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In the noisy intermediate-scale quantum era, an important goal is the conception of implementable algorithms
that exploit the rich dynamics of quantum systems and the high dimensionality of the underlying Hilbert spaces
to perform tasks while prescinding from noise-proof physical systems. An emerging class of quantum learning
machines is that based on the paradigm of quantum kernels. Here, we study how dissipation and decoherence
affect their performance. We address this issue by investigating the expressivity and the generalization capacity of
these models within the framework of kernel theory. We introduce and study the effective kernel rank, a figure of
merit that quantifies the number of independent features a noisy quantum kernel is able to extract from input data.
Moreover, we derive an upper bound on the generalization error of the model that involves the average purity of
the encoded states. Thereby we show that decoherence and dissipation can be seen as an implicit regularization
for quantum kernel machines. As an illustrative example, we report exact finite-size simulations of machines
based on chains of driven-dissipative quantum spins to perform a classification task, where the input data are
encoded into the driving fields and the quantum physical system is fixed. We determine how the performance of
noisy kernel machines scales with the number of nodes (chain sites) as a function of decoherence and examine
the effect of imperfect measurements.
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I. INTRODUCTION

In recent years, machine learning has blossomed in a wide
variety of fields and delivered a large number of applications
driven by the achievements of the ever-developing field of
artificial neural networks, particularly those presenting deep
architectures [1,2]. Neural networks build predictions upon
processing the input data of interest through a series of
parametrized nonlinear transformations, the (typically numer-
ous) parameters of which are determined by training. This
optimization procedure most often consists in minimizing
a task-dependent loss function that quantifies the error of
the parametrized model over a training dataset. This is most
often implemented via software executed on standard com-
puters. As a result, the growing demand for computational
resources and energy for training such deep architectures
on ever-increasing amounts of data makes its long-term
sustainability uncertain [3]. In this context, devolving compu-
tationally demanding tasks to machine-learning devices with
suitable physical systems acting as hardware is emerging
as a relevant alternative. However, while the neural-network
sequential architecture is well suited for software implemen-
tations on standard computers, the great number of parameters
to be tuned during training remains in practice an obstacle to
physical implementations. A simpler alternative approach is
provided by the category of “shallow models,” such as reser-
voir computing [4] or extreme learning machines [5], which
have led to physical proposals [6,7] and experimental realiza-
tions [8,9]. In such machines, the input data are encoded in the
dynamics of a physical system and the associated predictions
are obtained by considering a linear combination of mea-
sured observables, weighted by a set of trainable parameters
to be optimized by training. Importantly, this is done while
keeping the parameters of the physical system fixed, hence

requiring hardly any degree of control over the system. Kernel
machines, the trial functions of which can be represented in
terms of positive semidefinite and symmetric kernel functions
[10], belong to this category. More generally, kernel theory
has proved to be a very useful tool to understand a wide range
of machine-learning algorithms. Recently, a close connection
between kernel machines and deep neural networks in the in-
finite width limit has been established [11], further extending
the relevance of these methods. In parallel to the advent of
quantum information, the last decade has also witnessed a
growing interest in the emerging field of quantum machine
learning [12,13], a research domain that explores the potential
advantages of quantum systems for machine-learning applica-
tions. Due to the success of deep neural-network algorithms,
a large amount of work in this field has been devoted to
finding quantum analogs to neural-network models [14], and
more generally to finding brain-inspired algorithms to be im-
plemented on quantum devices [15]. Parametrized quantum
circuits used as trainable Ansätze [16] appeared as natural can-
didates for such a generalization. These models, often called
quantum neural networks [17], are among the most studied
quantum machine-learning models and significant progress
has been achieved in the comprehension of their properties.
Analogously to classical systems, quantum “shallow” ma-
chines have also been put forward, such as those based on
quantum reservoir computing, extreme learning, and quantum
kernels [18–29], where the physical system (the network) is
fixed and the optimization concerns only a linear map acting
on measured outcomes.

Most often, quantum machine-learning investigations have
been focusing on isolated quantum systems with unitary
dynamics. At present, however, we are in the so-called noisy
intermediate-scale quantum era [30]: most quantum devices
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within practical reach are subject to a significant degree of
dissipation and/or decoherence. An important problem is
therefore to understand the impact of realistic noise on quan-
tum machine-learning settings. The literature on the subject
is yet in its infancy. For time-dependent tasks, one study
on quantum reservoir computing suggested that dissipation
increases the processing capacity and the nonlinearity of the
embedding, at the price of a reduced memory capacity of the
system [31]. An advantageous scaling of the performance of
a quantum reservoir-computing scheme, as compared to its
classical counterpart, was recently reported [32]. However,
a systematic study of the dissipation and decoherence on
quantum machine-learning models is missing. In particular,
to the best of our knowledge, no investigation has explored
its role on the important class of quantum kernel machines.
In this paper, we investigate the use of open quantum systems
as noisy quantum kernel machines. Within the formalism of
kernel theory, we show how the expressive power and gen-
eralization capacity of the corresponding nonlinear feature
maps are controlled by both the dissipation and decoherence
affecting the system as well as the level of experimental uncer-
tainty on the physical measurements. We introduce and study
the effective kernel rank to quantify the effective number
of independent features a noisy quantum kernel is able to
extract from the input data. Moreover, we derive an upper
bound on the generalization error of the model that involves
the average purity of the encoded states. As an illustrative
example, we simulate noisy quantum kernel machines imple-
mented via driven-dissipative chains of spins. We provide a
comprehensive study of the performance of noisy quantum
kernel machines, showing how they scale with the number of
network nodes (chain sites) and the degree of dissipation and
decoherence. The paper is organized as follows. In Sec. II,
we describe the general scheme for encoding the input data
into the quantum system dynamics and decoding the out-
put through measurements. In Sec. III, we analyze the noisy
quantum kernel machine within the kernel-theory framework.
In particular we study the link between the kernel spec-
trum and important properties of machine-learning models,
such as the expressive power and the generalization capacity.
We introduce and study the effective kernel rank. Within a
statistical-learning approach, we provide an upper bound on
the generalization error for noisy quantum kernels. In Sec. IV,
we describe a class of noisy quantum kernel machines based
on driven-dissipative chains of spins. We report a comprehen-
sive study of the dependence of the performance metrics on
the system size and noise for this class of models in Sec. V.
Finally, conclusions and perspectives are drawn in Sec. VI.
The most technical details are reported in Appendices A–C.

II. GENERAL SCHEME

The objective of supervised learning is to approximate a
causal relation between elements x of an input set X and some
target quantities y ∈ Y , based upon a set of known training
examples S = {(xi, yi ) | i = 1, . . . , Ntrain}. The input features
are considered as independent realizations of a random vari-
able following a probability distribution p(x) on X . In the
following, we denote Ep[ f (x)] the expectation value of a
quantity f (x) over the distribution p [33]. We also define the

corresponding centered quantity as

δ f (x) = f (x) − Ep[ f ]. (1)

Upon assuming the inputs and target quantities are related
according to an unknown ground-truth function yi = y(xi ), we
aim to approximate it using a trial function f parametrized by
w, to be optimized using the training set S . The specific form
of f depends on the considered model architecture. In this
paper, we describe noisy quantum kernel machines exploiting
the dynamics of open quantum systems to generate such a trial
function. This scheme is summarized pictorially in Fig. 1.

A. Encoding on the quantum system

Let us consider a system initially prepared in a state ρ̂0.
For each element of the input space, represented by a vec-
tor x ∈ X , a procedure can be defined to encode it into the
nonunitary dynamics of a generic open quantum system. As
will be shown in Sec. IV, this can be achieved, for instance,
by encoding the input vector in a proper modulation of the
driving fields acting on the system. We consider the dynamics
of the open quantum system to be described by a Lindblad
master equation [34] of the form

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] +

N∑
j=1

γ jD(Â j )[ρ̂], (2)

where γ j is the relaxation rate at site i and the dissipator D(Â)
denotes the superoperator:

D(Â) [ρ̂] = Â†ρ̂Â − 1
2 {Â†Â, ρ̂}. (3)

Note that the Lindblad operator Â j depends on the considered
system-bath interaction. The master equation describes the
evolution from an initial density matrix into a final density
matrix:

ρ̂(x, t ) = M(x, t )[ρ̂0], (4)

where the completely positive trace-preserving map M(x, t )
is the propagator of the Lindblad master equation capturing
the nonunitary evolution of ρ̂0. It depends on x via the en-
coding procedure: If the input is encoded in driving fields, as
we will consider later, the Hamiltonian, and consequently the
density matrix at any time, bears a dependence on the input. In
principle, one could also encode the input into a modulation of
the loss rates, although we will not treat this case here. In what
follows, when considering a fixed final time t f for the time
evolution, we denote M(x) = M(x, t f ) and ρ̂(x) = ρ̂(x, t f )
to simplify the notation.

B. Decoding through measurements

At time t f , after the encoding procedure, we extract the
processed information by performing a set of measurements
of the system. Given the density matrix ρ̂(x) and a set of sys-
tem observables O = {Ô j | j = 1, . . . , P}, information about
the response of the open quantum system to the input x is
contained in the following vector:

φ(x) ≡ (1, 〈Ô1〉x, . . . , 〈ÔP〉x)T , (5)
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FIG. 1. Scheme of a noisy quantum kernel machine. An element x of the input space X is encoded into a density matrix ρ̂(x) obtained by
evolving in time a fixed initial state described by the density matrix ρ̂0 [see Fig. 2 for a specific example of the encoding process described
by the evolution map M(x)]. The measured features are represented by a vector of observables φ(x) (with an added 1 corresponding to the
unity operator as the first element to create an offset term) that belongs to the feature space F . The trial function is obtained by applying a
linear transformation to the feature vector (depending nonlinearly on x) with a vector of weights w that is optimized via the training procedure
described in the main text.

where

〈Ô j〉x = Tr[Ô j ρ̂(x)]. (6)

Here we consider ensemble measurements and hence the or-
der of the observables in O is irrelevant. The vector φ(x)
belongs to the feature space F ⊆ RP and depends on the input
x, generally in a nonlinear fashion. Note that the constant
component 1, which ensures that the trial function can fit a
biased target function, can be seen as the measurement of the
identity observable, since the density matrix ρ̂(x) always has
unit trace. Finally, the trial function f of the noisy quantum
kernel machine, which depends on the vector of variational
parameters w, is given by the affine transformation:

f : x �→ wT φ(x), (7)

where the vector w ≡ (b,w1, . . . ,wP )T ∈ RP+1 contains the
parameters of the linear transformation and b represents the
bias term. An alternative approach to the construction of the
feature vector, based on time multiplexing measurements, will
be presented in Sec. IV.

C. Training procedure

A trial function characterized by its weights w can be
optimized using a regularized least-squares loss function over
a training set (xi, yi ) ∈ S consisting of Ntrain inputs xi ∈ X and
labels yi ∈ Y , namely,

L(w|S ) := 1

2Ntrain

Ntrain∑
i=1

[yi − wT φ(xi )]
2 + λ

2
‖w‖2

2. (8)

The second term in Eq. (8) is a regularization penalty that
helps to prevent overfitting. The corresponding regularization
parameter λ controls the strength of the overfitting penalty.
Adding such a regularization bias is on average equivalent to
adding a centered Gaussian noise of variance λ to the mea-
surement features before the optimization [2]. Such classifiers
are known as least-square support-vector classifiers [35]. Al-

though most classification problems are commonly treated
with other loss functions [36], using the least-squares loss
function allows us to perform the optimization analytically.
Indeed, upon introducing the (P + 1) × Ntrain matrix �, the
columns of which are the quantum feature vectors φ(xi ),
associated to the training input xi, and y, the column vector
of size Ntrain containing the corresponding labels, the optimal
weights are given by [37]

w∗ = (��T + Ntrainλ1)−1�y. (9)

III. QUANTUM KERNEL AND DECOHERENCE

The generic encoding-decoding scheme encompasses a
large class of quantum machine-learning models. Here, we
describe a decoding based on a linear combination of mea-
surements, but other decoding methods were proposed in the
literature. In particular, it was recently shown that quantum
neural networks can be mapped to models with an encoding-
decoding structure [38], where the decoding is achieved
by optimizing a single parametrized measurement. Models
described by the previous scheme can be analyzed in the
framework of kernel theory, which provides useful tools to
understand properties such as expressivity, trainability, and
capacity to generalize to a test sample of unseen data. In this
section we first concisely introduce the kernel framework. We
then specialize our discussion to noisy quantum kernels, and
show how we can link the role of dissipation and decoherence
to the kernel’s main figures of merit. We aim at determining
the largest class of functions that can be approximated by our
trial function f . This class depends on the type of decoding
used, that is, on the specific set of measurements that are
performed on the quantum system. When measuring a set O
of observables, this function space reads

H(O) = { f : x �→ Tr[ρ̂(x)Â] | Â ∈ Span(O)}. (10)

In this case, the feature vector φ(x) gives rise to a positive
semidefinite and symmetric function which we call the feature
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kernel:

kO(x, x′) = φ(x)T φ(x′). (11)

This kernel function, together with the probability distribution
p of inputs x ∈ X [39], uniquely determines a specific set of
real-valued functions, the so-called reproducing kernel Hilbert
space (RKHS):

Span{ f : x �→ kO(x, x′) | x′ ∈ X }. (12)

The RKHS associated to kO can be shown to be exactly the
space of hypothesis functions H(O) [40]. Hence, the study of
the kernel function allows one to investigate the structure of
H(O). In particular, it follows that one can use the eigende-
composition of the kernel function as a basis of the class of
functions that can be represented by our model. This useful
property motivates the adoption of a kernel standpoint in what
follows.

A. Quantum kernel

In order to discuss the expressive power of our model, we
introduce the largest class of transformations Hfull that can be
achieved for a given encoding strategy [41]:

Hfull = { f : x �→ Tr[ρ̂(x)Â] | Â = Â†}. (13)

The class of transformation yielded by a set of measurements
O is necessarily included in this maximal class H(O) ⊆ Hfull;
the equality holds whenever O is a complete set of observ-
ables. In the following, we will use the term “full tomography”
to refer to this ideal implementation. It turns out that Hfull

is the RKHS of a particular kernel, the quantum kernel, that
solely depends on the feature map ρ̂(x) [22,42]:

k(x, x′) = Tr[ρ̂(x)ρ̂(x′)]. (14)

This kernel is simply the Hilbert-Schmidt inner product
between quantum states encoding inputs x and x′. As it rep-
resents the maximal achievable class of transformation an
encoding can give, the quantum kernel provides insight on
the expressive power of our model. Note that this kernel can
be identified with the previous feature kernel kO provided
that the measurements O form an orthonormal basis (with
respect to the Hilbert-Schmidt inner product) B = {Bj} j of
the space of observables, i.e., k = kB with Tr[B̂iB̂ j] = δi j , and
we impose B̂0 ∝ 1̂ by convention. In what follows, it will
be useful to work with a “centered” version of the quantum
kernel. Centering the kernel is equivalent to working with
hypothesis functions that have zero mean value on the input
set. As we will show, this is convenient for interpreting some
of the key quantities we will introduce in terms of probabilistic
quantities. In Appendix B, we show that, at least for balanced
data, the use of the L2 loss function allows us to work with
a centered version of the quantum kernel without lack of
generality. The centered kernel is given by

kc(x, x′) = Tr[δρ̂(x)δρ̂(x′)] (15)

where as before we define

δρ̂(x) = ρ̂(x) − Ep[ρ̂(x)] (16)

and the corresponding RKHS is

Hk,c = Span{ f : x �→ kc(x, x′) | x′ ∈ X }. (17)

The constant feature we introduced in Eq. (5) becomes irrele-
vant when using centered quantities, so we drop it and define

δφ(x) ≡ (δ〈Ô1〉x, . . . , δ〈ÔP〉x)T . (18)

We can also correspondingly drop the weight term b, so that
the weight vectors can be redefined as w = (w1, . . . ,wP )T ∈
RP. The space Hk,c can be rewritten as

Hk,c = { f : x �→ wT δφ(x), w ∈ RP}, (19)

where the centered quantum kernel reads

kc(x, x′) = δφ(x)T δφ(x′) (20)

with the choice of O = B. The quantum feature matrix � is
then replaced by a P × Ntrain matrix δ�, the columns of which
are the centered feature vectors δφ(xi ).

B. Kernel eigendecomposition

Under general assumptions, the centered quantum kernel
admits a decomposition into an orthonormal family of eigen-
functions [40]:

kc(x, x′) =
∑

i

λiδψi(x)δψi(x′), Ep[δψiδψ j] = δi j, (21)

where {λi}i are positive eigenvalues sorted in a decreasing
order, namely, λi+1 � λi, ∀i. When necessary, we can com-
plete this orthonormal family into a basis with eigenfunctions
associated to zero eigenvalues. In the case of the uncentered
quantum kernel, the kernel eigenfunctions correspond to an
orthonormal basis of system observables [26]. When the ker-
nel is centered, the basis of kernel eigenfunctions corresponds
to an orthonormal basis {Êi}i of the space of zero-trace observ-
ables, which we call eigenobservables. Such operators satisfy
the following properties:

Tr[ÊiÊ j] = δi j, Tr[Êi] = 0. (22)

The eigenfunctions are given by

δψi(x) = 1√
λi

Tr[δρ̂(x)Êi] = 1√
λi

δ〈Êi〉x. (23)

The corresponding eigenvalues are then given by the vari-
ances of the eigenobservable measurements over the input set,
namely,

λi = Ep
[
δ〈Êi〉2

x

] = Varp[〈Êi〉x]. (24)

One can see this eigendecomposition of the kernel as a
principal-component analysis in the space of quantum fea-
tures, as it yields an orthogonal basis of measurement
functions ordered by their variances on the input set. We stress
that these are variances of the observables’ expectation values
over the quantum states representing the different inputs, and
thus are very different from the quantum variance of the
corresponding observable for a specific state. The previous
decomposition of the kernel is very useful for grasping the
learning mechanism and the model expressivity. Upon work-
ing with centered features, the loss function introduced in
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Eq. (8) becomes

Lc(w | S ) = 1

2Ntrain

Ntrain∑
i=1

[yi − wT δφ(xi )]
2 + λ

2
‖w‖2

2. (25)

Following [36], we can decompose the trial function f (x) =
wT δφ(x) in the basis of the kernel eigenfunctions, namely,
as f (x) =∑ j β jδψ j (x). Exploiting such decomposition, the
loss function becomes

Lc(β | S ) = 1

2Ntrain

Ntrain∑
i=1

[
yi −

∑
j

β jδψ j (xi )
]2

+ λ

2

∑
j

β2
j

λ j
.

(26)

Note that in the regularization term the components of the trial
function on the eigenbasis are weighted by the corresponding
kernel eigenvalues. The lower the variance of an eigenobserv-
able, the more the corresponding eigenfunction is penalized.
Hence the regularization parameter λ acts as a smooth cutoff
on the basis of the kernel eigenfunctions, which are then used
to approximate the target function. The spectrum of the kernel
characterizes the generalization capacity and the expressiv-
ity of our model. It also finds applications in understanding
many other machine-learning scenarios. For instance, in the
context of classical neural networks it has links with learning
curves [43,44]. Moreover, the kernel (or the neural tangent
kernel in the context of classical and quantum neural networks
[11,45,46]) shares its spectrum with the Fisher information
matrix, of particular relevance for quantum neural networks
[47].

C. Role of decoherence on expressivity and generalization error

The exponential growth of the Hilbert-space dimension
with the number of qubits in a network and the complex dy-
namics of quantum systems have created hope for a quantum
advantage in the field of quantum machine learning. How-
ever, it is known that having a very high-dimensional feature
space does not necessarily guarantee high machine-learning
performances [36,48]. Indeed, recent investigations within the
quantum kernel framework somehow mitigated the hope for
a general quantum advantage [26,28,49]. Yet, a clear quan-
tum advantage has been demonstrated for some specific tasks
[25,46], again by exploiting the quantum-kernel formalism.
In order for a quantum-kernel-based model to perform well
on a given task, the set of transformations achieved must
be well “aligned” with the target function y(x). This notion
of alignment is mathematically encapsulated in the kernel-
target-alignment measure [50], which reads, for the centered
quantum kernel,

A(kc, y) = Ep[y(x)kc(x, x′)y(x′)]

Ep[kc(x, x′)2]1/2Ep[y(x)2]

=
∑

i λiEp[δψi(x)y(x)]2(∑
i λ

2
i

)1/2
Ep[y(x)2]

. (27)

Although the kernel-target alignment measures how well a
kernel and the associated embedding fit a specific function, in
this paper we introduce another figure of merit that does not
depend on a specific task, namely, the “effective kernel rank”

Reff (k), which quantifies the effective number of independent
transformations that a given kernel can yield. Such a quantity
is defined as √

Reff (kc) =
∑

j

A(kc, g j ), (28)

where {g j} j is any orthonormal basis of functions on the input
space. As shown in Appendix A1, for the centered quantum
kernel, the effective kernel rank can be also expressed in
terms of variances of the quantum expectation values of the
measured observables:√

Reff (kc) =
∑P

i=1 Varp[〈Ôi〉x](∑P
i, j=1 Covp[〈Ôi〉x, 〈Ô j〉x]2

) 1
2

. (29)

Note that the denominator acts as a normalization and can
be seen as a measure of the redundancy of the embedding
when expressed in terms of Ôi. In Sec. V, we will investigate
in a rather general class of physical models how the kernel
effective rank scales with the system size and with noise. In
Appendix A1, we also provide the proof showing that the
kernel effective rank can be expressed in terms of the kernel
spectrum:

√
Reff (k) =

∑
i λi√∑
i λ

2
i

. (30)

This expression is reminiscent of the reciprocal of the inverse
participation ratio. The kernel effective rank provides infor-
mation about the size of its support. Moreover, we have the
following inequality:

Reff (k) � |{λi �= 0}|. (31)

This is saturated when all the nonzero eigenvalues are equal.
The numerator in the expression for the square root of the
effective kernel rank is the kernel trace, which can be rewritten
as ∑

i

λi = Ep[Tr[ρ̂(x)2]] − Tr[Ep[ρ̂(x)]2]. (32)

In this expression, we recognize the difference between the
average purity of the embedded density matrices over the
input space and the purity of the average embedding matrix.
The first term is of great relevance to our analysis, as it cru-
cially depends on the dissipation and decoherence affecting
the noisy quantum system: Indeed, a low purity is the conse-
quence of the openness of the quantum system. The second
term instead measures the diversity of the embedding map; its
importance is discussed in [26]. We emphasize that the kernel
trace also appears to be relevant when investigating the ability
of the model to perform well on unseen data, and hence on
its generalization properties. To measure the performance of
a model on a binary classification task we use the accuracy
A. Given a prediction function f , the accuracy is given by the
fraction of samples for which f assigns the right label and it
can be defined as the expectation of a 0-1 loss function:

A( f ) = E[1y(x) f (x)�0]. (33)

Since during the training we only have access to the data
set S and not to the true distribution p, expectation values
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can only be approximated using the empirical distribution p̂
on S . The corresponding empirical expectations are given
by E p̂[ f (x)] = 1

Ntrain

∑Ntrain
i=1 f (xi ). From this, we can define

the empirical accuracy A on the training set S and the true
accuracy A∗. Correspondingly, we can introduce the risk R∗,
also called error or inaccuracy, as R∗ = 1 − A∗ (its empir-
ical counterpart is defined analogously). It is convenient to
introduce slightly modified versions of the risk and inaccuracy
that depend on a margin parameter η > 0. We introduce the
η-margin loss as


η(y) =
⎧⎨
⎩

1 if y � 0
1 − y

η
if 0 � y � η

0 if η � y
. (34)

Correspondingly, we can introduce the empirical η-margin
risk as

Rη( f ) = E p̂[
η[y(x) f (x)]]. (35)

The η-margin risk and the risk satisfy the following inequality:

R( f ) � Rη( f ) � E p̂[1y(x) f (x)�η]. (36)

The ability of the model to generalize well on unseen data is
then quantified by the generalization error:

E = R∗ − R. (37)

For kernel methods with kernel k, the generalization error
admits an upper bound involving the Ntrain × Ntrain empir-
ical kernel matrix K the entries of which are defined as
Ki j = k(xi, x j ). This bound depends on the specific task under
consideration and on the exact space of trial functions used
(details on the bound used and its derivation can be found in
[51] and in Appendix A2). To derive the upper bound, we fix
a class of trial functions of the form f : x �→ wT δφ(x) where
δφ(x) corresponds to measurements of an orthonormal basis
of the observable: δφi(x) = δ〈B̂i〉x. We further constrain this
class by choosing a parameter � � 0, and require that the
trial function’s parameters w satisfy ‖w‖2� � 1. By exploit-
ing Eq. (32), we get that, for such functions, the following
inequality holds with probability at least 1 − δ on the training
set S:

R∗( f ) − Rη( f ) � 2

η

(
E p̂[Tr[ρ̂2]] − Tr[E p̂[ρ̂]2]

Ntrain�

) 1
2

+ 3

√
ln
(

2
δ

)
2Ntrain

. (38)

Other generalization bounds can be established; in particular
the authors of [52] found another bound using a quantum
information theory standpoint, and their conclusions are in
agreement with our results. Let us make a few important
comments on the meaning of this inequality. The inequality
has a probabilistic character controlled by δ > 0. If we set
this parameter to 0+, the bound is always satisfied although it
becomes trivial. The same goes with the margin parameter η:
as η → 0+ the margin error Rη( f ) tends to the training error
R( f ), but again the right-hand side of the inequality diverges.
The parameter � is another sort of regularization parameter,
as the parameter λ: If � → 0+, the norm of the weight vector
‖w‖ can be arbitrarily large and overfitting is not limited.

Correspondingly, the right-hand side diverges and the bound
becomes trivial. The most important crucial physical quan-
tity involved in the upper bound is the kernel trace given in
Eq. (32). Such a quantity accounts for the model expressivity.
This duality between expressivity and generalization is crucial
in machine learning [36]. What is relevant to our analysis
is that this expressivity measure involves the mean purity of
the embedded states and hence is affected by dissipation and
decoherence acting on the noisy quantum kernel machine. The
appearance of the regularization parameter � in this upper
bound is also relevant as it allows us to establish a link with
experimental constraints, such as imperfect measurements.
In fact, as we will see in Sec. V, adding a Gaussian error
of standard deviation σ to the observable measurements is
equivalent to working with an infinitely precise measurement
apparatus while replacing the regularization parameter λ with
λ + σ 2 [2].

IV. NOISY QUANTUM KERNEL MACHINES WITH
DRIVEN-DISSIPATIVE SPIN CHAINS

As an illustrative example, we here numerically simulate
noisy quantum kernel machines based on one-dimensional
chains of spins subject to both driving and decoherence.
The simulation of such an open quantum system for a large
number of inputs, various choices of the number of sites,
and distinct disorder realizations is a computationally daunt-
ing task [53]. Indeed, this requires us to exactly integrate
a large set of corresponding Lindblad master equations of
the form of Eq. (2). Hence, we have considered a simplified
classification task involving only a subset of the Modified
National Institute of Standards and Technology (MNIST)
dataset, namely, classifying images of handwritten digits cor-
responding to the digits 3, 6, and 8, which share common
shapes. A schematic description of the task and of the feature
encoding through driving of the considered physical system
is presented in Fig. 2. The original MNIST dataset consists
of 28 × 28-pixel images. Encoding such high-dimensional
features in the state of a quantum system is not an easy
task. Therefore, we first linearly downsample the raw im-
ages from 28 × 28 to 8 × 8 pixels, thereby reducing the
dimension of the input features. The downsampled images,
viewed as vectors, are then multiplied by a random 82 × 10
matrix W , the entries of which are uniformly drawn over
the interval [−1, 1], yielding vectors x′ = (x′

1, . . . , x′
M )T of

M = 10 random-projection features. These are finally normal-
ized by three times the standard deviation of the set {x′

i | i =
1, . . . , M, x ∈ S}. At the end of this procedure, every image
in the dataset is represented by a vector x of size M = 10,
which will be used as inputs in the following. These are com-
puted only once and reused throughout this paper, except in
Sec. VB.

This encoding is designed so as to fix the amount of
information fed to the system, independently from its num-
ber of sites. It allows us to perform a fair comparison of
models associated to quantum systems of increasing sizes.
In particular, this ensures that any observed increase of the
performance with the system size is solely due to an intrinsic
enhancement of the model expressive power. In Sec. VB,
we lift the above-defined “information bottleneck” and use
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FIG. 2. Schematic representation of the encoding procedure for
the MNIST classification task. The input grayscale image, of orig-
inal size Np × Np, with Np = 28, is first downsampled to a size of
N ′

p × N ′
p (or N ′2

p × 1 when viewed as a column vector), with N ′
p = 8,

and linearly transformed by a fixed N ′2
p × M random projection filter

W to yield the vectors x′ containing M = 10 random-projection
features. Those features are normalized by three times the standard
deviation over the set of all features for all images in the training set,
and we denote x the normalized vectors representing the images. The
vector x is then encoded into a sequence of driving pulses ξ (t ), where
the amplitude of the ith pulse (at time ti) is proportional to the input’s
ith component xi. Finally, the pulses are used to drive a spin chain
(initially prepared in the state ρ̂0), where the driving amplitude at
site j is Fj (t ) = η jξ (t ) with η j a random site-dependent scale factor.
We define the state of the spin chain immediately after the driving
sequence to be the encoded state, represented by its density matrix
ρ̂(x).

a different encoding, where the number of encoded features
M scales with the system size N . Therein, we show that this
results in competitive performances, as compared to classical
reservoir-computing settings involving hundreds to thousands
of degrees of freedom [6,8]. In what follows, we denote
X ⊆ RM the input space consisting of the random-projection
features representing the images to classify, and Y = {3, 6, 8}
the set of corresponding labels. Our dataset consists of 17 000
images, which we split into a training set of Ntrain = 15 000
images and a testing set of Ntest = 2000 images. As be-
fore, the training set is denoted as S = {(xi, yi ) ∈ X × Y | i =
1, . . . , Ntrain}. The system in which we encode the previous
features is a driven-dissipative one-dimensional chain of N
spins 1/2 described by the following Heisenberg XY Z Hamil-
tonian:

Ĥ (t ; x) = h̄

2

N∑
i=1

[
Fi(t ; x)σ̂ i

x + �iσ̂
i
z

]

− h̄

2

∑
〈i, j〉

(
Jx

i j σ̂
i
xσ̂

j
x + Jy

i j σ̂
i
yσ̂

j
y + Jz

i j σ̂
i
z σ̂

j
z

)
, (39)

with Fi(t ; x) an input-dependent driving field, �i an on-
site frequency detuning, and Jk

i j the symmetric coupling rate
between nearest neighbors. Here, indices 〈i, j〉 run over all
pairs of nearest neighbors. Parameters Jk

ji and �i are uni-
formly drawn at random in the interval [0, 2J]. 1/J will be
used as the unit of time in the numerical plots. We pre-
pare the system in an initial state with all spins down ρ̂0 =

FIG. 3. Equivalent circuit of the encoding procedure for the
MNIST classification task. If the driving pulses are sharp enough,
the encoding process of Fig. 2 can be equivalently seen as a quantum
circuit, where the ith driving pulse on site j is effectively a single-
qubit X -rotation gate RX (η jxi ), and the pulses at different times
are separated by the gate G generated by the free dynamics of the
spin system in the absence of the drive. Note that the entire process
between ρ̂0 and ρ̂(x) serves as the dynamical map M(x) shown in
Fig. 1.

⊗N
i=1 |0〉〈0|. The encoding of the input x corresponding to

a given image into the system state is performed by driving
the system with a series of M = 10 sharp Gaussian pulses,
the amplitudes of which are proportional to the input vector
elements, as illustrated in Fig. 2. We first define a generic
driving ξ (t ; x) from the feature x:

ξ (t ; x) =
N∑

k=1

xk√
2πσ

exp

(
− (t − tk )2

2σ 2

)
,

tk = (k − 1)�t + 10σ, ∀k = 1, . . . , M, (40)

where the time interval between two successive pulses is �t =
1/(2J ) and the width of each pulse is σ = 1/(50J ). Then the
driving on site i is taken to be proportional to this generic
driving:

Fi(t ; x) = ηiξ (t ; x), (41)

where the ηi are random factors uniformly distributed in the
interval [−π, π ]. Under these driving conditions, the coherent
part of the system dynamics can be thought of as that of
an equivalent quantum circuit alternating between a set of
local X -rotation gates, of the form RX

i (ηixk ), and a deep block
generating entanglement among qubits [54], as illustrated in
Fig. 3. The scaling factors ηi prevent the spins from rotat-
ing all together. This procedure, where a random-projection
feature is fed to the system every �t , is in close analogy
with the repeated-encoding prescription in variational quan-
tum circuits, which is known to improve the expressivity of
a model [41]. Shortly after the last pulse of the driving ends,
at time τ = 30σ + M�t , we get the final encoded state rep-
resented by the density matrix ρ̂(x). This encoding procedure
acts as a nonlinear map from the input space of images to
the high-dimensional space of N-spin mixed quantum states.
Concerning the nonunitary dynamics due to the openness of
the quantum kernel machine, we will consider spin dephasing
as the source of decoherence. Within the Lindblad master
equation formalism [Eq. (2)], this process is described by
the jump operators Â j = σ̂

j
z , and we consider a uniform de-

phasing rate for each site γi = γ , ∀i ∈ {1, . . . , N}. Note that
while the considered illustrative task involves three classes, it
can be reduced to a set of binary classification problems by
changing the labels y ∈ {3, 6, 8} into vector labels of the form
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(y1, y2, y3)T with y j ∈ {−1, 1}3. For example, an outcome
(−0.3,−0.2, 0.9) would correspond to the digit 8. This “one-
vs-the-rest” approach is equivalent to training three binary
classifiers, one for each class, and takes the highest output
among the three classifiers as a prediction. With this approach
the training effort scales linearly with the number of classes.
However, for the sake of simplicity, we will use binary classi-
fication notations in the following, and consider that the labels
belong to {−1, 1}. Regarding the measurements of the system
observables, we will consider two measurement protocols. (i)
A full tomography of the output density matrix: In this case
we consider that the measurements are made without delay
after the end of the encoding, and the extracted features are
exactly the components of the generalized Bloch vector φ(x)
by considering a complete set of observables. (ii) A time
multiplexing measurement protocol: In this case the output is
obtained by sequential measurements at different times of a
set of local observables.

A. Full tomography

Any Hermitian operator of the considered spin system can
be decomposed on the orthogonal (for the Hilbert-Schmidt
inner product) basis of Pauli strings. For a system of N spins,
we write this basis {Ôi | i = 0, . . . , P}, with P = 4N − 1. The
corresponding observables are such that

Ôi =
N⊗

k=1

σ̂ k
ik , ik ∈ {0, 1, 2, 3}, Tr[Ô†

i Ô j] = 2Nδi j, ∀i, j,

(42)

with Ô0 = 1̂, and thus any observable Â is decomposed in this
basis through the expansion:

Â = 1

2N

(
Tr[Â]1̂ +

P∑
i=1

Tr[ÔiÂ]Ôi

)
. (43)

The density matrix associated to the input x can also be de-
composed into this basis:

ρ̂(x) = 1

2N

(
1̂ +

P∑
i=1

〈Ôi〉xÔi

)
, (44)

and hence any density matrix is uniquely characterized by its
associated generalized Bloch vector. For the full-tomography
decoding we take these Bloch vectors as the quantum features,
which is equivalent to rescaling the quantum kernel function
[Eq. (14)] by a constant factor of 2N . The encoding method
we use leads to embedded states that exhibit entanglement.
Figure 4(a) shows that the average entanglement negativity
quickly increases during the encoding, and then eventually
decays at a rate depending on γ . In parallel, as we see from
Fig. 4(b), there is a finite von Neumann entropy of the system
due to mixed character of the state. In Sec. V, we will show
how these processes affect the performances of noisy quantum
kernel machines.

B. Time multiplexing measurements

A simplified and experimentally less demanding decod-
ing is obtained by measuring all the single-site observables

0.0
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N
(ρ̂

)

(a)

γ/J = 0.01

γ/J = 0.1

γ/J = 1.0
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Jt

0

1
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3

S
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)
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FIG. 4. Time dynamics of the average entanglement negativity
N (ρ̂) (a) and the average von Neumann entropy S(ρ̂ ) (b) in presence
of pure dephasing with different values of the corresponding rates γ .
At the initial time t = 0 the system is in the pure state ρ̂0 defined in
the text. Note that the driving sequence finishes at the time Jt � 5
indicated by the vertical dotted lines. The time is expressed in units
of 1/J where J is the average value of the spin coupling. We define
N (ρ̂) as the average over all the sites of the negativities associated
to the system partitions having the form {{site i}, {site j | j �= i}}.
This quantity is averaged over 20 inputs x ∈ X , over five disordered
configurations of spin couplings, and for a chain of N = 5 spins.
The filled areas correspond to a one standard deviation confidence
interval.

(i.e., the three local Pauli spin operators) at different times
after the end of the encoding. In the following, we will
denote Nrep the number of repetitions of these measure-
ments. Hence, for a system of N spins, a total number
3N × Nrep of measurements have been performed after Nrep

repetitions. We use measurements of the on-site observables
for each spin, which correspond to the components of the
Bloch vectors of the reduced density matrices on each site.
We consider corresponding observables in the Heisenberg
picture. The new feature vector φ̃(x) in the time multiplex-
ing protocol has entries of the form 〈Bi(t + kδtm)〉x with
1 � i � 3N, 1 � k � Nrep, where δtm is the time interval
between two consecutive measurements. Similar methods
were used in previous works to perform an approximate to-
mography of the system state [55,56]. Note that the time
multiplexing procedure can only decrease the model ex-
pressive power when compared to the full tomography, as
information leaks into the system’s environment as the sys-
tem evolves between successive measurement times (see
Appendix C).

V. NUMERICAL RESULTS

In this section, we discuss the numerical results on the
noisy quantum kernel machines obtained by considering the
model spin Hamiltonian, dephasing channels, input encoding
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FIG. 5. (a) Training error R (dashed lines) and testing error R∗ (solid lines and markers) as a function of the regularization parameter λ for
a chain with N = 7 spins in the presence of pure dephasing for different values of the corresponding rate γ (different markers in the legend)
in units of the average spin coupling J . Measurements are assumed to be ideal. (b) Same as panel (a) with an extra random Gaussian noise
of width σ = 10−3 added to the observable expectation values to account for imperfect measurements. For each value of λ the corresponding
errors are averaged over 15 disordered configurations, and the error bars are bootstrap estimates of the standard deviation for the estimated
mean values. We use ten bootstrap sets, each consisting of 15 samples randomly drawn with replacement from the original set of 15 disorder
realizations. (c) Minimal testing error as a function of the number of spins N for different values of the dephasing rate γ . For each disorder
configuration, the regularization parameter λ is chosen to minimize the testing error and the resulting minimum is averaged over the disorder.
The error bars are derived using the same bootstrap procedure. Number of disorder configurations: 50 for N = 2 to 5 spins, 25 for N = 6, 15
for N = 7, and 5 for N = 8. (d) Same as panel (c) with an extra random Gaussian noise of width σ = 10−3 added to the observable expectation
values to account for imperfect measurements.

via driving, decoding protocol through measurement, and the
classification task detailed in the previous section.

A. Performances, noise, and system size

The main goal is to determine how the performance of
the noisy quantum kernel machine scales with the amount of
noise and the number of chain sites, i.e., network nodes. To
provide a fair comparison, it is necessary to ensure that the
same amount of information is fed into the system for all the
system sizes. This is achieved by keeping fixed the number
M of projections and resolution of the images. As it will be
shown in Sec. VB, the performance can be greatly enhanced
when this information bottleneck is lifted and the amount of
encoded information is varied. The first point to address is
the trainability and generalization properties. In Fig. 5, we
show the dependence of the training and testing errors on
the generalization parameter λ. The curves in Fig. 5(a) are
obtained assuming a full tomography and ideal measurements.
Figure 5(b) instead presents the same results, but with imper-
fect measurements (see caption for more details). In Fig. 5(a),

the training error (dashed lines) drops to zero as λ → 0+;
this is a manifestation of overfitting and indicates that, thanks
to the high dimensionality of the quantum feature space, the
system is able to completely fit the training data. Instead,
the testing error (solid lines and markers) has a minimum
value for some optimal value of λ, which depends on the de-
phasing rate γ (different markers denote different rates). For
large enough values of λ the testing and training error curves
eventually overlap. For increasing γ the minimum shifts to
vanishing values of λ. A remarkable result is that the minimal
testing error is very little affected by the dephasing rate. As
shown in Fig. 5(b), the situation changes in the presence of
imperfect measurements. Indeed, the minimum of the testing
error is obtained for a finite value of λ even for large values
of γ . Importantly, the minimum error increases with increas-
ing dephasing noise. In Figs. 5(c) and 5(d), we report the
dependence of the minimal testing error as a function of the
number of spins N for increasing values of the dephasing rate.
Again, Fig. 5(c) corresponds to ideal measurements, while
curves in Fig. 5(d) are obtained under imperfect measure-
ments. Figure 5(c) shows that the testing error diminishes as a
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FIG. 6. (a) Kernel effective rank for the full tomography decoding as a function of the number of spins N and for different values of the
dephasing rate γ . We have used the empirical representation of the kernel matrix on the training set. The results are averaged over the same
numbers of disorder realizations as for Fig. 5. (b) Kernel empirical spectrum for the full tomography decoding, N = 6 spins, and different
values of the dephasing rate γ . The markers correspond to the optimal generalization parameter λ. The curves have been obtained via the
kernel empirical representation on the training set. Results are averaged over 25 disorder configurations. The filled area corresponds to twice
the estimated standard error on the averaged value, using the same bootstrap method as for Fig. 5.

function of the number of spins and increases with dephasing
rate. Note that also for very small dephasing rate the minimal
testing error appears to saturate at large system sizes. This is
hardly surprising as the input images have been preprocessed
and considerably downsampled. This deliberate choice aims
at making the task harder in order to gauge the expressivity
of the machine without overloading the input information. As
shown in Fig. 5(d), by considering imperfect measurements
the role of dephasing is dramatically amplified.

As we have described in the analytical discussion in
Sec. III, the quantum kernel spectrum allows us to assess the
capacity of our model independently from the specific task
one wants to achieve. Figure 6(a) shows the dependence of the
quantum kernel’s effective rank Reff (Kc) on the system size
and noise strength. For vanishing values of the dephasing rate
γ , we see that this figure of merit first increases exponentially
with the number of spins before saturating. For increasing γ ,
the effective quantum kernel rank decreases, approaching 1
in the limit of very large γ . The same behavior is observed
in the empirical spectrum in Fig. 6(b) as the noise rate is
varied. For increasing values of γ , we observe a faster de-
crease of the empirical kernel eigenvalues as a function of the
eigenvalue number. For comparison, we have indicated with
markers the largest eigenvalue below the optimal generaliza-
tion parameter. This gives a rough estimate of the number of
kernel eigenfunctions required to correctly approximate the
target function. Note that in the context of imperfect measure-
ments the generalization parameter is bounded from below,
and hence some of the kernel eigenfunctions becomes out of
reach. This shows a clear link between the kernel eigenvalues
and the expressivity of the machine. The results discussed
relied on full tomography. As we have explained in Sec. IV,
it is possible to design a simplified and less expensive mea-
surement protocol based on a time multiplexing procedure
where a set of local spin observables is measured at Nrep

different times. The results obtained with such an approach are
summarized in Fig. 7. As appears from Fig. 7(a), by increasing
the number of repetitions Nrep the error diminishes. For small
enough values of dephasing γ , the error converges to the

value in the ideal case of full tomography. For increasing
γ , however, the saturating value departs from the ideal one
given by full tomography, showing that the time multiplexing
expressivity deteriorates more than that of the full tomography
for larger noise. This trend is further elucidated in Fig. 7(b),
where the difference between the time multiplexing error and
the full-tomography error is reported as a function of the total
number of measured observables. By increasing the number of
spins and hence the dimension of the Hilbert space for a given
dephasing rate, the required number of repetitions increases.

B. Optimizing the encoding

In this section we investigate an alternative encoding
scheme for which the amount of information fed to the sys-
tem scales with the system size. The embedding studied in
the previous sections involved a set of M = Npulse random-
projection features derived from the downsampled images.
Here we derive a number M = N × Npulse of such features
and split them in N sequences of Npulse features, which we use
to drive the N sites. In particular, the driving sequences sent
to different sites are unique, while for the previous encoding
those sequences were proportional to each other. The new
encoding procedure is presented in Fig. 8 in the form of its
equivalent circuit. In Fig. 9 we report the evolution of the
performances given by this new encoding as a function of the
number of driving pulses. As the number of pulses rises the
corresponding number of encoded features M = N × Npulse

increases and so does the amount of encoded information.
The corresponding maximal testing accuracy reaches an op-
timum of 94.5% for Npulse = 3. For large number of pulses
Npulse the performances drop. This effect is due to the fact
that for such parameters the transformations yielded by the
encoding are poorly adapted to the task at hand, i.e., the kernel
and the target function become less aligned. Note that the
performance is very sensitive to both the encoding method
and the physical system parameters. While controlling the
physical parameters might be hard, it appears that a careful
design of the encoding procedure can significantly boost the
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FIG. 7. (a) Minimal testing error as a function of the number of repetitions Nrep of all the local spin measurements for N = 6 spins and
different values of the dephasing noise γ . The regularization parameter value is chosen to minimize the testing error. The horizontal dashed
lines represent the errors obtained using a full tomography decoding for the corresponding dephasing rates. The results are averaged over 50
disorder realizations. (b) Difference between the testing error of the time multiplexing decoding and the one for full tomography as a function
of the number Nmeas = 3NNrep of local measurements performed for Nrep = 50, dephasing rate γ /J = 0.01, and different values of the number
N of spins. For each realization of the disorder, the regularization parameter value is chosen to minimize the testing error. The results are
averaged over 25 disorder realizations.

performances. This makes the research of tailored encoding
procedures a promising avenue of research.

VI. CONCLUSION

In this paper, we have presented a quantum machine-
learning model based on the quantum-kernel paradigm.
Within the formalism of kernel theory, we have characterized
the expressivity and generalization capacity of this model. We
have linked the relevant figure of merits to the spectrum of
the associated centered quantum kernel. In particular, we pre-
sented an upper bound on the generalization error involving
the average purity of quantum states representing the data to
classify. This upper bound shows that dissipation and decoher-
ence act as a regularization for the quantum kernel machines.
By considering an illustrating example of a driven-dissipative
spin chain as the noisy quantum kernel machine, we have
shown how the expressivity and generalization capacity are
controlled by both the dephasing rate and experimental un-
certainties on the measurements. Moreover, we have shown
how the performances of the noisy quantum kernel machines
are modified when the full-tomography measurement protocol

FIG. 8. Equivalent circuit of the encoding with the information
bottleneck removed. Instead of injecting a single random projection
feature xi per time step as represented in Fig. 3, where a total number
of M = Npulse random projection features are fed into the kernel ma-
chine, here we inject N random projection features in each time step,
with a total number of M = N × Npulse random projection features
injected by the end of the encoding sequence.

is replaced by a time multiplexing procedure requiring only
local observables, and how the openness of the system miti-
gates the efficiency of this protocol. We observed a qualitative
improvement in the processing performance of our model
when going from a scenario where the system is fed a constant
amount of information to one where the inputs are encoded
at a finite information rate that scales extensively with the
system size. How to design tailored encoding strategies able to
harness the full power of quantum kernel machines remains an
open question. In particular, investigating encoding schemes
that would allow one to inject information at a rate scaling ex-
ponentially in the system size seems promising. The concepts
presented here and the unavoidable role of the decoherence
in any realistic physical system are relevant for a wide range
of quantum machine-learning models, ranging from quantum
extreme-learning machines to quantum neural networks.

ACKNOWLEDGMENTS

This work was supported by the Futur and Emerging
Technologies (FET) FLAGSHIP Project PhoQuS (Grant No.
820392) and by Region Île-de-France in the framework of Do-
maine d’intérêt majeur (DIM) Science et Ingénierie en Région
Île-de-France pour les Technologies Quantiques (SIRTEQ).
This work was granted access to the High Performance Com-
puting (HPC) resources of Très Grand Centre de Calcul
(TGCC) under Allocation No. 2021-A0100512462 made by
Grand Equipement National de Calcul Intensif (GENCI).

APPENDIX A: EXPRESSIVITY AND GENERALIZATION
FOR NOISY QUANTUM KERNELS

1. Expressivity and kernel effective rank

To measure the ability of a kernel k to learn a function y(x),
we have introduced in Eq. (27) the kernel target alignment
A(k, y). We then defined the kernel effective rank Reff by
considering a set of orthonormal basis functions {gi}, that
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FIG. 9. Optimal testing accuracy as a function of the number of
driving pulses, for the encoding presented in Fig. 8, N = 6 spins, and
γ /J = 0.01. The regularization parameter is chosen to maximize the
testing accuracy. Note that for this encoding the number of features
M yielded by the preprocessing is M = N × Npulse. The results are
shown for ten realizations of the disorder on both the preprocessing
and the system parameters. The maximal accuracy obtained is 94.5%
for Npulse = 3. The boxes extend from the first to the third quartile
of the distributions, the middle line indicates the median, and the
whiskers indicate the extreme values of the distributions.

gives the following equalities:√
Reff (k) =

∑
j

A(k, g j )

= 1(∑
i λ

2
i

)1/2

∑
j

∑
i

λiEp[ψi(x)g j (x)]2

= 1(∑
i λ

2
i

)1/2

∑
i

λiEp[ψi(x)2]

=
∑

i λi(∑
i λ

2
i

)1/2 . (A1)

Note that the final expression concerns only the spectrum
of the kernel and is independent of the choice of the basis
functions {gi}. From the Cauchy-Schwarz inequality, we have

Reff (k) � |{λi �= 0}|, (A2)

where the equality is attained if and only if all nonzero
eigenvalues of the kernel are equal. Therefore, it provides
information about the flatness of the spectrum of the kernel.
Given a training sample of size Ntrain, the kernel spectrum
can be empirically computed using the Ntrain × Ntrain kernel
matrix K associated to the kernel k, the entries of which are
Ki j = k(xi, x j ). The eigenvalues λi of the kernel k can then
be approximated by those of the matrix K/Ntrain [57]. For the
centered quantum kernel kc with the associated kernel matrix
Kc, we can compute the effective rank empirically as

√
Reff (Kc) = Tr[Kc]√

Tr[K2
c]

=
∑

i λ̂i√∑
i λ̂

2
i

, (A3)

where the λ̂i are the empirical eigenvalues [58].
The numerator can be expressed using the empirical kernel

eigenobservables. In order to keep light notations we use the
same notations as in the main text, i.e., the empirical kernel

eigenobservables are denoted Êi. Whether this notation refers
to the exact or the empirical observable should be clear from
the context. We have for the numerator

∑
i

λ̂i = E p̂

[∑
i

δ〈Êi〉2
x

]
= E p̂

[∑
i

Tr[δρ̂(x)Êi]
2

]
. (A4)

Since Tr[δρ̂(x)] = 0, δρ̂(x) can be decomposed onto the
eigenobservable basis {Êi} through the expression

δρ̂(x) =
∑

i

Tr[δρ̂(x)Êi]Êi. (A5)

Consequently, the squared Hilbert-Schmidt norm reads

Tr[δρ̂(x)2] =
∑

i

Tr[δρ̂(x)Êi]
2. (A6)

Equation (A4) therefore becomes∑
i

λ̂i = E p̂[Tr[δρ̂(x)2]] = Tr[E p̂[{ρ̂(x) − E p̂[ρ̂(x)]}2]]

= E p̂[Tr[ρ̂(x)2]] − Tr[E p̂[ρ̂(x)]2], (A7)

giving Eq. (32) in the main text (as the same relation holds
between the true eigenvalues λi and the distribution p). This
quantity can also be written in terms of the measured observ-
ables (note that O = B for a quantum kernel)∑

i

λ̂i = Tr[Kc]

Ntrain
= 1

Ntrain

∑
i

kc(xi, xi )

= 1

Ntrain

∑
i

∑
k

δφk (xi )δφk (xi )

=
∑

k

(
1

Ntrain

∑
i

δφk (xi )δφk (xi )

)

=
∑

k

E p̂[δφk (x)2] =
∑

k

E p̂
[
δ〈Ôk〉2

x

]

=
∑

k

Var p̂[〈Ôk〉x]. (A8)

Similarly, in the denominator of Eq. (A3), we get

∑
i

λ̂2
i = Tr

[
K2

c

]
N2

train

= 1

N2
train

∑
i, j

kc(xi, x j )
2

= 1

N2
train

∑
i, j

(∑
k

δφk (xi )δφk (x j )

)2

=
∑
k,l

(
1

Ntrain

∑
i

δφk (xi )δφl (xi )

)2

=
∑
k,l

E p̂[δ〈Ôk〉xδ〈Ôl〉x]2

=
∑
k,l

Cov p̂[〈Ôk〉x, 〈Ôl〉x]2. (A9)
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Finally, we get the general expression

√
Reff (Kc) =

∑P
i=1 Var p̂[〈Ôi〉x](∑P

i, j=1 Cov p̂[〈Ôi〉x, 〈Ô j〉x]2
) 1

2

. (A10)

Note that this relation also holds for the true (nonempirical)
effective rank Reff (kc) provided that the variances and the
covariances are taken with respect to the true probability dis-
tribution p instead of the empirical one p̂.

2. Generalization and Rademacher complexity

Here we give the detailed derivation of Eq. (38) using
methods of statistical learning theory applied to the specific
case of a noisy centered quantum kernel [51]. In the standard
setup of statistical learning, the inputs x ∈ X are considered
as a random variable following a probability distribution p(x).
We define the target function y : X �→ Y that assigns to each
input its right label. We will consider the case of a binary
classification, for which Y = {−1, 1}. In practice the true dis-
tribution p of the inputs is unknown and during the training we
only have access to a finite training dataset S = {(xi, yi ) | i =
1, . . . , Ntrain}. The elements of the dataset are considered as
realizations of a set of independent and identically distributed
random variables following p. The empirical distribution as-
sociated to this training set is given by

p̂(x) = 1

Ntrain

Ntrain∑
i=1

δ(x − xi ). (A11)

We rely on this empirical distribution to evaluate expectations
of any function f (x), namely,

Ep[ f (x)] =
∫
X

f (x)p(x)dx. (A12)

The expectation value is approximated by its empirical coun-
terpart:

E p̂[ f (x)] =
∫
X

f (x) p̂(x)dx = 1

Ntrain

Ntrain∑
i=1

f (xi ). (A13)

A common question in statistical learning is to know how
a model trained on a given set of data will perform on any
other set of unseen data. For a binary classification task with
balanced data one can use the accuracy as a measure of the
model performance. Given a trial function f (x) = wT φ(x)
that has been optimized using the training set S , we define
the corresponding prediction function as f̃ (x) = sign[ f (x)].
An input x is correctly classified if f̃ (x) = y(x). The true
accuracy A∗( f ) is defined as the probability that any input
in X is correctly classified by f̃ :

A∗( f ) = Ep
[
1y(x)= f̃ (x)

] = Ep[1y(x) f (x)�0] (A14)

= 1 − Ep
[
1y(x) f (x)�0

] = 1 − R∗( f ), (A15)

where we define the risk (also called error or inaccuracy) as
R∗( f ) = 1 − A∗( f ). The corresponding empirical quantities
A( f ) and R( f ) are defined in an analogous way using the
empirical distribution p̂ instead of p. The ability to perform

well on new data is measured by the generalization error:

E ( f ) = R∗( f ) − R( f ). (A16)

Statistical learning theory provides probabilistic upper bounds
on the generalization error depending on the type of task at
hand and on the specific model used to tackle it. In order to
find such an upper bound for a binary classification task, it
is convenient to consider a relaxed version of the risk, the
η-margin risk Rη( f ) defined in the main text. The upper
bound on the generalization properties involves the empirical
Rademacher complexity of a class of trial functions H with
respect to the training sample S . It is defined as

RS (H) = Eσ

[
sup
f ∈H

1

Ntrain

Ntrain∑
i=1

σi f (xi )

]
(A17)

where σ is a vector of Rademacher variables that are discrete,
independent, and identically distributed following a uniform
law over {−1, 1}. The Rademacher complexity measures the
ability of a hypothesis class H to fit noise, and as such it is
a measure of the expressivity of H. We now give an upper
bound on the generalization error (Theorem 5.8 in [51]).

Theorem 1. Let H be a set of trial functions and η > 0.
Then ∀δ > 0, with probability at least 1 − δ, and we have
∀ f ∈ H:

R∗( f ) � Rη( f ) + 2

η
RS (H) + 3

√
log
(

2
δ

)
2Ntrain

.

This upper bound can be specialized to the case of kernel
methods where the hypothesis class is the RKHS of a kernel
k. In this the Rademacher complexity is upper bounded by a
quantity that depends only on the trace of the empirical kernel
matrix K (Theorem 6.12 in [51]).

Theorem 2. Let H by the RKHS associated to a given kernel
k. For � � 0 consider the set of hypothesis functions H� =
{ f : x �→ wT δφ(x), ‖w‖2� � 1} ⊆ H. Then we have

RS (H�) � 1

Ntrain

√
Tr[K]

�
.

Injecting this result in the previous upper bound, we get the
desired result. In particular, using the centered noisy quantum
kernel kc and Eq. (A7), we get Eq. (38).

APPENDIX B: INTERCEPT AND KERNEL CENTERING

The initial optimization problem is to find a weight vec-
tor w = (b,w1, . . . ,wP )T that minimizes the regularized loss
function of Eq. (8). We slightly change our notation and drop
the first constant term of the embedding map φ(x) to explicitly
separate the bias b from the weight w, so that the loss can be
rewritten:

L(w, b | S ) = 1

2Ntrain

Ntrain∑
i=1

(yi − wT φ(xi ) − b)2 + λ

2
‖w‖2

2.

(B1)
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The optimal intercept b is found by imposing ∂L
∂b = 0. The

solution reads

b∗ = 1

Ntrain

Ntrain∑
i=1

yi − wT

(
1

Ntrain

Ntrain∑
i=1

φ(xi )

)
. (B2)

We see that the optimal intercept consists of two terms: one
that has the effect of centering the labels, while the other cen-
ters the features. Assuming the dataset we use is balanced, we
have

∑Ntrain
i=1 yi � 0. Plugging the optimal intercept back into

the previous regularized loss function, we get a new effective
loss:

L∗(w | S ) = 1

2Ntrain

Ntrain∑
i=1

(yi − wT {φ(xi ) − E p̂[φ]})2

+ λ

2
‖w‖2

2. (B3)

If the data are not balanced one can simply replace the labels yi

by their centered counterpart y′
i = yi − 1

Ntrain

∑Ntrain
i=1 yi such that∑Ntrain

i=1 y′
i = 0. Note that this might lead to issues when using

the accuracy metric with unbalanced labels. This issue can be
fixed, e.g., by changing the metric used for a balanced one.
Thus, working with the quantum kernel without regularizing
the intercept term is equivalent to working with the centered
kernel and centered labels.

APPENDIX C: TIME MULTIPLEXING AND MODEL
EXPRESSIVITY

The maximal class of trial functions Hfull (see Sec. III)
associated to a given embedding is obtained by performing a
complete tomography of the embedded quantum states ρ̂(x)
right after the end of the encoding procedure. The system
evolution after time τ according to a Lindblad master equa-
tion with a constant Hamiltonian and dissipator for a given
duration δtm can be expressed into a set of Kraus operators
{Ŵi} [34] satisfying ∑

i

Ŵ †
i Ŵi = 1̂. (C1)

The evolved density matrices ρ̂(x; δtm) are given by

ρ̂(x; δtm) =
∑

i

Ŵiρ̂(x)Ŵ †
i . (C2)

In the Heisenberg picture, the observables evolve in time
following an adjoint master equation [34]. Hence, we can see

the nonunitary evolution of the open quantum system as a
simple change in the set of observables that are measured on
the state ρ̂(x). Suppose that we want to measure observables
from the orthonormal basis introduced in Sec. II B after the
previous evolution. We define the (P + 1) × (P + 1) matrix
� the elements of which are

�kl = Tr

[∑
i

Ŵ †
i ÔkŴiÔl

]
. (C3)

The measurement at time τ + δtm of the observable Ôl can
now be expressed using the decomposition in Eq. (44) and the
elements of � as

Tr[ρ̂(x; δtm)Ôl ] = 1

2N

{
�0l +

∑
k

Tr[ρ̂(x)Ôk]�kl

}
. (C4)

Thus the embedding map φ(x) is transformed by the nonuni-
tary evolution during δtm and becomes

φ(x; δtm) = �φ(x). (C5)

Assuming we only make measurements on a subset of the
basis {Ôi}, then we can write for the feature vector

φ(x; δtm) = D�φ(x), (C6)

where D is a diagonal (P + 1) × (P + 1) matrix the diagonal
entries i of which are 1 if Ôi is measured and zero otherwise.
When we repeat the measurements at different times, we can
stack the previous vectors at each time step. For Nrep repeti-
tions, we denote � the Nrep(P + 1) × (P + 1) matrix of the
form

� =

⎛
⎜⎜⎝

D�

D�2

...

D�Nrep

⎞
⎟⎟⎠. (C7)

The final vector reads

φ̃(x) = �φ(x). (C8)

Hence, performing repeated measurements in between
nonunitary evolutions amounts to performing a restricted
number of measurements on the encoded states ρ̂(x) at time
τ . This implies that the time multiplexing decoding lowers
the model expressivity. The difference between the models
obtained from the full tomography and the time multiplexing
decoding is encapsulated in the matrix �.
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