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Topology identification comprises reconstructing the Hamiltonian, and thus the corresponding interaction
terms, by properly processing measurements of its density operator within a fixed time interval. It finds applica-
tion in several quantum technology contexts, ranging from quantum communication to quantum computing or
sensing. In this paper we provide analytical conditions for the solvability of the topology identification problem
for autonomous quantum dynamical networks (i.e., as in our case, not explicitly depending on time via the
use of an external drive). The solvability condition is then converted in an algorithm for quantum network
reconstruction that is easily implementable on standard computer facilities. The obtained algorithm is tested for
Hamiltonian reconstruction on numerical examples based on the quantum walks formalism.
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I. INTRODUCTION

A quantum dynamical network is a graph with nontrivial
connectivity, composed by quantum-mechanical systems that
may exhibit their own time evolution [1]. Studies on quantum
networks have several motivations. First of all, there is grow-
ing interest in realizing quantum communication backbones,
able to connect remote nodes that are linked by quantum
channels [2–9]. Secondly, it is worth recalling both the im-
portant role of quantum effects in energy transport problems
that are popular in many fields of science, such as physics,
biology, chemistry, and information science [10–17], as well
as relevant applications of quantum networks in many-body
physics and quantum computing [18–23].

In all these different contexts, the topology of the net-
works [24] is a key aspect that highly influences time changes
of their state. In fact, time behaviors are determined by the
interconnection between the nodes of the network, and this
is true for both classical and quantum cases. A meaningful
example is provided by the so-called “agreement dynamics”
for multiagent systems in network configuration. In such a
context, the agreement of all interacting agents in achieving a
common objective is reached if and only if the matrix with the
agents’ interconnections obeys specific properties that depend
on the (dynamical) parameters of each agent [25–27]. Another
example, more focused on quantum frameworks, is the trans-
port of a quantum particle in a maze, which by construction is
a topologically complex network [16]. In such a peculiar case,
the interconnection of the maze’s constituents defines the effi-
ciency in transferring the particle from the input site to the exit
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one of the maze in the fastest possible transmission time. It
is thus desirable to determine procedures, both analytical and
numerical, that allow for the characterization of the geometric
properties of a dynamical network constituted by distinct and
independent subsystems.

In all cases where network topology is unavailable or un-
certain, topology identification aims to determine the network
structure, and possibly the weights of the links between the
nodes of the network, by using measurements of its state
evolution [28]. In doing this, we thus assume that the states
of the network, or part of them, can be measured.

For networks whose nodes exhibit nonquantum behav-
iors, several topology identification techniques have been
already developed. In this regard, it is worth mentioning
techniques based on the dynamic average consensus [29],
the inverse covariance estimation method [30], the power
spectral analysis [31], compressive sensing [32,33], and also
topology reconstruction via a transfer matrix of the network
[34], stochastic perturbations [35], or network state matrices
using (constrained) Lyapunov equations [36]. Specifically,
the latter approach makes use of state measurements of
an autonomous linear dynamical network. From such mea-
surements, a Gramian-like matrix is built that enables the
reconstruction of the network matrix by solving a Lyapunov
equation. On the contrary, in the quantum sciences field,
much attention has been devoted to quantum Hamiltonian
reconstruction, which concerns the issue of determining key
elements of the quantum system Hamiltonian from the cor-
responding equations of motion [37,38]. The main challenge
lies in the fact no effective relationship between the Hamil-
tonian of the system and the state evolution may be present,
depending on both the initial state and the value taken by
the Hamiltonian parameters. Hence, recently, the problem of
quantum Hamiltonian reconstruction has been tackled from a
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different perspective, e.g., by using methods taken from linear
systems and control theories [39–41], scalable tomographic
reconstruction [42], compressed sensing [43], and gradient-
based techniques [44].

In this paper we specifically address the problem of iden-
tifying the topology of an autonomous quantum dynamical
networks. In the case that a quantum network is regarded as a
(single) quantum closed system—whereby, once initialized,
it evolves according to its own Hamiltonian—the methods
enabling Hamiltonian reconstruction can be successfully em-
ployed, and they can be considered as the state of the art for
such a task. Instead, if a network structure can be identified,
the Hamiltonian is provided by the sum of both the Hamil-
tonian of each quantum network subsystem and interaction
terms, taking into account the coupling between them. Here,
the aim of the topology identification is to understand the
presence of interaction couplings and their intensity, corre-
sponding one-to-one to the topology of the analyzed network.
In this scenario, by starting from the quantum Hamiltonian
reconstruction, the following three main results are discussed
in this paper. They may be regarded as a generalization to
quantum systems of the results in [36]:

(i) We provide sufficient conditions that ensure the solv-
ability of topology identification problems for autonomous
quantum networks by measuring the complete state of the
network in the time instants within the interval [0, τ ] with
τ > 0.

(ii) We propose an algorithm to infer network topology
for generic autonomous quantum networks whose state un-
dergoes unitary time evolution. The algorithm is based on the
obtained solvability condition and is designed to be imple-
mentable on standard computer facilities.

(iii) Sufficient conditions for the solvability of the identi-
fication problem are given also in the case of measurements
with partial information, namely, not containing all the val-
ues of the network state at each time instant. Despite that
discussions about quantum Hamiltonian reconstruction via
measurements of local observables are already present in
the literature (e.g., refer to Ref. [45]), we provide analytical
results that rely on fulfilling the so-called observability con-
ditions [46] through the partial measurement of the network
states in different time instants. In this regard, before pro-
ceeding we give a brief definition of observability; the formal
definition, indeed, is provided by Eq. (19) in Sec. VI below.
Hence, with observability we mean our capability to infer the
whole state of a dynamical system, even all its inaccessible
components, from measuring it (usually partially) within a
finite time interval.

The paper is organized as follows. In Sec. II we introduce
the basic mathematical elements that define a dynamical quan-
tum network. In addition, we provide the tools to interpret an
arbitrary many-body quantum system as a quantum network.
Then, in Sec. III we formulate the topology reconstruction
problem by using measurements of the network density opera-
tor within the time interval [0, τ ]. In Sec. IV we analyze under
which analytical conditions the considered topology identifi-
cation problem, applied to autonomous quantum networks, is
solvable by using measurements of the full network density
operator within [0, τ ]. We prove a theorem that provides a
sufficient condition for the solvability of the identification

problem by resolving an algebraic commutation relation. Hav-
ing once determined the conditions for the solvability of the
identification problem, in Sec. V we provide an algorithm
that can be implemented on standard computer facilities. The
analytical results are tested numerically for Hamiltonian re-
construction on a model based on the quantum random walk
formalism. In Sec. VI we give preliminary results on topology
identification when the network state is only partially mea-
sured. Specifically, we show that it is possible to reconstruct
the Hamiltonian of an autonomous quantum network if the
latter is observable, and we can measure the diagonal elements
of its density operator by initializing the network on linearly
independent initial states in different runs. Finally, a discus-
sion of the results and some outlooks (Sec. VII) concludes the
paper.

II. DYNAMICAL QUANTUM NETWORKS

Let us introduce a dynamical quantum network as a quan-
tum system with total dimension d that is the collection of
quantum subsystems. According to the laws of quantum me-
chanics, if the quantum system is an isolated system, then the
time evolution of its state is described by a unitary transforma-
tion. Thus its state vector |ψt 〉 ≡ ψt = (ψ1, . . . , ψd )T ∈ Cd

is propagated over time by the linear unitary operator U such
that

ψt = Ut,0 ψ0 (1)

with ψ0 = ψt0 . Along with the state vector ψt , we can also
introduce the density operator (denoted as ρt ) of the network.
It is defined by the outer product of ψt , i.e., ρt ≡ ψtψ

†
t where

(·)† stands for the conjugate transpose (or Hermitian trans-
pose) of the operator (·). The density operator provides the
statistical description of the state of any quantum system,
thereby, in the specific case of a quantum network, return-
ing both the quantum description of each network subsystem
and all the interference patterns (and thus nonzero quantum
correlations) between them. In this regard, it is worth noting
that the latter originates only if the nodes of the network are
interacting subsystems. As known from quantum mechanics
principles [47,48], at any time instant t the density operator
ρt must obey the following constraints: ρt is (i) an Hermi-
tian operator, namely, ρ

†
t = ρt ; (ii) positive semidefinite, i.e.,

given a generic quantum state φ, φ†ρt φ = |φ†ψt |2 � 0 ; and
(iii) is trace preserving, i.e., Tr[ρt ] = 1. Among the conse-
quences, this implies that the elements along the diagonal
of ρt are always real numbers summing to 1. Moreover, the
time evolution of the density operator follows the so-called
Liouville–von Neumann equation for any t ∈ [0,∞), i.e.,

ρ̇t = d

dt
ρt = − i

h̄
[H, ρt ], (2)

that returns the solution ρt = Ut,0ρ0 U†
t,0. In Eq. (2), H is the

Hamiltonian of the network, [K, J] denotes the commutator
between the operators K and J: [K, J] = KJ − JK , and h̄ is
the reduced Planck constant. By means of Eq. (2), one is able
to propagate (over time) the initial state ρ0 ensuring that all
its properties (i)–(iii) are automatically fulfilled. By solving
Eq. (2) as a function of ψt , the Schrödinger equation ih̄ ψ̇t =
Hψt is recovered, as well as Eq. (1).
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Remark 1. Instead of solving the Liouville–von Neumann
equation (2) to get the quantum network dynamics, it may
useful to work with the column vector λt , which is obtained
by vectorizing the density operator ρt :

λt ≡ vec[ρt ]

= (
ρ

(11)
t , . . . , ρ

(d1)
t , ρ

(12)
t , . . . , ρ

(d2)
t , . . . , ρ

(dd )
t

)T ∈ Cd2×1.

(3)

In this way, according to the superoperator formalism [49],
the Liouville–von Neumann equation (2) can be written as a
linear differential equation in the column vector λt :

λ̇t = Lλt namely λt = eL(t−t0 )λ0, (4)

where L = − i
h̄ (Id ⊗ H − HT ⊗ Id ) ≡ − i

h̄ H̃ ∈ Cd2×d2
, Id is

the identity matrix of size d , and ⊗ denotes the Kronecker
product. By construction, L is a skew-Hermitian (or anti-
Hermitian) operator, meaning that L† + L = 0.

The linear formulation of quantum network dynamics will
be adopted in Sec. VI, where we will address the solvability
of topology identification problems with partial information.

Quantum networks from many-body systems

For practical applications in quantum communication and
computing, a quantum network is usually constituted by N in-
teracting �-level quantum systems, corresponding to a node of
the quantum network. Thus, in this section we briefly discuss
how one can deal with the coupling structure of a many-body
system composed of interacting subsystems and then express
the time evolution of the corresponding density operator via
an instance of the Liouville–von Neumann equation (2). In
this way, the identification of the unknown interaction struc-
ture of a quantum many-body system can be achieved by
addressing the reconstruction of the Hamiltonian in (2), as we
have formulated below.

Under the hypothesis that a quantum network is provided
by N �-level quantum systems, the dimension of the network
is equal to d = �N , and, concerning the network Hamiltonian,
the contributions associated to each node of the network can
be decoupled by those of the coupling terms. Formally,

H = H0 + Hint =
N∑

k=1

ωkHk + Hint, (5)

where k is the index over the network nodes. It is worth
noting that a different characteristic frequency ωk and a local
Hamiltonian Hk is associated to each node, while Hint de-
notes the interaction Hamiltonian. All the operators Hk , for
k = 1, . . . , N , and Hint , are Hermitian with size d .

In the quantum many-body systems scenario, it is common
practice to assume two-body interactions and compositions of
them at any instant of time t . This means that the interaction
Hamiltonian Hint can be further decomposed in a sum of D ≡
N2 − N = N (N − 1) coupling terms AkAj , with k �= j, each
of them corresponding to one specific link. In this regard, it is
worth noting that AkAj is the shorthand notation for the tensor
product of Ak and Aj . Instead, Ak denotes the operator that is
associated to the kth node of the network and is responsible for
the interaction with the jth node through the coupling AkAj .

This means that

Hint =
N∑

k, j=1; k �= j

αk, jAkA j . (6)

Hence, by substituting (6) in (5), it holds that the Liouville–
von Neumann equation of a quantum many-body system
(written as a dynamical network) is given by

ρ̇t = − i

h̄
[(H0 + αT Cα), ρt ] = R0(t ) − i

h̄
[αT Cα, ρt ], (7)

where R0(t ) ≡ −i[H0, ρt ]/h̄ is known and completely deter-
mined by the knowledge of the local dynamics of the network,
while α and C are provided by the relations

α = (
√

α1,2 Id , . . . ,
√

αN,N−1 Id )T ∈ CDd×d

C = diag({AkAj}) ∈ CD(d×d ).

Further details can be found in Appendix A, where we also
provide a microscopic derivation of a quantum network by
using the many-body formalism and writing each operator Ak ,
k = 1, . . . , N , as a function of a complete orthonormal basis
of eigenoperators.

Remark 2. The complete structure of the operator C
(sparse Hermitian matrix) is defined by the laws of quan-
tum mechanics ruling two-body interactions. This means that
the only unknown quantity to be reconstructed, returning the
topology of the network, is the vector α that contains all the
interaction couplings.

III. PROBLEM FORMULATION

Consider a quantum dynamical network whose state evo-
lution over time is described by the Liouville–von Neumann
equation (2). We assume that (i) the system Hamiltonian H
is not directly available, and (ii) the density operator ρt or a
portion of it is measured during the time interval [0, τ ].

In the following we will address the problem of identifying
the topology of a generic autonomous quantum dynamical
network by mainly following the prescription of network re-
construction problems as given in the engineering literature.
Specifically, the network reconstruction problem involves the
identification of the exact value of the Hamiltonian H of the
quantum network (it corresponds to infer the vector α of
interaction couplings if one has knowledge of the quantum
many-body structure) on the basis of measurements of (part
of) the density operator ρt or equivalently, of the ensemble
vector λt .

We will provide analytical conditions under which this
important prerequisite holds, and we will present an algorithm
for the Hamiltonian reconstruction problem.

IV. TOPOLOGY IDENTIFICATION WITH
FULL INFORMATION

In this section we provide analytical conditions that ensure
the solvability of the topology identification problem for au-
tonomous quantum networks by measuring the full density
operator ρt within the time interval [0, τ ]. For this purpose, let
us consider the density operator ρt for any t ∈ [0, τ ] and take
the network Hamiltonian H as a d-dimensional Hermitian
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operator ∈ Cd×d . Moreover, we also assume that H has zero
diagonal entries. Any matrix M with these two properties (i.e.,
Hermitianity and zero diagonal entries) is here denoted as
admissible, and the set of all admissible matrices as

A ≡ {M ∈ Cd×d | M = M† and Mii = 0, ∀i = 1, . . . , d}.
(8)

By solving Eq. (2), we get a specific trajectory ρt with t ∈
[0, τ ], for any given initial state ρ0. Thus the set of admissible
matrices that allows for such data is given by

Aρ ≡
{

M ∈ A | ρ̇t = − i

h̄
[M, ρt ] ∀t ∈ [0, τ ]

}
. (9)

In addition, let us define the solvability condition of the topol-
ogy identification problem:

Definition 1. Let ρt be given for t ∈ [0, τ ]. Then the topol-
ogy identification problem is called solvable if Aρ = {H}.

Now, by integrating Eq. (2) and taking the network Hamil-
tonian as an admissible operator, we provide a sufficient
condition for the solvability of the aforementioned identifi-
cation problem in the form of the following theorem.

Theorem 1. Define the matrices

P ≡
∫ τ

0
ρt dt (10)

Q ≡ ih̄ (ρτ − ρ0), (11)

with τ > 0 arbitrary. Then the topology identification problem
is solvable if there exists a unique admissible M̂ ∈ A that
satisfies the relation

[M̂, P] = Q. (12)

The proof of Theorem 1 is in Appendix B. As it will be
shown later, for a given choice of ρ0 and τ , the knowledge
of the density operator ρt in a set of time instants t ∈ [0, τ ],
whose number increases at least linearly with the number
d of quantum network’s nodes, may be sufficient to solve
the topology identification problem. However, the larger the
number of time instants at which ρt is evaluated (for a fixed
value of τ ) the smaller the topology reconstruction error.

Remark 3. For the purpose of topology identification, let
us observe once more that taking a quantum many-body
system as the quantum network is an instance of the more
general problem that we have previously formulated. In fact,
by integrating Eq. (7) within [0, τ ] and defining the matrices
P ≡ ∫ τ

0 ρt dt and

Q ≡ ih̄ (ρτ − ρ0) − [H0, P],

the problem of identifying the interaction Hamiltonian Hint =
αT Cα is again solvable if there exists a unique admissible
M̂ ∈ A that satisfies [M̂, P] = Q.

In Theorem 1 the matrices P and Q can be computed from
data. Thus, in terms of topology identification, we conclude
that solving Eq. (12) for M̂ ∈ A leads to an effective method
to reconstruct H from measurements of ρt for t ∈ [0, τ ]. How-
ever, one also needs to address the issue of determining under
which conditions there exists a unique solution M̂ ∈ A to
Eq. (12). In this regard, a necessary and sufficient condition
for the uniqueness of M̂ ∈ A is provided by the following
proposition, whose proof is in Appendix C.

Proposition 1. There exists a unique M̂ ∈ A satisfying
(12) if and only if the zero matrix (operator with all terms
equal to zero and denoted as ∅) is the only element of A that
commutes with P.

We can associate a corollary to Proposition 1: A necessary
condition for the uniqueness of the nonzero solution M̂ ∈ A, re-
sulting by solving the equation MP − PM = Q, is that M̂ does
not commute with P. This corollary is a direct consequence of
Proposition 1 and can be used as a preliminary check to evalu-
ate whether the solution M̂ �= 0 of the topology identification
problem may be effectively unique. In fact, if [M̂, P] = 0, then
M̂ is definitely not unique. Moreover, if Q �= ∅, then from
Proposition 1, the existence of a unique admissible solution
M̂ �= ∅ that solves the equation MP − PM = Q with P and
Q computed from data is guaranteed. From these theoretical
results, we can put in place an effective strategy to solve the
topology identification problem here considered. This strategy
relies in measuring the density operator ρt of the network
within the time interval [0, τ ] until the equation MP − PM =
Q has a nonzero solution M̂ ∈ A that does not commute with
P. A reconstruction algorithm will thus be presented in the
next section.

V. AN ALGORITHM FOR QUANTUM
NETWORK RECONSTRUCTION

In this section we provide an algorithm for the reconstruc-
tion of the quantum network Hamiltonian that requires, as
input data, measurements of all the elements of ρt . In this
regard, let us recall that: (i) the reconstruction problem is
solvable if there exists a unique matrix M̂ ∈ A that satisfies
the relation [M̂, P] = Q with P, Q computed from measured
data (Theorem 1); (ii) there exists a unique M̂ ∈ A obeying
[M̂, P] = Q if and only if the zero matrix ∅ is the only element
of A that commutes with P (Proposition 1). Conditions (i)
and (ii) are the guidelines to formulate the reconstruction
algorithm. Theorem 1 and Proposition 1 imply that if the
reconstruction of the network Hamiltonian (here we are in-
terested only in the interaction components, i.e., the network
topology) is solvable, then the solution to this problem can be
obtained by determining the unique Hermitian operator with
zero diagonal elements that obey Eq. (12).

One way to resolve the matrix equation [M, P] = Q, under
the constraint of the M Hermitian operator, is to vectorize
the matrix equation by writing a standard system of linear
equations and then imposing the Hermitian symmetry of M
by means of linear constraints. Specifically, by defining the
operator

P̃ ≡ (PT ⊗ Id − Id ⊗ P) ∈ Cd2×d2
(13)

and reshaping the matrices M and Q in column vectors of
dimension d2, denoted, respectively, as m ≡ vec[M] and q ≡
vec[Q], the matrix equation [M, P] = Q can be recast in the
linear equation

P̃m = q. (14)

Then, instead of resolving the equation P̃m = q as a function
of m with the constraint that the resulting solution satisfies the
property of Hermitian symmetry, we write an enlarged linear
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system such that the required constraints (Hermitian symme-
try and solution with diagonal elements equal to zero) are
automatically fulfilled. For this purpose, we define the matri-
ces F1 ∈ Rd×d2

and F2 ∈ C
d (d−1)

2 ×d2
. The former has almost all

terms equal to zero, except to the (k + 1, kd + 1)-th elements,
with k = 0, . . . , d − 1, that are all equal to 1. This guarantees
that, by imposing F1m = ∅, all the diagonal elements of M
(corresponding to the (kd + 1, kd + 1)-th diagonal elements
of M with k = 0, . . . , d − 1), are equal to zero. Instead, F2

is designed to ensure that M = M†. For the sake of a clearer
presentation, here we provide a simplified expression of F2

under the hypothesis that M is a matrix with real elements.
In such a case, one can easily check that the validity of the
relation F2m = ∅ is equivalent to ensure that M = MT , where

F2,k j ≡
⎧⎨
⎩

+1, if j = (� − 1)d + i
−1, if j = (i − 1)d + �

0, otherwise,

with k = 1, . . . , d (d − 1)/2, � = 1, . . . , d − 1, and i = � +
1, . . . , d . A similar, though more involved, expression holds in
case M is a matrix of complex numbers. In conclusion, the en-
larged linear system that recasts the matrix equation [M, P] =
Q, with M Hermitian and diagonal elements equal to zero, is
given by

P̃′m = q′ where P̃′ ≡
⎡
⎣ P̃

F1

F2

⎤
⎦ and q′ ≡

⎡
⎣q

∅
∅

⎤
⎦. (15)

Accordingly, the algorithm for the reconstruction of the quan-
tum network Hamiltonian, using measurements of the whole
density operator ρt , is defined as follows.

Algorithm 1. Network Hamiltonian reconstruction with
full information:

If rank (P̃′) = d2 �⇒ m̂ = (P̃′)+q′ ;

otherwise, [M, P] = Q has nonunique solutions M̂ ∈ Aρ.

(P̃′)+ ≡ P̃′∗(P̃′P̃′∗)−1 denotes the Moore-Penrose right in-
verse of P̃′, with P̃′∗ the corresponding conjugate transpose.
Then M̂ is obtained by applying the inverse of the vectoriza-
tion operation, thus reshaping the column vector m̂ in a square
Hermitian operator with diagonal elements equal to zero.

It is worth observing that asking for rank(P̃′) = d2 is the
necessary requirement for the uniqueness of the solution M̂ ∈
Aρ solving the matrix equation [M, P] = Q. However, this
does not imply that a value of m̂ = (P̃′)+q′ cannot be obtained
from the calculation, albeit in this stage we do not have con-
trol of the magnitude of the reconstruction error. Moreover,
Algorithm 1 has the advantage of determining its solution by
solving a system of linear equations (i.e., P̃′m = q′) that can
be achieved using efficient computational tools.

Case study: Quantum random walk model

As a case study of network Hamiltonian reconstruction,
let us consider the quantum random walk model [50,51] that
is the transposition of the concept of classical random walk
to the quantum context. Specifically, we take into account a
single walker moving on a graph G. The latter is described
by the pair G = (N , E ), where N denotes the set of nodes

(or vertices) of the graph and E is the set of links that couple
pairs of nodes (Nk,N�). Each node is associated to a different
walker position, while the links correspond to the probability
that the walker jumps from one node to another. The links
belonging to E can be summarized in the adjacency matrix A,
whose elements are given by

Ak j =
{

1, if (Nk,N j ) ∈ E
0, if (Nk,N j ) �= E .

Note that here we are implicitly assuming that the links are
equally weighted with weights all equal to 1. Moreover, if all
the positions of the walker are states with the same energy,
then one is allowed to set such energy to a reference constant
value. Usually the reference energy value is taken equal to
zero, with the result that the Hamiltonian H of the quantum
walker is identically equal to the adjacency matrix A (H = A).

Also, the state of the quantum walker, moving on the graph
G with d nodes, is provided by a density operator ρt ∈ Cd×d .
The diagonal elements of ρt define the probabilities that the
walker is in each of the allowed positions (such terms are
denoted as populations), while the off-diagonal elements are
the so-called quantum coherence terms that identify interfer-
ence patterns between nodes. The initial state ρ0 is taken with
all the coherence terms equal to 0 and only one population
equal to 1 (randomly chosen in each realization of the network
dynamics).

By addressing the topology identification problem with full
information, we measure the elements of the density operator
ρt within the time interval t ∈ [0, τ ], and the reconstruction
problem consists in determining the exact value of the el-
ements of the adjacency matrix A, i.e., in identifying the
presence of a link between the nodes of the graph. To validate
the performance of Algorithm 1, we numerically solve the
time evolution of the state for 100 random networks A, each
of them with an increasing number d ∈ [2, 30] of nodes. The
network dynamics is computed with resolution (sampling pe-
riod) δt = 10−2. This entails that the total number of samples
that compose the quantum network evolution is equal to the
ratio ns = τ/δt = τ/10−2. The random networks are sampled
by an Erdős-Rényi distribution, whereby the nodes of the
network are randomly connected and each link is included
in the graph with probability plink [52,53]. We recall that,
according to this model, a network with d nodes and m links
is sampled with probability

pgraph = pm
link (1 − plink )( d

2 )−m
,

where ( n1

n2
) ≡ n1!

n2!(n1−n2 )! is the binomial coefficient and 2( d
2 )

the total number of networks with d nodes. Instead, regarding
the initialization, each time the initial density operator of the
network is randomly chosen among one of the states ρ0 =
ekeT

k with k = 1, . . . , d (thus with just one node excited).
This choice is the simplest to be realized experimentally. The
evolution of the network is then evaluated at discrete time
instants within the time interval [0, τ ], where τ is equal to
1, 2, or 3, all expressed in natural units such that h̄ can be set
to 1. In our simulations the operator P (it is provided by the
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FIG. 1. Plot of the mean solvability rate s as a function of d ∈
[2, 30] (number of nodes) and of the pairs (τ, ñs ), with τ ∈ {1, 2, 3}
and ñs ∈ {ns/20, ns/10, ns/5}. Specifically, for the considered values
of d and plink = 0.5, the topology identification problem is solved for
100 random Erdős-Rényi quantum networks. The black, orange, and
blue curves refer, respectively, to τ = 1, 2, 3.

integral of ρt ) within the interval [0, τ ] is approximated as

P ≡
∫ τ

0
ρt dt ≈

ñs∑
k=1

∫ tk

tk−1

ρt dt

≈ 1

2

ñs∑
k=1

(tk − tk−1)
(
ρtk−1 + ρtk

)
. (16)

Numerically, the integral
∫ τ

0 ρt dt is computed by assigning
different values to ñs, i.e., ns/20, ns/10, ns/5, and ns, with
the aim to evaluate how the reconstruction performance of
Algorithm 1 depends on the resolution used to monitor the
network dynamical evolution. Note that the smaller the value
of ñs, the fewer evaluations of ρt are required. Moreover, for
each realization of the simulated dynamics, we introduce a
label s, denoted as solvability label, that takes two values: one
if the quantum network reconstruction problem is solvable
[i.e., m̂ = (P̃′)+q′ for rank(P̃′) = d2] with P approximated
as in Eq. (16), and zero otherwise, in agreement with the
prescriptions of Algorithm 1.

In Fig. 1 we plot the mean solvability rate s in identifying
the topology of random Erdős-Rényi quantum networks as a
function of d ∈ [2, 30]. The mean solvability rate is equal to
the arithmetic mean of s obtained in each of the 100 network
reconstructions for every chosen set of parameters, namely,

s ≡ 1

100

100∑
q=1

sq. (17)

The value of s is plotted as a function of both the duration
τ and the number of samples ñs used to calculate numerically
the operator P. From Fig. 1 the following numerical evidences
can be observed: (i) By increasing the number of nodes, a
linearly larger value of τ is required to successfully carry out
the network Hamiltonian reconstruction problem. This means

FIG. 2. Plot of the relative reconstruction error ε in identifying
single random Erdős-Rényi quantum networks with plink = 0.5. The
relative error ε is plotted as a function of d ∈ [2, 12] for different
pairs (τ, ñs ), with τ ∈ {1, 2} and ñs ∈ {ns/20, ns/10, ns/5, ns}. In the
figure, the red and blue curves respectively refer to τ = 2, 3.

that to reconstruct the topology of an Erdős-Rényi quantum
network, we need to monitor the time evolution of its state,
at least for a linearly longer period of time, independently of
the value of plink. As an example, for the simulations in Fig. 1
where the value of τ is fixed and taken equal to 1,2,3 (corre-
sponding, respectively, to the back, orange, and blue curves
in the figure), the mean solvability rate s = 0 ∀d > dc, with
dc the critical number of nodes depending on τ . For the blue
curves, e.g., dc = 28; however, one can recover s = 1 (and
thus, high-probability topology reconstruction) for d > dc if
the value of τ were increased, linearly with the number of
nodes. Moreover, notice that for quantum networks with few
nodes, s may be smaller than the maximum value 1 that in-
stead is reached for a larger number of nodes up to the critical
value dc. For small values of d , s �= 1 since the trajectories
of the network dynamics in such case are oscillating. Thus
repeated evaluations of the latter at regular discrete times, as in
our simulations, provide similar results and thus may not be so
informative. In conclusion, s �= 1 can be considered as a finite-
size effect; in fact, by increasing the dimension of the network,
such effect is lost until Algorithm 1 loses its effectiveness due
to the finite and fixed value of τ . (ii) The mean solvability rate
s practically does not depend on the number of samples ñs

used to derive P. Hence, the identification problem is solvable
also by computing the operator P by means of few measure-
ments of ρt within [0, τ ]. However, one could expect that by
decreasing the number of measured values of ρt (needed for
the computation of P), the reconstruction error dramatically
increases. This is what has been quantified in Fig. 2, where in
case the quantum network reconstruction problems are solv-
able, we plot the relative reconstruction error ε in identifying
single random Erdős-Rényi quantum networks by using full
information. The relative reconstruction error is defined as

ε ≡ ‖M̂ − A‖2

‖A‖2
, (18)
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where ‖ · ‖ denotes the L2 operator norm, A is the network
adjacency matrix (Hamiltonian) to be identified, and M̂ ∈ Aρ

is the reconstructed one returned by Algorithm 1. In Fig. 2
the relative error ε is plotted as a function of the number of
nodes and for eight different pairs (τ, ñs), with τ ∈ {1, 2} and
ñs ∈ {ns/20, ns/10, ns/5, ns}. As one can observe (also from
the inset), the relative reconstruction error is only slightly
greater than 0 for d � 8, independently of the value of τ and
ñs. Of course, also in this case, ε is larger if ñs = ns/20, i.e., if
only few values of the network density operator are taken into
account. Instead, the larger values of ε are observed in Fig. 2
for d > 8, where the relative reconstruction error remains
small for τ = 3 and (τ = 2, ñs = ns). This means that, despite
that the identification problem is solvable, the reconstruc-
tion error can dramatically increase, especially by decreasing
the value of τ and using few measurement outcomes to
compute P.

VI. SOLVABILITY OF TOPOLOGY IDENTIFICATION
WITH PARTIAL INFORMATION

In this section we give some preliminary results for the
situation where the whole network state is not available for
measurements. Specifically, we address the solvability of
topology identification problems for autonomous quantum
dynamic networks by using measurements of only the diag-
onal entries of ρt , the solution of the Liouville–von Neumann
equation (2). Measuring all the elements of ρt , indeed, is just
a sufficient condition to successfully reconstruct the topology
of a quantum network in the single realization of its dynamics
for a generic initial state ρ0. This means that by collecting data
on ρt , the reconstruction problem can be solvable also in the
case that only a portion of ρt is measured.

As stressed in Remark 1, the Liouville–von Neumann
equation can be written as a linear differential equation of the
state vector λt ∈ Cd2×1 by means of the vectorization of ρt .
In this way one gets λ̇t = Lλt , with L the skew-Hermitian
operator. For our purposes, let us associate to the dynamical
equation λ̇t = Lλt an output equation that selects only the
diagonal elements of ρt at each time t . The output equation is

yt = Cλt ∈ Cd×1,

with C ∈ Rd×d2
defined as

Ck j =
{

1, if j = (k − 1)d + k
0, otherwise,

where d is the dimension of the quantum network. It is worth
noting that the dynamical and output equations are fully char-
acterized by the initial state λ0 and the pair (C,L). In what
follows we will resort to the concept of observability [46].
The pair (C,L) is observable if

rank

⎡
⎢⎢⎣

C
CL
...

CLd2−1

⎤
⎥⎥⎦ = d2. (19)

For the sake of clarity, the output trajectory yt in the time
interval [0, τ ], resulting from the initial state λ0, is denoted
as yλ0

(t ).

Under the assumption that the quantum network is observ-
able, we provide (in the following Proposition) a condition
under which the operator L can be uniquely identified from
multiple partial measurements of ρt with C fixed a priori.

Proposition 2. Let λ
(�)
0 be d2 linearly independent initial

states for � = 1, . . . , d2. Let us also assume to measure the
output equation yt that is obtained by initializing the quantum
network in each of the d2 input states, thus having access to
y
λ

(�)
0

(t ) for t ∈ [0, τ�], τ� > 0 and � = 1, . . . , d2. If the pair
(C,L) is observable, then the operator L is uniquely identifi-
able from [y(1)

λ0
, . . . , y(d2 )

λ0
]. In other words, L = L for any pair

(C,L) that generates the outputs [y(1)
λ0

, . . . , y(d2 )
λ0

].
The proof of Proposition 2 is in Appendix D. We observe

that the only assumptions needed to prove Proposition 2 are (i)
the observability of the pair (C,L) and (ii) the generation of
d2 linearly independent input vectors λ

(�)
0 , with � = 1, . . . , d2.

Instead, it does not matter whether the operator L obeys spe-
cific symmetry properties. We can thus conclude that in the
case of partial information on the density operator of the net-
work, we need to repeat d2 times the dynamical evolution of
the quantum network by starting from d2 independent initial
conditions λ0, each of them corresponding to a specific initial
state ρ0 ≡ |ψ0〉〈ψ0| ∈ Cd×d . A quite trivial choice could be to
take ρ0 equal to |k〉〈 j| ≡ ekeT

j for k, j = 1, 2, . . . , d , where ek

denotes the kth standard Rd basis vector. However, let us note
that the operators |k〉〈 j|, with k �= j, are not Hermitian and do
not have unit trace. Thus, these states are not physical, in the
sense that they cannot be experimentally prepared. To over-
come this issue one can decompose |k〉〈 j| as a function of the
fixed set of states {|k〉, | j〉, |+〉 ≡ (|k〉 + | j〉)/

√
2, |+y〉 ≡

(|k〉 + i| j〉)/
√

2}, namely [54],

|k〉〈 j| ≡ |+〉〈+| + i|+y〉〈+y| − (i + 1)

2
(|k〉〈k| + | j〉〈 j|),

and then exploit the linearity property of any closed quantum
dynamics.

We close this section with some remarks.
Remark 4. We have shown that the interaction Hamil-

tonian (and consequently the topology) of an autonomous
quantum dynamical network is identifiable also by properly
processing the information coming from partial measurements
of ρt (in particular, its diagonal elements), provided that d2

linearly independent initial states are prepared. Such initial
states have quantum coherence contributions (corresponding
to off-diagonal terms in ρ0) between the elements of the basis
chosen for their decomposition. Thus, for an accurate recon-
struction of the network topology, decreasing the number of
intermediate measurements necessarily entails an increase in
the complexity of the initial quantum state preparation.

Remark 5. Proposition 2 applies also to quantum networks
composed of N interacting �-level quantum subsystems. For
such systems, indeed, the Liouville–von Neumann equation in
linear form can be written as λ̇t = (L0 + Lint ) λt , where
L0 ≡ − i

h̄ H̃0 and Lint ≡ − i
h̄ H̃int. Under the assumptions of

Proposition 2 [observability of the pair (C,L) and linearly
independent initial states], it is guaranteed that the operator
L0 + Lint can be uniquely identified. Therefore, with L0 being
fixed and known a priori, Proposition 2 ensures that also Lint

is uniquely identifiable.
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Remark 6. Since the quantum network Hamiltonian is the
quantity to be determined, a priori it is unknown if the pair
(C,L) is observable. This means that, in general, it is not guar-
anteed that a possible solution M̂ of the topology identification
problem is reliable and accurate. Accordingly, for practical
purposes it is worth checking a posteriori the observability
of the pair (C, L̂), with L̂ ≡ − i

h̄ (Id ⊗ M̂ − M̂T ⊗ Id ), which
is computed by taking the solution M̂ of the identification
problem.

VII. CONCLUSIONS

In this paper we have addressed the issue of determining
under which analytical conditions it is possible to identify the
topology of an autonomous quantum network. Specifically,
we provide a procedure for the reconstruction of quantum net-
work topologies by using the full information of the network
density operator ρt , even taken at discrete times. As already
discussed in the introductory part of the paper, solutions to
this problem could find application in quantum computing
and quantum communication, where multiple quantum de-
vices need to be connected in network configurations. In such
contexts, information on the network topology is not always
available and, as for any other network whose nodes are dy-
namical systems, even for a quantum network it can happen
that one of the nodes looses its functionality or some links
suddenly break down. Hence, in all these cases, reliable and
easy-to-use tools for topology identification are a prerequisite.

To achieve our goal in solving the topology reconstruction
problem, we have assumed to be able to measure the density
operator ρt of the network over a given time interval. In par-
ticular, we have considered measuring both all the elements
of ρt , for example, by means of quantum state tomography,
and only a part of them (just the diagonal elements of ρt ).
Though the former case (identification with full information)
requires more entries of ρt to be measured than the latter
(identification with partial information), we provide a suffi-
cient condition for the solvability of the problem by inverting
an algebraic commutation relation. This means that if the
identification problem is solvable, the quantum network topol-
ogy can be reconstructed, in principle, with zero error. The
analytical conditions that allow to the identification problem
to be solved with full information have been then converted in
a reconstruction algorithm (Algorithm 1). Algorithm 1 does
not require high computing power, and it can be implemented
on standard computer facilities. However, one may encounter
the issue of computing with few resources (thus, approxi-
mately) the operator P, obtained by integrating ρt within the
time interval [0, τ ]. The accuracy in calculating this integral
depends on the number of time-discrete data points of ρt in
[0, τ ]. In this regard, since at the experimental level the effort
in performing lots of measurements is prohibitive, we have
numerically verified whether the solvability of the topology
identification problem with full information is still guaranteed
by decreasing the accuracy in computing P, namely, by using
a smaller number of samples. The identification problems
remain solvable, though the reconstruction error ε tends to
become high, especially if the number of nodes is large or with
a too small value of the duration τ of the quantum network
evolution.

Finally, we have addressed the problem to identify a quan-
tum network topology by using measurements of only the
diagonal elements of ρt . Specifically, here we have shown that
the topology of an autonomous quantum network might be
reconstructed if the network is observable and is initialized on
d2 linearly independent initial states in different runs.

The procedures addressed here for the topology identifi-
cation of autonomous quantum dynamical networks have to
be considered causal, in the sense that at any time t (when
the functionality of the procedure is evaluated) we process
information available up to t ∈ [0, τ ], thus without employing
any information on the state (or any observable) depending
on a time instant t ′ > t . Moreover, we also stress that, for a
possible experimental implementation of the procedure, our
identification routine needs to be restarted from the beginning
every time that information on the quantum network state is
measured and then collected. Such a strategy may be quite
resource consuming, but it can avoid resorting to ancillary
quantum systems.

With other contributions (one can, for example, refer to the
review paper [55]), our paper is one of the attempts to apply
analytical results from control theory to quantum-mechanical
systems. One of our purposes, indeed, is to stimulate con-
tributions that aim at providing exact results in the quantum
engineering interdisciplinary field.

Although our analysis has dealt with several facets of
the topology identification problem for autonomous quantum
networks, it certainly cannot be considered exhaustive. Let
us thus mention some others: (i) A more extensive numer-
ical analysis for the testing of our topology identification
procedure to connected quantum networks whose links fol-
low nonstandard topologies. For this purpose, one could test
random quantum networks with links sampled from known
generalizations of the Erdős-Rényi probability distribution.
(ii) Extension of the obtained analytical and numerical results
to the case of nonautonomous (or driven) quantum networks.
(iii) Solution of the addressed topology identification problem
for open quantum networks in interaction with an external
environment or other quantum systems.
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APPENDIX A: INTERPRETING A MANY-BODY
QUANTUM SYSTEM AS A QUANTUM NETWORK

Let us consider an ensemble of N interacting �-level quan-
tum systems, each of them characterized by its own time
evolution. Such a many-body quantum system is closed,
namely, it does not interact with the surroundings. As a con-
sequence, the dynamical evolution of the global system is
unitary and governed by the total Hamiltonian H . As pro-
vided by Eq. (5) in the main text, H is given by the sum of
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the Hamiltonian operators of each subsystem with interaction
terms describing the coupling between the subsystems. For-
mally, H = ∑

k ωkHk + Hint, with k the index on the network
subsystems. By assuming (as in the main text) the presence
of only two-body interactions and compositions of them at
any t ∈ [0, τ ], the interaction Hamiltonian Hint can be further
decomposed as the sum of D ≡ N (N − 1) coupling terms
AkAj with k �= j. Each of them corresponds to a link between
two distinct quantum subsystems of the quantum network.
Thus Hint = ∑

k �= j αk, jAkA j .
Now, as a further element, let us observe that also each

operator Ak , with k = 1, . . . , N , can be decomposed as the
sum of characteristic operators and specifically as the sum
of �2 − 1 eigenoperators, constituting a complete orthonormal
basis of the node Hamiltonian operators Hk , i.e.,

Ak =
�2−1∑
n=1

βnA(n)
k subject to

�2−1∑
n=1

A(n)
k = Id .

Accordingly, the interaction Hamiltonian Hint equals

Hint =
N∑

k, j=1; k �= j

�2−1∑
n1,n2=1

γk, j,n1,n2 A(n1 )
k A(n2 )

j ,

where γk, j,n1,n2 ≡ αk, jβn1βn2 . For convenience, it is worth in-
troducing the index m that labels the links of the networks.
Note that in this analysis both the links k → j and j → k are
distinct elements, generally with a different weight. For exam-
ple, this means that m = 1, m = N − 1, and m = N (N − 1)
correspond, respectively, to the 2-tuples (k = 1, j = 2), (k =
1, j = N ), and (k = N, j = N − 1). As a result, Hint can be
written as the sum of D2 ≡ (�2 − 1)2N (N − 1) elements as in
the following relation:

Hint =
N (N−1)∑

m=1

�2−1∑
n1,n2=1

γm,n1,n2 Bm,n1,n2 ,

with Bm,n1,n2 ≡ A(n1 )
k A(n2 )

j , and n1, n2 = 1, . . . , �2 − 1, m =
1, . . . , N (N − 1).

In conclusion, by substituting the expression of Hint in H ,
the Liouville–von Neumann equation of a quantum many-
body system interpreted as a quantum network is equal to

ρ̇t = − i

h̄
[(H0 + γT Eγ ), ρt ] = R0 − i

h̄
[γT Eγ, ρt ],

where R0, as in the main text, is completely determined by
the knowledge of the local dynamics of each �-level quantum
system, while γ and E are provided by the relations

γ = (√
γ1,1,1 Id , . . . ,

√
γm,n1,n2 Id , . . .

)T ∈ CD2d×d

E = diag
({Bm,n1,n2}

) ∈ CD2(d×d ).

The latter formulas for γ and E correspond to the ones for α

and C in Sec. II of the main text.

APPENDIX B: PROOF OF THEOREM 1

Let M ∈ Aρ . By integration of the Liouville–von Neumann
equation ρ̇t = − i

h̄ [M, ρt ] between t = 0 and t = τ , Eq. (12)

of the main text is obtained. By hypothesis, we have assumed
the existence of a unique M̂ ∈ A satisfying Eq. (12). As a
consequence, |Aρ | = 1, meaning that the set Aρ contains only
a single element. Thus, since by construction H ∈ Aρ , we can
conclude that Aρ = {H}.

APPENDIX C: PROOF OF PROPOSITION 1

To demonstrate the “if” statement, let us assume that
M̂1, M̂2 ∈ A are solutions to Eq. (12). Clearly, we have (M̂1 −
M̂2) ∈ A. In addition, we obtain

(M̂1 − M̂2)P − P(M̂1 − M̂2) = 0,

that is, M̂1 − M̂2 commutes with P. Thus by hypothesis we
obtain M̂1 = M̂2, i.e., there is a unique solution to (12) in the
set A. Conversely, to prove the “only if” statement, let Z ∈
A commute with P. This implies that M̂ ≡ H + Z ∈ A is a
solution to (12). Since this solution is unique by hypothesis,
we obtain Z = 0, which proves the “only if” statement and
thus the theorem.

APPENDIX D: PROOF OF PROPOSITION 2

Suppose that both the pairs (C,L) and (C,L) generate
the outputs y

λ
(�)
0

(t ) for t ∈ [0, τ�], τ� > 0, and � = 1, . . . , d2.

Moreover, let us recall that by construction λ̇t = Lλt and
yt = Cλt for any value of t . Thus one can find that

ẏ
λ

(�)
0

(0) = CLλ
(�)
0 = CLλ

(�)
0 .

In similar fashion, by computing higher-order derivatives of
yt until the d2-th one, we also get

CLkλ
(�)
0 = CLk

λ
(�)
0

for all k = 1, 2, . . . , d2. Since the initial states λ
(�)
0 , with � =

1, 2, . . . , d2, are linearly independent vectors, it holds that

CLk = CLk
for all k = 1, 2, . . . , d2. Hence,

⎡
⎢⎢⎣

C
CL
...

CLd2−1

⎤
⎥⎥⎦L =

⎡
⎢⎢⎢⎣

C
CL
...

CLd2−1

⎤
⎥⎥⎥⎦L =

⎡
⎢⎢⎣

C
CL
...

CLd2−1

⎤
⎥⎥⎦L.

Equivalently,

⎡
⎢⎢⎣

C
CL
...

CLd2−1

⎤
⎥⎥⎦(L − L) = 0.

Finally, by resorting to the assumption that the pair (C,L)
is observable, we can conclude that L = L, thus proving the
Proposition.
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