have

Ex(θ )ρEx(θ )†

=
∑

n

bx
n(θ )|gx(n)〉〈n|ρ

∑
m

bx∗
m (θ )|m〉〈gx(m)|

=
∑
nm

bx
n(θ )bx∗

m (θ )ρnm|gx(n)〉〈gx(m)|

=
∑

n

∣∣bx
n(θ )

∣∣2
ρnn|gx(n)〉〈gx(n)|, (8)

which does not depend on θ due to bx
n(θ ) = cx

neihx
n (θ ). Thus

PE (x|θ ) does not depend on θ either, which means that

F (PE , θ0) =
∑

x

[
∂PE (x|θ )

∂θ

∣∣∣∣
θ0

]2
1

PE (x|θ0)
= 0. (9)

Equation (9) leads to Cθ0 (ρ) = 0.
Conversely, if a d-dimensional ρ has nonzero off-diagonal

entries, without loss of generality, we can set ρ12 = |ρ12|eiα .
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There exists an IO {Ei} ∈ G,

E1(θ ) =
√

2

2
ei(θ+γ )|1〉〈1| +

√
2

2
|1〉〈2|,

E2(θ ) = −
√

2

2
ei(θ+γ )|2〉〈1| +

√
2

2
|2〉〈2|,

E3(θ ) =
d∑

n=3

|n〉〈n|, (10)

with α + θ0 + γ ∈ [−π/2, 0)
⋃

(0, π/2], such that

PE (1|θ0) = tr[E1(θ0)ρE1(θ0)†] �= 0,

∂θ tr[E1(θ )ρE1(θ )†]|θ0 �= 0, (11)

which obviously shows that Cθ0 (ρ) �= 0 and Cθ0 (ρ) > 0.
(iii) Strong monotonicity. Suppose ρ undergoes an arbitrary

IO

Kl =
∑

n

al
n| fl (n)〉〈n|. (12)

The postmeasurement ensemble {tl , ρl} reads

tl = tr(KlρK†
l ), ρl = KlρK†

l

tl
. (13)

Let E (l ) = {El
x (θ )}x be the optimal IO for ρl such that

Cθ0 (ρl ) = F (Pl , θ0), (14)

where El
x (θ ) = ∑

n blx
n (θ )|glx(n)〉〈n| and

Pl (x|θ ) = tr
[
El

x (θ )ρlE
l
x (θ )†

]
= tr

[
El

x (θ )KlρK†
l E l

x (θ )†
]

tl

=P(x, l|θ )

tl
. (15)

Here P(x, l|θ ) represents the probability distribution from
E ′ = {E ′

xl (θ )}xl with

E ′
xl (θ ) = El

x (θ )Kl =
∑

n

al
nblx

fl (n)(θ )|glx[ fl (n)]〉〈n|, (16)

which implies E ′ ∈ G. Therefore, we arrive at∑
l

tlC
θ0 (ρl ) =

∑
l

tlF (Pl , θ0)

=
∑

l

tl
∑
x∈Sl

[
∂Pl (x|θ )

∂θ

∣∣∣∣
θ0

]2 1

Pl (x|θ0)

=
∑

l

tl
∑
x∈Sl

[
∂P(l, x|θ )

∂θ

∣∣∣∣
θ0

]2 1

P(l, x|θ0)tl

=
∑

l

∑
x∈Sl

[
∂P(l, x|θ )

∂θ

∣∣∣∣
θ0

]2 1

P(l, x|θ0)

= F (P, θ0) � Cθ0 (ρ), (17)

where Sl indicates the region of x in Pl and the last inequality
is because E ′ may not be the optimal one for ρ.

(iv) Convexity. For any ensemble {ti, σi} with the corre-
sponding mixed state ρ = ∑

i tiσi, let E = {Ex(θ )} be the
optimal IO for ρ in the sense of Cθ0 (ρ) = F (P, θ0), with
P(x|θ ) = tr[Ex(θ )ρE†

x (θ )]. For the state σi, we define

Pi(x|θ ) = tr[Ex(θ )σiE
†
x (θ )]; (18)

then ∑
i

tiPi(x|θ ) =
∑

i

ti tr[Ex(θ )σiE
†
x (θ )]

= tr[Ex(θ )ρE†
x (θ )]

=P(x|θ ). (19)

However, E may not be optimal for σi, which implies that

Cθ0 (σi ) � F (Pi, θ0), (20)

so we can immediately get∑
i

tiC
θ0 (σi ) �

∑
i

tiF (Pi, θ0)

�F

(∑
i

tiPi, θ0

)
= F (P, θ0)

=Cθ0 (ρ), (21)

where the second inequality is due to the convexity of the FI.
Since (iii) and (iv) hold, it is natural that (ii) is satisfied.

The proof is completed. �
From Theorem 1, coherence could be quantified by the

FI of the probability distribution in Eq. (3). In some sense,
this implies the connection between coherence and estimation
accuracy for incoherent nonunitary parametrization. In fact, G
in the definition (7) could be replaced by its subset G1 from
the following lemma.

Lemma 1. For any E = {Ex(θ )} ∈ G there always exists
another E ′ = {Ẽx(θ )} ∈ G1 such that

F (PE , θ0) � F (PE ′
, θ0), (22)

where F (PE , θ0) and F (PE ′
, θ0) are the FI of PE (x|θ ) and

PE ′
(x|θ ), respectively.
Proof. Letting E = {Ex(θ )} ∈ G, we can rewrite {Ex(θ )} as

Ex(θ ) =
∑

n

cx
neihx

n (θ )|gx(n)〉〈n|

=
∑

n

cx
n|gx(n)〉〈n|

∑
m

eihx
m (θ )|m〉〈m|

=AxUx(θ ), (23)

where Ax = ∑
n cx

n|gx(n)〉〈n| and Ux(θ ) =∑
m eihx

m (θ ) |m〉〈m|. Thus we have

Ex(θ )†Ex(θ ) = Ux(θ )†A†
xAxUx(θ )

= Ux(θ )†

(∑
i

∣∣ψx
i

〉〈
ψx

i

∣∣)Ux(θ )

=
∑

i

Ux(θ )†
∣∣ψx

i

〉〈
ψx

i

∣∣Ux(θ )

=
∑

i

∣∣φx
i (θ )

〉〈
φx

i (θ )
∣∣ =

∑
i

Ẽx,i(θ )†Ẽx,i(θ ),

(24)
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where
∑

i |ψx
i 〉〈ψx

i | denotes the eigendecomposition of
A†

xAx (the eigenvalue is absorbed in |ψx
i 〉), |φx

i (θ )〉 =
Ux(θ )†|ψx

i 〉, and Ẽx,i(θ ) = |i〉〈φx
i (θ )|. It is obvious that

E ′ = {Ẽx,i(θ )}xi ∈ G1. From the Cauchy-Schwarz inequality
[|〈v|w〉|2 � 〈v|v〉〈w|w〉] [68], we can obtain

[∂θP(x|θ )|θ0 ]2 �
∑

i

[∂θPi(x|θ )|θ0 ]2

Pi(x|θ0)

∑
i

Pi(x|θ0), (25)

where P(x|θ ) = tr(ρE†
x Ex ) and Pi(x|θ ) = tr(ρẼ†

x,iẼx,i ), and
thus

[∂θP(x|θ )|θ0 ]2

P(x|θ0)
�

∑
i

[∂θPi(x|θ )|θ0 ]2

Pi(x|θ0)
. (26)

The inequality holds for every x, which implies that
F (PE , θ0) � F (PE ′

, θ0). �
From the lemma, maximizing the FI over the set G can be

realized by the optimization over the set G1, which effectively
reduces the range of the optimized IO.

Theorem 1 mainly focuses on the FI with the related proba-
bility distribution generated via the postselective IO on a state.
Next we would build another coherence measure defined by
the QFI with respect to parametrization in G,

Cθ0
Q (ρ) = max

E∈G
FQ(ρ, E, θ0). (27)

To do this, we first give another lemma.
Lemma 2. The maximal QFI subject to parametrization in

G is upper bounded by the FI directly induced by the optimal
postselective IO parametrization process, namely,

max
E∈G

FQ(ρ, E, θ0) � max
E∈G

F (PE , θ0), (28)

where PE is the distribution in Eq. (3).
Proof. Suppose Ẽ and M are the optimal parametriza-

tion and measurement for the optimal FQ, respectively.
From Eq. (4) we have PẼ

M(x|θ ) = tr[
∑

i |ψx
i 〉〈ψx

i |Ẽθ (ρ)] =∑
i Pi(x|θ ), where

∑
i |ψx

i 〉〈ψx
i | represents the eigendecompo-

sition of Mx. In particular, Pi(x|θ ) = 〈ψx
i |Ẽθ (ρ)|ψx

i 〉, which
can be rewritten as

Pi(x|θ ) = tr
[|i〉〈ψx

i

∣∣Ẽθ (ρ)
∣∣ψx

i

〉〈i|]
=

∑
ynn′

tr
[|i〉〈ψx

i

∣∣by
n(θ )|gy(n)〉〈n|ρ|n′〉

× 〈gy(n′)|by∗
n′ (θ )

∣∣ψx
i

〉〈i|]
=

∑
ynn′

tr
[
bixy

n (θ )|i〉〈n|ρ|n′〉〈i|bixy∗
n′ (θ )

]

=
∑

y

tr[Eixy(θ )ρEixy(θ )†]

=
∑

y

P(ixy|θ ), (29)

where bixy
n (θ ) = 〈ψx

i |by
n(θ )|gy(n)〉 and Eixy(θ ) =∑

n bixy
n (θ )|i〉〈n|. It is obvious that E ′

θ = {Eixy(θ )} ∈ G.

Then

max
E

FQ(ρ, E, θ0) = F
(
PẼ
M, θ0

)

=
∑

x

[
∂θPẼ

M(x|θ )|θ0

]2

PẼ
M(x|θ0)

=
∑

x

[ ∑
i ∂θPi(x|θ )|θ0

]2∑
i Pi(x|θ0)

�
∑

ix

[∂θPi(x|θ )|θ0 ]2

Pi(x|θ0)

=
∑

ix

[ ∑
y ∂θP(ixy|θ )|θ0

]2∑
y P(ixy|θ0)

�
∑
ixy

[
∂θP(ixy|θ )|θ0

]2

P(ixy|θ0)

= F (P, θ0) � max
E

F (PE , θ0), (30)

where P is the distribution from E ′
θ , the first two inequalities

could be derived based on the Cauchy-Schwarz inequality, and
the derivation process is similar to that in Eqs. (25) and (26),
namely, from(∑

i

∂θPi(x|θ )|θ0

)2

�
∑

i

[∂θPi(x|θ )|θ0 ]2

Pi(x|θ0)

∑
i

Pi(x|θ0)

we could obtain the first inequality and from(∑
y

∂θP(ixy|θ )|θ0

)2

�
∑

y

[∂θP(ixy|θ )|θ0 ]2

P(ixy|θ0)

∑
y

P(ixy|θ0)

we could reach the second inequality. Thus we complete the
proof. �

Next we show that Cθ0
Q (ρ) in Eq. (27) is equivalent to

Cθ0 (ρ) and can also quantify the quantum coherence of ρ.
Theorem 2. For a given density matrix ρ,

Cθ0
Q (ρ) = Cθ0 (ρ). (31)

Proof. From Lemma 1, Cθ0 (ρ) could be written as

Cθ0 (ρ) = max
E∈G1

F (PE , θ0). (32)

Suppose E = {Ez(θ )} is the optimal operation in G1 such that

Cθ0 (ρ) = F (PE , θ0), (33)

where

PE (z|θ ) = tr[Ez(θ )ρEz(θ )†] (34)

and rank[Ez(θ )†Ez(θ )] = 1. Without loss of generality, Ez(θ )
could be written as

Ez(θ ) = |z〉〈φz(θ )|. (35)

Define

PE
P (z|θ ) = tr[|z〉〈z|Eθ (ρ)|z〉〈z|], (36)
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where P indicates the projective measurements on the
parametrized state. Note that

PE (z|θ ) = tr(EzρE†
z )

= tr

[
|z〉〈z|

(∑
z′

Ez′ρE†
z′

)
|z〉〈z|

]

= tr[|z〉〈z|Eθ (ρ)|z〉〈z|] = PE
P (z|θ ) (37)

and thus

Cθ0 (ρ) = F (PE , θ0) = F
(
PE
P , θ0

)
� max

M
F

(
PE
M, θ0

)
= FQ(ρ, E, θ0) � max

E∈G
FQ(ρ, E, θ0) = Cθ0

Q (ρ). (38)

Conversely, from Lemma 2 we can immediately arrive at

Cθ0 (ρ) � Cθ0
Q (ρ), (39)

and thus we can get Cθ0
Q (ρ) = Cθ0 (ρ), which finishes the

proof. �
We have shown that the coherence measures based on the

QFI and FI subject to the postselective parametrization are
equivalent to each other. The most distinct advantage of this
type of coherence measure is that it can be straightforwardly
connected with the parameter estimation process in terms of
the Cramér-Rao bound [46–48,69].

Let us consider an incoherent nonunitary parametrization
E = {Ex(θ )} ∈ G on ρ as introduced previously. Then we will
obtain a probability distribution PE

M(x|θ ) through a POVM
on ρθ or obtain PE (x|θ ) directly through postselection of
E . With maximum likelihood estimators θ̂M with respect to
PE
M or θ̂ with respect to PE , the Cramér-Rao bound can

be asymptotically attained. That is, the mean square error
(δθ̂M)2 = E [(θ̂M − θ )2] and (δθ̂ )2 = E [(θ̂ − θ )2] approach
1

nF in the asymptotic sense, where E indicates the expec-
tation value, θ is the true value, and n denotes the runs
of detection. Thus, in the asymptotic limit, the estimation
accuracy 1

n(δθ̂M )2 approaches F (PE
M, θ ), which is naturally

bounded by Cθ
Q(ρ) based on Eq. (26). In particular, the

bound Cθ
Q(ρ) can be asymptotically achieved with the opti-

mal parametrization process and optimal POVM. Similarly,
1

n(δθ̂ )2 approaches F (PE , θ ) in the asymptotic scenario and

simultaneously reaches Cθ (ρ) in an asymptotic sense with
an optimal parametrization process. Note that the two mea-
sures are equivalent; therefore, our coherence measure can
be understood as the optimal accuracy through two different
estimation processes as well as the corresponding incoherent
nonunitary parametrization.

In fact, the optimized M in Cθ0
Q [Eq. (27)] can be replaced

by P , the projective measurement on the preferred basis.
In this sense, the above two coherence measures have an
equivalent expression Cθ0

P (ρ) = maxE∈G F (PE
P , θ0). This can

be understood as follows. We first have Cθ0 (ρ) � Cθ0
P (ρ) from

the second equality in Eq. (38). Note that M in Cθ0
Q (ρ) con-

tains a projective measurement, which implies that Cθ0
Q (ρ) �

Cθ0
P (ρ). Combining the above two inequalities with Theorem

2, we obtain Cθ0
P (ρ) = Cθ0 (ρ) = Cθ0

Q (ρ). Although they are
identical in value, they imply different details of operational
meanings and give us different ways to understand coherence.

III. CONNECTION WITH QFI BASED ON UNITARY
PARAMETRIZATION

Although the coherence measure has obvious operational
meaning based on quantum metrology, an analytically com-
putable expression seems not to be easy. Next we will show
that for a two-dimensional quantum state, the analytic result
could be obtained and the coherence measure can be realized
by FI with unitary parametrization. However, our measure
is not equivalent to that based on unitary parametrization in
high-dimensional cases, which is proved later.

Theorem 3. For a two-dimensional state ρ, the coherence
based on Theorem 1 can be given as

Cθ0 (ρ) = FQ(ρ,Uθ , θ0), (40)

where FQ is the QFI of ρ subject to unitary parametrization
Uθ = eiθ |1〉〈1| + |2〉〈2|.

Proof. For qubit states ρ, let the IO {Ex} ∈ G read

Ex(θ ) = a′x
1 eih′x

1 (θ )| fx(1)〉〈1| + a′x
2 eih′x

2 (θ )| fx(2)〉〈2|, (41)

where a′x
1 or a′x

2 may be zero. The Kraus operator could be
written as

Ex(θ ) = ax
1eihx

1(θ )| fx(1)〉〈1| + ax
2eihx

2(θ )| fx(2)〉〈2|, (42)

where ax
j = a′x

j eih′x
j (θ0 ) and hx

j (θ ) = h′x
j (θ ) − h′x

j (θ0) for j =
1, 2. According to Lemma 1 and its proof, the optimal IO can
be rank-1 with the form {|i〉〈ψx

i (θ )|}, which means fx(1) =
fx(2) for any x. Then we have

P(x|θ ) = tr
[∣∣ax

1

∣∣2
ρ11| fx(1)〉〈 fx(1)| + ∣∣ax

2

∣∣2
ρ22| fx(2)〉〈 fx(2)|

+ ρ12ax
1ax∗

2 ei[hx
1(θ )−hx

2(θ )]| fx(1)〉〈 fx(2)|
+ ρ21ax∗

1 ax
2e−i[hx

1(θ )−hx
2(θ )]| fx(2)〉〈 fx(1)|]

= ∣∣ax
1

∣∣2
ρ11 + ∣∣ax

2

∣∣2
ρ22 + ρ12ax

1ax∗
2 ei[hx

1(θ )−hx
2(θ )]

+ ρ21ax∗
1 ax

2e−i[hx
1(θ )−hx

2(θ )], (43)

and thus

F (P, θ0) =
∑

x

[
2 Im

(
ρ12ax

1ax∗
2

)]2[
∂θhx

1(θ )
∣∣
θ0

− ∂θhx
2(θ )

∣∣
θ0

]2

∣∣ax
1

∣∣2
ρ11 + ∣∣ax

2

∣∣2
ρ22 + 2Re

(
ρ12ax

1ax∗
2

)
�

∑
x

[
2 Im

(
ρ12ax

1ax∗
2

)]2∣∣ax
1

∣∣2
ρ11 + ∣∣ax

2

∣∣2
ρ22 + 2 Re

(
ρ12ax

1ax∗
2

) , (44)

where the inequality could be saturated by the function taken
as hx

1(θ ) = θ and hx
2(θ ) = 0 and the corresponding IO reads

Ex(θ ) = KxUθ , with

Kx = ax
1| fx(1)〉〈1| + ax

2| fx(2)〉〈2|,
Uθ = eiθ |1〉〈1| + |2〉〈2|, (45)

where fx(1) = fx(2) and {Kx} ∈ G1. In this sense, the proba-
bility distribution can be rewritten as

PE (x|θ ) = tr[Ex(θ )ρEx(θ )†] = tr(KxUθρU †
θ K†

x )

= tr(UθρU †
θ K†

x Kx ) = PM(x|θ ), (46)

where PM can be understood as a distribution generated by a
unitary parametrization Uθ followed by a rank-1 POVM M =
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{K†
x Kx}. Considering the above optimal IO, we arrive at

Cθ0 (ρ) = max
E∈G1

F (PE , θ0)

= max
M

F (PM, θ0) = FQ(ρ,Uθ , θ0), (47)

which finishes the proof. �
In fact, in the general high-dimensional case, Cθ0 is distinct

from the FI with unitary parametrization. To demonstrate the
difference, we will give a concrete example. Consider a state
with maximal coherence

|φ〉 =
(

1√
3
,

1√
3
,

1√
3

)T

(48)

and the parametrization E = {Ex(θ )} expressed as

Ex(θ ) = ax
1eihx

1θ | fx(1)〉〈1| + ax
2eihx

2θ | fx(1)〉〈2|
+ ax

3eihx
3θ | fx(1)〉〈3|, (49)

with ax
n and hx

n (x = 1, . . . , 9) to be given at the end. Define
ρ = |φ〉〈φ|. The probability distribution is

P(x|0) = tr[Ex(θ )|φ〉〈φ|Ex(θ )†]

= ρ11

∣∣ax
1

∣∣2 + ρ22

∣∣ax
2

∣∣2 + ρ33

∣∣ax
3

∣∣2

+ 2 Re
(
ρ12ax

1ax∗
2 + ρ12ax

2ax∗
3 + ρ31ax

3ax∗
1

)
(50)

and

∂θP(x|θ )|0 = 2 Im
[
ρ12ax

1ax∗
2

(
hx

1 − hx
2

) + ρ23ax
2ax∗

3

(
hx

2 − hx
3

)
+ ρ31ax

3ax∗
1

(
hx

3 − hx
1

)]
. (51)

Therefore, the corresponding FI reads

F (PE , 0) =
∑

x

[∂θP(x|θ )|0]2

P(x|0)
= 0.9410. (52)

From the definition, we have C0(ρ) � F (PE , 0).
To compare our measure with the QFI subject to

the optimal unitary parametrization in G, we calculate
maxUθ∈G FQ(|φ〉,Uθ , 0), where Uθ is the unitary operator ex-
pressed as

Uθ =
∑

n

eihn (θ )|n〉〈n|, (53)

with ∂θhn(θ ) ∈ [0, 1] [based on Appendix A, other cases with
different range of ∂θhn(θ ) lead to the same conclusion]. When
eigenvalues of the parametrized state UθρU †

θ are parameter
independent, the QFI could be calculated from the equa-
tion [44,70]

FQ(ρ,Uθ , θ0) =
∑

i j

2(Pi − Pj )2

Pi + Pj
|〈ϕi|∂θϕ j〉|2, (54)

where {Pi} and {|ϕi〉} denote the eigenvalues and eigenvec-
tors of UθρU †

θ , respectively, and we use |∂θϕ j〉 to briefly

express the partial derivative ∂|ϕ j〉
∂θ

|θ0 . In addition, the terms
with Pi = Pj = 0 are not included in the summation. Further,
for a pure state ρ = |ψ〉〈ψ |, let {|ψi〉} be the basis vectors
satisfying |ψ〉 = |ψ1〉; then the corresponding P1 = 1 and the
residual eigenvalues Pi (i �= 1) are zero. Then the eigenvectors

of UθρU †
θ are {Uθ |ψi〉}. Defining

Hθ =
∑

n

∂θhn(θ )|n〉〈n|, (55)

we have

FQ(|ψ〉,Uθ , θ0)

=
∑

i

2(1 − Pi )2

1 + Pi
〈ψ |U †

θ0
Uθ0 Hθ0 |ψi〉〈ψi|Hθ0U

†
θ0

Uθ0 |ψ〉

+
∑

i

2(Pi − 1)2

Pi + 1
〈ψi|U †

θ0
Uθ0 Hθ0 |ψ〉〈ψ |Hθ0U

†
θ0

Uθ0 |ψi〉

= 4〈ψ |Hθ0

∑
i

|ψi〉〈ψi|Hθ0 |ψ〉 − 4〈ψ |Hθ0 |ψ〉〈ψ |Hθ0 |ψ〉

= 4〈ψ∣∣H2
θ0

∣∣ψ〉 − 4〈ψ |Hθ0 |ψ〉2. (56)

This result does not depend on the choice of |ψi〉 as long as
|ψ〉 = |ψ1〉, and the optimal QFI maxUθ∈G FQ(|φ〉,Uθ , 0) can
be calculated as

max
Uθ ∈G

FQ(|φ〉,Uθ , 0) = max
H∈S

4〈φ|H2|φ〉 − 4〈φ|H |φ〉2

= 8
9 , (57)

where |φ〉 is the three-dimensional MCS in Eq. (48) and S is
the set of operators H = h1|1〉〈1| + h2|2〉〈2| + h3|3〉〈3| (hi ∈
[0, 1]). Thus C0(ρ) > maxUθ∈G F (|φ〉,Uθ , 0), which indicates
that Cθ0 is different from the FI with unitary parametrization.

Finally, we present all the coefficients of Ex in the above
calculation by defining Ax = [ax

1, ax
2, ax

3], where

A1 = [0,
√

0.4,
√

0.6]√
3

,

A2 = [0,
√

0.4e−i2π/3,
√

0.6ei2π/3]√
3

,

A3 = [0,
√

0.4e−i4π/3,
√

0.6ei4π/3]√
3

,

A4 = [
√

0.4,
√

0.6, 0]√
3

,

A5 = [
√

0.4,
√

0.6ei2π/3, 0]√
3

,

A6 = [
√

0.4,
√

0.6ei4π/3, 0]√
3

,

A7 = [
√

0.6, 0,
√

0.4]√
3

,

A8 = [
√

0.6, 0,
√

0.4ei2π/3]√
3

,

A9 = [
√

0.6, 0,
√

0.4ei4π/3]√
3

.

(58)

In addition,

hx
1 = 0, hx

2 = 1, hx
3 = 0, x = 1, 2, 3

hx
1 = 1, hx

2 = 0, hx
3 = 0, x = 4, . . . , 9. (59)
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IV. CONCLUSION

In this paper we have established coherence measures
based on FI subject to the incoherent nonunitary parametriza-
tion process. The coherence measure could be defined by
two forms based on FI or QFI, which both imply the direct
operational meaning by the connection with the parameter
estimation accuracy. In addition, we compared our measure
with QFI in unitary parametrization and found that in the qubit
case, our coherence measure can be equivalently understood
through unitary parametrization and can be analytically calcu-
lated. Our coherence also sheds new light on the roles of the
nonunitary parametrization process.
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APPENDIX A: REGION OF ∂θh(θ)

In the main text Cθ0
Q and Cθ0 were defined under a certain

condition ∂hx
n(θ )
∂θ

∈ [0, 1]. In fact, measures defined under other
conditions can be transformed to the original Cθ0 .

We first consider the case that ∂hx
n(θ )
∂θ

is finite and suppose

maxn,x | ∂hx
n(θ )
∂θ

| � k (k is finite). Define C̃θ0
k as the function

defined in a similar way to Cθ0 (in Theorem 1) but with the
different condition maxn,x | ∂hx

n(θ )
∂θ

| � k and G(k) as the set of
the corresponding channels, namely,

C̃θ0
k (ρ) = max

E∈G(k)
F (P̃E , θ0), (A1)

where

P̃E (x|θ ) = tr[Ẽx(θ )ρẼx(θ )†],

Ẽx(θ ) =
∑

n

ax
neihx

n (θ )| fx(n)〉〈n|, (A2)

and max
n,x

| ∂hx
n(θ )
∂θ

| � k. We find that C̃θ0
k has a connection with

the previous coherence measure.
Lemma 3. The function C̃θ0

k satisfies that

Cγ0 (ρ) = 1

4k2
C̃θ0

k (ρ), (A3)

where γ0 = 2kθ0.
In this sense, investigation under the condition ∂hx

n(θ )
∂θ

∈
[0, 1] could cover all other situations where k is finite. Next
we give a brief proof.

Proof. Suppose {Ex} are Kraus operators of the channel in
G(1/2), namely,

Ex(γ ) =
∑

n

ax
neiux

n (γ )| fx(n)〉〈n|, (A4)

where |∂γ ux
n| � 1

2 . Define

Êx(γ ) = eiγ /2Ex(γ ) =
∑

n

ax
neivx

n (γ )| fx(n)〉〈n|, (A5)

where vx
n(γ ) = ux

n(γ ) + γ /2 and thus ∂γ vx
n ∈ [0, 1]. The two

channels lead to identical effects, that is,

Êx(γ )ρÊx(γ )† = eiγ /2Ex(γ )ρe−iγ /2Ex(γ )†

= Ex(γ )ρEx(γ )†, (A6)

from which we have

Cγ0 (ρ) = C̃γ0
1/2(ρ). (A7)

Consider Ẽx in Eq. (A2). Defining Sx
l as the set satisfying

fx(n) = l when n ∈ Sx
l , then

P̃(x|θ ) =
∑

l

∑
n,n′∈Sx

l

ρnn′ax
nax∗

n′ ei[hx
n (θ )−hx

n′ (θ )] (A8)

and

∂θ P̃(x|θ )|θ0 =
∑

l

∑
n,n′∈Sx

l

{
ρnn′ax

nax∗
n′ ei[hx

n (θ0 )−hx
n′ (θ0 )]

× i
[
∂θhx

n(θ )
∣∣
θ0

− ∂θhx
n′ (θ )

∣∣
θ0

]}
. (A9)

Defining γ = 2kθ , then

P̃(x|θ ) =
∑

l

∑
n,n′∈Sx

l

ρnn′ax
nax∗

n′ exp
{

i
[
hx

n

( γ

2k

)
− hx

n′

( γ

2k

)]}
,

(A10)

and thus P̃(x|θ ) could be rewritten as P(x|γ ). Defining
gx

n(γ ) = hx
n( γ

2k ), then ∂γ gx
n(γ ) = ∂θ hx

n(θ )
2k , and thus |∂γ gx

n(γ )| �
1
2 . In addition,

∂γ P(x|γ )|γ0

=
∑

l

∑
n,n′∈Sx

l

(
ρnn′ax

nax∗
n′ exp

{
i
[
hx

n

( γ0

2k

)
− hx

n′

( γ0

2k

)]}

× i

[
∂γ hx

n

( γ

2k

)∣∣∣∣
γ0

− ∂γ hx
n′

( γ

2k

)∣∣∣∣
γ0

])

= 1

2k

∑
l

∑
n,n′∈Sx

l

{
ρnn′ax

nax∗
n′ ei[hx

n (θ0 )−hx
n′ (θ0 )]

× i
[
∂θhx

n(θ )
∣∣
θ0

− ∂θhx
n′ (θ )

∣∣
θ0

]}
= 1

2k
∂θ P̃(x|θ )|θ0 , (A11)

where γ0 = 2kθ0. Thus

F (P, γ0) =
∑

x

[∂γ P(x|γ )|γ0 ]2

P(x|γ0)

=
∑

x

[∂θ P̃(x|θ )|θ0 ]2

4k2P̃(x|θ0)
= F (P̃, θ0)

4k2
. (A12)

Combining this with Eq. (A7), we have

Cγ0 (ρ) = 1

4k2
C̃θ0 (ρ). (A13)

�
The above proof shows that if ∂θhx

n(θ ) is finite, the inves-
tigation under the condition ∂θhx

n(θ ) ∈ [0, 1] could cover all
other general cases. However, if ∂θhx

n(θ ) is infinite, the FI and
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Cθ0 (ρ) will be infinite. In addition, physical models gener-
ally lead to a finite ∂θhx

n(θ ); for example, the parametrization
Ramsey interferometer could be written as Uθ = exp(−iθJz )
[42–44] and the corresponding ∂θhx

n(θ ) is finite (Jz is the z
component of the total angular momentum). Thus we could
focus on the finite case.

APPENDIX B: DILATION OF THE OPTIMAL
CHANNEL IN G

For the estimation process in Eq. (3), the optimal channel
in G1 could be written as

Ex(θ ) =
∑

n

bx
n(θ )|1〉〈n|. (B1)

We denote by HA (d dimension) the space for it. Assuming
|xB〉 are basis vectors in another space HB (L dimension), we
construct the following states in HB:

∣∣ψn
B

〉 =
L∑

x=1

bx
n(θ )|xB〉, n = 1, 2, . . . , d. (B2)

From
∑

x E†
x Ex = I we have 〈ψm

B |ψn
B〉 = δnm. With states

in Eq. (B2), we can always find the other |ψx
B〉 (x = d +

1, . . . , L) to form a basis set together in HB. Defining

U B =
∑

x

∣∣ψx
B

〉〈xB|, (B3)

clearly U B†U B = U BU B† = IB. Then we can construct a con-
trolled unitary [65–67] in HA ⊗ HB,

U AB = |1A〉〈1A| ⊗ U B + IA
1 ⊗ IB, (B4)

where IA
1 is the identity operator in the residual subspace of

HA. Obviously, U AB is a unitary operator in HA ⊗ HB. Defin-
ing

V =
∑

n

(|1A〉〈nA| ⊗ |nB〉〈1B| + |nA〉〈1A| ⊗ |1B〉〈nB|)

− |1A〉〈1A| ⊗ |1B〉〈1B| (B5)

and

W = V + I2, (B6)

where I2 is the identity operator from the residual subspace
which eliminates VV † in HA ⊗ HB and W is a unitary operator
swapping specified states, it is easy to see that

Ex(θ ) = 〈xB|U ABW |1B〉. (B7)

Based on the Stinespring dilation theorem [64], {Ex(θ )} could
be implemented by a unitary U ABW on ρ ⊗ |1B〉〈1B| and pro-
jective measurement {|xB〉〈xB|}.
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