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Time-frequency entangled photons constitute an important resource for a plethora of applications across
the diverse quantum technology landscape. Thus, efficient and tunable setups for the generation of entangled
photons are requisite for modern quantum technologies. In this work, we propose a generic cavity QED setup
designed for on-demand generation of time-frequency entangled photon pairs, with each photon propagating in
a separate waveguide. We outline a potential incarnation of this setup in the microwave superconducting circuit
QED architecture. We derive and numerically solve the set of equations of motion governing the evolution of
the quantum state of the system, allowing us to examine the photon emission dynamics. Using the Schmidt
decomposition of the joint spectral amplitude of the emitted photon pair, we compute the entanglement entropy
analyzing its dependence on the system parameters. We outline the potential extension of the proposed scheme
for the generation of multiphoton time-frequency entangled states.
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I. INTRODUCTION

The photonic time-frequency (TF) degree of freedom can
serve as a basis for encoding quantum information, including
time [1], frequency [2], and temporal-mode [3] encodings.
Moreover, the TF degree is intrinsically robust for long-
distance transmission of quantum information via microwave
and optical waveguides. Nonclassical spectral and temporal
correlations of photonic TF entangled states can be harnessed
for boosting the sensitivity and resolution of the two-photon
absorption spectroscopy [4–6] and ultrafast TF resolved Ra-
man spectroscopy [7] and enhancing the detection efficiency
of low-reflectivity objects in the bright thermal environment
[8,9]. The large dimensionality of TF entangled states is in-
strumental in the realization of high-dimensional quantum
key distribution protocols [10,11]. Besides, TF entangled
states proved to be useful in a range of other applications,
such as testing Bell inequalities [12–14], quantum lithogra-
phy [15], quantum-enhanced clock synchronization [16], and
biomedical imaging [17]. However, most of the experimental
implementations of these quantum protocols and techniques
use infrared and visible-light photons. Having an efficient
and scalable scheme for the generation of TF entangled pho-
tons in the microwave domain, one can leverage that diverse
quantum-optical toolbox in the elaborate microwave photonic
platform based on superconducting quantum circuits [18].
Rapid progress and ongoing advances in the development
of microwave superconducting circuit QED systems demon-
strated the high potential of these quantum systems as a
versatile hardware architecture for the realization of quantum
information processing (QIP) devices [19].

*eugenestolyarov@gmail.com

A number of theoretical proposals [20–23] and experimen-
tal demonstrations [24–30] of various designs of deterministic
and probabilistic circuit QED sources of TF entangled mi-
crowave photons were put forward. These systems exploit the
nonlinear properties of the Josephson junctions. One of the
approaches consists in using voltage-biased Josephson junc-
tions interacting with modes of open microwave resonators.
Due to strong nonlinear light-charge interaction, the inelastic
tunneling of Cooper pairs across the Josephson junction can
generate nonclassical states of light [24–26,31–33], particu-
larly TF entangled photons [24–26]. Alternatively, one can
employ the nondegenerate Josephson mixer, a circuit QED
device, which parametrically couples two modes with differ-
ent frequencies by a pump at their sum frequency [34,35]. In
Ref. [27], the authors demonstrated the generation of entan-
gled microwave radiation over two separate transmission lines
using the nondegenerate Josephson mixer. A Josephson meta-
material operating in a Kerr-free three-wave mixing mode was
utilized for the generation of TF entangled microwave photons
in Ref. [30]. Another approach is leveraging superconducting
artificial atoms, which are anharmonic multilevel quantum
systems [36,37]. By populating higher excited states of an
artificial atom via driving the two-photon transition, one can
trigger the process of spontaneous cascaded relaxation leading
to the emission of TF entangled photons [20–23,28,29].

In the paper, we start with proposing a general scheme of
the setup designed for the generation of TF entangled photons
and then outline its potential experimental implementation
as a microwave photonic device based on a superconducting
circuit QED platform. In this scheme, the correlated relaxation
of a pair of excited quantum emitters is realized when the
relaxation of one of the emitters into the open resonator trig-
gers the relaxation of its counterpart leading to the emission
of a pair of TF entangled photons. One of the advantages of
the proposed scheme for generation of TF entangled photon
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FIG. 1. (a) Schematic representation of the system comprised of a pair of 2LEs coupled to a mode of an open resonator. (b) The equivalent
representation of the system depicted in (a), a 2LE interacting with a V3LE coupled to a waveguide. (c) Scheme of the system composed of a
resonator interacting with a �-configuration 3LE and the diagram showing the interrelation between the �3LE transition frequencies and the
resonator frequency. (d) The generic schematics of the proposed source of TF entangled photon pairs. (e) Diagram of the interrelation between
the frequencies of the resonators and the transition frequencies of the emitters in the setup demonstrated in (d).

pairs is that it does not require driving the two-photon transi-
tions of the artificial atoms. Moreover, it can be extended for
the generation of multiphoton entangled states. We focus on
studying the proposed device in the pulsed on-demand regime,
when exactly only one pair of entangled photons is emitted.
Using a state-vector approach, we provide a real-time picture
of photon emission dynamics. We use the Schmidt decompo-
sition of the joint spectral amplitude of the emitted photons for
computing the von Neumann (entanglement) entropy, which
is employed as a measure of their bipartite entanglement.

The structure of the paper is as follows. In Sec. II, we
discuss the general principles determining the operation of the
proposed source of TF entangled photon pairs. Its potential
implementation within the microwave circuit QED architec-
ture is outlined in Sec. III. In Sec. IV, we present the model
Hamiltonian describing the system. In Sec. V, we derive the
equations of motion governing the quantum-state evolution of
the system and study the emission dynamics. The dependence
of the entanglement degree of the emitted photons on the
system parameters is analyzed in Sec. VI. We summarize our
results and outline possible applications and extensions of
the proposed source of entangled photon pairs in Sec. VII.
The additional considerations and details of derivations are
delegated to the Appendixes.

II. GENERAL SCHEME AND OPERATIONAL PRINCIPLE

To explain the key principles defining the operation of the
proposed source of TF entangled photon pairs, let us consider
a paradigmatic system schematically presented in Fig. 1(a).
This system consists of an open resonator interacting with a
pair of two-level emitters (2LEs). The first 2LE is coupled to
the resonator with strength g1, and the second 2LE interacts
with the resonator with strength g2. There is no direct inter-
action between the emitters. For simplicity, we assume that
the resonator and the 2LEs have identical frequencies ω. The
resonator is open due to its coupling to a waveguide, which
leads to the photon leakage from the resonator with rate κ .
Initially, the first 2LE resides in the ground state, while the

second 2LE is prepared in the excited state. Due to interaction
with the open resonator, the second 2LE eventually decays,
delivering the excitation (photon) to the waveguide.

The system, shown in Fig. 1(a), can be represented as the
excited-state 2LE interacting with the V-configuration three-
level emitter (3LE) coupled to the waveguide. Figure 1(b)
illustrates the equivalent representation, whose detailed justi-
fication is provided in Appendix A. The V-type 3LE is formed
by the ground state |G〉 and a pair of excited states |E±〉.
The latter decay to the waveguide with the rate κ/2. The
frequency of |G〉 ↔ |E±〉 transition is ω ± g1. Both transitions
are coupled to the 2LE with strength g2/

√
2. The increase

of coupling g1 leads to stronger detuning of |G〉 ↔ |E±〉
transition from the 2LE frequency ω. For g1 > g2/

√
2, the

excitation exchange between the 2LE and the V3LE becomes
inefficient, resulting in a suppression of the photon leakage
into the waveguide. These qualitative considerations are con-
firmed by the calculations revealing the suppression of the
photon leakage into the waveguide with the increase of the
ratio g1/g2. Details of calculations are given in Appendix A.

The above result implies that the process of photon emis-
sion can be manipulated by controlling the coupling parameter
g1. In this regard, let us consider a system comprised by a
3LE interacting with a single-mode resonator. This system
is sketched in Fig. 1(c). The ground state |g〉 and the excited
states |e〉 and | f 〉 of the 3LE are arranged in a ladder (�-type)
configuration implying that only |g〉 ↔ |e〉 and |e〉 ↔ | f 〉
transitions are allowed. The frequencies of the resonator and
|e〉 ↔ | f 〉 transition coincide, while |g〉 ↔ |e〉 transition is
strongly detuned from the resonator. In this case, the inter-
action between the 3LE and the resonator is approximately
described by the Hamiltonian Hint = g (c†|e〉〈 f | + | f 〉〈e|c),
where g denotes the coupling parameter, and the operator
c (c†) annihilates (creates) a resonator photon. One can
formally rewrite the resonator-emitter interaction Hamiltonian
as Hint = g(|e〉〈e| + | f 〉〈 f |)(c†|e〉〈 f | + | f 〉〈e|c). Using the
property |g〉〈g| + |e〉〈e| + | f 〉〈 f | = 1, with 1 being the
unity operator, leads to Hint = g̃(c†|e〉〈 f | + | f 〉〈e|c), where
g̃ ≡ g(1 − |g〉〈g|) can be interpreted as a resonator-emitter
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coupling dependent on the �3LE ground-state population.
Thus, if the 3LE resides in the ground state |g〉, its | f 〉 ↔ |e〉
transition is decoupled from the resonator mode. This effect
was utilized, e.g., in Ref. [38] for the implementation of a
continuous-wave single-photon transistor and Ref. [39] for
the implementation of a qubit-state-controlled single-photon
switch.

Harnessing the effects outlined above, we propose a setup
consisting of two emitters interacting with two resonators
(marked as A and B) coupled to the output waveguides
(marked as α and β). The considered setup is schemati-
cally shown in Fig. 1(e). In this setup, the first emitter is
coupled to both resonators. This emitter is represented by a
�-configuration 3LE with the ground state |g〉1 and a pair of
excited states |e〉1 and | f 〉1. The frequency of |g〉1 ↔ |e〉1 tran-
sition coincides with the frequency ωa of resonator A, while
the frequency of |e〉1 ↔ | f 〉1 transition coincides with the
frequency ωb of resonator B. The anharmonicity of the eigen-
levels of the �3LE results in the inhibition of the excitation
exchange between resonator A and |e〉1 ↔ | f 〉1 transition and
between resonator B and |g〉1 ↔ |e〉1 transition. The second
emitter is represented by a 2LE with the ground state |g〉2 and
the excited state |e〉2. This emitter is coupled only to resonator
B, and the frequency of its |g〉2 ↔ |e〉2 transition coincides
with the resonator frequency ωb. The interrelation between the
frequencies of the resonators and the transitions frequencies of
the emitters is shown in Fig. 1(d).

In the system outlined above, the correlated relaxation of
the emitters emerges. The mechanism of this relaxation is as
follows. When the 3LE resides in its excited state |e〉1, the
relaxation of the 2LE into waveguide β via resonator B is in-
hibited due to the mechanism outlined in the second paragraph
of this section. In the course of the 3LE relaxation from the
excited state |e〉1 to the ground state |g〉1, | f 〉1 ↔ |e〉1 transi-
tion of the 3LE is getting decoupled from the resonator B, as
discussed earlier in this section, which triggers the relaxation
of the 2LE excited state |e〉2. Hence, the photons tend to be
emitted into the waveguides one right after another, implying
that they exhibit time correlation which, in turn, indicates their
frequency (energy) anticorrelation.

III. CIRCUIT QED SETUP

Having discussed the general principle of operation of the
proposed source of TF entangled photon pairs, let us now
outline its potential implementation in the circuit QED archi-
tecture. The superconducting circuit QED platform provides
all necessary components for implementation of the generic
scheme discussed in Sec. II, such as microwave resonators
and transmission lines, as well as Josephson-junction artificial
atoms featuring tunable multilevel structure and long coher-
ence times [37].

The schematic illustration of the proposed circuit QED
setup is shown in Fig. 2. In the considered setup, the quan-
tum emitters are represented by the Xmon version [40] of
the transmon, a charge-type artificial atom derived from a
Cooper-pair box and featuring resilience to charge fluctua-
tions [41]. Transmon artificial atoms, in particular, their Xmon
modifications offer a simple design, long coherence times,
and tunable parameters [42], making them a popular choice

B

A

Xmon 1

PF

PF
Xmon 2

XY control

FIG. 2. Sketch of the potential experimental circuit QED imple-
mentation of the generic scheme illustrated in Fig. 1(e). The indices
of the elements are in correspondence to the scheme in Fig. 1(e).
Each output transmission line is additionally equipped with the Pur-
cell filter (PF). The excited states of the artificial atoms (Xmons) are
individually prepared using the classical pulses sent over XY control
lines.

for the realization of various QIP systems [43–45]. More-
over, using tantalum as a base superconductor along with
improving processing techniques led to a recent impressive
increase in the transmon excited-state lifetime [46,47]. In our
setup, the Xmons are capacitively coupled to the coplanar
waveguide (CPW) resonators which, in turn, are coupled to
the transmission-line waveguides serving as output channels
for the emitted photons.

The states of the transmons are manipulated using the
classical signals delivered via individual (XY) control lines
[48]. Due to the weak anharmonicity of transmons, for their
preparation in the lower excited state, one can rely on one of
the elaborate techniques, providing high fidelities of prepa-
ration while avoiding excitation of the higher excited states
[49–51]. Alternatively, for transmon control, one can use a
single-flux quantum digital logic [52]. This approach allows
integration of the control circuitry on a chip bringing most of
the setup components into the cryogenic stage.

The output transmission lines are supplemented with the
Purcell filters for suppression of the superfluous emission
from the off-resonant transitions of the transmons (more de-
tails on the role of these elements are given in Appendix B 2).
The setup presented in Fig. 2 adopts the approach from
Ref. [53] with the quarter-wavelength CPW resonators side
coupled to the output transmission lines. These additional
resonators serve as notch filters.

In the setup version shown in Fig. 2, the fixed couplings be-
tween the circuit elements are used. For achieving in situ tun-
ability of the setup parameters for better control over the char-
acteristics of the emitted photons, instead of fixed couplings
set on a chip fabrication stage, one can implement tunable
couplings using, for example, superconducting quantum inter-
ference device couplers [54,55] controlled by an external flux.

IV. THE MODEL

The circuit QED system described above is modeled by the
Hamiltonian

Hsys =Ht + Hr + Hr-t + Hw + Hr-w, (1)
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where the first term describes the transmon-type artificial
atoms, the second term is the Hamiltonian of the resonators,
the third term describes the interaction between the resonators
and transmons, and the last pair of terms describes the waveg-
uides and their coupling to the resonators. In what follows we
set h̄ = 1, thus, measuring all energies in frequency units.

The Hamiltonian Ht represented in the basis of the trans-
mon eigenstates reads as

Ht =
2∑

j=1

(
ω

ge
j σ

ee
j + ωgf

j σ
f f
j

)
, (2)

where ωge
j , ωgf

j = ωge
j + ωe f

j , and ωe f
j stand for the frequency

of |g〉 j ↔ |e〉 j , |g〉 j ↔ | f 〉 j , and |e〉 j ↔ | f 〉 j transition of the
jth transmon ( j ∈ {1, 2}), respectively. For convenience, in
Eq. (2) we introduced the transmon operator σ ss′

j = |s〉 j〈s′| j

where s, s′ ∈ {g, e, f } is the index of the transmon eigenlevel.
Since we consider the case of only two excitations in the
system, we restricted the subspace of the transmon states to
the ground state |g〉 j and a pair of the lowest excited states
|e〉 j and | f 〉 j .

The Hamiltonian of the resonators Hr has the form

Hr = ωaNa + ωbNb, (3)

where ωa and ωb denote the frequencies of resonator A and
B, respectively. Operators Na = a†a and Nb = b†b are the
operators of the photon number in resonator A and B, where
a (a†) and b (b†) stand for the photon annihilation (creation)
operators in the corresponding resonator.

For clarity, we represent the resonator-transmon interac-
tion Hamiltonian as Hr-t = Hrsn

r-t + Hdsp
r-t , where the first term

describes the resonant interactions determining the dynamics
of the system, while the second term describes the dispersive
interactions giving rise to shifts in the frequencies of the
resonators and the transmons. In the rotating-wave approxi-
mation, the term Hres

r-a has the form

Hrsn
r-t = g1aa†σ

ge
1 + g1bb†σ

e f
1 + g2bb†σ

ge
2 + H.c., (4)

and the dispersive term Hdisp
r-a reads as

Hdsp
r-t = η1aa†σ

e f
1 + η1bb†σ

ge
1 + η2bb†σ

e f
2 + H.c. (5)

Parameters g1a and g1b are the coupling strengths of |g〉1 ↔
|e〉1 and |e〉1 ↔ | f 〉1 transitions of the first transmon to res-
onators A and B, respectively. Parameter g2b stands for the
coupling strength of |g〉2 ↔ |e〉2 transition of the second trans-
mon to resonator B. Parameter η1a is the coupling strength of
resonator A to the first transmon |e〉1 ↔ | f 〉1 transition, η1b

stands for the coupling strength of resonator B to |g〉1 ↔ |e〉1

transition of the first transmon, and η2b denotes the coupling
strength of resonator B to |e〉2 ↔ | f 〉2 transition of the sec-
ond transmon. For the transmon-type artificial atoms, one has
η1a ≈ √

2g1a, η1b ≈ g1b/
√

2, and η2b ≈ √
2g2b [41].

The waveguides are modeled by the continua of noninter-
acting bosonic modes with the Hamiltonian Hw given by

Hw =
∫ ∞

0
dν ν(α†

ναν + β†
ν βν ), (6)

where αν (a†
ν ) and βν (β†

ν ) stand for the annihilation (creation)
operators of the photon with frequency ν propagating in the
waveguide α and β, respectively.

The Hamiltonian Hr-w, describing the coupling between
the resonators and waveguides, has the form

Hr-w =
∫ ∞

0
dν[ fa(ν)a†αν + fb(ν)b†βν + H.c.], (7)

where fa(ν) and fb(ν) are the coupling strengths of resonator
A to waveguide α and resonator B to waveguide β, corre-
spondingly.

Note that the model Hamiltonian in Eq. (1) does not explic-
itly include the Purcell filters. Their contribution is absorbed
into the frequency-dependent resonator-waveguide couplings
fa(ν) and fb(ν). The effect of the Purcell filters is outlined in
Appendix B 2.

A. Effective Hamiltonian

The dispersive coupling term Hdsp
r-a given by Eq. (5) can be

treated as a perturbation of the Hamiltonian Hsys provided that
|λ1a|, |λ1b|, |λ2b| � 1, where

λ1a = η1a

ω
e f
1 − ωa

, λ1b = η1b

ω
ge
1 − ωb

, λ2b = η2b

ω
e f
2 − ωb

.

In this case, one can eliminate Hdsp
r-a via the Schrieffer-

Wolff–type transformation Hsys → U†HsysU with U being the
unitary operator given by [56,57]

U = exp
(
λ1aa†σ

e f
1 + λ1bb†σ

ge
1 + λ2bb†σ

e f
2 − H.c.

)
. (8)

Keeping the terms contributing up to the first order in the
small parameters λ1a, λ1b, and λ2b, one arrives at the effective
Hamiltonian Heff of the form (see details of derivation in
Appendix B):

Heff = H̄t + H̄r + Hrsn
r-t + Hrr-tm + Hw + Hr-w. (9)

In the dressed basis, the Hamiltonian describing the transmons
reads as

H̄t = ω̄ge
1 σ

ee
1 + ω̄gf

1 σ
f f

1 + ωge
2 σ

ee
1 + ω̄gf

2 σ
f f

2 , (10)

with ω̄
ge
1 = ωge

1 + χ1b, ω̄gf
1 = ω̄ge

1 + ω̄e f
1 = ωe f

1 + χ1a, and
ω̄

gf
2 = ωge

2 + ω̄e f
2 = ωgf

2 + χ2b being the dressed (renormal-
ized) frequencies of |g〉1 ↔ |e〉1 and |g〉1 ↔ | f 〉1 transitions
of the first transmon, and |g〉2 ↔ | f 〉2 transition of the sec-
ond transmon, respectively. Here, we introduced the notations
χ1a = λ1aη1a, χ1b = λ1bη1b, and χ2b = λ2bη2b.

The Hamiltonian of the resonators acquires the form

H̄r = (
ωa + χ1aZ f e

1

)
a†a + (

ωb + χ1bZeg
1 + χ2bZ f e

2

)
b†b,

(11)

where we introduced the notation Zss′
j ≡ σ ss

j − σ s′s′
j .

The term Hrr-t in Eq. (9) is given by

Hrr-t = ϒ(a†b†σ
gf
1 + σ f g

1 a b
)
, (12)

where 2ϒ = λ1aη1b − λ1bη1a. This term describes the pro-
cesses of simultaneous exchange of two excitations between
the first transmon and resonators A and B.
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In the further analysis, we work in the dressed basis and
describe the dynamics of the system using the Hamiltonian
Heff expressed by Eqs. (9)–(12). Note that here we focus on
the unitary dynamics of the system, neglecting the dissipation.
We assume that dissipation processes occur on the timescales
much longer than the timescales of the coherent processes in
the system. With such an approach, we simplify the theoretical
treatment of the considered system while still grasping the
essential features of its quantum dynamics.

Indeed, for the system parameters we work with, the pho-
ton leakage rates from the resonators to the output waveguides
are κ/2π > 1 MHz, while the internal quality factors of the
CPW resonators can exceed 106 [58,59], giving the intrinsic
resonator photon loss rates γres/2π � 0.01 MHz. The coaxial
resonators [60,61] and the three-dimensional microwave cavi-
ties [62–64] offer even higher internal quality factors reaching
up to 108–109. Thus, the process of photon leakage to the
output waveguides dominates over the photon dissipation in-
side the resonators. The typical excited-state lifetimes of the
state-of-the-art transmons reach 0.05–0.1 ms [40,45], with the
recent experiments [46,47] reporting lifetimes up to 0.5 ms,
which are more than an order of magnitude longer than the
times the transmons dwell in their excited states for the system

parameters we consider in this work. Thus, the decoherence of
transmons has a negligible effect on the emission dynamics.

V. EMISSION DYNAMICS

We assume that initially (at t = 0), the system is pre-
pared in the state |�in〉 with the transmons residing in their
excited states |e〉1 and |e〉2, while the resonators and the
waveguides are void of excitation. Thus, the initial state
of the system reads as |�in〉 = σ eg

1 σ
eg
2 |∅〉, where |∅〉 =

|∅〉α|∅〉β |0〉a|0〉b|g〉1|g〉2 stands for the vacuum state of the
system, a state with a void of photons in the resonators and the
waveguides and the transmons residing in their ground states.
In our analysis, we do not account for the effect of thermal
excitations on the dynamics of the system. This simplification
is justified since the superconducting circuit QED systems
usually operate at temperatures Tsys ∼ 10–30 mK, while the
typical working frequencies of microwave circuit QED setups
are ωsys/2π ∼ 5–20 GHz [18,48]. For these parameters, one
obtains the estimate nth < 10−3 for the average number of
thermal excitations in the system.

At the arbitrary moment of time t , the state of the system
|Ψ (t )〉 = e−iHeff t |�in〉 is expressed as

|Ψ (t )〉 =
∫ ∞

0
dν
∫ ∞

0
dν ′Φν,ν ′ (t )α†

νβ
†
ν ′ |∅〉+

∫ ∞

0
dν
[
Ξαν (t )α†

νb
† +Ξβν (t )β†

νa† +Θαν (t )α†
νσ

eg
2 +Θβν (t )β†

ν σ
eg
1

]|∅〉

+ R(t )a†b†|∅〉+ Q(t )σ f g
1 |∅〉+Ya(t )a†σ

eg
2 |∅〉+Yb(t )b†σ

eg
1 |∅〉+ X (t )σ eg

1 σ
eg
2 |∅〉.

(13)

The first term in Eq. (13) corresponds to the state of the system with both waveguides hosting a photon, with Φν,ν ′ being the
joint spectral amplitude. The quantity Sν,ν (t ) = |Φν,ν ′ (t )|2 determines the joint spectrum, the probability density distribution of
finding a photon with frequency ν propagating in waveguide α and a photon with frequency ν ′ propagating in waveguide β at
the moment of time t . The probability of finding the waveguides both accommodating photons is given by

pαβ (t ) =
∫ ∞

0
dν
∫ ∞

0
dν ′ Sν,ν ′ (t ). (14)

The remaining terms in the upper line of Eq. (13) correspond to the states with photon propagating in only one of the
waveguides: Ξαν (Ξβν ) is the amplitude of the state with the photon in resonator A (B) and the transmons in their ground states,
Θαν (Θβν ) is the amplitude of the state with the resonators void of photons and the first (second) transmon residing in the excited
state |e〉1(2). The terms in the bottom line of Eq. (13) correspond to the states of the system with both waveguides void of
excitations.

The equations of motion governing the evolution of the probability amplitudes in Eq. (13) can be compactly written as

∂μ(t )

∂t
= −i �μ(t ), (15)

where μ(t ) = [Φν,ν ′ (t ), Ξαν (t ), Ξβν (t ),Θαν (t ),Θβν (t ),R(t ),Q(t ),Ya(t ),Yb(t ),X (t )]T and the matrix � reads as

�=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν + ν ′ fb(ωb) fa(ωa) 0 0 0 0 0 0 0

0 ν+ ω̃b −χ1b 0 g2b 0 fa(ωa) 0 0 0 0

0 0 ν ′ + ω̃a 0 g1a fb(ωb) 0 0 0 0

0 g2b 0 ν+ωge
2 0 0 0 fa(ωa) 0 0

0 0 g1a 0 ν ′ + ω̄ge
1 0 0 0 fb(ωb) 0

0 0 0 0 0 ω̃a + ω̃b −χ1b ϒ g2b g1a 0

0 0 0 0 0 ϒ ω̄
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FIG. 3. The snapshots of the joint spectra of the emitted photon pairs for the different moments of time. Parameters of the system are
as follows: (ωge

1 − ωe f
1 )/2π = 400 MHz, κa = κb = κ , κ/2π = 25 MHz, g1a/2π = 5 MHz, g2b/2π = 10 MHz, (upper row) g1b = 0; (middle

row) g1b/2π = 10 MHz; (bottom row) g1b/2π = 25 MHz. For aiding the visualization, each plot were normalized on the corresponding
maximum value of the joint spectrum max{Sν,ν′ (t )} and then multiplied on the probability pαβ (t ) of finding both waveguides containing
photons at time t . The corresponding values of pαβ (t ) are shown in each plot.

where ω̃a = ωa − iκa/2 and ω̃b = ωb − iκb/2 with κa =
2π f 2

a (ωa) and κb = 2π f 2
b (ωb) being the photon leakage rate

from resonators A and B into waveguides α and β, correspond-
ingly. The derivation of Eq. (15) is given in Appendix C and
follows the approach demonstrated in Refs. [65,66].

For computing the probability amplitudes standing in
Eq. (13), we use the symbolic solution of Eq. (15) expressed as
μ(t ) = exp(−i�t )μ(0). The matrix exponential is evaluated
numerically using the built-in function MatrixExp of Mathe-
matica.

Figure 3 provides the series of snapshots of the joint spectra
of the emitted photons evaluated for the specific moments of
time and various parameters of the system. The computations
reveal that switching on the coupling between resonator B
and |e〉1 ↔ | f 〉1 transition of the first transmon results in the
pronounced frequency anticorrelation of the emitted photons,
which manifests itself as an accumulation of the joint spec-
trum near the line given by ν + ν ′ = ωa + ωb.

For the analysis of the temporal properties of the emitted
photons, we introduce their time-domain joint probability am-
plitude φτ,τ ′ (t ) expressed via the Fourier transform of the joint
spectral amplitude Φν,ν ′ (t ) as

φτ,τ ′ (t ) = 1

2π

∫
dν eiντ

∫
dν ′ eiν ′τ ′

Φν,ν ′ (t ). (16)

One can interpret the quantity Aτ,τ ′ (t ) = |φτ,τ ′ (t )|2 as the dis-
tribution of the joint probability density of finding one photon
at point x = υαt in waveguide α at instant τ along with finding
another photon at point x = υβt in waveguide β at instant
τ ′, assuming that the coupling points of the waveguides to
the resonators are at x = 0. Here, υα and υβ stand for the
photon group velocity in waveguide α and β, correspondingly.
Figure 4 demonstrates the joint spectra Sν,ν ′ (t ) of the emit-

ted photons at t = 0.5 µs versus the respective time-domain
probability densities Aτ,τ ′ (t ) for different values of g1b. One
can notice that the frequency anticorrelation of the emitted
photons arising for g1b �= 0 is accompanied by their time
correlation, which appears as a dilution of the time-domain
probability density for τ ′ � τ and its aggregation in the re-
gion τ ′ > τ along the line τ ′ = τ + δτ . This result indicates
that when we switch on the interaction between the second
transmon and resonator B, the emission of the photon into
waveguide β starts after the emission of the photon into
waveguide α. The delay between the photons is roughly es-
timated as δτ ≈ (κb/2)−1. Such behavior is consistent with
the considerations presented in Sec. II.

Thus, the general idea discussed in Sec. II is supported by
the numerical results confirming that the proposed setup can
emit the TF entangled photon pairs. As a quantitative measure
of photon entanglement, we use the von Neumann entropy,
whose definition, along with the extensive analysis of its de-
pendence of the parameters of the system, is given in Sec. VI.

Using the time-dependent wave function of the system, one
can compute various observables such as populations of the
transmon eigenlevels, the resonators, and the waveguides at
arbitrary moments of time. The population of |s〉 j eigenlevel
of the jth transmon is given by Ps j (t ) = 〈Ψ (t )|σ ss

j |Ψ (t )〉.
With the wave function expressed by Eq. (13), one obtains

Pe1(t ) = |X (t )|2 + |Yb(t )|2 +
∫ ∞

0
dν
∣∣Θβν (t )

∣∣2,
Pf 1(t ) = |Q(t )|2

(17)

for the populations of |e〉1 and | f 〉1 eigenlevels of the first
transmon, respectively. The population of |e〉2 eigenlevel of
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FIG. 4. (Upper row) Joint spectra of the emitted photons Sν,ν′ (t )
versus (bottom row) the corresponding time-domain probability
densities Aτ,τ ′ (t ) at t = 0.5 μs for different values of g1b: (left col-
umn) g1b = 0; (central column) g1b/2π = 10 MHz; (right column)
g1b/2π = 25 MHz. The rest of the parameters are as described in
the caption of Fig. 3. The dashed lines correspond ν + ν ′ = ωa + ωb

(upper row) and τ ′ = τ (bottom row). Dotted lines are defined as
τ ′ = τ + δτ . Plots were normalized on max{Sν,ν′ (t )} (upper row) and
max{Aτ,τ ′ (t )} (bottom row) and then multiplied on the corresponding
value of pαβ (t ).

the second transmon is given by

Pe2(t ) = |X (t )|2 + |Ya(t )|2 +
∫ ∞

0
dν
∣∣Θαν (t )

∣∣2. (18)

The populations of resonators A and B are expressed in terms
of the probability amplitudes as

Pa(t ) = 〈Ψ (t )|a†a|Ψ (t )〉

= |R(t )|2 + |Ya(t )|2 +
∫ ∞

0
dν
∣∣Ξβν (t )

∣∣2, (19a)

Pb(t ) = 〈Ψ (t )|b†b|Ψ (t )〉

= |R(t )|2 + |Yb(t )|2 +
∫ ∞

0
dν
∣∣Ξαν (t )

∣∣2. (19b)

Finally, the waveguide populations are computed as

Pα (t ) =
∫ ∞

0
dν 〈Ψ (t )|α†

ναν |Ψ (t )〉

= pαβ (t ) +
∫ ∞

0
dν
[∣∣Ξαν (t )

∣∣2 + ∣∣Θαν (t )
∣∣2], (20a)

Pβ (t ) =
∫ ∞

0
dν 〈Ψ (t )|β†

ν βν |Ψ (t )〉

= pαβ (t ) +
∫ ∞

0
dν
[∣∣Ξβν (t )

∣∣2 + ∣∣Θβν (t )
∣∣2], (20b)

where pαβ (t ) is given by Eq. (14).

Figure 5 demonstrates the dynamics of the populations of
the transmon eigenlevels as well as the populations of the
resonators and the waveguides for different values of coupling
g1b between resonator B and |e〉1 ↔ | f 〉1 transition of the first
transmon. In agreement with the earlier qualitative considera-
tions and numerical results, we observe that switching on the
coupling between the first transmon and resonator B leads to
pronounced modification of the emission dynamics compared
to the decoupled case.

VI. PHOTON ENTANGLEMENT

In the course of its evolution, the considered system even-
tually reaches the state when all emission processes are
finished, the transmons have relaxed to their ground states,
and the photons propagate in the waveguides as free excita-
tions. This final state of the system |�fi〉 is given by

|�fi〉 =
∫

dν
∫

dν ′�out
ν,ν ′α

†
νβ

†
ν ′ |∅〉, (21)

with �out
ν,ν ′ being the joint spectral amplitude of the outgoing

photon pair. If the emitted photons are not entangled, their
joint spectral amplitude can be factorized into a product of
single-photon amplitudes�out

ν,ν ′ = φα (ν)φβ (ν ′), while the joint
spectral amplitude of TF entangled photon pair is not fac-
torable �out

ν,ν ′ �= φα (ν)φβ (ν ′). For testing the factorizability of
the joint spectral amplitude of the emitted photons �out

ν,ν ′ , we
perform its Schmidt decomposition [67,68]

�out
ν,ν ′ =

∑
j

√
λ j ϕ j,νϑ j,ν ′ , (22)

where the weights λ j � 0 satisfying the condition
∑

j λ j = 1
are usually referred to as the Schmidt coefficients, and the
single-photon spectral amplitudes ϕ j,ν and ϑ j,ν are called
the Schmidt modes. The latter constitute a complete set of
orthonormal functions obeying the relations

∑
j ζ

∗
j,νζ j,ν ′ =

δ(ν − ν ′) and
∫

dν ζ ∗
j,νζk,ν = δ j,k , where ζ = ϕ or ϑ .

The Schmidt coefficients λ j are determined by solution of
the eigenvalue problem [67]:∫

dν ′ Kϕν,ν ′ ϕ j,ν ′ = λ jϕ j,ν ,

∫
dν ′ Kϑν,ν ′ ϑ j,ν ′ = λ jϑ j,ν , (23)

where the integral kernels Kϕν,ν ′ and Kϑν,ν ′ are defined as

Kϕν,ν ′ =
∫

d�
(
�out
ν,�

)∗
�out
ν ′,� , Kϑν,ν ′ =

∫
d�

(
�out
�,ν

)∗
�out
�,ν ′ .

(24)

The eigenvalue problem in Eq. (23) is treated numeri-
cally using the tools provided by the Mathematica system.
We transform the eigenvalue problem for the integral op-
erators into that for the matrices. For this purpose we
discretize the kernels Kϕν,ν ′ and Kϑν,ν ′ into a uniform N × N
grid on a square domain spanning ±Δω around the resonator
frequencies ωa and ωb, where Δω satisfies the condition∫ ωa+Δω
ωa−Δω dν

∫ ωb+Δω
ωb−Δω dν ′|�out

ν,ν ′ |2 � � with 0 < � < 1. The val-
ues of Kϕν,ν ′ and Kϑν,ν ′ in the grid nodes are computed by
the numerical evaluation of the integrals in Eq. (24) using
the NIntegrate function. The joint spectral amplitude of the
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FIG. 5. Dynamics of the populations of the transmon eigenlevels (upper row), resonator populations (middle row), and waveguide
populations (bottom row). Parameters of the system used for computations are the following: (left column) g1b = 0; (middle column)
g1b/2π = 10 MHz; (right column) g1b/2π = 25 MHz. The rest of the parameters are the same as in Fig. 4. For a better perception of the
numerical results, we supplement the plots for g1b �= 0 (middle and right columns) with the corresponding curves (shown in lower saturation)
for the decoupled case g1b = 0.

outgoing photons is evaluated as �out
ν,ν ′ = Φν,ν ′ (t∞), where

the moment of time t∞ is determined as pαβ (t∞) > 0.999.
Then, we use the Eigenvalues function for determining the
set of eigenvalues { j} for the obtained matrices. A finite
discretization of the bounded domain of photon frequencies
results in (I ≡ ∑N

j=1 j ) < 1, so we make a normaliza-
tion {λ j} = { j}/I to ensure that

∑
j λ j = 1. We set N =

100 and � = 0.99 for all computations. For the system
parameters we use for computations, the extension of the
frequency domain (by setting larger �) and using the finer
grid (by increasing N) has only a minor effect on the evalu-
ated values of the Schmidt coefficients and the entanglement
entropies.

As a measure of entanglement of the emitted photons, we
use the entanglement (von Neumann) entropy Sent, which is
expressed via the Schmidt coefficients as [69]

Sent = −
∑

j

λ j log2 λ j . (25)

The nonzero entanglement entropy Sent > 0 implies that emit-
ted photons are entangled.

Figure 6 aggregates the results of computations demon-
strating the dependence of the entanglement entropy Sent

of the emitted photons on the interrelation between the

transmon-resonator coupling parameters and the photon
leakage rate κ from the resonators to the corresponding
waveguides for the case κ = (κa = κb). Computations reveal
that for g1a < g2b, the entanglement entropy rapidly grows
with the increase of g1b, reaching its maximum Smax

ent for some
value of g1b, then slowly decreasing with the further increase
of g1b. In this regime, faster photon leakage to the waveguides
(i.e., shorter photon lifetimes inside the resonators) leads to
stronger photon entanglement, as illustrated in Fig. 6(g). The
increase of the ratio g1a/g2b eventually leads to the opposite
behavior, when the entanglement weakens with the increase
of the photon leakage rates, which is shown in Fig. 6(h).
Figure 7 demonstrates the results of computations for κa �= κb.
Figure 7(a) shows that for g1a < g2b, stronger entanglement is
achieved for larger values of κa. The crossover to the regime of
g1a > g2b results in the opposite behavior of the entanglement
entropy when stronger entanglement is achieved for the lower
photon leakage rate κa, which is shown in Fig. 7(c). Lower
photon leakage rate κb gives stronger entanglement, but the
dependence of the entanglement entropy on κb is rather weak,
especially for g1a > g2b. Thus, the results of computations
suggest that stronger entanglement of the emitted photons is
achieved by increasing the ratios g2b/g1a and g1b/g2b in the
regime of κa � g1a and κb � g2b.
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FIG. 6. (a)–(f) Show the dependence of the entanglement entropy Sent on g1b for different values of g1a and κ (encoded by the color
gradient), where we set (κa = κb) = κ . Parameters of the system used for computations are the following: (a) g1a/2π = 5 MHz, (b) g1a/2π =
7 MHz, (c) g1a/2π = 10 MHz, (d) g1a/2π = 15 MHz, (e) g1a/2π = 20 MHz, (f) g1a/2π = 30 MHz. (g), (h) Demonstrate the effect of κ
on the maximal value of the entanglement entropy Smax

ent , which can be achieved for the given values of g1a and g2b. Parameters used in (g):
g1a/2π = 5 MHz (blue circles), g1a/2π = 7 MHz (red triangles), g1a/2π = 10 MHz (gray diamonds). Parameters used in (h): g1a/2π =
15 MHz (blue circles), g1a/2π = 20 MHz (red triangles), g1a/2π = 30 MHz (gray diamonds). For all plots, we set g2b/2π = 10 MHz.

Let us elucidate some features of the obtained behavior
of the entanglement entropy using the general considerations
discussed in Sec. II. The relaxation of the first transmon not
only delivers the photon via resonator A to waveguide α but
also triggers the relaxation of the second transmon leading
to the emission of the photon into waveguide β. For gaining
stronger temporal correlations between the emitted photons,
we need the photon to be emitted into the waveguide β shortly
after the emission of the photon into waveguide α triggered
the relaxation of the second transmon. That is attained by
increasing the coupling between the second transmon and res-
onator B, i.e., by increasing the ratio g2b/g1a. The larger ratios
g1b/g2b are required for the efficient inhibition of the second
transmon relaxation until the moment the first transmon de-
cays, delivering a photon to waveguide α. The mechanism of
that inhibition is clarified in the second paragraph of Sec. II.

VII. DISCUSSION AND SUMMARY

Having outlined the scheme and operational principle of
the on-demand source of microwave TF entangled photon

pairs and investigated its performance, let us now briefly
discuss the general idea of how the proposed scheme can be
extended for the generation of multiphoton entangled states.
For this purpose, we consider the setup for the generation of
the three-photon entangled states illustrated in Fig. 8. Com-
pared to the original setup for the generation of photon pairs
shown in Fig. 2, here we added one more resonator (marked as
C) with frequency ωc coupled to the output transmission line
and a third transmon coupled to resonators A and C. Following
the logic of Sec. II, the frequencies ωge

3 and ωe f
3 of |g〉3 ↔ |e〉3

and |e〉3 ↔ | f 〉3 transitions of the third transmon are set that
ω

ge
3 = ωc and ωe f

3 = ωa. The interrelation between the fre-
quencies of the resonators and the transition frequencies of the
transmons is schematically shown in Fig. 8(b). Such a choice
of frequencies enables the resonant excitation exchange be-
tween |g〉3 ↔ |e〉3 transition and resonator C and |e〉3 ↔ | f 〉3

transition and resonator A, while the excitation exchange be-
tween |g〉3 ↔ |e〉3 transition and between resonator A and
|e〉3 ↔ | f 〉3 transition and resonator C is inhibited due to
detuning. The relaxation of the third transmon excited state
|e〉3 decouples |e〉3 ↔ | f 〉3 transition from resonator A, trig-
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FIG. 7. Dependence of Smax
ent on κb for different values of κa: κa/2π = 10 MHz (blue circles), κa/2π = 25 MHz (red triangles), and

κa/2π = 50 MHz (gray diamonds), and g1a: (a) g1a/2π = 5 MHz, (b) g1a/2π = 10 MHz, (c) g1a/2π = 20 MHz. The rest of the system
parameters are the same as in Fig. 6.
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FIG. 8. (a) The variant of extension of the proposed scheme of generation of TF entangled photons: schematics of the potential circuit
QED setup for generation of three-photon entangled states. (b) Scheme illustrating the relationships between the frequencies of the resonators
and the transition frequencies of the transmons in the setup shown in (a).

gering the relaxation of the first transmon excited state |e〉1,
which, in turn, triggers the relaxation of the second transmon.
Thus, one may anticipate that the photons are emitted into the
corresponding waveguides in TF entangled triples.

To summarize, we proposed a feasible scheme for efficient
on-demand generation of pairs of microwave TF entangled
photons propagating in separate waveguides and analyzed
its performance. The design and working parameters of the
considered setup are readily accessible for the state-of-the-
art superconducting circuit QED technologies. Although we
outlined a rather concrete superconducting circuit QED im-
plementation of an on-demand source of microwave TF
entangled photon pairs, we should stress that the general prin-
ciple of operation does not rely on the details of the circuit
QED realization and can be applied to other physical systems.
We focused our analysis on the pulsed on-demand regime of
photon pairs generation. Therefore, the consideration of the
continuous regime of operation is of interest for future work.
Besides, a detailed investigation of the extended schemes (as
shown in Fig. 8) for the generation of multiphoton TF entan-
gled states constitutes a potential research direction as well.
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APPENDIX A: PAIR OF 2LEs COUPLED TO RESONATOR

The paradigmatic system described in the first paragraph
of Sec. II and schematically shown in Fig. 1(a) is modeled by
the Hamiltonian as follows:

H =ωc†c +
2∑

j=1

(ω +! j )σ
+
j σ

−
j +

2∑
j=1

g j (c
†σ−

j + σ+
j c)

+
∫ ∞

0
dν νA†

νAν +
∫

dν f (ν)(A†
νc + c†Aν ).

(A1)

The first three terms in the above Hamiltonian describe the
single-mode resonator with frequency ω coupled to a pair of
2LEs, where ! j stands for the detuning between the frequen-
cies of the jth 2LE and the resonator, parameter gj is the

coupling strength of the resonator to the jth 2LE ( j ∈ {1, 2}).
Operator c (c†) annihilates (creates) a photon in the resonator,
and σ+

j (σ−
j ) rises (lowers) the state of the jth 2LE. The

last pair of terms in the Hamiltonian in Eq. (A1) describes
the waveguide, represented by a bath of independent bosonic
modes, and its coupling to the resonator with strength f (ν).
Operator Aν (A†

ν) annihilates (creates) a photon with frequency
ν propagating in the waveguide.

Now, let us demonstrate that in the single-excitation case,
the paradigmatic system composed of a pair of 2LEs cou-
pled to the resonator, considered in Sec. II and illustrated in
Fig. 1(a), can be equivalently represented as a 2LE coupled to
the V-configuration 3LE. To proceed, we formally represent
the Hamiltonian H given by Eq. (A1) in the eigenbasis of
the 2LE-resonator Hamiltonian HJC. The latter is constituted
by the terms describing the resonator, the first 2LE, and their
interaction in Eq. (A1), which together form the Hamiltonian
of the Jaynes-Cummings (JC) model [70]. The JC system
ground state |G〉 = |0〉r|g〉1 is a state with a vacuum field in
the resonator |0〉r and the first 2LE in the ground state |g〉1.
The excited eigenstates of HJC are the superpositions of the
state |n〉r|g〉1 containing n photons in the resonator with the
ground-state 2LE and the state |n − 1〉r|e〉1 with n − 1 photons
in the resonator and the excited-state 2LE [57,70]:

(|E−
n 〉

|E+
n 〉
)

=
(

cosμn − sinμn

sinμn cosμn

)( |n〉r|g〉1

|n − 1〉r|e〉1

)
,

where

tanμn =
√
 n −!1

 n +!1
,  n =

√
4ng2 +!2

1.

The JC eigenstates |E±
n 〉 correspond to the eigenfrequencies

E±
n = nω + (!1 ± n)/2.

Restricting ourselves to the resonant regime of the 2LE-
resonator coupling (!1 = !2 = 0) and the single-excitation
domain, as considered in Sec. II, we project the system
Hamiltonian H on the lowest eigenstates |G〉 and |E±

1 〉 of
the JC Hamiltonian. Thus, one has H → ΠHΠ , where Π =
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|G〉〈G| +∑
± |E±

1 〉〈E±
1 |, which gives

H =ωσ+
2 σ

−
2 +

∑
±

(ω ± g1)|E±〉〈E±| +
∫ ∞

0
dν νA†

νAν

+ g2√
2

∑
±

(σ+
2 |G〉〈E±| + |E±〉〈G|σ−

2 )

+
∫ ∞

0
dν

f (ν)√
2

∑
±

(A†
ν |G〉〈E±| + |E±〉〈G|Aν ),

where for brevity we dropped the subscripts indicating the
photon number in the notations of JC eigenstates. The above
Hamiltonian describes the 3LE coupled to the 2LE and the
waveguide. The 3LE is constituted by the ground state |G〉
and a pair of excited states |E±〉. The frequency of |G〉 ↔ |E±〉
transition is ω ± g1. The levels of the 3LE are arranged in the
V-type configuration. Each transition of this V3LE is coupled
to the second 2LE with strength g2/

√
2 and to the waveguide

with strength f (ν)/
√

2. This equivalent representation of the
system composed of the resonator resonantly coupled to a pair
of 2LEs is illustrated in Fig. 1(b).

1. Dynamics of the resonator-2LEs system

The waveguide population at time t is given by

Pw(t ) = κ
∫ t

0
dτ 〈c†(τ )c(τ )〉, (A2)

with κ = 2π f 2(ω) being the resonator decay rate into
the waveguide. The averaging in Eq. (A2) goes over
the initial state of the system |ψ0〉 = σ+

2 |0〉 with |0〉 =
|0〉r|g〉1|g〉2 being the vacuum state of the resonator-2LEs
system. In the single-excitation case, the resonator population
〈c†(t )c(t )〉 can be evaluated using the relation 〈c†(t )c(t )〉 =
〈ψ0|c†(t )|0〉〈0|c(t )|ψ0〉. The evolution of the matrix element
〈0|c(t )|ψ0〉 is governed by the set of equations of motion:

∂

∂t

⎛⎝ 〈0|c(t )|ψ0〉
〈0|σ−

1 (t )|ψ0〉
〈0|σ−

2 (t )|ψ0〉

⎞⎠ = −i

⎛⎝ ω̃ g1 g2

g1 ω 0
g2 0 ω

⎞⎠⎛⎝ 〈0|c(t )|ψ0〉
〈0|σ−

1 (t )|ψ0〉
〈0|σ−

2 (t )|ψ0〉

⎞⎠,
where ω̃ = ω − iκ/2.
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FIG. 9. Effect of the 2LEs couplings ratio g1/g2 on the evo-
lution of the waveguide population Pw(t ) in the system shown in
Fig. 1(a). The parameters used for calculations are as follows:
g2/2π = 10 MHz and κ/2π = 2 MHz.

Using the solution of the above set of equations in Eq. (A2),
one obtains

Pw(t ) = g2
2

g2
1 + g2

2

[
1 − F (t ) exp

(
−κ

2
t
)]
, (A3)

with F (t ) given by

F (t ) = 1 + κ sin(Ωt )
κ sin(Ωt ) + 4Ω cos(Ωt )

8Ω2
,

where Ω =
√

g2
1 + g2

2 − (κ/4)2.
Figure 9 shows the dependence of the dynamics of the

waveguide population Pw(t ) on the ratio of the couplings
g1/g2. Calculations demonstrate that the increase of g1/g2

leads to the inhibition of the photon leakage into the waveg-
uide. It follows from Eq. (A3) that Pw(t → ∞) < 1 for g1 �=
0. For g1 � g2, one has Pw(t → ∞) � 1 implying that the
leakage into the waveguide is suppressed and the photon re-
mains trapped within the resonator-2LEs system.

APPENDIX B: DERIVATION OF THE EFFECTIVE HAMILTONIAN

1. Operators in the dressed basis

Using the definition of the unitary operator U given by Eq. (8) along with the Baker-Campbell-Hausdorff formula, one obtains
the following expressions for the resonator photon annihilation operators in the dressed basis:

U†aU ≈
(

1 + λ2
1a

2
Z f e

1

)
a + λ1aσ

e f
1 − λ1aλ1b

2
b†σ

gf
1 , (B1a)

U†bU ≈
(

1 + λ2
1b

2
Zeg

1 + λ2
2b

2
Z f e

2

)
b + λ1bσ

ge
1 + λ2bσ

e f
2 + λ1aλ1b

2
a†σ

gf
1 , (B1b)

where we keep the terms up to the second order in the small parameters λ1a, λ1b, and λ2b. The resonator photon number operators
Na and Nb in the new basis read as

U†Na U ≈ (
1 + λ2

1aZ
f e

1

)
Na + λ1a

(
a†σ

e f
1 + σ f e

1 a
)+ λ2

1aσ
f f

1 − λ1aλ1b

2

(
a†b†σ

gf
1 + σ f g

1 ab
)
, (B2a)
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U†Nb U ≈ (
1 + λ2

1bZ
eg
1 + λ2

2bZ
f e

2

)
Nb + λ1b

(
b†σ

ge
1 + σ eg

1 b
)+ λ2b

(
b†σ

e f
2 + σ f e

2 b
)

+ λ2
1bσ

ee
1 + λ2

2bσ
f f

2 + λ1aλ1b

2

(
a†b†σ

gf
1 + σ f g

1 ab
)+ λ1bλ2b

(
σ

f e
2 σ

ge
1 + σ eg

1 σ
e f
2

)
. (B2b)

In the dressed basis, the transmon ladder operators σ ge
1,2 and σ e f

1,2 acquire the form as follows:

U†σ
ge
1 U ≈

[
1 − λ2

1a

2
Na − λ2

1b

2
(2Nb + 1)

]
σ

ge
1 + λ1bZeg

1 b + λ1aa†σ
gf
1

− λ2
1bσ

eg
1 b2 + λ1aλ1ba†bσ e f

1 + λ1aλ1b

2
σ

f e
1 ab + λ1bλ2b

2
Zeg

1 σ
e f
2 , (B3a)

U†σ
e f
1 U ≈

[
1 − λ2

1a

2
(2Na + 1) − λ2

1b

2
(Nb + 1)

]
σ

e f
1 + λ1aZ f e

1 a − λ1bb†σ
gf
1

+ λ1aλ1b b†a σ ge
1 + λ1aλ1b

2
abσ eg

1 − λ2
1aσ

f e
1 a2 − λ1bλ2b

2
σ

gf
1 σ

f e
2 , (B3b)

U†σ
ge
2 U ≈

(
1 − λ2

2b

2
Nb

)
σ

ge
2 + λ2bb†σ

gf
2 + λ1bλ2b

2
σ

eg
1 σ

gf
2 , (B3c)

U†σ
e f
2 U ≈

[
1 − λ2

2b

2
(2Nb + 1)

]
σ

e f
2 + λ2bZ f e

2 b − λ2
2bσ

f e
2 b2 + λ1bλ2b

2
Z f e

2 σ
ge
1 . (B3d)

For the projection operators on the transmon eigenstates σ ee
1,2 and σ f f

1,2, one has

U†σ ee
1 U ≈ (

1 − λ2
1b

)
σ ee

1 + λ1a
(
a†σ

e f
1 + σ f e

1 a
)− λ1b

(
b†σ

ge
1 + σ eg

1 b
)+ λ2

1aσ
f f

1

+ λ2
1aZ

f e
1 Na − λ2

1bZ
eg
1 Nb − λ1aλ1b

(
a†b†σ

gf
1 + σ f g

1 ab
)− λ1bλ2b

2

(
σ

f e
2 σ

ge
1 + σ eg

1 σ
e f
2

)
, (B4a)

U†σ
f f

1 U ≈ (
1 − λ2

1a

)
σ

f f
1 − λ1a

(
a†σ

e f
1 + σ f e

1 a
)− λ2

1aZ
f e

1 Na + λ1aλ1b

2

(
a†b†σ

gf
1 + σ f g

1 ab
)
, (B4b)

U†σ ee
2 U ≈ σ ee

2 + λ2b
[
b†σ

e f
2 + σ f e

2 b
]+ λ2

2bZ
f e

2 Nb + λ2
2bσ

f f
2 + λ1bλ2b

2

(
σ

f e
2 σ

ge
1 + σ eg

1 σ
e f
2

)
, (B4c)

U†σ
f f

2 U ≈ (1 − λ2
2b)σ f f

2 − λ2b
(
σ

f e
2 b + b†σ

e f
2

)− λ2
2bZ

f e
2 Nb − λ1bλ2b

2

(
σ

f e
2 σ

ge
1 + σ eg

1 σ
e f
2

)
. (B4d)

Using Eqs. (B1)–(B4) and keeping the terms up to the first order in small parameters λ1a, λ1b, and λ2b, one arrives at the
Hamiltonian given by Eq. (9).

2. Role of Purcell filters

Note that in the dressed basis the Hamiltonian of the resonator-waveguide couplings Hr-w acquires the form U†Hr-wU ≈
Hr-w + Ht-w, where Hr-w is given by Eq. (7), and the term Ht-w reads as

Ht-w = λ1a

∫ ∞

0
dν fa(ν)

(
α†
νσ

e f
1 + σ f e

1 αν
)+ λ1b

∫ ∞

0
dν fb(ν)

(
β†
ν σ

ge
1 + σ eg

1 βν
)+ λ2b

∫ ∞

0
dν fb(ν)

(
β†
ν σ

e f
2 + σ f e

2 βν
)
. (B5)

The first pair of terms in Ht-w describe the coupling between |e〉1 ↔ | f 〉1 and |g〉1 ↔ |e〉1 transitions of the first transmon and
waveguides α and β, respectively. The third term in Eq. (B5) describes the direct coupling between |e〉2 ↔ | f 〉2 transition of the
second transmon and waveguide β leading to the relaxation of the state | f 〉2. These direct couplings of the transmon transitions
to the waveguides lead to that both excitations can be emitted into one waveguide instead of being emitted into the separate
waveguides. For mitigating this superfluous emission processes, we use the Purcell filters. In the proposed setup (see Fig. 2), the
latter are represented by the resonators side coupled to the output waveguides. The frequencies of these resonators correspond
to the dressed frequencies ω̄ge

1 and ω̄e f
1 of |g〉1 ↔ |e〉1 and |e〉1 ↔ | f 〉1 transitions. The filter resonators reject the radiation in

the narrow bands of frequencies in the vicinity of ω̄ge
1 and ω̄e f

1 and transmit the radiation with frequencies outside these bands
[53]. Thus, the Purcell filters inhibit the unwanted emission channels of the first transmon described by the first two terms in the
Hamiltonian (B5). As we demonstrate in Sec. V, no more than one photon could reside in either of the resonators, so |e〉2 → | f 〉2

transition of the second transmon is not involved in the dynamics of the system, and | f 〉2 level is not excited. Thus, the Purcell
filter cutting the emission from this transition into waveguide β is not required. Since the processes of direct relaxation of
transmons into the waveguides are essentially suppressed by the Purcell filters and occur on the timescales much longer than the
photon emission times, for simplicity, in the Hamiltonian Heff , we drop the term Ht-w describing these processes.

052420-12



GENERATION OF TIME-FREQUENCY ENTANGLED PHOTON … PHYSICAL REVIEW A 106, 052420 (2022)

APPENDIX C: DERIVATION OF EVOLUTION EQUATIONS

For deriving Eq. (15) governing the evolution of the probability amplitudes, we follow the lines of Appendix B in Ref. [65].
For this purpose, we start with the derivation of the equations of motion for the operators. The effective Hamiltonian (9) generates
the equations of motion for the waveguide variables αν (t ) and βν (t ) as follows:

∂

∂t
αν (t ) = −iναν (t ) − i fa(ν)a(t ), (C1a)

∂

∂t
βν (t ) = −iνβν (t ) − i fb(ν)b(t ), (C1b)

with the formal solutions written as

αν (t ) = α̃ν (t ) − i fa(ν)
∫ t

0
dτ e−iν(t−τ )a(τ ), (C2a)

βν (t ) = β̃ν (t ) − i fb(ν)
∫ t

0
dτ e−iν(t−τ )b(τ ), (C2b)

where α̃ν (t ) = αν (0)e−iνt and β̃ν (t ) = βν (0)e−iνt stand for the annihilation operators of a photon propagating as a free excitation
in waveguide α and β, respectively.

The equation of motion for the annihilation operator a(t ) of the photon in resonator A reads as

∂

∂t
a(t ) = −i

[
ωa + χ1aZ f e

1 (t )
]
a(t ) − ig1aσ

ge
1 (t ) − iϒb†(t )σ gf

1 (t ) − i
∫ ∞

0
dν fa(ν)αν (t ). (C3)

Plugging Eq. (C2a) into the last term on the right-hand side of the above equation gives∫ ∞

0
dν fa(ν)αν (t ) = αin(t ) − i

∫ t

0
dτ
∫ ∞

0
dν f 2

a (ν)e−iν(t−τ )a(τ ), (C4)

where αin(t ) = ∫∞
0 dν fa(ν )̃αν (t ). Using Eq. (C3) and that |χ1a| � ωa, one can represent the operator a(t ) as a(t ) = a(t )e−iωat ,

where a(t ) stands for the slowly varying part of a(t ). With such a representation, one can notice that only the frequencies in
the vicinity of ωa contribute significantly to the integral over τ on the right-hand side of Eq. (C4). Thus, one can extend the
lower bound of integration over ν to −∞, and neglect the frequency dependence of the coupling parameter fa(ν) assuming that
fa(ν) ≈ fa(ωa). Using these approximations, one obtains∫ ∞

0
dν fa(ν)αν (t ) ≈ αin(t ) − i

κa

2
a(t ), κa = 2π f 2

a (ωa). (C5)

Substituting this result into Eq. (C3) yields

∂

∂t
a(t ) = −i

[
ωa − i

κa

2
+ χ1aZ f e

1 (t )
]
a(t ) − ig1aσ

ge
1 (t ) − iϒb†σ

gf
1 (t ) − iαin(t ). (C6)

The equation of motion for the operator b(t ) annihilating a photon in the resonator B is obtained similarly to Eq. (C6) and reads
as

∂

∂t
b(t ) = −i

[
ωb − i

κb

2
+ χ1bZeg

1 (t ) + χ2bZ f e
2 (t )

]
b(t ) − ig1bσ

e f
1 (t ) − ig2bσ

ge
2 (t ) − iϒa†(t )σ gf

1 (t ) − iβin(t ), (C7)

where βin(t ) = ∫∞
0 dν fb(ν)β̃ν (t ). For the derivation of Eq. (C7), we used the approximate relation∫ ∞

0
dν fb(ν)βν (t ) ≈ βin(t ) − i

κb

2
b(t ), κb = 2π f 2

b (ωb), (C8)

which is obtained by analogy to Eq. (C5).
The equations of motion for the required ladder operators of the transmons read as follows:

∂

∂t
σ

ge
1 (t ) = −i

[
ω

ge
1 + χ1b − χ1aNa(t ) + 2χ1bNb(t )

]
σ

ge
1 (t ) + ig1aZeg

1 (t )a(t ) − ig1bb†(t )σ gf
1 (t ) + iϒσ f e

1 (t )a(t )b(t ), (C9a)

∂

∂t
σ

gf
1 (t ) = −i

[
ω

ge
1 + ωe f

1 + χ1a
]
σ

gf
1 (t ) − ig1aσ

e f
1 (t )a − ig1bσ

ge
1 (t )b(t ) + iϒZ f g

1 (t )a(t )b(t ), (C9b)

∂

∂t
σ

ge
2 (t ) = −i

[
ω

ge
2 − χ2bNb(t )

]
σ

ge
2 (t ) + ig2bZeg

2 (t )b(t ). (C9c)

Using Eq. (13), one can express Φν,ν ′ (t ) as Φν,ν ′ (t ) = 〈∅|ανβν ′ |Ψ (t )〉. Then, we use the standard quantum-mechanical
relations |Ψ (t )〉 = e−iHeff t |Ψ (0)〉 and O(t ) = eiHeff tOe−iHeff t , where O and O(t ) denote the operators in the Schrödinger and
Heisenberg representations, correspondingly. This leads us to the expression Φν,ν ′ (t ) = 〈∅|αν (t )βν ′ (t )|�in〉, where we used that
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|Ψ (0)〉 ≡ |�in〉 and e−iHeff t |∅〉 = |∅〉. Using such an approach for the rest of the probability amplitudes entering the state vector
given by Eq. (13), one obtains

μ(t ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φν,ν ′ (t )

Ξαν (t )

Ξβν (t )

Θαν (t )

Θβν (t )

R(t )

S(t )

W a(t )

W b(t )

X (t )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 〈
∅

∣∣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αν (t )βν ′ (t )

αν (t )b(t )

βν (t )a(t )

αν (t )σ ge
2 (t )

βν (t )σ ge
2 (t )

a(t )b(t )

σ
gf
1 (t )

a(t )σ ge
2 (t )

b(t )σ ge
1 (t )

σ
ge
1 (t )σ ge

2 (t )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣�in
〉
. (C10)

Then, using the equations of motion for the corresponding operators derived above, we derive the set of evolution equations for
the matrix elements standing on the right-hand side of Eq. (C10). This leads us to the set of evolution equations for the probability
amplitudes given by Eq. (15), where we used the narrow-band approximation assuming that fa(ν) ≈ fa(ωa) and fb(ν) ≈ fb(ωb).
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