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Data loading with shallow quantum circuits is a highly desirable ingredient for efficient execution of many
quantum algorithms before large-scale quantum error corrections with full fault tolerance become readily
available. The need for efficient data loading is especially urgent for the study of quantum machine learning.
In this work, we propose a protocol that only uses a parameterized shallow quantum circuit without ancilla
qubits for loading data into the amplitude of a quantum state with high fidelity. We term this data-loading
method Hamiltonian-based data loading (HDL), which comprises two stages. First, the HDL algorithm identifies
a Hamiltonian Ĥ whose unique ground state |ψ〉 represents the normalized data �x in the form of amplitude
encoding. Next, the target state is reconstructed with a parameterized quantum circuit by utilizing methods
like variational quantum eigensolver to minimize energy. In this work, we provide three convincing examples
to demonstrate the effectiveness of HDL for loading an N-dimensional classical data with minimal quantum
resources (O[poly(log2 N )]-depth quantum circuit without ancilla qubits). Our approach is particularly useful for
quantum hardware without large-scale error corrections, and shall benefit the development of quantum machine
learning algorithms.
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I. INTRODUCTION

Loading classical data into the amplitudes of a quantum
state with high efficiency and high fidelity is a prerequisite
for effective execution of many quantum machine learning
algorithms—for instance, quantum classifier [1,2], quantum
dimensionality reduction [3–5], quantum clustering [6], and
quantum recommendation systems [7]. A well-known data-
loading method is to use quantum random access memory
(QRAM), which facilitates many essential quantum algo-
rithms via accessing classical data in superposition [8–15], but
it is extremely challenging to build scalable QRAM hardware.
Hence, researchers have been investigating alternative tech-
nology to accomplish this task, such as a purely circuit-based
protocols for data loading [16–20].

To implement nontrivial quantum algorithms in the near
term, it is crucial to optimize the usage of quantum resources,
such as minimizing the circuit depth of quantum algorithms
and protocols. One of the most pressing tasks is to reduce
the quantum resources for the aforementioned data loading
or, equivalently, quantum state preparation (assuming we have
properly formulated the data to be loaded as a properly nor-
malized target state |ψT 〉). The goal is to design a low-depth
quantum circuit for loading an N-dimensional state vector
into an n-qubit poly(n)-depth circuit, where n = O(�log2 N�)
is highly desirable. Quantum state preparation is an actively
researched topic with many exemplary proposals attempting
to solve this formidable problem [16–27]. Recently, Sun et al.
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showed that with m ancillary qubits, a quantum state can
be prepared in circuit depth Õ([2n/(m + n) + n] [16]. And
Iordanis et al. proposed a forge data-loading method by us-
ing a two-qubit parameterized gate termed Reconfigurable
BeamSplitter (RBS), with a circuit depth O(n) and N qubits
[17]. That means the total number of quantum gates cannot
break through the linear complexity of O(N ), which is ex-
ponential in n. In order to simultaneously confine the circuit
complexity to O(n) qubits and O[poly(n)] circuit depth in the
noisy intermediate-scale quantum (NISQ) era [28] and early
fault-tolerant period, we propose an approximate data-loading
method which resorts to the framework of the variational
quantum algorithm (VQA) [29] for exploiting the power of a
noisy and shallow quantum circuit for applications. Although
VQA requires classical training loops to optimize parameter-
ized quantum circuits and may only achieve approximate state
preparation, it does make data loading with shallow circuits
possible, as convincingly proved in Ref. [20]. Our work is
similarly motivated but follows a completely different tech-
nical path, as further explained later.

We first review the state-of-the-art methods (both exact and
approximate) on quantum state preparations. An exact quan-
tum state preparation method typically represents the state as
a binary tree data structure, with the tree nodes storing rota-
tional angles that could be used to reconstruct the state exactly
in a quantum circuit. Some examples are summarized here. In
Ref. [21], Möttönen et al. introduce a method to efficiently
implement an amplitude loading of data using uniformly con-
trolled rotations, which costs 2n+2 − 4n − 4 controlled NOT
(CNOT) gates and 2n+2 − 5 one-qubit elementary rotations to
reconstruct an n-qubit quantum state.
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Inspired by Ref. [21], Araujo et al. introduced a divide-
and-conquer algorithm for loading classical data [22]. By
exchanging space for time, this algorithm may load an 2n-
dimensional vector with an Oq(n2)-depth quantum circuit but
using O(2n) ancillary qubits to facilitate the state preparation.
Later on, Zhang et al. improved the method in Ref. [22] by
increasing the ancilla qubits to O(4n) and reducing entangle-
ment to at most O(n) qubits.

On the other hand, approximate quantum state preparation
methods simply use a shallow parameterized quantum circuit
to encode classical data by finding gate parameters that mini-
mizes a loss function [20,23–27].

References [25,26] use quantum generative adversarial
networks (qGAN) to encode nonnegative classical data in
terms of a fixed prior distribution, and Ref. [20] further
expands the application in real-valued data by adding an
extra measurement in the Hadamard-transformed basis to
properly introduce the sign, which provides a head start
for solving data-loading problems with quantum variational
algorithms.

Different from all the methods mentioned above, we pro-
pose an approach named Hamiltonian-based data loading
(HDL) protocol for quantum state preparation. Inspired by the
idea that, for many target quantum states, one can efficiently
reconstruct a local Hamiltonian (containing O[poly(n)] Pauli
strings) that has the target state as one of its eigenstates
[30] on a classical computer, then one can resort to the
variational quantum eigensolver (VQE) [31] to train a cho-
sen parameterized quantum circuit ansatz by minimizing
the energy-dependent loss function until the target state is
recovered by the circuit. In this case, we trade off the
scarce quantum resources with relatively affordable classi-
cal computations. Further comparisons and discussions on
our method and other variational methods are deferred to
Sec. IV.

To illustrate the practicality of our method, we perform and
report numerical simulations involving random probability
distributions and realistic data such as the compressed Modi-
fied National Institute of Standards and Technology (MNIST)
handwritten data to validate our claims; a low-depth param-
eterized quantum circuit can faithfully represent a variety of
useful data in the context of data loading for quantum algo-
rithms, especially machine learning applications. In particular,
we show how to build a circuit-based QRAM with the HDL
method.

The remainder of the paper is organized as follows: Sec. II
proposes our algorithm for loading classical data. Section III
reports the numerical results and corresponding remarks. We
compare our method against alternative approaches for data
loading with quantum circuits and give a short conclusion
in Secs. IV and V, respectively. In Appendix A, we provide
a brief summary of HDL protocol. In Appendix B, we pro-
vide additional justification on why the HDL protocol could
be highly relevant for the development of quantum machine
learning.

II. METHOD

In this section, we present a variational protocol for
quantum state preparation with a low-depth parameterized

quantum circuit. We term this method HDL. Before we in-
troduce this method in detail, we first define the problem and
provide a rationale that motivates this work.

For a given normalized vector of classical data �x =
(x1, x2, . . . , xN ) ∈ CN , our goal is to construct a low-depth
circuit which outputs the quantum state |ψθ 〉 that approx-
imates |ψT 〉 = ∑N

i=1 xi|i〉. A straightforward idea is to use
the absolute fidelity |Fθ | = |〈ψθ |ψT 〉| as the loss function for
training the parameters θ with a classical computer.

While this approach sounds reasonable, when the number
of qubits n is sufficiently large it still becomes undesirable
to classically evaluate |Fθ |, which naively scales as O(2n),
at every training step. The fidelity Fθ cannot be efficiently
evaluated on a quantum computer when one does not know
how to prepare |ψT 〉 in a quantum circuit. However, if the
loss function is the expected value of a Hermitian observable
Ĥ , then one can utilize a quantum computer to efficiently
estimate Eθ = 〈ψθ |Ĥ |ψθ 〉. Ideally, Ĥ should be a linear com-
bination of at most poly(n) number of k-local Pauli strings.

Hence, the first part of our proposed protocol is to adopt
the correlation-matrix method to derive a k-local Hamiltonian
[with poly(n) number of Pauli strings] whose ground state
is sufficiently close to the target |ψT 〉. Once an appropriate
Hamiltonian is chosen, the task is then reduced to the standard
variational quantum simulation, which one can solve with
methods like VQE [31] or the variational implementation of
the imaginary evolution [32]. The whole protocol is succinctly
summarized as a schematic in Fig. 1. The rest of this sec-
tion discusses how to construct the appropriate Ĥ and the
complexity of the HDL protocol.

A. The correlation-matrix method

In order to construct a Hamiltonian Ĥ whose unique
ground state is sufficiently close to |ψT 〉, we first generate
a k-local Hamiltonian Ĥ0, comprising a poly(n) number of
Pauli strings, by following the basic idea outlined in Ref. [30].
Once a Ĥ0 is found, then we may define Ĥ = (Ĥ0 − eÎ )2, with
e = 〈ψT |Ĥ0|ψT 〉, to ensure that a standard VQE and similar
algorithms can recover |ψT 〉 with a parameterized quantum
circuit.

The correlation-matrix method begins with selecting a set
of mutually independent Hermitian operators {Li} acting in the
n-qubit Hilbert space. The maximum set of {Li} comprises all
4n Pauli strings. For our purposes, it is desirable to control the
cardinality of this set. To this end, we impose a circular topol-
ogy (i.e., linear chain with closed boundary) on the qubits, and
only consider k-local Pauli strings that are made up of k qubits
chosen from the circle with a fixed interval s apart,

Pαi
i Pαi+1+s

i+1+s · · · Pαi+k−2+s

i+k−2+sP
αi+k−1+s

i+k−1+s, (1)

that satisfy this topology. By only considering up to all possi-
ble k-local Paulis defined above, we then calculate correlation
matrix elements Mi j with respect to |ψT 〉,

Mi j = 1
2 〈ψT |{Li, Lj}|ψT 〉 − 〈ψT |Li|ψT 〉〈ψT |Lj |ψT 〉, (2)

where {·, ·} denotes the anticommutator. One then diagonal-
izes the correlation matrix M, which is positive semidefinite,
and inspects its lowest eigenvalue. If it is greater than zero,
then we have to repeat the process with an enlarged basis
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FIG. 1. The schematic of the HDL protocol. (a) At first, the input data x is provided to construct a Hamiltonian H = ∑
i ωiLi with a set of

observables Li and parameters ωi by using the correlation-matrix method illustrated in Sec. II A. (b) Then the quantum processing unit (QPU)
will be invoked to estimate the energy of H . With these estimations, a classical central processing unit (CPU) will evaluate the loss function and
provide updates to the gate parameters. These hybrid quantum-classical loops will continue until the loss function gets below the tolerance ε.
(c) Once the optimization stops, ideally, the learned parameterized quantum circuit U (θ∗) will output a state that closely resembles the desired
quantum state |ψ〉 with high fidelity.

{Li} with a larger k to extend the locality or increase the fixed
interval parameter s defined in Eq. (1). If the lowest eigenvalue
is zero then we get the Hamiltonian Ĥ0 = ∑

i wiLi with �w the
lowest-energy eigenvector of M satisfying M �w = 0.

B. Computational complexity of the HDL protocol

The computational complexity of the HDL protocol is de-
termined by two stages of computations: finding Ĥ with the
correlation matrix method and finding |ψT 〉 with VQE. The
cost of the first stage as shown in Algorithm 1 (in Appendix A)
mainly depends on the construction and diagonalization of
the correlation matrix M. The complexity for getting Ĥ0 is
O(NL2

M ) + O(L3
M ). Computing each Mi j scales as O(N ) and

there are L2
M matrix elements in M with the matrix dimen-

sion given by LM = O[log2(N )3k] for our current setup of
considering only linear circular topology for the local Ĥ0.
Diagonalization of M generally costs O(L3

M ).
For the second part of the HDL protocol, it is not easy

to rigorously determine the computational complexity of the
training part of VQE and similar hybrid quantum-classical
algorithms. Mainly, we cannot confidently determine the num-
ber of iterative gradient descents to perform. Overall, the
complexity is given by O(Nt Nm), where Nt is the number
of training steps to get a converged VQE simulation and
Nm is the number of measurements on the Pauli strings
making up Ĥ . Currently, many proposals have been put
forward to drastically reduce the total number of measure-
ments to get an accurate estimation of Pauli strings, such
as the classical shadow [33–35], machine learning methods
[36–38], grouping maximum number of commutative Pauli
strings (e.g., tensor product basis) [39–44], and entanglement-
assisted measurements [45–47].

It is worth pointing out that the fact that we impose a low-
depth quantum circuit with the depth scales at most as poly(n)
without using any ancillary qubits already stands out as an
advantage against more traditional methods if we succeed at
reconstructing the target state in the NISQ era. Further details
on comparisons between methods are given in Sec. IV.

III. NUMERICAL SIMULATIONS

In this section, we numerically demonstrate data load-
ing with the HDL protocol using shallow quantum circuits
and without any ancilla qubits. The VQE simulations are
performed with PENNYLANE [48]. In the first stage, the Hamil-
tonian is obtained by the correlation matrix method. In the
second stage, we consider the most common hardware effi-
cient ansatz (HEA) [39] with L layers, and Fig. 2 gives the
schematic of one such layer.

The unitary operator U (�θ ) appearing in the HEA in Fig. 2
is defined in Eq. (3), which is a general single-qubit rotation.

FIG. 2. The ansatz in the variational quantum circuit, where n
represents the number of qubits.
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FIG. 3. Comparison of the number of quantum gates for data
loading in the HDL and Ref. [21].

However, in this work, we only consider real-valued data, and
we will consistently adopt U (�θ ) = Ry(θ2) = e−iθ2σy/2 in order
to minimize the number of unnecessary parameters. In other
words, we always consider θ3 = θ1 = 0 in Eq. (3):

U (�θ ) = Rz(θ3)Ry(θ2)Rz(θ1)

=
(

e−i(θ1+θ3 )/2 cos (θ2/2) −ei(θ1−θ3 )/2 sin (θ2/2)
e−i(θ1−θ3 )/2 sin (θ2/2) ei(θ1+θ3 )/2 cos (θ2/2)

)
.

(3)

A. Real-valued random distribution

We begin with the investigation of loading randomly sam-
pled real-valued data into the HEA circuit introduced earlier.
More precisely, we consider from N = 8 up to N = 256 di-
mensional data vector (i.e., equivalent to n = 3 ∼ 8 qubits).
Each input data is uniformly sampled from standard normal
distribution, and the entire data vector is properly normalized
for the quantum state preparation. Loading random distribu-
tions is a common test for state-preparation protocols [25,26].

As clearly shown in Fig. 2 with the single-qubit gates
restricted to Ry rotations, the number of CNOT gates and
one-qubit rotational gates is equal to nL, where n = log2 N
is the number of qubits and L is the number of ansatz layers.
To more fairly assess the feasibility, we consider 50 random
sampled data vectors for each number of qubits n for data
loading. We average the number of quantum gates required
to successfully prepare the target quantum state (with fidelity
greater than 99%) with the HEA using the HDL protocol.
In each case, we try to minimize the number of layers in
the n-qubit HEA to reach the targeted fidelity. Note that the
fidelity obtained in the numerical study refers to the inner
product between the input data and the output of the learned
variational quantum circuit.

We compare the HDL with an exact data-loading quantum
circuit introduced in Ref. [21]. Both the number of CNOT
gates and one-qubit elementary rotations needed for the two
state-preparation protocols are summarized in Fig. 3. For the
exact data-loading protocol considered here, the number of

gates is always the same for any n-qubit state unless one
performs circuit optimization. The result clearly manifests
that the number of quantum gates in the HDL only scales
polynomially with the number of qubits; however, the exact
method scales exponentially as given in Ref. [21]. The advan-
tage of the variational method in the NISQ era is certainly very
clear.

B. Structured data: MNIST handwritten digits

Now we consider loading structured data that is more
relevant for practical tasks. To this end, we consider load-
ing MNIST handwritten digits, which are commonly used
for training and benchmarking machine learning models. For
our illustrative investigations, we decide to trim the original
28 × 28 pixels of MNIST figures down to 16 × 16 pixels
by simply removing peripheral pixels around the handwritten
digits in each figure. After the compression, the handwritten
data can be amplitude encoded with only log2(16 × 16) = 8
qubits.

The highly structured pattern in the MNIST image files
is manifested with the observation that a universal form of
Hamiltonians could be used to encode all the MNIST image
files we have tested in this study. In other words, we can use an
identical set of {Li} to construct the M matrix for each MNIST
image, and get Ĥ = ∑

i ωiLi. This is a nice property, as the
determination of the most compact basis for spanning the M
matrix may often take some trial and error.

Now, we look at how well the HDL performs in loading
some realistic data into the shallow parameterized quantum
circuits. Again, we still use the HEA for the VQE simulations.
The results of ten different digits (one example per digit) are
summarized in Fig. 4. We compare the original image and the
approximated image, as outputted by the VQE method. Fig-
ure 4(c) presents output data given by an L = 16-layer HEA
(composed of 128 CNOT gates and 128 Ry rotations) with
a fidelity of at least 95%, and Fig. 4(d) presents output data
given by an L = 24-layer ansatz (composed of 192 CNOT
gates and 192 Ry rotations) with a fidelity of at least 99%.
If these image files are meant for training machine learning
models, it seems that the reconstructed figures in Fig. 4(c) are
sufficient. On average, increasing the fidelity by 4% requires
a nontrivial addition of eight layers for the given HEA circuit
architecture with our predefined VQE simulation parameters
for the MNIST data set. In principle, with increasing n (the
number of qubits), one may want to add more ansatz layers to
enhance the expressive power of the quantum circuit in order
to achieve higher fidelity for the state preparation. However,
in real hardware plagued by environmental noises, an optimal
number for the ansatz layer may exist such that further in-
creasing the circuit depth results in a dip of fidelity. A simple
solution is certainly to start with a modest number of circuit
layers and gradually increase the circuit depth to improve the
fidelity for state preparation. Because we know the actual
ground-state energy of the Hamiltonian and the target state,
it is easy to diagnose whether further increasing the circuit
depth helps us or not.

The trade-off between high fidelity and circuit depth is
highly flexible in the variational framework; one can adeptly
decide this fidelity-versus-circuit-depth depending on the
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FIG. 4. Experimental results of quantum state representations of ten different grayscale handwritten digits. (a) An example of a grayscale
picture of handwritten digits with 16 × 16 pixels. (b) The grayscale pictures represent ten different input handwritten digits. (c) The grayscale
pictures represent the output with a 16-layer quantum circuit, with fidelity of each of at least 95%. (d) The grayscale pictures represent the
output with a 24-layer quantum circuit, with fidelity of each of at least 99%.

quality of the quantum hardware and the quality of data fi-
delity for the specific task at hand.

C. Circuit-based QRAM: Controlled quantum state preparation

Our proposed HDL protocol can be easily generalized
to load multiple data, each associated with a corresponding
address index. This composite data structure implements a
circuit-based QRAM [8] as defined in Ref. [49]. If we may
afford the classical computations, the HDL does not train
and load each data individually; instead, we can define this
QRAM wave function |ψqram〉, construct the corresponding Ĥ
in the extended Hilbert space of the address and data qubits,
and execute parameterized circuit learning with VQE only
once. Again, the target quantum state of the learned shallow
parameterized quantum circuits is the superposition of all the
input data (each with a unique address). Therefore, HDL can
serve as a useful subroutine in data preprocessing for quantum
machine learning tasks such as quantum classification and
quantum clustering.

Now we illustrate this idea with a concrete illustration.
As shown in Fig. 5, the four images with 4 × (4 × 8) =
128 dimension will be loaded into a seven-qubit parameter-
ized quantum circuit. The same HDL protocol is executed
on a seven-qubit parameterized circuit to prepare the state
|ψqram〉 = ∑

i |i〉|ψ i
T 〉, where |ψ i

T 〉 corresponds to the ith data
point. The top circuit in the blue square acts as the address
qubits for data, and the lower part of the circuit in the orange
square acts as each encoded data point (conditioned on the
state of the address qubits). It is also straightforward to op-
timize the gate parameters in this case. We show the output

data (fidelity 99.69%) by the L = 11-layer HEA circuit in the
right part of Fig. 5. As the ansatz depth scales as O[poly(n)]
by design (where n is the total number of address and data
qubits), the depth of our method is still log-polynomial with
both the number and dimension of the data in this case.

IV. DISCUSSION

In this section, we briefly discuss why variational meth-
ods could be competitive against more traditional and exact
data-loading methods. We then further compare the HDL
against other variational methods to highlight the HDL’s po-
tential advantages. Further discussions about the relevance of
small qubit systems to classical data loading are shared in
Appendix B.

A. Variational data loading versus exact methods

Table I summarizes and compares the circuit depth and
the number of qubits required by different state-preparation
protocols. As shown, the HDL demands much fewer quantum
resources than other exact data-loading methods [16,17,21].
At first thought, we could attribute the quantum-resource fru-
gality of the variational methods to the exchange for heavy
classical optimization loops to minimize the loss function,
which is argued to be NP-hard [50]. However, we caution
that all these exact loading methods also incur a steep com-
putational complexity for classical processing, because these
methods need to calculate an exponential number [O(2n)]
of controlled-rotation angles [16,17,21]. Hence, these exact
data-loading methods might not necessarily have an advantage
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FIG. 5. The schematic of loading multiple data via the HDL protocol. Four images with 128 pixels will be loaded into a seven-qubit
quantum circuit. Then the same HDL protocol is executed on a seven-qubit parameterized circuit to prepare the state |ψqram〉 = ∑

i |i〉|ψ i
T 〉,

where |ψ i
T 〉 corresponds to the ith data point. The qubits in the top circuit in the blue square act as the address qubits, and the lower part of the

circuit in the orange square as each encoded data point (conditioned on the state of the address qubits).

over classical processing either (at least in the way they are
currently formulated).

A clear disadvantage of the variational methods is the
range of applicability, i.e., if certain data (or the corresponding
quantum state) cannot be accurately approximated by a low-
depth parameterized quantum circuit with any ansatz layout.
This is a very interesting open question deserving further
investigation. We currently do not have an answer, but we
have three comments. Firstly, attempting to map the target
quantum state to a compact and local Hamiltonian is one
way to leverage physicists’ insights with local Hamiltonians to
assess the difficulty of reconstructing the state in a low-depth
quantum circuit. Secondly, many practical data comes with
some inherent structure that restrains the complexity, such as
the MNIST images discussed in Sec. III. A O[poly(n)]-depth
circuit indeed can approximate the state sufficiently accurately
for the downstream task. Finally, we note that many ad-
vanced techniques have been proposed to perform variational
calculations with adaptable ansatz-adjustment algorithms or
quantum architecture search [51–54] to identify a highly
customized ansatz layout for the problem at hand. These ad-
vanced methods should substantially mitigate the challenge of
approximating quantum states with ansatz circuits. Therefore,
we believe that the variational method for state preparation is
a very competitive option in the NISQ era and the early fault-
tolerant period (when the full fault tolerance is not sufficiently
robust). Its adoption should greatly facilitate the development

and testing of many quantum machine learning algorithms and
beyond.

B. Comparing HDL and other variational state preparations

Next, we compare the HDL against other variational
data-loading methods. Three major aspects distinguish the
HDL from existing algorithms. Firstly, some previous vari-
ational data-loading methods, inspired by the deep-learning
generative models to learn the probability distribution from
training data, can only deal with positive input data, such
as Refs. [25,26], by design. Reference [20] generalized the
quantum generative model for handling any real-valued data.
Different from their approaches, our method naturally sup-
ports loading fully complex-valued quantum states, the most
general scenario.

Secondly, our HDL has an extra computational burden in
comparison to other variational methods, and it is to construct
and diagonalize the correlation matrix M. However, we argue
there could be situations in which it is advantageous to do
so. Once we manage to successfully derive an appropriate
Ĥ for the HDL protocol, the VQE procedure requires only
polynomial scaling of independent measurements on Pauli
strings in Ĥ = ∑

i ωiLi at every learning step. On the other
hand, other methods that tend to use a loss function to evaluate
the differences between probability distributions such as the
maximum mean discrepancy (MMD) in Ref. [20]. In princi-

TABLE I. Comparison between the HDL (or variational methods in general) and exact data-loading methods in Refs. [16,17,21] to encode
a N = 2n dimensional real positive vector into a quantum computer.

Methods HDL and alike Ref. [16] Ref. [17] Ref. [21]

Depth O[poly(n)] Õ
(

2n

m+n + n
)

a O(n) O(2n)
No. of gates O[poly(n)] O(2n) O(2n) O(2n)
No. of qubits n m + n 2n n
Classical Yes Yes Yes Yes

am represents the ancilla qubits needed in Ref. [16].
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ple, this kind of loss function requires an exponential number
of sampling as shown in Eq. (4),

LMMD(qθ , p) =
∣∣∣∣∣
N−1∑
j=0

qθ ( j)�( j) −
N−1∑
j=0

p( j)�( j)

∣∣∣∣∣
2

, (4)

where qθ ( j) = |〈 j|ψθ 〉|2, p( j) = |〈 j|ψT 〉|2, and �(i) is a
function that maps j to a feature space. Since MMD has to be
evaluated at every learning step, the efforts invested in deriv-
ing Ĥ prior to the classical optimization loop certainly gives
HDL a huge computational advantages if the MMD has to be
rigorously computed according to Eq. (4). In practice, though,
one often notices that the MMD could be accurately estimated
with a manageable number of projective measurement shots
(Nshot 
 N) and having an error scaling of O(1/

√
Nshot ). This

sampling strategy completely hides the exponential scaling
from the formal complexity arguments at each training step of
these variational methods. However, we argue that this kind of
trick can be easily adapted for our protocol. Whenever such an
efficient sampling procedure for MMD allows the preparation
of a highly accurate quantum state for the downstream tasks,
one can argue that the same sampling technique can be used
to estimate the matrix elements Mi j . Whenever the required
Nshot becomes substantial, such as the underlying probability
amplitudes for the quantum state are not concentrated enough,
the HDL could be the better choice.

Thirdly, we discuss the last distinction separating the
HDL from other variational methods. Variational ground-
state preparation, popularized by the introduction of VQE
[31], is definitely the most actively researched topic for the
NISQ algorithmic developments. Once we have turned the
state preparation problem to the ground-state preparation,
we can adopt many advanced techniques that have already
been proposed. For instance, in the case of ansatz selection,
we can consider Hamiltonian variational ansatz [39,55,56],
which has been shown to assuage the barren plateau in the
loss-function landscape. One can also adopt Hamiltonian-
generated imaginary-time evolution and the imaginary-time
control method [57] to significantly accelerate the optimiza-
tion for many cases. Whenever the Hamiltonian is sparse,
Ref. [58] provides a decomposition of a general d-sparse
Hamiltonian into just O(d2) Hermitian terms, which pro-
vides support when the constructed Hamiltonians are most
efficiently described in terms of sparse matrices. To fur-
ther restrict the circuit depth, methods to adaptively design
a problem-specific quantum circuit architecture have also
been investigated [59,60]. Moreover, many error-mitigation
techniques have been developed [61–65] to fight against de-
coherence. Lastly, as already mentioned in Sec. II, there also
exists a wide array of strategies to minimize the number of
measurements for estimating Ĥ . In short, all these advanced
techniques are readily available to enhance the variational
part of the HDL protocol, and once we have Ĥ for the state-
preparation problem we may decide which techniques to use.

V. CONCLUSIONS

In this work, we propose the HDL protocol that ap-
proximately loads a given classical data into a shallow
parameterized quantum circuit. The key idea is to first

construct a Hamiltonian whose ground state is exactly the nor-
malized version of the input data, and to solve the subsequent
state preparation with the variational quantum eigensolver
or other methods. By shifting the majority of computational
complexity to classical computing, the proposed HDL proto-
col gives a potentially viable quantum-classical approach in
the near-term NISQ era and the early fault-tolerant period.

To demonstrate that the HDL protocol is practical for
approximately loading classical data, we report numerical
simulations on different kinds of input data. As clearly shown
in Sec. III, a poly(n)-depth HEA circuit without ancilla qubits
can efficiently amplitude encode a variety of data. Moreover,
we find that many similar data, such as the MNIST hand-
written images, can be efficiently encoded by a family of
structurally similar Hamiltonians, i.e., comprising the same
set of Pauli strings. This observation saves us a lot of time
from trying to find the most compact set of {Li} to embed the
relevant data in Hamiltonians. In this study, we also briefly
investigate the trade-off between the fidelity and the circuit
depth. For many tasks, especially involving machine learning,
it is acceptable (and in some cases, even desirable) to lower
the fidelity in exchange for low-depth circuits. At the end
of Sec. III, we also explore the possibility of constructing a
circuit-based QRAM to load multiple data, such as the entire
data set, with the HDL protocol. We intend to develop this
idea further in a future work.

While it is easy to see the benefits of a variational-based
methods for quantum state preparation in the NISQ era, it is
less clear which particular variational approaches would be
the most ideal for state preparations. The truth could very well
be that it is case dependent. However, in Sec. IV, we discuss
the potential benefits of the HDL against other variational
methods. Particularly, we argue that the HDL could possibly
be a better approach (against methods that rely on estimating
differences between probability distributions) when the quan-
tum states are less concentrated in the Hilbert space.
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APPENDIX A: HDL ALGORITHM

Complete details of the HDL protocol are elucidated in
Algorithm 1.

APPENDIX B: FURTHER DISCUSSION

The relevance of small qubit systems to classical data load-
ing is discussed here for a reference of practical applications
even beyond the NISQ era.

For many practical problems such as machine learning
tasks, 30 qubits or less can help us faithfully load an entire
data set into a quantum computer and help us to study the
impact of quantum machine learning on some conventional
tasks, such as image classification. Note that the fact that the
data loading takes 30 or fewer qubits does not imply that a
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Algorithm 1: Hamiltonian-based data loading algorithm.

quantum machine learning model is limited to this number of
qubits.

The following are some concrete examples which claim
that many scenarios for classical data loading can be capped
at 30 qubits or so. For instance, we can load (1) ∼ 103

data points of grayscale CIFAR-10 images (32 × 32 pixels)
using 20 qubits, (2) ∼ 106 data points of CIFAR-10-like
(32 × 32 pixels) images using 30 qubits, and (3) ∼ 103 data
points of grayscale ImageNet images (256 × 256 pixels) using
26 qubits.

For example, the average resolution of a grayscale Im-
ageNet image is 469 × 387 pixels, and each image can be
exactly amplitude-encoded by 18 qubits if using our proposed
HDL scheme. Moreover, in practice, the images are often
cropped to 256 × 256 or 224 × 224 pixels, which implies
amplitude encoding with 16 qubits. Another equally important
image data set in the history of the development of classical
machine learning is CIFAR-10, which collects images of size

32 × 32 (implying ten-qubit encoding). A reasonably large
data set for research purposes can be taken on the order of
105 ∼ 106 (which implies 16 ∼ 20 qubits for address), but
for most contemporary quantum machine learning studies, the
number of training data points is often orders of magnitudes
less, say around 1000 ∼ 8000 data points (which implies
10 ∼ 13 qubits). In short, our data-loading scheme can facil-
itate state-of-the-art quantum machine learning research with
just 20 ∼ 30 qubits in the foreseeable future. The range of
data size and data quality (i.e., retaining the full resolutions
of image data) we discuss here should provide a realistic test
bed to study the nuance of whether or not quantum machine
learning models may potentially outperform sophisticated
deep-learning models for some specific tasks. It is not hard
to anticipate that this kind of experimental investigation will
continue from the NISQ era through the early fault-tolerant
period, if not further along the time line of quantum comput-
ing development.
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