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Symmetry-protected entanglement in random mixed states
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Symmetry is an important property of quantum mechanical systems which may dramatically influence their
behavior in and out of equilibrium. In this paper, we study the effect of symmetry on tripartite entanglement
properties of typical states in symmetric sectors of Hilbert space. In particular, we consider Abelian symmetries
and derive an explicit expression for the logarithmic entanglement negativity of systems with ZN and U(1)
symmetry groups. To this end, we develop a diagrammatic method to incorporate partial transpose within the
random matrix theory of symmetric states and formulate a perturbation theory in the inverse of the Hilbert space
dimension. We further present entanglement phase diagrams as the subsystem sizes are varied and show that there
are qualitative differences between systems with and without symmetries. We also design a quantum circuit to
simulate our setup.
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I. INTRODUCTION

Dynamics of quantum chaotic many-body systems which
ultimately leads to thermal equilibrium has been a subject of
fundamental research in physics. A particular topic of great
interest recently has been the dynamics of quantum entangle-
ment in such systems. However, the study of large enough
systems that exhibit interesting large-scale effects has been a
challenge, to some extent by definition, in quantum chaotic
systems. A very useful tool, that has played an important role
in our understanding of universal behavior in such systems,
has been the introduction of randomness in the system; ran-
dom matrix theory, as an example, has proven to be able to
reproduce many universal properties in such systems [1–4]
and has paved the way to actually performing concrete ana-
lytical calculations.

Another paradigmatic example is the study of quantum
dynamics in random unitary circuits; introduction of random-
ness retains the essential physics while providing analytical
handles to study averaged quantities; this endeavor has been
very successful in identifying universal dynamical properties
and phenomena in quantum chaotic systems far from equilib-
rium [5–8]. In many real applications, on the other hand, one
expects some further structure in dynamics; in particular, a
ubiquitous situation is when conservation laws are present due
to, e.g., a Hamiltonian dynamics or a symmetry-preserving
law of motion. Such situations have also been studied widely
recently in particular in the context of random unitary circuits
and it has been shown that the addition of a conservation law
can lead to novel phenomena and behaviors [9,10].

In this work, we study the entanglement properties of
a chaotic system with a symmetry at late times starting
from a simple symmetric state (or many-body eigenstates
of a symmetric quantum chaotic Hamiltonian) through the
lens of random matrix theory; we assume that symmetric

random many-body states are capable of capturing the essen-
tial physics in such situations. Particularly, we will consider
tripartite entanglement in a system having a symmetric ran-
dom state. In a previous work [11], entanglement negativity,
as a multipartite entanglement measure, of a random state
without symmetry in a tripartite geometry (see Fig. 1) was
studied (see also Refs. [12–21] for early studies on the partial
transpose of random mixed states); this was, in particular,
done by investigating the entanglement (encoded in ρ̂A) be-
tween A1 and A2. Note that subsystem B can be viewed as
an environment for subsystem A. It was shown that the en-
tanglement between A1 and A2 subsystems shows different
behaviors as the Hilbert space dimensions of subsystems are
varied. We briefly recapitulate the main results of this work in
the following two paragraphs and next summarize our results
for symmetric random states in this paper.

A large-L perturbative diagrammatic approach in Ref. [11]
was introduced and employed to calculate the entanglement
negativity and the entanglement negativity spectrum in the
setting outlined above (see also Refs. [22–26] for a similar
diagrammatic approach to the entanglement negativity and
relative entropy of random tensor networks and models of
evaporating black holes); it was shown that the main param-
eter controlling the entanglement behavior is q = LB

LA
, where

Ls denotes the Hilbert space dimension of s = A, B. Looking
at extreme limits of this parameter is illuminating: for q � 1
one expects the bath to be very large and thus A to be almost
fully entangled with B resulting in a minimal entanglement
between A1 and A2. On the other hand, for q � 1, the bath
is small and not capable of thermalizing the A subsystem and
thus one expects a volume law entanglement between A1 and
A2. Indeed, the results in [11] show that this picture is correct
and the reduced density matrix of A shows a transition form
being positive partial transpose (PPT) to being negative partial
transpose (NPT) as LB is lowered from above to below the
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FIG. 1. Tripartite geometry of random pure states. In this paper,
we are interested in the entanglement negativity between two parties
(e.g., A1 and A2) out of the three. There is no notion of locality in this
setup.

transition value LB,PPT = 4LA. The PPT regime by definition
shows zero logarithmic negativity.

Below this transition point, where the state is NPT, it is
shown that two possibilities arise (assuming without loss of
generality LA1 � LA2 ): first, if A1 is not larger than half of the
system (or LA1 � LA2 LB), it was found that the entanglement
negativity between A1 and A2 becomes independent of the
relative sizes of these two subsystems; in this entanglement
plateau regime, the logarithmic negativity for a qubit system
shows a behavior EA1:A2 ∼ 1

2 (NA − NB) (independent of the
ratio NA1/NA2 ). On the other hand, in the opposite limit of
LA1 � LA2 LB, it was shown that there is maximal entangle-
ment between A1 and A2 with a logarithmic negativity of
EA1:A2 ∼ NA2 . The two regimes are separated by a critical
point given by the relation LA1 = LA2 LB, where the negativity
spectrum exhibits a divergence at the origin.

Here, we build on this previous work and study the case
where the random state of the system is symmetric. This
symmetry at the level of the state could be present due to a
global symmetry of the dynamics of the system. If the initial
state of the system has a definite conserved charge under a
global symmetry and the dynamics preserves the symmetry,
we expect the final state, as complicated as it could be, to
have also the same quantum number. Note that one example of
such a conserved quantity in a Hamiltonian system could be
the energy. We consider two separate classes of symmetries in
this work: ZR symmetry in a system consisting of qudits with
R onsite degrees of freedom (including R = 2, i.e., qubits) and
a U(1) symmetry in a qubit system. The latter can, e.g., repre-
sent systems of spin 1

2 ’s with rotational symmetry around the
z axis or fermionic systems with conserved particle number.

Given that the state of the whole system has a definite
symmetry charge, and, as will be discussed further later, the
density matrix of subsystem A can be written as

ρ̂A =
⊕

qA

pqA ρ̂
(qA )
A .

Noting this, we focus in this work on the symmetry-resolved
entanglement negativity,1 i.e., entanglement negativity of in-

1We should clarify that the term “symmetry-resolved entangle-
ment negativity” has also been used for a different quantity recently
[112–114], which has to do with the block-diagonal form of ρ̂

T2
A ,

dividual blocks of the density matrix that we denote by
E (ρ̂ (qA )

A ). These quantities represent a more refined measure
of mixed-state entanglement than the negativity of the whole
density matrix, as different symmetry sectors are considered
separately. Furthermore, another quantity, i.e., the symmetry-
averaged entanglement negativity can be calculated in terms
of the above symmetry-resolved values:

EA1:A2 :=
∑

qA

pqA E
(
ρ̂

(qA )
A

)
, (1.1)

which is the analog of the first term in the bipartite entangle-
ment entropy

SA =
∑

qA

pqA S
(
ρ̂

(qA )
A

)−
∑

qA

pqA log2 pqA . (1.2)

As we will see later, the symmetry-averaged entanglement
negativity can also be motivated as a way to identify sym-
metric separable states which are realized by symmetric local
operations and classical communications (LOCC).

Another interesting possibility that we are considering,
which can in principle access the entanglement properties
of individual blocks ρ̂

(qA )
A is the situation in which, only the

charge of subsystem B is measured in a symmetric system;
if this is done properly, the state of subsystem A will not
completely collapse into a pure state and interesting tripartite
correlations will be retained. It has been known that such mea-
surement in symmetry-protected topological (SPT) phases can
have nontrivial outcomes; in particular, it was shown [27] that
in a SPT phase, two spatially separated regions, which should
show no correlations due to the SPT state being a short-range
correlated state, can in fact become entangled if the symmetry
charge of their complements is measured. Similarly, here in
the context of symmetric random states, we will be interested
in the entanglement between A1 and A2 when the symmetry
charge of B is measured. Interestingly, one can come up with
quantum circuits that measure only the B subsystem charges
in systems with either ZR or U(1) symmetries. Details of such
charge measuring circuits, which can be useful in possible
quantum simulation of the setting discussed above on near
term quantum devices, will also be presented in this paper.

A summary of our approach and results follow. In order to
study the mixed-state entanglement of A1 and A2 subsystems,
we calculate the ensemble-averaged spectrum of the partially
transposed symmetry-resolved blocks using the diagrammatic
approach; the calculation is carried out in different regimes,
from which the entanglement negativity is also calculated. We
show that entanglement regimes similar to the nonsymmetric
case can be observed in the symmetric case as well. However,
in the symmetric case, the fact that we need to take into ac-
count the charges of different subsystems adds to the richness
and complexity of the entanglement behavior. In particular,
major differences that appear between the symmetric case and

i.e., after taking the partial transpose. This property is based on
the observation that [ρ̂T2

A , �q] = 0 where �q = q2 − q1 denotes the
charge imbalance between subsystems A1 and A2. While this is a
mathematical property of ρ̂

T2
A it is not clear what the physical mean-

ing of these blocks is.
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FIG. 2. Entanglement phase diagram of symmetry-projected random mixed states for U(1) symmetric systems. The mixed state is obtained
from a random pure state via partial tracing. Different panels correspond to different subsystem filling factors as indicated. Dashed lines [given
by NA f (νA) = NB f (νB )] separate the upper part of the phase diagram, where the volume-law term in the negativity is suppressed (but not
fully PPT), from the lower part where the negativity obeys a volume-law form. The lower region, NA f (νA) > NB f (νB ), consists of two phases:
First, the two corners are called maximal entanglement regimes where 〈EA1:A2 〉 = min(NA1 , NA2 ) f (νA); second, the middle region, where the
dominant diagrams break the replica symmetry leading to 〈EA1:A2 〉 = NA f (νA) − NB f (νB ) (to the leading order). The shaded regions represent
the critical phase between the replica symmetry breaking and maximal entanglement phases where the entanglement negativity spectrum
diverges at zero. Red curves are shown as a reference for critical line of nonsymmetric states.

the nonsymmetric one are as follows: first, the NPT to PPT
transition loses its sharp definition and becomes a crossover
rather than a transition. Furthermore, since the Hilbert space
dimensions of subsystems depend in general on quantum
numbers of those subsystems [e.g., for the U(1) symmetry],
we see that, in general, the transition to maximal entanglement
in the NPT region happens in a critical region as opposed to a
critical line. This can be seen in Fig. 2 in the case of U(1)
symmetry, where several situations are considered and the
critical regions are shown as shaded, while in a nonsymmetric
state we expect criticality only on the red curve.

The rest of our paper is organized as follows: In Sec. II,
we review some background materials about the partial trans-
pose, the symmetry charge, modified separability problem,
and the problem setup. There, we argue that why one should
use the symmetry-resolved logarithmic negativity to address
the separability problem in systems subject to symmetric
LOCCs. Section III is devoted to reviewing the diagram-
matic approach to random density matrices and calculating
the moments of the partially transposed density matrix; this
section serves as a warmup for the subsequent sections. In
Sec. IV, we present the central results of this paper, where we
use the resolvent function method diagrammatically to derive
the spectral density of the partially transposed density matrix
in various regimes. We also provide several numerical bench-
marks. In Sec. V, we propose a quantum circuit to perform
a local symmetry charge projection on a subsystem, which
would ultimately be useful to simulate the symmetry-resolved
entanglement negativity on a quantum computer. Finally, we
finish our paper by several closing remarks and future di-
rections in Sec. VI. In several Appendixes, we provide more
details of our calculations.

II. PRELIMINARY REMARKS

In this section, we first review the partial transpose and the
definition of symmetric states and symmetry charges, and then
we discuss the separability criterion for symmetric states and
introduce the setup of the problem and some notations.

A. Partial transpose and entanglement negativity

In this part, we briefly review some basics about the partial
transpose and the logarithimic negativity (LN) which may be
skipped. LN has proven to be useful in the study of various
aspects of many-body physics [28–96].

Let ρ̂A be the density matrix of subsystem A which consists
of subsystems A1 and A2 with orthonormal bases |e(k)

1 〉 and
|e( j)

2 〉, respectively:

ρ̂A =
∑
i jkl

ρi jkl

∣∣e(i)
1 , e( j)

2

〉〈
e(k)

1 , e(l )
2

∣∣. (2.1)

Partial transpose of the above matrix with respect to A2, which
we denote as ρ̂

T2
A , is defined by exchanging the indices of

subsystem A2 in the following way:

ρ̂
T2
A =

∑
i jkl

ρi jkl

∣∣e(i)
1 , e(l )

2

〉〈
e(k)

1 , e( j)
2

∣∣. (2.2)

A density matrix after partial transpose is left Hermitian
and its trace is preserved to be equal to 1, however, it can
have negative eigenvalues. If the eigenvalues of the partial
transpose of a state are kept positive, it is called a positive
partial transpose (PPT) state and otherwise it is called negative
partial transpose (NPT). The NPT property indicates that the
mixed state contains quantum entanglement [97,98].

Given the above properties of a partially transposed density
matrix, one can define the following two measures for mixed-
state entanglement [99–101]:

(i) entanglement negativity

N (ρ̂A) =
∥∥ρ̂T2

A

∥∥
1 − 1

2
, (2.3)

(ii) and logarithmic negativity

E (ρ̂A) = log2

∥∥ρ̂T2
A

∥∥
1. (2.4)

Here, ‖O‖1 = Tr
√

OO† is the trace norm, which for a Her-
mitian matrix is the sum of the absolute values of eigenvalues.
Note also that all logarithms in this paper are taken with base

052428-3



KASRA HEJAZI AND HASSAN SHAPOURIAN PHYSICAL REVIEW A 106, 052428 (2022)

2. Logarithmic negativity and the entanglement negativity
satisfy E = log2(2N + 1). A more informative measure, on
the other hand, is the entanglement negativity spectrum that
shows the probability distribution of the eigenvalues of ρ̂

T2
A :

P(ξ ) =
LA∑

i=1

δ(ξ − ξi ), (2.5)

Having the negativity spectrum, one can also calculate the
negativity:

N (ρ̂A) = −
∫

ξ<0
dξ ξ P(ξ ). (2.6)

To see the relation with entanglement in mixed states,
we first consider mixed states that have zero entanglement:
separable states whose density matrices can be written as

ρ̂sep =
∑
i, j

pi j ρ̂A1,i ⊗ ρ̂A2, j, pi j > 0 (2.7)

where ρ̂A1,i and ρ̂A2,i are density matrices for subsystems A1

and A2. Separable states are believed to harbor no entan-
glement as then can be prepared through the use of local
operations and classical communications (LOCC) on mani-
festly unentangled states, i.e., product states, shared between
A1 and A2. We now turn to the entanglement negativity of
these states; it is straightforward to check that partially trans-
posed separable states do not have negative eigenvalues, and
as a result are PPT states and have zero negativity. This means
that NPT states cannot be separable. In this paper we will
employ the entanglement negativity as a measure of mixed-
state entanglement and as a result only distinguish NPT and
PPT states as opposed to distinguishing separable states from
nonseparable ones.

B. Symmetry quantum number (charge) for Abelian
symmetry groups

In this part, we discuss the notion of symmetry charge in
systems invariant under a symmetry group. Consider a system
of R-dimensional qudits. Suppose the system is described by
a Hamiltonian which is invariant under an Abelian symmetry
group where the symmetry operation acts onsite, i.e., the
unitary operators representing the symmetry group elements
take a tensor product form over the qudits of each subsystem
s as Û ( j)

s =⊗l∈s û( j)
l , where û( j)

l ’s are single-site unitary op-
erators and j denotes symmetry group element. We use an
orthonormal basis for each site {|r〉} with r = 0, . . . , R − 1,
in which the unitaries û( j) are diagonal. Each basis element
furnishes a one-dimensional representation for G. Note that
since G is Abelian, all its irreducible representations are one
dimensional.

For simplicity, we define symmetry charges only for the
specific groups that we will be studying in this work, a general
construction is similar:

(i) Example 1: ZR symmetry. The generator of the cyclic
group ZR satisfies ĥR = 1. We form the qudit basis by taking
each state |r〉 to satisfy ĥ |r〉 = ei 2π

R r |r〉.
A many-body basis state of N qudits is denoted by

|r1, . . . , rN 〉 ≡ |r1〉 ⊗ · · · ⊗ |rN 〉 , (2.8)

where the subscripts denote the site number. Such a basis state
has a definite charge, as[⊗

ĥ
] |r1, . . . , rN 〉 = ei 2πh

R

∑N
i=1 ri |r1, . . . , rN 〉 , (2.9)

we note that we can assign the total charge of
∑N

i=1 ri to the
above state, where the sum is defined modulo R.

(ii) Example 2: U (1) symmetry. In this case, the symmetry
group is continuous. Here, we consider a system of qubits,
i.e., R = 2. Every transformation û(θ ) is specified by a con-
tinuous real parameter θ in the range [0, 2π ); we define the
states |0〉, |1〉 such that û(θ )|r〉 = eiθr |r〉. Furthermore, the total
charge of a many-body state |r1, . . . , rL〉 is defined by the
integer

∑N
i=1 ri.

Noting the above definitions for symmetry charges, we
define the projector onto the subset of all many-body states
in one of the subsystems s, which have a given quantum
number q as 	̂

(q)
s . It is straightforward to check that with

the above definitions, the total charge of a system is the
sum of the charges of its constituent subsystems; in other
words, a projector with a given charge Q for the whole
system which we denote as AB subsystem can be writ-
ten in terms of the projectors of its constituents A and B
subsystems in the following way:

	̂
(Q)
AB =

∑
qA+qB=Q

	̂
(qA )
A ⊗ 	̂

(qB )
B . (2.10)

Note that the above summation qA + qB = Q should be per-
formed mod R for the ZR symmetry.

In this paper, we consider symmetric random pure states
|
 (Q)〉, i.e., states with a determined symmetry charge which
belong to the subspace associated with 	̂(Q). In other words,
	̂(P) |
 (Q)〉 = δP,Q |
 (Q)〉. An immediate implication of the
aforementioned additivity of the symmetry charge is that any
reduced density matrix ρ̂A obtained from a symmetric pure
state |
 (Q)〉 via partial tracing ρ̂A = TrĀ |
 (Q)〉 〈
 (Q)| is also
symmetric, i.e., they commute with all symmetry operators
[ρ̂A, Û ( j)

A (h)] = 0. This is because the pure state density ma-
trix of the total system |
 (Q)〉 〈
 (Q)| is a projector as in
Eq. (2.10). Put differently, the reduced density matrix takes
a block-diagonal form

ρ̂A =
⊕

qA

pqA ρ̂
(qA )
A , (2.11)

where ρ̂
(qA )
A is a block matrix of quantum number q and pq =

Tr(ρ̂A	̂
(q)
A ).

C. Separability problem in symmetric systems

As mentioned, a separable state (2.7) is a completely clas-
sical state which can be generated by LOCCs. By definition,
ρ̂sep remains positive semidefinite even after PT, and hence it
is a PPT state. For symmetric systems, LOCCs are constrained
to be locally symmetry preserving, i.e., they commute with
local symmetry charge operators (or projection operators). As
a result, the definition (2.7) has an extra constraint on local
density matrices that [

ρ̂s, j, 	̂
(qs )
s

] = 0, (2.12)
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where 	̂
(qs )
s denotes local projectors into the subspace with

local symmetry charge qs within subsystem s = A1, A2, as
defined in the previous subsection. By definition, the symmet-
ric separable states also form a convex set, and because of
the above constraint, this set is a subset of generic separable
states. An immediate implication of this property is that a
symmetric state can have a zero-logarithm negativity although
it may not be realized by symmetry-preserving LOCCs. For
example, consider a Z2 symmetric system of two qubits (or,
equivalently, two fermions) described by the state

ρ̂A = 1

4

(
1 + p σ̂ x

1 ⊗ σ̂ x
2

)
. (2.13)

The local Z2 symmetry operators are σ̂ z
1 and σ̂ z

2 . Clearly, this
is a symmetric state as it commutes with symmetry operator
on A, i.e., σ̂ z

1 ⊗ σ̂ z
2 , while it cannot be written as a sym-

metric separable state. However, ρ̂
T2
A = ρA and E (ρ̂A) = 0.

As mentioned in the Introduction, a possible resolution is
to use the symmetry-averaged logarithmic negativity (1.1),
where we obtain E (ρ̂ (±)

A ) = log2(1 + p) leading to EA1:A2 =
log2(1 + p). To understand this physically, we see that it van-
ishes at p = 0 as expected since it is a fully mixed state with
zero entanglement, whereas EA1:A2 = log2 at p = 1 where the
state is an equal superposition of two Bell-pair type states
with different Z2 charges which are farthest away from states
prepared by symmetry-preserving LOCCs.

An alternative way to see why ρ̂
T2
A misidentifies the entan-

glement in symmetric mixed states is the fact that the action
of partial transpose does not commute with symmetry charge
projection operators (2.10). In other words, matrix elements of
different diagonal blocks in a symmetric ρ̂A are exchanged as a
result of the partial transpose. Therefore, we propose to apply
partial transpose to every block ρ̂

(qA )
A separately, compute the

associated logarithmic negativity, and then take the average
according to the Born probabilities pq as in (1.1).

It is easy to see that the commutation relation (2.12) im-
plies that we can always write a symmetric separable state
such that each term ρ̂s, j in the expansion (2.7) has a definite
symmetry charge of the corresponding subsystem, in other
words, we may write

ρ̂
(qA )
A =

∑
i, j

q1+q2=qA

p(qA )
i j ρ̂

(q1 )
A1,i

⊗ ρ̂
(q2 )
A2, j, (2.14)

for every block in ρ̂
(qA )
A in Eq. (2.11). This means that all

blocks in a state generated by symmetric LOCCs are indi-
vidually separable. Thus, if the symmetry-averaged negativity
in Eq. (1.1) is nonzero for a symmetric state, then it is not
separable under symmetric LOCCs; this makes the symmetry-
averaged negativity a suitable measure for this matter.

In the rest of this paper, we focus on the entanglement
negativity spectrum of each block obtained from a symmetric
random pure state.

D. Setup of the problem

We consider a tripartite system of A1, A2, and B, and they
comprise NA1 , NA2 , NB qudits which are R dimensional. We
assume that the system harbors an Abelian symmetry with the
symmetry group G. We start from a random pure state |
 (Q)〉

that has a definite quantum number Q under the symmetry.
One can write the components in a tensor product basis, as
follows:

|
 (Q)〉 =
∑
i,α

qA+qB=Q

X (qA,qB )
iqA ,αqB

∣∣e(qA )
iqA

〉⊗ ∣∣e(qB )
αqB

〉
, (2.15)

where iqA , αqB are indices enumerating states in the sectors
given by quantum numbers qA, qB in A and B subsystems and
X (qA,qB )

iqA ,αqB
is a Gaussian random variable. Here we make use of

the fact that the total quantum number is equal to the sum of
the quantum numbers of the constituents, i.e., Eq. (2.10).

As mentioned, the fact that |
 (Q)〉 has a definite quantum
number leads to a block-diagonal structure density matrix as
in Eq. (2.11). As discussed above, we study the entanglement
negativity of different sectors denoted by ρ̂

(qA )
A separately. At

this point, we require that each one of ρ̂
(qA )
A has a unit trace on

average:〈
X (qA,qB )∗

iqA ,αqB
X (q′

A,q′
B )

i′
q′

A
,α′

q′
B

〉
=

δqAq′
A
δqBq′

B
δiqA i′qA

δαqB α′
qB

LqA LqB

, (2.16)

where Lqs denotes the dimension of the subsystem s = A, B
of charge qs. Note that the relation qA + qB = Q is also as-
sumed in the above equation. In principle, for every disorder
realization, ρ̂

(qA )
A needs to be normalized to have a unit trace;

however, the fluctuations in the denominator lead to 1
LqA LqB

corrections which will be neglected throughout this paper
(see Refs. [11,102] for more discussion on this). Note that in
this notation 〈
 (Q)|
 (Q)〉 is equal to the number of different
symmetry sectors in subsystem A (or B) on average.

With the above normalization for the different blocks of the
density matrix, the Born weights in the symmetry-averaged
logarithm negativity (1.1) are given by

LqA LqB∑
q̃A

Lq̃A Lq̃B
.

III. RÉNYI ENTROPY AND RÉNYI NEGATIVITY

We first explain the 1/L diagrammatic perturbation theory
by calculating the Rényi entropies and Rényi negativities in
this section. We start by deriving Rényi entropies. The reduced
density matrix in the sector given by qA, i.e., ρ̂

(qA )
A , can be

written as

ρ̂
(qA )
A =

∑
iqA , jqA

∑
αqB

X (qA,qB )
iqA ,αqB

X (qA,qB )∗
jqA ,αqB

∣∣e(qA )
iqA

〉〈
e(qA )

jqA

∣∣, (3.1)

with qB = Q − qA. We represent the matrix elements of the
density matrix ρ̂

(qA )
A in the following way:

(3.2)

We will be interested in calculating averaged quantities over
random realizations in the remainder of this work; since X
is a Gaussian random variable, all its moments can be de-
composed in terms of its second moment. Noting this, in our
diagrammatics, we denote an averaging over different random
realizations of products of two X ’s with curves such as

(3.3)
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the actual value of the above second moment when appropri-
ate indices for X ’s are included can be read from Eq. (2.16).
Let us start with the first moment,

(3.4)
where it is understood that all possible indices should be
summed over when there is a closed loop; the factor LqA LqB

comes from this rule. On the other hand, the factor 1
LqA LqB

comes from the variance of the Gaussian variables.
We next calculate the ensemble average of Rényi entropies

as follows:

(3.5)

(3.6)

One can also obtain dominant contributions in certain limits
using the diagrammatic approach; first we consider the limit
LqA � LqB :

(3.7)

and in the opposite limit of LqA � LqB : while in the opposite
regime LA � LB, we obtain

(3.8)

The same technique can be used to calculate Rényi nega-
tivities as well, which are defined as the moments of [ρ̂ (qA )

A ]T2 ;
at this point we need to decompose the lines corresponding to
the A subsystem into A1 and A2 constituents; in other words,
we write the index iqA (and the like) in (3.1) as a collection
of the two indices (i1,q1 i2,q̄1 ) where q1 and q̄1 are quantum
numbers for A1 and A2 such that q1 + q2 = qA. As a result

ρ̂
(qA )
A has the following form in the diagrammatic notation:

(3.9)

where this time instead of the actual indices for each line,
only quantum numbers for each subsystem are denoted. Note
that separate quantum numbers for A1 and A2 subsystems are
introduced on the diagram; dotted and solid lines correspond
to subsystems A1 and A2, respectively. Furthermore, quantum
numbers are shown on corresponding lines, and it is required
by the symmetry charge relations that q1 + q̄1 = qA, r1 + r̄1 =
qA, and qA + qB = Q.

The above notation makes it clear that for a given ρ̂
(qA )
A ,

although the values of qA and qB are fixed, A1 and A2 subsys-
tems can have different quantum numbers and in fact, as we
will see below, one needs to sum over them when evaluating
diagrams. As a first check with this notation we calculate the
trace of ρ̂

(qA )
A using the diagrammatic notation; it follows as

(3.10)

with the quantum numbers of each subsystem shown ex-
plicitly on the lines. Since the quantum number of the B
subsystem only takes one value we do not include it in the
diagrams. For every closed loop, one should multiply by
the size of the sector given by the quantum number in the
given subsystem. Moreover, each time ensemble averaging is
performed, as before, a factor of 1

LqA LqB
should be multiplied

according to Eq. (2.16). Note that all the contractions in the
above diagram dictate that the quantum number of the A2

subsystem should be equal to q̄1 = qA − q1. On the second
row, we have used

∑
q1

LA1,q1 LA2,q̄1 = LqA .
In order to take partial transpose with respect to the A2

subsystem in the diagrammatic approach, we need one further
step that is swapping the A1 and A2 legs for each density
matrix insertion which will be depicted as

(3.11)

Note that similar to above, it is still required that q1 + q̄1 = qA

and r1 + r̄1 = qA; this constraint should be imposed in every
diagram containing leg crossings such as the above. Note that
the indices of [ρ̂ (qA )

A ]T2 do not necessarily satisfy the quan-
tum number constraint that ρ̂

(qA )
A satisfies; as can be seen in

Eq. (3.9) the two row and column indices of ρ̂
(qA )
A should

belong to complementary charge sectors, i.e., q1 + q̄1 = qA

and r1 + r̄1 = qA. This is, however, not true for the partially
transposed density matrix. In fact, [ρ̂ (qA )

A ]T2 , whose elements
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FIG. 3. Entanglement negativity spectrum of projected density matrices ρ̂
(qA )
A for (a) Z2 symmetric qubit systems R = 2, (b) Z3 symmetric

qutrit systems R = 3, and (c) Z4 symmetric ququart systems R = 4, in the semicircle regime. Solid lines are the random matrix theory
result given in Eq. (4.19). Numerical data are represented by colored circles. The agreement between theory and numerics is evident. Here,
NA1 = NA2 = 3 and ensemble average is performed over 104 samples.

can be shown as [ρ̂ (qA )
A ]T2

(i1,q1 i2,q2 ),( j1,r1 j2,r2 ), consists of two sepa-
rate blocks: first, a block with elements which do not satisfy
the relations q1 + q2 = qA, r1 + r2 = qA and, second, a block
with elements that satisfy these relations. This decomposition
will be used for both our numerical (see Figs. 3–6) and for our
analytical results [see, e.g., Eqs. (4.4) and (4.5)].

One can now calculate ensemble-averaged moments of the
partially transposed density matrix to obtain Rényi negativ-
ities of different orders. The first nontrivial one is the third
moment, which without ensemble averaging takes the form

(3.12)
For illustration purposes, let us only focus on one of the terms
appearing in the ensemble average of the above quantity, i.e.,
the term given by

(3.13)

Quantum numbers of subsystems A1 and A2 are denoted on
each of the loops corresponding to these two subsystems.
Quantum number relations, as discussed above, have dictated
all quantum numbers on the A1 subsystem loops to be equal,
while the quantum number on the single A2 loop is its com-
plementary q̄1 = q − q1. To compute the total contribution of
this diagram, we note that every closed loop with a given
quantum number brings about one factor of the Hilbert space
size corresponding to that quantum number, i.e., the total
contribution is given by

∑
q1

L3
A1,q1

LA2,q̄1 LB,qB
1

(LA,qA LB,qB )3 ; the
summations take the effect of all possible quantum numbers
into account here.

A similar diagram for the fourth moment can also be
drawn, which is only one of the terms among many:

(3.14)

the specific structure of the diagram dictates two sets of in-
dependent quantum numbers, i.e., q1 and q2 corresponding
to A1 and A2 loops. Also, q̄1 = qA − q1 and q̄2 = qA − q2

FIG. 4. Entanglement negativity spectrum of ρ̂
(qA )
A for a U(1) symmetric system in the replica symmetry-breaking regime. Here, NA1 =

NA2 = 5 and NB = 12. Total particle number is qA + qB = 11 and projected sector is labeled by qA. Solid lines are random matrix theory results
given by Eq. (4.23) which are in good agreement with the exact numerical simulations (colored circles).
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FIG. 5. Critical exponents for the negativity spectrum at the tran-
sition point in Z3 symmetric states. For a better numerical accuracy,
we calculate the cumulative distribution function instead of the spec-
tral density. NA1 = 2, NA2 = 6, and NB = 5. Inset shows the spectral
density in linear scale.

label the loops in A2 and A1 subsystems, respectively. As
can be seen in the above two cases, each diagram can be
labeled by its independent loop quantum numbers; for some
diagrams there is only one independent quantum number and
for some there are two. As a result, we can label each term
contributing to the Rényi negativities by its independent quan-
tum numbers; in the following we label the diagrams by the
quantum numbers on the lines used for evaluating the overall
trace or, in other words, the line or lines at the bottom of
each diagram. The contribution from this diagram takes the

form
(LA1 ,q1 LA1 ,q̄2 )2

(LA,qA LB,qB )4 LB,qB LA2,q2 LA2,q̄1 . Note that there are equal
numbers of A1 subsystem loops with indices q1 and q̄2.

We now consider different regimes and discuss the dom-
inant diagrams that appear in the expansion of each of the
moments (see Table I for naming conventions in this paper).
We can then use the moments in each regime to calculate
entanglement negativity using the replica limit

〈E (ρ̂ )〉 = lim
k→ 1

2

log2 〈Tr(ρ̂T2 )2k〉 . (3.15)

As a result of this, we only consider order n = 2k moments in
the following.

We start by considering the case where the B subsystem
is larger than A; we have seen above that factors of Hilbert
space dimensions of different quantum number sectors ap-
pear when loops in the diagrams appear; as discussed earlier,
one can think about diagrams with certain quantum num-
bers separately and depending on the ratio between Hilbert
space dimensions for the specified quantum numbers decide
to which regime they correspond. In this language, large B
subsystem is understood as having LB,qB � LA1,q1 LA2,q2 for

TABLE I. Dictionary of various entanglement phases.

Entanglement phase Description

Positive partial transpose B is larger than A
Replica symmetry breaking No party is larger than half total system
Maximal entanglement A1 or A2 is larger than half total system

given q1 and q2 values. The dominant contribution comes
from a diagram of the form

(3.16)

If for all values of q1, the relation LB,qB � LA1,q1 LA2,q2 holds,
one can sum the above result over all possible q1 values to get∑

q1

LA1 ,q1 LA2 ,q̄1
Ln

A,qA

= L1−n
A,qA

.

The opposite regime of LB,qB � LA1,q1 LA2,q2 consists of
two different subregimes on its own; we first consider the
subregime of LA1,q1 � LA2,q2 LB,qB : instead of the general case,
we focus on the fourth moment from which the general result
for even moments of the partially transposed density matrix
can be deduced. One can check that the dominant diagram in
this limit is given by the diagram in Eq. (3.14). In general, for
an even moment the contribution from a similar diagram will
be given by

(LA1,q1 LA1,q̄2 )n/2(LA2,q2 LA2,q̄1 )

Ln
A,qA

Ln−1
B,qB

. (3.17)

Finally, there is another regime of interest where the dom-
inant diagrams can be considered and it is given by requiring
LB,qB � LA1,q1 LA2,q2 and LAs,qs � LAs̄,qs̄ LB,qB , simultaneously.
This regime essentially means that none of the subsystems,
within the specific symmetry charge sectors, are larger than
the half of the whole sector. One of candidate diagrams that
contributes most dominantly in this regime has the following
form:

(3.18)

resulting in the contribution

LA1,q1 LA2,q2 (LA1,q̄2 LA2,q̄1 )n/2

Ln
A,qA

Ln/2
B,qB

(3.19)

to the corresponding moment. However, different diagrams
with different structures can also be considered whose con-
tributions are not subdominant compared to the one shown
above. This fact, along with the different combinations of
Hilbert space dimensions corresponding to different charge
sectors, makes calculating the dominant contribution to Rényi
negativities a not so straightforward matter in this regime.

The change in dominant diagram as a function of replica
index makes the analytic continuation to the replica limit
(3.15) ambiguous. A standard way to avoid this ambiguity
is to study the spectrum of the partially transposed density
matrix in a more systematic way and derive the resolvent
function; this will be done in the next section. We consider
two concrete cases of symmetry groups, that is, ZR and U(1)
and apply our general results to these two cases.
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FIG. 6. Evolution of the negativity spectrum as the size of subsystem B is increased for U(1) symmetric systems. This trend corresponds
to sweeping a vertical path from bottom to top in the phase diagram as shown in the first panel. The colored circles in each panel are numerical
simulations (averaged over 104 samples) and solid lines correspond to the numerical solutions to Eqs. (4.53) and (4.46) from random matrix
theory. Here, we set NA2 = 3 and NA1 = 6 and the filling fractions are νA = 1

3 and νB = 1
2 . Note that the points within the critical region (shaded

area) of the phase diagram are characterized by a diverging spectral density at the origin [(a)–(c)].

IV. ENTANGLEMENT NEGATIVITY SPECTRUM

We now turn to calculating the negativity spectrum of dif-
ferent charge sectors of the density matrix, i.e., components
shown as ρ̂

(qA )
A . To this end, we make use of a Green function

(or resolvent function) G(z) defined as

G(z) =
〈

1

z − H

〉

=
〈

1

z
+ 1

z
H

1

z
+ 1

z
H

1

z
H

1

z
+ · · ·

〉
, (4.1)

where H is taken to be (ρ̂ (qA )
A )T2 the partial transpose of ρ̂

(qA )
A

with respect to A2 for our purposes. Note that G(z) is a matrix
with the same set of indices as ρ̂

(qA )
A . The spectral density of

(ρ̂ (qA )
A )T2 is then computed as

P(ξ ) = − 1

π
Im lim

ε→0
Tr[G(z)]

∣∣
z=ξ+iε, (4.2)

where the identity limε→0
1

λ+iε = P( 1
λ

) − iπδ(λ) has been
used.

In order to calculate G(z) in different situations, we use
a diagrammatic approach; the set of Feynman rules read as
follows:

(i) Every closed loop for each subsystem brings in one
factor of the size of that subsystem with the specified quantum
number.

(ii) On the diagrams, we will not specify the quantum
number for the loops corresponding to the B subsystem, as
it is always equal to qB when we are calculating properties of
ρ̂

(qA )
A , where qA + qB = Q.

(iii) When a dotted line (corresponding to A1) and a solid
line (corresponding to A2) originate from the same point in a
diagram, a situation such as

their quantum numbers are not independent, i.e., q2 = q̄1,
where q1 + q̄1 = qA.

As mentioned earlier, the resolvent function G(z) has the
same indices as those of ρ̂

(qA )
A , i.e., one needs to specify indices

qi to address a component of G(z). Interestingly, the structure
of G(z) is not very complicated. By examining diagrams in the
expansion (4.1), it is easy to see that G has a block-diagonal
form as in

G = G1 ⊕ G2, (4.3)

where

G1 =
⊕

q1,q2 �=q̄1

G1,q1q21A1,q1 ⊗ 1A2,q2 ,

G2 =
⊕

q1

G2,q11A1,q1 ⊗ 1A2,q̄1 . (4.4)
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In fact, every block of G is proportional to the identity as
reflected above (as a result of ensemble averaging). Using the
principal value relation, we also define two components for
the spectral density

P(ξ ) =
∑

q1,q2 �=q̄1

P1,q1q2 (ξ ) +
∑

q1

P2,q1 (ξ ). (4.5)

Accordingly, the total negativity of ρ̂
(qA )
A can be written as a

sum 〈
N
(
ρ̂

(qA )
A

)〉 = N1
(
ρ̂

(qA )
A

)+ N2
(
ρ̂

(qA )
A

)
, (4.6)

where

N1
(
ρ̂

(qA )
A

) =
∑

q1,q2 �=q̄1

n1(q1, q2), (4.7)

N2
(
ρ̂

(qA )
A

) =
∑

q1

n2(q1). (4.8)

Here, n1(q1, q2) and n2(q1) are simply introduced to denote
the contributions of P1,q1q2 (ξ ) and P2,q1 (ξ ) to the total negativ-
ity through Eq. (2.6).

In the following, we will also present results on exact
numerical calculation of the spectral density of the partial
transpose for comparison with the analytical results; to this
end, we use Eq. (3.9) to construct the density matrix in terms
of random Gaussian independent and identically distributed
(iid) entries and perform the partial transpose explicitly.

A. Replica symmetry-breaking regime

We first consider the regime in which the conditions
LA1 ,q1

LA2,q2
LqB

� 1 and
LA2 ,q2

LA1,q1
LqB

� 1 (for all q1 and q2) hold. We

call this regime the semicircle (or replica symmetry-breaking)
regime. It roughly corresponds to requiring NA1 , NA2 < N

2 as
will be discussed further in the following.

In this regime, the dominant terms contributing to the re-
solvent function consist of the following diagrams:

(4.9)

In the above, whenever the external lines are labeled with q1

and q̄1 instead of q1 and q2, it is implied that such a term
only contributes to components of G, with external lines labels
satisfying q1 + q2 = qA, which we call G2 component; this
requirement is dictated by the structure of theses terms and
the connectivity of the vertices. However, other terms with
two independent external labels q1 and q2 contribute to both
G1 and G2.

Similar to the nonsymmetric states, we shall call this
regime replica symmetry breaking [11] as explained below.
Let us recall that the replica symmetry in our setup is a matrix
identity corresponding to the invariance of the Rényi negativ-
ity Tr(ρ̂T2

A )n under a Zn cyclic permutation of density matrices
(or replicas). The replica symmetry action can diagrammati-
cally be represented as a discrete translation symmetry. Given

this diagrammatic definition, we can check whether a diagram
is symmetric or not. As we see in Eq. (4.9), the dominant
diagrams in the regime of interest in this subsection are not
replica symmetric, and hence we call this regime replica sym-
metry breaking. We should, however, note that the overall
summation is replica symmetric since the action of replica
symmetry on diagrams only shuffles them within the sum.

One can write the function G(z) in the following way as a
geometric series:

(4.10)
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in terms of the self-energy function �(z). Similar to G, � has a block-diagonal form as well:

� =
⊕

q1,q2 �=q̄1

�1,q1q2 1A1,q1 ⊗ 1A2,q2

⊕
⊕

q1

�2,q1 1A1,q1 ⊗ 1A2,q̄1 . (4.11)

�(z) has an expansion in terms of G(z) on its own:

(4.12)

forming a Schwinger-Dyson (self-consistent) equation. Next, we plug in the resolvent function (4.4) and get

� =
⊕

q1

1A1,q1 ⊗ 1A2,q̄1

[
LqB

LqA LqB

+ LqB

(LqA LqB )2
LA1,q1 LA2,q̄1 G2,q1

]

⊕
⊕

q1,q2 �=q̄1

1A1,q1 ⊗ 1A2,q2

LqB

(LqA LqB )2
LA1,q̄2 LA2,q̄1 G1,q̄2 q̄1 . (4.13)

On the other hand, using Eq. (4.10), and writing G in terms of � results in

G1,q1q2 = 1

z − LA1 ,q̄2 LA2 ,q̄1
L2

qA
LqB

G1,q̄2 q̄1

,

G2,q1 = 1

z −
(

1
LqA

+ LA1 ,q1 LA2 ,q̄1
L2

qA
LqB

G2,q1

) . (4.14)

This yields a set of quadratic equations for G1 and G2:

G2
1,q1q2

LA1,q1 LA2,q2

L2
qA

LqB

z − G1,q1q2

[
z2 + 1

L2
qA

LqB

(LA1,q1 LA2,q2 − LA1,q̄2 LA2,q̄1 )

]
+ z = 0,

G2
2,q1

LA1,q1 LA2,q̄1

L2
qA

LqB

+ G2,q1

(
1

LqA

− z

)
+ 1 = 0. (4.15)

The solutions to the above equations read as

G1,q1q2 = LqA

2 z αq1q2

{[
z2 + 1

LqA

(αq1q2 − αq̄2 q̄1 )

]
±
√

z4 − 2z2

LqA

(αq1q2 + αq̄2 q̄1 ) + 1

L2
qA

(αq1q2 − αq̄2 q̄1 )2

}
,

G2,q1 = LqA

2 αq1q̄1

⎧⎨
⎩
(

z − 1

LqA

)
±
√(

z − 1

LqA

)2

− 4
αq1q̄1

LqA

⎫⎬
⎭, (4.16)

where we have defined a family of parameters

αq1q2 = LA1,q1 LA2,q2

LqA LqB

. (4.17)

1. ZR symmetry

Instead of focusing on the general case first, we initially
consider the simple case of taking the symmetry group to be
ZR. In this case, since symmetry sectors having different quan-
tum numbers have identical dimensions, G1 and G2 become
independent of their quantum number indices. The spectral

densities derived from imaginary parts of the solutions in
Eq. (4.16) can be written as

P(ξ ) = 1

π

∑
q1,q2 �=q̄1

(LA1,q1 LA2,q2 )
LqA

2α

√
4α

LqA

− ξ 2

′

+ 1

π

∑
q1

(LA1,q1 LA2,q̄1 )
LqA

2α

√
4α

LqA

−
(

ξ − 1

LqA

)2
′

,

(4.18)

052428-11



KASRA HEJAZI AND HASSAN SHAPOURIAN PHYSICAL REVIEW A 106, 052428 (2022)

where the summations and the initial factors of the sector
dimensions account for the trace. Furthermore, the primed
square roots above and from here on are used to denote√·′ = θ (·)√· for brevity.

In the case of ZR symmetric states, we may write the
Hilbert space dimensions explicitly as LAs,qs = RNAs −1 (which
is independent of qi) and simplify (4.18) further into

P(ξ ) = 1

2π
R2NA+NB−2

{
(R − 1)

√
4

RN−1
− ξ 2

′

+
√

4

RN−1
−
(

ξ − 1

RNA−1

)2
′ }

. (4.19)

It can be seen that the spectral density consists of two semi-
circles as shown Fig. 3. Direct numerical calculation of the
spectral density is also presented in this plot. One of the semi-
circles is always centered at ξ = 0 irrespective of the size of
different subsystems. This means that the partially transposed
reduced density matrix always has negative eigenvalues and
thus there is some residual entanglement between A1 and
A2 irrespective of how large the rest of the system is. It is
important to note that the spectral density in this regime is
independent of the way subsystem A is partitioned into A1

and A2. This phenomenon (which was dubbed entanglement
saturation in Ref. [11]) is similar to the nonsymmetric states as
a result of which the entanglement negativity does not depend
on the size of A1 and A2. As we see below, this similarity does
not hold in general for symmetric states.

With the above form for the spectral density, one can calcu-
late the negativity using Eq. (2.6). We note that the first term
in (4.19) always contributes to the negativity and thus we call
it the residual contribution which has the following form:

N1
(
ρ̂

(qA )
A

) = 2

3π
(R − 1) R

1
2 (NA−NB−1). (4.20)

The second term in (4.19), on the other hand, contributes only
if R(NA−NB−1) > 1

4 :

N2
(
ρ̂

(qA )
A

) = 1

2π

(
8

3
R

1
2 (NA−NB−1) + 1

3
R

1
2 (NB−NA+1)

)

×
√

1 − 1

4
R(NB−NA+1)

− 1

π
cos−1

(
1

2
R

1
2 (NB−NA+1)

)
. (4.21)

The dominant contribution of this term deep in the semicircle
regime has the form 4

3π
R

1
2 (NA−NB−1).

The logarithmic negativity as a result reads as

〈E (ρ̂ (qA )
A )〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

log2

[
4

3π
(R + 1)

]+ 1
2 (NA − NB − 1) log2 R

if R(NA−NB−1) � 1
4 ,

1
log2

4
3π

(R − 1) R
1
2 (NA−NB−1)

if R(NA−NB−1) � 1
4 . (4.22)

2. Generic symmetry group

For a generic symmetry group, the two components of
the spectral density (4.5) can be similarly obtained from
Eq. (4.16) as

P1,q1q2 (ξ ) = 1

π

L2
qA

LqB

2|ξ |

×
√

4

L2
qA

αq1q2αq̄2 q̄1 −
[
ξ 2 − 1

LqA

(αq1q2 + αq̄2 q̄1 )

]2
′

,

P2,q1 (ξ ) = 1

π

L2
qA

LqB

2

√
4

αq1q̄1

LqA

−
(

ξ − 1

LqA

)2
′

. (4.23)

It can be seen above that P2,q1 always results in a semicircle
law for the spectral density. These semicircles are centered
at the same point (which only depends on total symmetry
charge A), while their radii are different (determined by q1).
The general form of the P1 contribution is more involved. In
particular, its shape deviates from a semicircle and generally
depends on symmetry charge sectors q1 and q2. Nevertheless,
it is symmetric around ξ = 0. It is easy to check that P1 is only
nonzero over the following range:

|√αq1q2 − √
αq̄2 q̄1 | < |ξ |√LqA < |√αq1q2 + √

αq̄2 q̄1 |. (4.24)

This means that if αq1q2 �= αq̄2 q̄1 for all allowed values of q1

and q2, there will be a gap in the spectral density around
ξ = 0. We examine this prediction in the case of U(1) sym-
metry as plotted in Fig. 4. We first note that the Hilbert space
dimension of subsystem As is given by LAs,qs = (NAs

qAs

)
. Then,

the condition αq1q2 �= αq̄2 q̄1 is always met unless qA = NA1 =
NA2 . Therefore, for a generic charge, P1 has a gap [as in
Fig. 4(a)], and a nonzero continuous form of P1 only appears
at a fine-tuned point [Fig. 4(b)].

Explicit numerical calculation of the spectral density is
also presented in the same plots. We have used the fact that
a decomposition such as (4.5) can also be exploited numeri-
cally, as [ρ̂ (qA )

A ]T2 consists of the two blocks of complementary
and noncomplementary charges [see the discussion below
Eq. (3.11)].

3. Thermodynamic limit for the U(1) case

In this part, we describe a U(1) symmetric system in
terms of a system with conserved number of particles. To
take the thermodynamic limit, we find it more convenient to
characterize the symmetry charge sector in terms the filling
factor νs = qs

Ns
where qs and Ns denote the particle number

and the number of sites in (or volume of) the subsystem
s, respectively. Thermodynamic limit is then understood as
taking qs, Ns → ∞ while νs is kept finite.

The relations for the spectral densities in (4.23) could
be simplified in the thermodynamic limit, for example, all
functionalities become those of filling factors and the sum-
mations turn into integrals. Plugging in the spectral density
(4.23) (after the continuum approximation) to Eq. (2.6) for
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the entanglement negativity, we obtain

〈
N
(
ρ̂

(qA )
A

)〉 = NA1 NA2

∫
dν1dν2 n1(ν1, ν2) + NA1

∫
dν1 n2(ν1), (4.25)

n1(ν1, ν2) = L2
νA

LνB

2π

∫
ξ<0

dξ

√
4

L2
νA

αν1ν2αν̄2 ν̄1 −
[
ξ 2 − 1

LνA

(αν1ν2 + αν̄2 ν̄1 )

]2
′

,

n2(ν1) = L2
νA

LνB

2π

∫
ξ<0

dξ (−ξ )

√
4

αν1 ν̄1

LνA

−
(

ξ − 1

LνA

)2
′

. (4.26)

In the above expressions, the first line is a continuum version
of Eq. (4.6), and it is assumed that the symmetry sector of
A that we are considering is characterized by a particle num-
ber equal to NAνA and that the total particle number in the
system is given by NAνA + NBνB. Given a value for ν1, the
complementary ν̄1 is chosen so that NA1ν1 + NA2 ν̄1 = NAνA.
Furthermore, αν1ν2 = LA1 ,ν1 LA2 ,ν2

LνA LνB
, and in the thermodynamic

limit,

Ls = 1√
2πNsνs(1 − νs)

eNs f (νs ), (4.27)

with

f (νs) = −νs ln νs − (1 − νs) ln (1 − νs). (4.28)

In the following, we show how a saddle-point approxima-
tion can be applied to calculate the negativity in the forms
presented above. We first focus on the component given by
n1:

N1
(
ρ̂

(νA )
A

) = NA1 NA2

L2
νA

LνB

2π

∫
dν1dν2

(
αν1ν2 + αν̄2 ν̄1

LνA

)3/2

×
∫ −√

1−a

−√
1+a

d ξ̃

√
a2 − (1 − ξ̃ 2

)2
, (4.29)

where a2 = 4 αν1ν2 αν̄2 ν̄1
(αν1ν2 +αν̄2 ν̄1 )2 � 1 and a change of variable to ξ̃

is performed. Using another change of variable 1 − ξ̃ 2 =
a cos θ , the integral on the second row takes the form
a2 1

4

∫ 2π

0 dθ sin2 θ√
1−a cos θ

:

N1
(
ρ̂

(νA )
A

) = L1/2
νA

LνB

2π
Ia

∫
dν1dν2

αν1ν2αν̄2 ν̄1

(αν1ν2 + αν̄2 ν̄1 )1/2 . (4.30)

The integral Ia = ∫ 2π

0 dθ sin2 θ√
1−a cos θ

varies monotonically over

[π, 8
√

2
3 ) for 0 < a < 1. We now make a saddle-point approxi-

mation in the integral over ν1, ν2 for a given νA. The important
part of the integrand turns out to be the following due to its

exponential dependence on NA,i:

αν1ν2αν̄2 ν̄1

(αν1ν2 + αν̄2 ν̄1 )1/2 = 1

(LνA LνB )3/2 eF (ν1,ν2 ). (4.31)

The single exponential on the right-hand side has the exponent

F (ν1, ν2) = NA1 [ f (ν1) + f (ν̄2)] + NA2 [ f (ν2) + f (ν̄1)]

− 1

2
ln
[
eNA1 f (ν1 )+NA2 f (ν2 ) + eNA1 f (ν̄2 )+NA2 f (ν̄1 )

]
,

(4.32)
where terms slower than NA,i in the thermodynamic limit are
neglected for the process of evaluating the integral in the
saddle-point approximation but will be restored eventually.
One then needs to find the ν1 and ν2 values that result in
the maximum value for the exponent; the integral in (4.30)
can thus be approximated by a Gaussian integral around these
values of ν1 and ν2. Given the form introduced above for the
function f and the ν̄i values, it can be shown that F acquires
its maximum value when ν1 = ν2 = νA. This maximal value
reads as

F (νA, νA) = 1

2
[− ln(2) + 3 (NA1 + NA2 ) f (νA)]. (4.33)

One then needs to also calculate the second derivatives of F
at this point. These derivatives for a general value of νA take a
very involved form which we do not show here (but will use
below), but for the special case of νA = 1

2 , they take a simpler
form; νA = 1

2 , the matrix ∂νi∂ν jF (ν1, ν2) assumes a diagonal
form with the elements −3 N2

N1
(N1 + N2) and −3 N1

N2
(N1 + N2)

on the diagonal. If we now take all the exponential factors
together, we obtain the following relation:

N1
(
ρ̂

(νA )
A

) ∼ 1

LνA L1/2
νB

e
3
2 NA f (νA ) = e

1
2 [NA f (νA )−NB f (νB )]. (4.34)

The above expression applies to all values of νA.
Taking all the prefactors into account for the case of νA =

1
2 , we get the contribution to negativity due to n1 as

N1
(
ρ̂

(νA= 1
2 )

A

) = 16

9

(
2

π

)3/4 (NA1 NA2 NB)1/4

N1/2
A

[νB(1 − νB)]1/4 e
1
2 [NA f ( 1

2 )−NB f (νB )]. (4.35)

For general νA, this contribution to negativity takes the following form:

N1
(
ρ̂

(νA )
A

) =
16
9

(
2
π

)3/4 (NA1 NA2 NB)1/4

N1/2
A

[νB(1 − νB)]1/4√
1 + 4

3
NA1 NA2

NA
(1 − νA) νA ln2

(
1
νA

− 1
) e

1
2 [NA f (νA )−NB f (νB )]. (4.36)
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A similar saddle-point approximation could be employed for the other term in the negativity (4.55) that is given by n2; we first
note that n2(ν1) vanishes if 4αν1 ν̄1 LνA = 4

LA1 ,ν1 LA2 ,ν̄1
LνB

< 1. On the other hand, if we assume that we are away from this limit, and

actually are deep within the replica symmetry-breaking regime (where
LA1 ,ν1 LA2 ,ν̄1

LνB
� 1 for the most dominant terms contributing

to the ν1 integral over n2) one can write this contribution to the negativity as

N2
(
ρ̂

(νA )
A

) = NA1

∫
dν1 n2(ν1) = NA1

∫
dν1

4

3π

1√
LνB LνA

(LA1,ν1 LA2,ν̄1 )3/2. (4.37)

The saddle-point solution is given by ν1 = νA. It takes the following form after straightforward manipulations:

N2
(
ρ̂

(νA )
A

) = 4

3
√

3π

(
2

π

)1/4 ( NB

NA1 NA2

)1/4 [νB(1 − νB)]1/4

[νA(1 − νA)]1/2 e
1
2 [NA f (νA )−NB f (νB )]. (4.38)

One should note that unlike N (1)
A1:A2; νA

this result only holds if the exponent 1
2 [NA f (νA) − NB f (νB)] is positive, as discussed

above.

B. General case (including maximal entanglement in A)

In the general case, we take the condition on the subsystem sizes to be NA1 > NA2 ; in this regime, more terms in the self-energy
should be taken into account as shown below in Eq. (4.39). It can be seen that if one takes only the first two terms in the
self-energy, the previous result in the replica symmetry-breaking regime is recovered.

Apart from the single term on the first row, the rest of the terms are grouped into two classes: one, the class of terms
on the second row, which contains diagrams with odd numbers of resolvent function insertions which contributes to both G1

and G2; and two, the class on the third row whose terms contain even numbers of resolvent function insertions which only
contributes to G2:

(4.39)

The self-energy, as a result, obeys the following equation:

� =
⊕

q1

1A1,q1 ⊗ 1A2,q̄1

1

LqA

[1 + αq1q̄1 G2,q1 ]
1

1 − β2
q1

G2
2,q1

⊕
⊕

q1,q2 �=q̄1

1A1,q1 ⊗ 1A2,q2

αq̄2 q̄1

LqA

G1,q̄2 q̄1

1 − βq1βq̄2 G1,q1q2 G1,q̄2 q̄1

,

(4.40)
where we have defined another family of parameters as βq1 =
LA1 ,q1
LqA LqB

. Putting these back into Eq. (4.10), one can derive the
self-consistent equations for the resolvent function.

1. ZR symmetry

Let us start with the case of the symmetry group ZR:

G3
1

z

R2(NA2 +NB−1)
+ G2

1

[
1

RN−1
− 1

R2(NA2 +NB−1)

]
− G1z + 1 = 0,

G3
2

z

R2(NA2 +NB−1)
+ G2

2

[
1

RN−1
− 1

R2(NA2 +NB−1)

]

+G2

[
1

RNA−1
− z

]
+ 1 = 0. (4.41)
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One can see from the above that both G1 and G2 diverge at
z = 0 if

RN−1 = R2(NA2 +NB−1) ⇒ NA1 = NA2 + NB − 1. (4.42)

The leading divergence for G1 and G2 can be read from the
cubic equations:

G1 ∼ i

z1/3
, G2 ∼ i

z1/2
. (4.43)

This limit corresponds to the transition between the semi-
circle and the maximally entangled regimes similar to the
nonsymmetric states [11], albeit the transition in the latter
case occurs at a different point NA1 = NA2 + NB. In addition,
in contrast to the ZR symmetry above, the critical exponent in
the nonsymmetric case is 1

2 . We confirm the critical exponents
in the case of Z3 symmetric states in Fig. 5.

Next, we discuss the behavior of the entanglement nega-
tivity on the two sides of this transition line. We have seen in
the previous part [cf. Eqs. (4.20) and (4.21)] that for NAs <

NAs̄ + NB − 1 the entanglement negativity shows a plateau
as NA1 and NA2 are varied and NA is kept constant. Using
Eq. (4.41), one can work out the entanglement negativity
in the limit where NA1 > NA2 + NB − 1, i.e., the regime of
maximal entanglement in A subsystem.

As shown in Appendix A, deep in the maximal entangle-
ment regime, the imaginary parts of G1 and G2 for z < 0 take
the form

Im(G1) = Im(G2) = RNA1
γ 2

2

√
−
(

RNA1 z + 1

γ

)2

+ 2

γ

′

,

(4.44)
where γ = R−NA1 +NA2 +NB−1. This results in the following total
value for the negativity in this regime:

〈
N
(
ρ̂

(qA )
A

)〉 = 1

2
RNA2 . (4.45)

This result is very similar to that in the nonsymmetric case.
In other words, when subsystem A1 is much larger than its
complement, the entanglement negativity between A1 and A2

is maximal and bounded by the volume of the smaller subsys-
tem (in this case A2).

2. General symmetry group

On the other hand, in general for an arbitrary symmetry
group the self-energy shown in (4.40) results in the following
equations for the G2 component of the resolvent functions:

G3
2,q1

zβ2
q1

+ G2
2,q1

(
1

LqA

αq1q̄1 − β2
q1

)

+ G2,q1

(
1

LqA

− z

)
+ 1 = 0, (4.46)

while the equations for G1 components read as

−z G1,q1q2 (1 − βq1βq̄2 G1,q1q2 G1,q̄2 q̄1 )

−G1,q1q2 G1,q̄2 q̄1

(
βq1βq̄2 − 1

LqA

αq̄2 q̄1

)
+ 1 = 0. (4.47)

One interesting property that can be derived from the above
equations is the different behaviors and the criticality in the

spectral density. We note that different components of G1 and
G2 with different indices qi should be considered separately
for this matter.

First, we study the G2 component with a given quantum
number index; it can be seen from (4.46) that for αq1q̄1 =
LqAβ

2
q1

or, equivalently, LA1,q1 = LA2,q̄1 LqB , the spectral density
diverges, and the leading divergence is given by P2,q1 ∼ 1

ξ 1/2 .
By changing subsystem sizes while keeping the quantum
numbers unchanged (when possible), one can check that the
entanglement negativity shows two different behaviors on the
two sides of this singular transition: for LA1,q1 < LA2,q̄1 LqB

one is in the plateau regime and deep within that regime the
entanglement negativity reads as

n2(q1) = 4

3π

1

LqA

√
LqB

(LA1,q1 LA2,q̄1 )3/2 (4.48)

(one should also have
LA1 ,q1 LA2 ,q̄1

LqB
> 1 to avoid the PPT transi-

tion). On the other hand, for LA1,q1 > LA2,q̄1 LqB one is in the
maximal entanglement regime, where the negativity to the
leading order is given by

n2(q1) = 1

2

LA1,q1 LA2,q̄1

LqA

LA2,q̄1 (4.49)

deep inside that regime (see the discussion in Appendix A).
One can check the above criterion for criticality in the case

of the U(1) symmetry. The relation LA1,q1 = LA2,q̄1 LqB takes
the form

NA1 f (ν1) − NA2 f (ν̄1) = NB f (νB) (4.50)

for the U(1) symmetric case, up to subleading corrections.
Defining the ratios r1 = NA1/NA, rA = NA/(NA + NB), the
equation takes the form

r1 f (ν1) − (1 − r1) f
(νA − ν1r1

1 − r1

)

=
(

1

rA
− 1

)
f
(ν − νArA

1 − rA

)
. (4.51)

For a fixed partition given in term of the values of r1 and rA

and the filling fractions νA and ν (total filling fraction), the
question of whether there is criticality in any of the sectors
or not can be addressed by checking whether the above equa-
tion has a solution for 0 � ν1 � 1. Hence, the criticality is
equivalent to the existence of a solution for ν1 subject to a
linear constraint

max

(
0,

νA − (1 − r1)

r1

)
� ν1 � min

(
1

2
,
νA

r1

)
. (4.52)

Using this, one can see that criticality is observed in a critical
region as opposed to the nonsymmetric states where there is a
critical line; the extent of this critical region can be determined
numerically. A few examples are shown in Fig. 2.

Next, we turn to studying the G1 component. Using the
analogous equation of (4.47) for G1,q̄2 q̄1 , one can work out an
equation solely containing G1,q1q2 :

− G3
1,q1q2

z2αq1q2βq1βq̄2

− G2
1,q1q2

z

(
αq1q2

[
αq̄2 q̄1

LqA

− 2βq1βq̄2

]
+ αq̄2 q̄1βq1βq̄2

)
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+ G1,q1q2

(
z2 αq̄2 q̄1 + [αq1q2 − αq̄2 q̄1 ]

[
αq̄2 q̄1

LqA

− βq1βq̄2

])

− z αq̄2 q̄1 = 0. (4.53)

This equation shows that the only way for G1,q1q2 (and as a
result the spectral density) to have a nonzero value at z = 0
is to have either αq1q2 = αq̄2 q̄1 or

αq̄2 q̄1
LqA

= βq1βq̄2 . One can
simply check by imposing each of these two relations that
there is criticality in the system only when both of them
are satisfied; under such conditions the spectral density di-
verges as P1,q1q2 ∼ 1

ξ 1/3 . The conditions can also be written
in terms of subspace dimensions as LA1,q1 LA2,q2 = LA1,q̄2 LA2,q̄1

and LA1,q1 = LA2,q2 LqB .
We note here that for the case of the U(1) symmetry,

the first of the above two criticality conditions can only be
satisfied if q1 = q̄2; since the indices on the G1 contribution to
the spectrum should strictly not satisfy this relation, therefore,
the latter type of criticality does not occur in U(1) symmetric
systems. As a result, Eq. (4.50) solely determines the critical
region for U(1). Note that, in general, and with symmetries
other than U(1), this relation can be satisfied with q1 �= q̄2,
such as in the ZR case explained earlier.

Figure 6 shows some numerical simulations for various
ratios of size of A to that of B. The agreement between analyt-
ical results from the random matrix theory and the numerical
results is evident. Importantly, we see in Figs. 6(a)–(c) that
the P2 contribution to the spectral density diverges at zero as
explained earlier.

Apart from the criticality, one can also work out the con-
tribution to negativity from G1 in the regime where the A1

subsystem with the given quantum number constitutes more
than half of the whole system given the specific quantum
numbers in consideration. It can be shown using the solution
of Eq. (4.53) that the symmetry-resolved negativity is given
by (see Appendix A for discussion)

n1(q1, q2) = 1

2

1

LqA

√
LA1,q1 LA1,q̄2 LA2,q2 LA2,q̄1 . (4.54)

3. Maximal entanglement for the U (1) symmetry
in thermodynamic limit

We now turn to calculating the total negativity in the regime
of maximal entanglement for a U(1) symmetric system in the
thermodynamic limit. This analysis is complementary to the
one presented in Sec. IV A 3, i.e., together with the previous
result we find the explicit form of the negativity to the leading
order in the lower part of the phase diagram (cf. Figs. 2
and 6).

We first note that in the thermodynamic limit and using a
continuum approximation, the two contributions to the nega-
tivity [as in Eq. (4.25)] can be written as

n1(ν1, ν2) = (LA1,ν1 LA1,ν̄2 )1/2LA2,ν2 LA2,ν̄1

2 LνA

,

n2(ν1) = LA1,ν1 L2
A2,ν̄1

2 LνA

, (4.55)

where we make use of Eqs. (4.49) and (4.54). Note that
by definition NA1ν1 + NA2 ν̄1 = NAνA. In order to find the

saddle-point solution, we write the leading exponential func-
tionalities of n1 and n2 as follows:

n1 ∼ e[ 1
2 NA1 f (ν1 )+NA2 f (ν̄1 )]+[ 1

2 NA1 f (ν̄2 )+NA2 f (ν1 )]

eNA f (νA ),

n2 ∼ eNA1 f (ν1 )+2NA2 f (ν̄1 )

eNA f (νA ),
(4.56)

where the function f is defined in Eq. (4.28). After a straight-
forward calculation, we find that both functions reach their
maximum value at ν1 satisfying the relation

ln

(
1 − ν1

ν1

)
= 2 ln

(
1 − r1 − νA + r1ν1

νA − r1ν1

)
. (4.57)

We find the solution by taking ν1 to have a form as νA + δν

and assuming δν to be small. This results in the following
form for the saddle-point value ν1 = νA − 1−r1

1+r1
νA(1 − νA)

ln( 1−νA
νA

).
Since at the saddle point ν1 = ν̄2 and ν2 = ν̄1, the max-

imum values of n1 and n2 take the same form. This leads
to the following form for the dominant contribution to the
logarithmic negativity:〈

E
(
ρ̂

(qA )
A

)〉 = NA1 f (ν1) + 2NA2 f (ν̄1) − NA f (νA), (4.58)

where ν1 and ν̄1 should have their saddle-point values. Ex-
ploiting the above form for the saddle-point value of ν1, one
arrives at the following dominant contribution to the logarith-
mic negativity:

〈
E
(
ρ̂

(qA )
A

)〉 = NA2 f (νA) + NA1

νA(1 − νA)
[
ln
( 1−νA

νA

)]2
1 + 2NA1/NA2

.

(4.59)
The second term is a correction to the first one which we
get from the perturbative expansion for the saddle-point
value of ν1.

V. QUANTUM CIRCUIT MEASURING
THE SYMMETRY CHARGE

In this section, we discuss a way in which the total charge
in subsystem B can be measured without totally collapsing
the state of B to a pure state. The output state can then be
used to calculate the symmetry-resolved Rényi entropy or
Rényi negativity using the already established protocols in
circuit-based quantum computer [103–105] or trapped ions
[106]. We present the case of the Z2 symmetry here. ZR and
U(1) symmetry groups are similar and will be discussed in
Appendix C.

One needs to add one ancillary qubit to the system; it is
initialized in the |0〉 state and then a Hadamard gate is applied
to this qubit which turns its state to |0〉+|1〉√

2
. Then, one acts with

two-qubit control-Z operators on the ancilla and all the qubits
in the B subsystem one by one. This entangles the ancilla
with the B subsystem; acting with another Hadamard gate on
the ancilla and then measuring it in the computational basis,
depending on the outcome of the measurement the Z2 charge
of the B subsystem is determined. This same construction is
known to be capable of parity measurement in a system; note
that the parity of B is exactly its Z2 charge.
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Let us now briefly discuss the cases of ZR and U(1)
symmetry groups. For the case of ZR symmetry, the same
circuit when all the gates are generalized to qudit gates with
d = R could be used to measure the total charge of B. On the
other hand, for the case of having a U(1) symmetry within
a qubit system, in order to measure the charge of B, one
needs to perform a series of measurements similar to the one
described above. Concretely, one first measures the parity of
the B subsystem charge using the same circuit as the one
described above. Then, using similar circuits consisting of en-
tangling gates and measurements one continues to determine
the B charge mod 4, 8, etc. A total number of �log2(NB + 1)�
measurements suffices to determine the charge in the B sub-
systems, where NB is the number of qubits. More details can
be found in Appendix C.

VI. DISCUSSION

In conclusion, we studied the entanglement negativity of
symmetric random mixed states. As we explained, the PPT
criterion needs to be modified in the case of symmetric
systems when only symmetric LOCCs are permitted. We
introduced a more refined version of the entanglement nega-
tivity in terms of the average over the entanglement negativity
associated with each symmetry charge sector (i.e., density
matrix projected into a given symmetry quantum number).
Our proposed quantity correctly captures a subset of separable
states generated by symmetric LOCCs. Therefore, for most
of the paper, we focused on the entanglement negativity of
a random mixed state with a fixed symmetry charge ρ̂

(qA )
A ,

which we call symmetry-resolved (or -projected) entangle-
ment negativity. To calculate this quantity, we generalized
the diagrammatic approach for the partial transpose [11] to
symmetric states and showed that charge conservation im-
poses several constraints on the diagrams. It turned out that
the diagrams can be grouped into two types and calculations
can be done in a systematic manner. As a result, we were
able to fully characterize symmetry-projected mixed states
in terms of their entanglement negativity spectrum. We il-
lustrated our predictions via two examples of ZR and U(1)
symmetry groups and explicitly derived the entanglement
phase diagram in these cases. The general structure of the
phase diagram is similar to that of nonsymmetric states, how-
ever, there are two notable differences. First, strictly speaking
there is no PPT regime for ρ̂

(qA )
A . This property is manifest in

the spectral density of (ρ̂ (qA )
A )T2 as follows: We found that the

spectral density is a sum of two distribution functions, one
of which is centered around zero; hence, (ρ̂ (qA )

A )T2 has always
some negative eigenvalues. Second, the critical line between
the maximal entanglement and the replica symmetry-breaking
phases, where the spectral density diverges, may broaden into
a critical phase. Furthermore, the divergence exponent is 1

2
and 1

3 for the two contributions to the spectral density as
opposed to the nonsymmetric case where the critical exponent
is 1

2 . Finally, we designed a quantum circuit to perform the
symmetry charge projection which can eventually be used to
simulate the symmetry-resolved entanglement negativity.

For the most part in this paper, we focused on char-
acterizing the symmetry-projected states ρ̂

(qA )
A . This result

can then be used to compute the symmetry-averaged en-
tanglement negativity (1.1) for randomly distributed mixed
states. Alternatively, one can use simple arguments to find
the leading-order contribution to this quantity. We note that
the Born weights pqA in (1.1) are proportional to the Hilbert
space dimensions of symmetry charge sectors. This clearly
needs to be determined case by case. For instance, in the
case of ZR symmetry both pqA and 〈E (ρ̂ (qA )

A )〉 are independent
of qA and we get EA1:A2 = 〈E (ρ̂ (qA )

A )〉. In contrast, the Hilbert
space dimensions of various sectors of U(1) symmetry charge

depends on the filling factor pqA ∼ eNA f ( qA
NA

) where f (. . . ) is
the Shannon entropy (4.28); consequently, the sum (1.1) is
exponentially dominated by the sector having a homogeneous
charge distribution among subsystems, i.e., qA

NA
= Q

NA+NB
.

Throughout this paper, we discussed the entanglement neg-
ativity and its variants. It is worth comparing this quantity with
other entanglement proxies such as the mutual information,
albeit the latter is not technically an entanglement measure.
As we have shown in Appendix B, the mutual information
to the leading order matches with that of the logarithmic
negativity through the usual relation EA1:A2 ∼ 1

2 IA1:A2 in the
case of ZR symmetry group. In contrast, for U(1) symmetric
states, this relation does not hold (even to the leading order)
in the maximal entanglement phase [compare Eqs. (4.59) and
(B13)]. The physical significance of this difference remains
to be understood. The lowest-order corrections, however, are
different between the mutual information and logarithmic
negativity over the entire phase diagram. In particular, the
mutual information is constant deep in the PPT regime, while
the logarithmic negativity is exponentially small. This contrast
is the result of the fact that classical correlations contribute to
the mutual information, whereas they do not contribute to the
logarithmic negativity.

Apart from the notion of mixed-state entanglement mea-
sures in symmetric systems and incorporating global sym-
metry constraints in random matrix theory, our analysis is
relevant to other physical systems as follows: Our U(1)
case study is applicable to a system of interacting complex
Sachdev-Ye-Kitaev dots [107,108], where the hopping matrix
is negligible and local filling fraction is fixed. Another exam-
ple is a particle-number-conserving system coupled to a bath
in a canonical ensemble such that it can only exchange energy
but not particle.

As we showed in this paper, a careful analysis of multipar-
tite entanglement in symmetric systems requires introducing
new entanglement measures. However, the block-diagonal
structure of the reduced density matrix is quite generic and
not limited to symmetric systems. For instance, a similar
constraint on local energy density appears in a tripartite state
described by a microcanonical ensemble; in other words, we
have

∑
s Nsεs =const where Ns and εs denote the volume and

local energy density of subsystem s, respectively. In such
scenarios, it would make more sense to directly calculate
the logarithmic negativity E (ρ̂A) rather than its symmetry-
averaged version. In principle, the formalism developed in
this paper is applicable to this setup upon substituting the
Hilbert space dimension LqA by density of states DA(εA) =
eSA(εA ) using the Boltzmann’s entropy formula, where SA(εA)
denotes the thermodynamic entropy at energy εA [96,109].
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However, we realized that using our method to calculate
the resolvent function in this case leads to a set of cou-
pled nonlinear Schwinger-Dyson equations where finding
a closed-form solution is rather tedious (if not impossi-
ble) (see Appendix D for details). Nevertheless, one can
numerically solve this set of equations. We postpone this
analysis to a future publication. Alternatively, it may make
sense in certain physical systems to approximate the three-
body condition by reducing it to a two-body condition such
as NA1ε1 + NA2ε2 = const (where our method in this paper
is directly applicable) or NA1ε1 + NBεB = const (see, e.g.,
Ref. [110]).

Let us wrap up our discussion with a few more directions
for future research. We considered Abelian global symmetry
groups in this work. It would be interesting to generalize
this formalism to non-Abelian symmetry groups and systems
with local symmetry constraints such as in the gauge theories
and anyon chains [111] and possibly pinpoint the differences.
Recently, the entanglement negativity of random tensor net-
works [22,23,26] was investigated. Given the dramatic effects
of global symmetries on entanglement properties of single
tensors (which was studied in this work), it may be worth ex-
ploring which universal properties in random tensor networks
would change in the presence of global symmetries.
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APPENDIX A: CALCULATION OF NEGATIVITY
DEEP IN EACH PHASE

In this Appendix, we discuss how the two components
n1(q1, q2) and n2(q1) are calculated deep in the maximal
entanglement regime. We start with ZR. Using Eq. (4.41), one
can work out the entanglement negativity in the limit where
NA1 > NA2 + NB − 1, i.e., the regime of maximal entangle-
ment in A subsystem. In this limit, the set of equations in
(4.41) can be rewritten as

(G1z − 1)

(
G2

1
1

R2(NA2 +NB−1) − 1

)
+ G2

1
1

RN−1
= 0,

(G2z − 1)

(
G2

2
1

R2(NA2 +NB−1) − 1

)

+G2
2

1

RN−1
+ G2

1

RNA−1
= 0. (A1)

A redefinition of Gi = RNA1 G̃i along with z = z̃ R−NA1

results in[
(G̃1z̃ − 1)

(
G̃2

1
1

γ 2
− 1

)]
+ G̃2

1
1

γ
= 0,

[
(G̃2z̃ − 1)

(
G̃2

2
1

γ 2
− 1

)]
+ G̃2

2
1

γ
+ G̃2

RNA2 −1 = 0, (A2)

where γ = α
β2LA

= R−NA1 +NA2 +NB−1 is used in accordance with
our previous definition of it. For the case of ZR, the charge
indices of α, β, LA are dropped. Note that γ is a small number
in the maximal entanglement regime, and as a result the terms
outside the square brackets are subleading in both equations.
The three solutions for G̃1 and G̃2 are simply found to the
leading order:

G̃i = 1/z̃, ±√
γ . (A3)

We are interested in finding the imaginary parts of G̃i for
negative values of z̃; as it turns out taking subleading terms
into account when two, out of three, of the above roots
are close to each other. As a result, with the substitutions
G̃i = −γ + δG and z̃ = − 1

γ
+ δz, we expand the equa-

tions for the new variable δG and δz and to leading order, we
get the following relation for the imaginary parts of δGi for
z̃ < 0:

Im(δG1) = Im(δG2) = γ 2

2

√
−δz2 + 2

γ

′

. (A4)

As a result, the imaginary parts of G1 and G2 for z < 0 read
as

Im(G1) = Im(G2) = RNA1
γ 2

2

√
−
(

RNA1 z + 1

γ

)2

+ 2

γ

′

.

(A5)
This can be used to do the integral in Eq. (2.6) to obtain

n1 = n2 = 1

2
RNA2 −2. (A6)

These correspond to single charge sectors, although the charge
indices are dropped. Taking the effect of all charge sectors into
account, we arrive at

〈
N
(
ρ̂

(qA )
A

)〉 = 1

2
RNA2 . (A7)

A general symmetry group can also be considered and very
similar manipulations as above can be performed to calculate
the negativity. The results for a general symmetry group are
shown in the main text.

APPENDIX B: MUTUAL INFORMATION CALCULATIONS

We will be calculating mutual information between A1 and
A2, i.e.,

〈IA1,A2〉 = 〈SA1〉 + 〈SA2〉 − 〈SA〉 (B1)

for different settings in this Appendix. For mutual infor-
mation, similar to the cases in the main text, one needs
symmetry-resolved quantities and in particular in this case the
von Neumann entanglement entropy. The latter quantity can
be computed by taking the replica limit of the Rényi entropy
as follows:

Ss = lim
n→1

1

1 − n
log2 S(n)

s , (B2)

where s stands for either of A1, A2, A. With the same setting as
the main text, where the symmetry charge of A and B are fixed
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to have values qA, qB, we can write the dominant contribution
to the entanglement entropy of A as

SA =
{

log2 LA,qA , LA,qA � LB,qB ,

log2 LB,qB , LA,qA � LB,qB .
(B3)

On the other hand, the cases of A1 and A2 entanglement
entropies are less straightforward as there is a charge-
conservation constraint between them. For a general Rényi
index n, one can work out the form of the Rényi entropy of
A1 subsystem as (similar relations hold for A2):

S(n)
A1

=
∑

q1

S(n)
A1,q1

, (B4)

with the symmetry-resolved Rényi enetropy defined as

S(n)
A1,q1

=
⎧⎨
⎩

LA1 ,q1 Ln
A2 ,q̄1

Ln
A,qA

, LA1,q1 � LA2,q̄1 LB,qB ,

Ln
A1 ,q1

Ln
A,qA

LA2,q̄1 L1−n
B,qB

, LA1,q1 � LA2,q̄1 LB,qB .
(B5)

Having the above relations at hand, one can now calculate
the mutual information for the two symmetry cases of our
interest in this work, i.e., ZR and U(1); first, we consider ZR:
this is a simple case since in this case the sizes of symmetry-

resolved Hilbert spaces are equal regardless of the quantum
number they correspond to. We consider three different cases
here:

(i) NA < NB:

〈IA1,A2〉 = log2 R. (B6)

(ii) NA > NB and NAs < NB + NAs̄ − 1:

〈IA1,A2〉 = (NA − NB − 1) log2 R. (B7)

(iii) NA > NB and NAs > NB + NAs̄ − 1:

〈IA1,A2〉 = NA2 log2 R. (B8)

At this point, we consider the U(1) symmetry and calculate
its mutual information. The subtlety here is that Hilbert space
size depends on the quantum number. As a result of this, we
consider the thermodynamic limit and perform a saddle-point
approximation. The first thing we need to calculate is the
entanglement entropy of the A1 subsystem. We consider first
a case where the dominant contributions to the entanglement
entropy are from those subspaces that satisfy the relation
LA1,q1 � LA1,q̄1 LB,qB :

SA1 = lim
n→1

1

1 − n
log2

∑
nA1

(NA1
nA1

)[( NA2
nA−nA1

)]n

[(NA

nA

)]n

≈ lim
n→1

1

1 − n
log2

∑
nA1

(NA1
nA1

)( NA2
nA−nA1

)[
1 + (n − 1) ln

( NA2
nA−nA1

)]
[(NA

nA

)]n

≈ log2

(
NA

nA

)
−
∑
nA1

(NA1
nA1

)( NA2
nA−nA1

)
log2

( NA2
nA−nA1

)
(NA

nA

)
≈ −1

2
log2 NA + NA f (νA)

ln(2)
+ 1

2
log2 NA2 − NA2 f (νA)

ln(2)

= NA1 f (νA)

ln(2)
− 1

2
log2

(
NA

NA2

)
. (B9)

In going from the first row to the second we have taken n to be
close to one and Taylor expanded, from the second row to the
third row we have used

∑
nA1

(NA1
nA1

)( NA2
nA−nA1

) = (NA

nA

)
and Taylor

expanded the outer logarithm. In going from the third row to
the fourth row we have done a continuum approximation and
replaced the sum by an integral and did a saddle-point approx-
imation, we are furthermore using the notation introduced in
Sec. IV A 3, where νs shows the filling factor of a subsystem
and the function f is defined in Eq. (4.28). The saddle-point
solution is found to be νA1 = νA. Note that the calculation
done above is similar in spirit to those in [109], where energy
conservation considerations are taken into account.

Similarly, in the opposite limit where the dominant con-
tributions are from those subspaces with LA1,q1 � LA1,q̄1 LB,qB ,
one can show that the entanglement entropy reads as

SA1 = NA2 f (νA)

ln(2)
− 1

2
log2

(
NA

NA1

)
+ log2 LB,qB . (B10)

One can now calculate the mutual information in different
regimes given the above forms:

(i) NA < NB:

〈IA1,A2〉 = −1

2
log2

(
NA

NA1 NA2

)

+1

2
log2 (2πνA[1 − νA]). (B11)

(ii) NA > NB and NAs < NB + NAs̄ :

〈IA1,A2〉 = [NA f (νA) − NB f (νB)]
1

ln(2)

− 1

2
log2

(
N2

A

NA1 NA2 NB

)

+ 1

2
log2 (2πνA[1 − νA]). (B12)
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FIG. 7. Quantum circuit to measure the Z2 charge of subsystem B.

(iii) NA > NB and NAs > NB + NAs̄ :

〈IA1,A2〉 = 2NA2 f (νA) × 1

ln(2)

− 1

2
log2

(
NA

NA1

)
. (B13)

APPENDIX C: MEASURING ZR AND U(1) CHARGES

In this section of the Appendix we discuss how the ZR

charge of the B subsystem in a qudit system (d = R) or the
U(1) charge of B in a qubit system is measured. We start by
considering the ZR symmetry first. The Hilbert space of each
site is spanned by the basis {|i〉} with i = 0, 1, . . . , R − 1. In
this case, one needs an ancillary qudit and the circuit discussed
in the main text works provided that all the unitaries are
generalized to qudit gates. In particular,

(1) the control-Z operator is generalized to have
the form CZ(R) =∑ j | j〉〈 j| ⊗ Z j , where now Z =
diag(1, ω, ω2, . . . , ωR−1), and ω = e

2π i
R .

(2) The ZR generalization of Hadamard reads as HR| j〉 =
1√
R

∑R−1
i=0 ωi j |i〉. Noting that this general Hadamard gate is not

Hermitian, one needs to modify the second Hadamard acting
on the ancilla to H†.

It is straightforward now to show that if the measurement
outcome is |k〉, the ZR charge of B is also determined to be k.

We now discuss how the charge of subsystem B in the
case of a U(1) symmetry can be measured. This measurement
is done in a series of steps where in consecutive steps the
charge modulo 2, 4, 8, . . . is measured determining the whole
charge. A total of �log2(NB + 1)� consecutive measurements
is needed as explained below. For each step an ancilla is
utilized to implement the circuit shown in Fig. 8. The unitary

Z1/2n
is defined as (

1 0

0 e
π i
2n ). We describe the steps below:

(i) Using the same circuit shown in Fig. 7, the total charge
of B modulo 2 is measured which we denote as q1.

(ii) In the second step, in order to measure the charge mod-
ulo 4, the circuit in Fig. 8 is implemented with control-Z1/2

FIG. 8. The circuit that is used to measure the charge of the B
subsystem modulo 2n.

operators. Note that Z1/2 is identical to the S gate. After the
controlled gates are applied, one acts with the unitary Ua on
the ancilla. This unitary depends on the outcome of the charge
modulo 2 measurement, i.e., Ua = (Z1/2)−q1 . This will result
in the charge modulo 4 which we denote as q2.

(iii) In general, for measuring the charge modulo 2n,
which we denote as qn, one utilizes control-Z1/2n−1

operators.
Furthermore, Ua should be chosen based on the outcome of all
previous measurements as Ua = (Z1/2)−qn−1 . This procedure is
continued until the charge of subsystem B is determined.

APPENDIX D: NEGATIVITY SPECTRUM
WITHOUT SYMMETRY PROJECTION

In this Appendix, we provide Schwinger-Dyson equa-
tions for the resolvent function associated with the partial
transpose of the full block-diagonal density matrix. In other
words, we consider the spectrum of ρ̂

T2
A when the total charge

of A is not projected. This calculation is mostly for complete-
ness since we believe that the partial transpose of the full
density matrix is not a good indicator of quantum entangle-
ment when classical correlations are only due to symmetric
LOCCs. Furthermore, this result may be useful if one wants
to study the entanglement negativity of random states at finite-
energy density or the microcanonical ensemble with the total
energy constraint NAεA + NBεB = const. As usual, we pro-
vide two sets of self-consistent equations: one for the replica
symmetry breaking (or semicircle) regime and two, the more
general case which not only contains the former regime but
also the maximal entanglement regime.

1. Replica symmetry-breaking regime

Here, we need to take all blocks of ρ̂
(qA )
A in ρ̂A into account

at the same time. Equation (4.9) still holds, but since the
charge in subsystem A is not determined, one needs to sum
over all possible charge values in subsystem A (or subsys-
tem B since the total charge is fixed). This means that the
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equations for � would be modified as follows:

� =
⊕
q1,q2

1A1,q1 ⊗ 1A2,q2

[
1∑

q̃A
Lq̃A Lq̃B

LB,Q−q1−q2

+
(

1∑
q̃A

Lq̃A Lq̃B

)2∑
qB

LB,qB LA2, Q−q1−qB LA1, Q−q2−qB GQ−gq−qB,Q−q1−qB

]
. (D1)

Note that here, unlike before, the equations for different components of the resolvent function depend on each other; in fact,
the set of equations governing Gq1,q2 with �q = q1 − q2 kept constant is closed. Hence, we can label the spectral density with
the charge imbalance �q (see Refs. [112–114] for a similar observation). Unlike the case of U(1) symmetry, it is easy solve the
above equation for the ZR symmetry group, as all symmetry sectors have the same Hilbert space size. Ultimately, the spectral
density is found to be

P(ξ ) = 1

2π
R2NA+NB

√
4

RN
−
(

ξ − 1

RNA

)2
′

. (D2)

This means that the negativity shows a plateau when R(NA−NB ) > 1
4 .

2. General case

The self-energy in the general case where there is no projection on ρ̂A can be written as

� =
⊕
q1,q2

1A1,q1 ⊗ 1A2,q2

[
1∑

q̃ Lq̃A Lq̃B

LB,Q−q1−q2

1

1 −
(

LA1 ,q1∑
q̃ Lq̃A Lq̃B

Gq1q2

)2

+
(

1∑
q̃ Lq̃A Lq̃B

)2∑
qB

LB,qB

LA2,Q−q1−qB LA1,Q−q2−qB GQ−q2−qB,Q−q1−qB

1 − LA1 ,q1 LA1 ,Q−q2−qB

(
∑

q̃ Lq̃A Lq̃B )2 Gq1q2 GQ−q2−qB,Q−q1−qB

]
. (D3)

Note that this includes both the replica symmetry-breaking regime that was discussed above and also the regime of maximal
entanglement between A1 and A2.
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