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A theoretical scheme based on the nonadiabatic geometric quantum computation (NGQC) is proposed to
realize quantum cloning in the Rydberg atom system. In contrast to previous schemes, the present one utilizes the
NGQC to construct the clone machine and thus is more robust against control errors. Meanwhile, to implement
the desired cloning framework in the quantum clone machine, the scheme reported by Zhu and Ye [M.-Z.
Zhu and L. Ye, Phys. Rev. A 91, 042319 (2015)] based on cavity QED requires a series of single(two)-qubit
operations. For the present NGQC-based scheme, through modulating the rotation angle of geometric operations,
we can greatly simplify the process of realizing the cloning framework. In addition, through adjusting the
relevant parameters, the scheme can perform symmetrical (asymmetrical) universal cloning, optimal symmetrical
(asymmetrical) phase-covariant quantum cloning, and optimal symmetrical (asymmetrical) real-state quantum
cloning. The present attempt to optimize quantum cloning using geometric quantum control in Rydberg atoms
provides a path to robust and simplified quantum cloning, which is meaningful for experiments and has
implications for quantum cloning in other quantum systems as well.
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I. INTRODUCTION

As restricted by the no-cloning theorem developed by
Wootters and Zurek [1], under the limitation of the linearity
and superposition of quantum mechanics, the ideal repli-
cation of arbitrary unknown quantum states is impossible.
Despite the fact that a perfect copy cannot be reached, ap-
proximate quantum cloning has attracted extensive attention
since the optimal symmetrical universal quantum cloning
machine (UQCM), which clones the arbitrary input states
whose amplitude and phase are both unknown was proposed
by Bužek and Hillery [2] and the optimality was proved in
Refs. [3–5]. In 2011, Wang et al. proposed a unified way
to realize a UQCM [6] in which the cloning procession uses
symmetrical projection and this would reduce the difficulty
of implementation. Compared with the UQCM, the phase-
covariant cloning machine (PCCM) [7–16], which clones the
input states with the amplitude is known and the phase is un-
known and the real-state cloning machine (RSCM) [13,17,18]
with the phase is known and the amplitude is unknown,
can provide higher fidelities. The investigation of quantum
cloning provides insight into other fundamental theories of
quantum mechanics, e.g., the no-signal theorem [19,20] and
no-broadcasting theorem [21,22]. Additionally, we can use
quantum cloning to practically attack the quantum key dis-
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tribution (QKD) protocol or analyze the security of the QKD
protocol [23–27]. According to the symmetry, there are two
types of approximate quantum cloning machines: symmetrical
quantum cloning machines [28] and asymmetrical quantum
cloning machines [17,29–34]. Recently, due to its theoretical
and practical value, quantum cloning has attracted numerous
theoretical and experimental endeavors in various physical
systems [35–39]. In Ref. [18], different types of quantum
cloning machines were implemented by employing the inter-
action between electron-spin and optical coherent pulse. They
have the advantage that the coefficients of the three-qubit
entangled state for the cloning machine framework are only
the products of two trigonometric functions, so the cloning
machine with different types can be readily implemented by
adjusting the related parameters. However, the cloning frame-
work needs to be prepared by one U23 operation and three
controlled-NOT (CNOT) operations in which the implementa-
tion of the U23 operation and the CNOT operations requires a
series of single(two)-qubit operations, which may increase the
impact of decoherence.

The Rydberg atom possesses a long-lived highly excited
state and long-range interaction, which makes it a particularly
attractive physical platform for quantum information
processing [40]. Within the blockade radius, when atoms
are exited to high Rydberg states, only one atom can be
excited at most, which is called the Rydberg blockade.
This effect was widely studied theoretically and observed
experimentally [41,42]. The pioneering work of the fast
quantum gate operation based on the Rydberg blockade
mechanism was proposed by Jaksch et al. [43]; after
that many other applications were also proposed, such as
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quantum entangled state preparation [44–47], quantum
computation [48–51], quantum algorithms [52–54], and
quantum simulators [55–58]. However, the realization of the
quantum cloning in Rydberg atoms has not been well studied.

With the continuous development of quantum computa-
tion, nonadiabatic geometric quantum computation (NGQC)
[59,60] based on the non-Abelian phase has attracted exten-
sive attention due to its advantages of a robust geometric
phase for some parameter fluctuations and having no need to
meet adiabatic conditions. Since then, various theoretical and
experimental schemes of NGQC based on non-Abelian theory
were proposed [61–65], such as single-loop [66,67], single-
shot-shaped [61,68–71], and dynamic decoupling [62,72].
Here we use the optimized NGQC implemented in general
cases [61] to ensure flexibility and fault tolerance. Since the
first nonadiabatic geometric quantum computation scheme
based on the Rydberg atom proposed in Ref. [73], geomet-
ric gates have been realized based on different methods in
the Rydberg atom. For instance, in Ref. [74], an implemen-
tation scheme of single- and two-qubit geometric gates via
the nonadiabatic noncyclic non-Abelian geometric phase was
proposed. In Ref. [75], a scheme to realize a three-qubit
controlled gate based on the time-optimized nonadiabatic
holonomic method in one step in the Rydberg atom was
proposed. These schemes all provided ideas for implementing
geometric quantum computation in Rydberg atoms.

In this paper, based on the optimized NGQC in the Rydberg
atom system, we implement geometric gates that eliminate the
accumulation of dynamic phases as a whole, which ensures
the flexibility of the scheme, and on this basis, we propose
a scheme to realize 1 → 2 optimal symmetric (asymmetric)
UQCM [2,30,34], optimal symmetric (asymmetric) PCCM
[14,15], optimal symmetric (asymmetric) RSCM [7,17], and
optimal 1 → 3 symmetric economical RSCM (SERSCM)
[9] with Rydberg atoms in which “1 → 2” means one input
qubit and two copied output qubits, “1 → 3” means one
input qubit and three copied output qubits, and “economical”
means no auxiliary state is required. Based on the optimized
NGQC scheme, the U23 and the CNOT operations required to
implement the quantum cloning framework [18] are realized
directly, respectively, which not only enhances the robustness
of the scheme to control errors and decoherence, but also
greatly simplifies the operational steps of the quantum
cloning scheme and offers the possibility of experimental
implementation.

The structure of the paper is as follows. In Sec. II, we
propose to realize the optimized single- and two-qubit NGQC
gates in Rydberg atoms. In Sec. III, we show how to imple-
ment different types of quantum cloning machines based on
the proposed gates and plot the the analytical values of the fi-
delities for 1 → 2 asymmetric UQCM and PCCM. In Sec. IV,
we discuss the dissipation effects caused by the spontaneous
emission of atoms and the influence of environment-induced
quasistatic noise on fidelity.

II. RYDBERG GEOMETRIC QUANTUM GATES

A. Arbitrary single-qubit geometric gate
based on Rydberg atom

We consider a single Rydberg atom which consists of two
hyperfine-Zeeman ground states |0〉, |1〉, and a Rydberg state

|r〉. We use the resonance control field with Rabi frequency
�0(t )eiϕ0 [�1(t )eiϕ1 ] to drive the transition |0〉 → |r〉(|1〉 →
|r〉) in which ϕ0 and ϕ1 are time-independent phases. The
following Hamiltonian of the single Rydberg atom coupled by
an external laser field in the interaction picture can be obtained
by the rotating-wave approximation (h̄ = 1):

H = 1

2
[�0(t )|0〉〈r|eiϕ0 + �1(t )|1〉〈r|eiϕ1 ] + H.c. (1)

To realize the nonadiabatic geometric gate, we set � =√
�2

0 + �2
1, tan(ξ/2) = −�0/�1, and ϕ = ϕ0 − ϕ1 with ξ

and ϕ the time-independent parameters. Equation (1) would
be simplified as H = 1

2�(t )eiϕ1 |b〉〈r| + H.c. in which we set
the bright state |b〉 = sin(ξ/2)eiϕ|0〉 − cos(ξ/2)|1〉 and the
dark state |d〉 = cos(ξ/2)|0〉 + sin(ξ/2)e−iϕ |1〉. By the re-
quirement that the Hamiltonian H satisfies the Schrödinger
equation i∂t |�(t )〉 = H |�(t )〉 to inversely engineer the driv-
ing Hamiltonian [76], |�(t )〉 in the subspace {|b〉, |r〉} could
be set as

|�(t )〉 = e−i f (t )/2

(
cos �(t )

2 e−iα(t )/2

sin �(t )
2 eiα(t )/2

)
, (2)

in which �(t ), α(t ) are two time-dependent angles and f (t )
is a parameterized phase, which will be determined below. In-
serting Eqs. (1) and (2) into the Schrödinger equation, we can
obtain the following constraint relations of the parameters:

�̇(t ) = −�(t ) sin[α(t ) + ϕ1],

α̇(t ) = −�(t ) cot �(t ) cos[α(t ) + ϕ1],

ḟ (t ) = −α̇(t )/ cos �(t ). (3)

That is, when the constraints of the parameters in Eq. (3) are
satisfied, the system will evolve along with the state |�(t )〉.
To construct arbitrary geometric quantum gates based on a
single-loop evolution in the computational basis {|0〉, |1〉},
�(t ) and ϕ1 of the Hamiltonian can be inversely determined
from Eq. (3) as follows:

ϕ1 = arctan[�̇(t ) cot �(t )/α̇(t )] − α(t ),

�(t ) = −�̇(t )/ sin[α(t ) + ϕ1], (4)

and the boundary condition cos �(0) = cos �(τ ) = 1 needs
to be satisfied to achieve a cyclic evolution where τ is the
total operation time. A set of functions of �,α, and f can
be selected for the cyclic boundary condition and constraints
of Eq. (3), one simple choice is to set � = π sin2(πt/τ ) to
satisfy the cyclic evolution condition. Moreover, to ensure
that the full phase of the cyclic evolution has pure geometric
properties, the control pulses and the state |�(t )〉 are required
to satisfy the following condition:∫ τ

0
〈�(t )|H (t )|�(t )〉dt = 0. (5)

To satisfy the condition in Eq. (5), we consider divid-
ing the physical procedure into two time intervals. In the
first interval t ∈ [0, τ/2], we set f = [2� − sin(2�)]/4, α =
− ∫

ḟ cos �dt , the evolution state will be spanned in the com-
putation basis {|0〉, |1〉}. Thus, the corresponding evolution
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FIG. 1. Schematic of atomic levels and steps for constructing the
nontrivial two-qubit geometric gate. In the 87Rb atom, |0〉 and |1〉
are two hyperfine-Zeeman ground states and |r〉 is the Rydberg state.
The transition |0〉c → |r〉c of the control atom is resonantly coupled
to external laser with Rabi frequency �ceiϕc , while the transitions
|0〉t → |r〉t (|1〉t → |r〉t ) of target atom are induced by the external
lasers with Rabi frequency �0(t )eiϕ0 [�1(t )eiϕ1 ].

operator can be written as

U1(τ/2, 0) = |d〉〈d| + |�(τ/2)〉〈�(0)|
= |d〉〈d| + eiγ1 |r〉〈b|. (6)

In the second interval t ∈ [τ/2, τ ], we set f = [2� −
sin(2�)]/4, α = − ∫

ḟ cos �dt − γ in which γ is an arbi-
trary constant. The resulting evolution operator is

U2(τ, τ/2) = |d〉〈d| + |�(τ )〉〈�(τ/2)|
= |d〉〈d| + eiγ2 |b〉〈r|. (7)

Thus, the final evolution operator is U (τ, 0) = |d〉〈d| +
�(τ )〉〈�(0)| = |d〉〈d| + ei(γ1+γ2 )|b〉〈b|, and after completing
the systematic evolution, the dynamical phase can be elim-
inated by the mutation of the angle α in t = τ/2, thus, we
can obtain the arbitrary single-qubit Rydberg gate with pure
geometric properties in the computational basis {|0〉, |1〉}

U (γ , ξ, ϕ) = |d〉〈d| + eiγ |b〉〈b|

= ei γ

2

(
cos γ

2 − i cos ξ sin γ

2 −ieiϕ sin ξ sin γ

2−ie−iϕ sin ξ sin γ

2 cos γ

2 + i cos ξ sin γ

2

)

= ei γ

2 e−i γ

2 n·σ, (8)

in which γ = γ1 + γ2, σ = (σx, σy, σz ) are standard Pauli
matrices, n = (sin ξ cos ϕ,− sin ξ sin ϕ, cos ξ ), and the evo-
lution operator U (γ , ξ, ϕ) rotates around the axis n by
an angle γ . For instance, when γ = π, ξ = π/4, ϕ = 0, U
should be a Hadamard gate, while γ = π, ξ = π/2, ϕ = 0,
U becomes a geometric NOT gate based on the Rydberg atom.

B. Nontrivial two-qubit geometric gate

The model for preparing the nontrivial two-qubit geomet-
ric gate is shown in Fig. 1. There are two Rydberg atoms
which are identical to the atom that constructs the single-qubit
geometric gate. Each atom possesses two hyperfine-Zeeman
ground states |0〉, |1〉, and one Rydberg state |r〉. The inter-
action Hamiltonian between the two Rydberg atoms is Hr =
V |rr〉〈rr| in which V is the van der Waals (vdW) interac-
tion strength. |0〉c (|1〉c) and |0〉t (|1〉t ) are coupled to |r〉c

and |r〉t with Rabi frequencies �0c(t )eiϕ0c [�1c(t )eiϕ1c ] and

�0t (t )eiϕ0t [�1t (t )eiϕ1t ], respectively, in which ϕ0c, ϕ1c, ϕ0t ,
and ϕ1t are time-independent laser phases. The subscript “c”
(“t”) denotes the control (target) atom. The parameters of
the target atom are the same as those of the single Ryd-
berg atom in the single-qubit gate of Sec. II A, i.e., �0t (t ) =
�0(t ), �1t (t ) = �1(t ), ϕ0t = ϕ0, ϕ1t = ϕ1, � =

√
�2

0 + �2
1 ,

tan ξ/2 = −�0/�1, and ϕ = ϕ0 − ϕ1. Thus, the Hamiltonian
of the control and target atoms could be described by Eq. (1).

Next, as presented in Fig. 1, we show the construction
method of the two-qubit geometric gate in the following three
steps.

Step (i). We let �0c = �c and simplify �1c = 0, ϕ0c = ϕc.
Under the condition, the Hamiltonian of the control atom is
simplified as

Hc = 1

2
�c(t )|0〉c〈r|eiϕc + H.c., (9)

if we still set the same |�(t )〉 as in Eq. (2). Inserting the
|�(t )〉 and the Hamiltonian of Eq. (9) into the Schrödinger
equation, we will obtain the same constraints as Eq. (4), i.e.,
ϕc = arctan(�̇c cot �c/α̇c) − αc, �c = −�̇c/ sin(αc + ϕc).

Then we turn on the external laser acting on the con-
trol atom. The evolution operation can be written as U1 =
|1〉c〈1| + eiγ1c |r〉c〈0|. If the control atom is initially in the state
|0〉c, at t = τ/2, the control atom will be excited to |r〉c.

Step (ii). Carry out the single-qubit geometric operations
on the target atom as shown in Sec. II A. The process is
divided into two cases. For the target atom, one case is that,
if the initial state of the control atom is |1〉c, it should not be
excited to |r〉c after step (i). The same unitary operator Ut =
ei γt

2 e−i γt
2 n·σ as in Eq. (8) will be achieved for the target atom in

which n = (sin ξ cos ϕ,− sin ξ sin ϕ, cos ξ ). The other case is
that, if the initial state of the control atom is |0〉c, it should be
excited to |r〉c after step (i) and the target atom would perform
nothing due to the Rydberg blockade effect where the condi-
tion V � � is satisfied. After the first two steps, we can obtain
the evolution operator U2 = |1〉c〈1| ⊗ Ut + |r〉c〈r| ⊗ It .

Step (iii). Turn on the external laser acting on the control
atom to perform the same operation as in Sec. II A; |r〉c is
deexcited to |0〉c after the time τ/2. The evolution operation
is described as U3 = |1〉c〈1| + eiγ2c |0〉c〈r|.

Here we select the function of the parameters of the control
and target atoms as

�c =
{
π sin2

(
πt
τ

)
, 0 � t � τ/2,

π sin2
(

π (t−τ )
τ

)
, 3τ/2 � t � 2τ,

αc =
{− ∫

ḟc cos �cdt, 0 � t � τ/2,

− ∫
ḟc cos �cdt − γc, 3τ/2 � t � 2τ,

�t =
{
π sin2

(
π (t−τ/2)

τ

)
, τ/2 � t � τ,

π sin2
(

π (t−τ/2)
τ

)
, τ � t � 3τ/2,

αt =
{− ∫

ḟt cos �t dt, τ/2 � t � τ,

− ∫
ḟt cos �t dt − γt , τ � t � 3τ/2,

(10)

and fc(t ) = {2�c(t ) − sin[2�c(t )]}/4. After these three
steps, the final nontrivial two-qubit geometric gate is
U = U3U2U1 = |1〉c〈1| ⊗ Ut + eiγc |0〉c〈0| ⊗ It in which γc =
γ1c + γ2c, Ut = ei γt

2 e−i γt
2 n·σ . With the choice of γc = 0 and

γt = π , the nontrivial two-qubit geometric gate in the
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| ⟩Ψ a1
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| ⟩Ψ a2

| ⟩Ψ a3

FIG. 2. Graphical representation of cloning machine circuit. The
green dotted rectangle represents the controlled arbitrary nonadia-
batic geometric quantum gate U23, in which the green solid ball is the
control qubit. The red dashed rectangle indicates three CNOT gates
P12, P31, and P23, in which • and ◦ denote control qubit and target
qubit, respectively. |�〉in

a1
, |�〉a2 , and |�〉a3 are the initial states of

three Rydberg atoms.

computation basis {|00〉, |01〉, |10〉, |11〉} can be simplified as

U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos ξ sin ξeiϕ

0 0 sin ξe−iϕ − cos ξ

⎞
⎟⎟⎠. (11)

The pure geometric properties of the two-qubit gate are
still valid. First, the same as in the process of Sec. II A, the
evolution of the target atom in step (ii) is purely geometric.
Second, although they are not satisfied for the control atom
in steps (i) or (iii), the cyclic evolution condition and the
condition that accumulates the dynamic phase being zero still
hold up when combining steps (i) and (iii) as a whole. In
Sec. III, we discuss how to construct the cloning framework
in Ref. [18] based on the unitary operation in Eq. (11).

III. IMPLEMENTATION OF QUANTUM CLONING
MACHINE

In this section, the specific implementation process for dif-
ferent types of quantum cloning based on controlled two-qubit
geometric quantum gates obtained in the previous section is
described. The circuit for the realization of the cloning quan-
tum state is demonstrated in Fig. 2.

Qubit a1 (the state of atom 1) to be cloned is prepared in
the state |�〉in

a1
,

|�〉in
a1

= cos
θ

2
|0〉1 + eiφ sin

θ

2
|1〉1, (12)

in which θ ∈ [0, π ] and φ ∈ [0, 2π ]. Initially, the states of
atoms 2 and 3 (corresponding to qubits a2 and a3) are |�〉a2

and |�〉a3 , respectively,

|�〉a2 = cos θ1|0〉2 + sin θ1|1〉2, (13)

|�〉a3 = cos θ2|0〉3 + sin θ2|1〉3. (14)

Let us consider the preparation process. Firstly perform
the controlled arbitrary nonadiabatic geometric quantum gate

Eq. (11) (with the choice of ϕ = 0 and for simplicity we let
ξ = θ3) on qubits a2 and a3, that is to say, in the computational
basis {|00〉23, |01〉23, |10〉23, |11〉23},

U23 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ3 sin θ3

0 0 sin θ3 − cos θ3

⎞
⎟⎠. (15)

As shown in the green rectangle of the quantum circuit
diagram in Fig. 2, after operating U23 on the qubits a2 and
a3, the following evolution can be obtained [18]:

|�〉23 = U23|�〉a2 ⊗ |�〉a3

= P1|00〉23 + P2|01〉23

+P3|10〉23 + P4|11〉23, (16)

in which the coefficients Pi (i = 1, 2, 3, 4) are

P1 = cos θ1 cos θ2,

P2 = cos θ1 sin θ2,

P3 = sin θ1 cos(θ3 − θ2),

P4 = sin θ1 sin(θ3 − θ2). (17)

Accordingly, the system state is

|�〉a1a2a3 = |�〉in
a1

⊗ |�〉23

= cos
θ

2
(P1|000〉 + P2|001〉 + p3|010〉

+P4|011〉) + eiφ sin
θ

2
(P1|100〉

+P2|101〉 + P3|110〉 + P4|111〉). (18)

Based on Eq. (11), with the choice of ξ = π/2, ϕ = 0, the
CNOT gate can be constructed. Then we perform three CNOT

operations P23, P31, and P12 on |�〉a1a2a3 , as shown in the red
rectangle of the quantum circuit diagram in Fig. 2. We can
obtain the following transformation:

|�〉123 = P23P31P12|�〉a1a2a3

= cos
θ

2
[P1|000〉 + (P3|01〉 + P2|10〉)|1〉

+P4|110〉] + eiφ sin
θ

2
[P1|111〉 + (P3|10〉

+P2|01〉)|0〉 + P4|001〉]. (19)

The cloning machine with different types can be implemented
in the framework Eq. (19) by properly adjusting the rotated
angle θi (i = 1, 2, 3).

After the cloning stage, the reduced density operators of
qubits a1, a2, and a3 are given as

ρout
1 = Tra2a3 (|�〉123〈�|) = �4

i=1|�i〉a1〈�i|,
ρout

2 = Tra1a3 (|�〉123〈�|) = �4
i=1|�i〉a2〈�i|,

ρout
3 = Tra1a2 (|�〉123〈�|) = �4

i=1|�i〉a3〈�i|, (20)

where

|�m∓1〉a1 = cos
θ

2
Pm∓1|0〉1 + eiφ sin

θ

2
Pm±1|1〉1,
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|� j+l〉a2 = cos
θ

2
Pj+l |0〉2 + eiφ sin

θ

2
Pj̄+l |1〉2,

|�p+l〉a3 = cos
θ

2
Pp+l |0〉3 + eiφ sin

θ

2
Pp̄+l̄ |1〉3,

m = 2, 3; j = 1, 2; l = 0, 2; p = 1, 2. (21)

In Eq. (21), the value of { j̄, l̄, p̄} is opposite to { j, l, p}. For
instance, j̄ takes 2 when j takes 1. The corresponding fidelity
of ρ

(out)
i (i = 1, 2, 3) and |�〉(in)

a1
can be described as

F1 = (in)
a1

〈�|ρ (out)
1 |�〉(in)

a1

= P2
1 + P2

3 + sin2 θ

2

[
P2

2 + P2
4 − (P1 − P3)2

+(e2iφ + e−2iφ )P2P4
]
, (22)

and

F2 = (in)
a1

〈�|ρ (out)
2 |�〉(in)

a1

= P2
1 + P2

2 + sin2 θ

2

[
P2

3 + P2
4 − (P1 − P2)2

+(e2iφ + e−2iφ )P3P4
]
, (23)

and

F3 = (in)
a1

〈�|ρ (out)
3 |�〉(in)

a1

= P2
1 + P2

3 + sin2 θ

2

[
P2

3 + P2
2 − (P1 − P4)2

+(e2iφ + e−2iφ )P2P3
]
. (24)

Then, the implementation methods for different types of
cloning machines based on the framework in Eq. (19) are
described in detail.

A. Implementation of 1 → 2 UQCM

To realize 1 → 2 UQCM, the fidelities of Eqs. (22)
and (23) must be independent of φ and θ and the follow-
ing conditions must be satisfied: P4 = 0 and P1 = P2 + P3.
Accordingly, the three rotated angles are in the following
relations: θ2 = θ3 and sin θ2 + tan θ1 = cos θ2. Combiningthe
above conditions and the unitary transformation in proto-
col [34], the transformation of optimal 1 → 2 asymmetrical
UQCM (AUQCM) of our scheme can be written as

UAUQCM|�〉(in)
a1

|�〉a2 |�〉a3

= cos θ
2√

1 + p2 + q2
[|000〉 + (p|01〉 + q|10〉)|1〉]

+ eiφ sin θ
2√

1 + p2 + q2
[|111〉 + (p|10〉 + q|01〉)|0〉], (25)

where 1/
√

1 + p2 + q2 = cos θ1 cos θ2, p = tan θ1/ cos θ2,
and q = tan θ2. Under these constraints, the ranges of
the rotated angles θ1 and θ2 are changed to θ1 ∈
[0, arctan

√
(
√

5 − 1)/
√

2], θ2 ∈ [0, π/4]. The fidelities of
the two clones of AUCQM can be rewritten as

F1 = 1 + p2

1 + p2 + q2
, F2 = 1 + q2

1 + p2 + q2
. (26)

FIG. 3. (a) Fidelity F1 of 1 → 2 AUQCM as function of
θ1 and θ2, θ1 ∈ [0, arctan

√
(
√

5 − 1)/
√

2], θ2 ∈ [0, π/4]. (b) Fi-
delity F2 of 1 → 2 AUQCM as function of θ1 and θ2, θ1 ∈
[0, arctan

√
(
√

5 − 1)/
√

2], θ2 ∈ [0, π/4]. F1 and F2 are the two
analytical fidelities of 1 → 2 AUQCM in Eq. (26).

For 1 → 2 AUQCM, we plot the analytic diagram
of Eq. (26) shown in Figs. 3(a) and 3(b) under these

limitations θ1 ∈ [0, arctan
√

(
√

5 − 1)/
√

2], θ2 ∈ [0, π/4].

When θ1 = arctan(1/
√

5) and θ2 = arctan(1/2), the corre-
sponding fidelites F1 and F2 of SUQCM are 5/6.

If the rotated angles are chosen as θ1 ≡ arctan 1/
√

5 and
θ2 ≡ arctan 1/2, accordingly, p = q = 1/2 and F1 = F2 =
5/6 ≈ 0.8333, the optimal AUQCM can be transformed to
optimal symmetrical UQCM (SUQCM)

USUQCM|�〉(in)
a1

|�〉a2 |�〉a3

= cos
θ

2

[√
2

3
|000〉 +

√
1

6
(|01〉 + |10〉)|1〉

]

+ eiφ sin
θ

2

[√
2

3
|111〉 +

√
1

6
(|10〉 + |01〉)|0〉

]
. (27)

The robustness against dissipation and control error for the
1 → 2 SUQCM is considered in the next section via numeri-
cal simulation of the master equation.

B. Implementation of PCCM

Based on the framework shown in Eq. (19), we can imple-
ment 1 → 2 PCCM if the amplitude of |�〉in

a1
is given, i.e., θ

is known, accordingly, the fidelities of Eqs. (22) and (23) only
need to be phase (φ) independent and the proper parameters
must be selected to satisfy P4 = 0. Based on Eq. (17) the
parameter condition θ2 = θ3 can be easily deduced.

If the input state to be cloned is |�〉(in)
a1

= |�〉xy
E =

1/
√

2|0〉1 + eiφ1/
√

2|1〉1, which corresponds to the x-y plane
equatorial vector of the Bloch sphere. For the present
scheme, if the parameters satisfy the conditions θ2 = θ3 and
cos θ1 cos θ2 = 1/

√
2, the cloning transformation reduces to

the optimal 1 → 2 asymmetrical PCCM (APCCM)

UAPCCM|�〉xy
E |�〉a2 |�〉a3

= {[|000〉 + (cos � |01〉 + sin � |10〉)|1〉]/
√

2

+eiφ[|111〉 + (cos � |10〉 + sin � |01〉)|0〉]/
√

2}/
√

2.

(28)
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FIG. 4. Analytical values of fidelities F1 and F2 for 1 → 2
APCCM versus θ1, with the parameters θ = π/2, θ2 = θ3 and
cos θ1 cos θ2 = 1/

√
2.

According to Eqs. (17), (19), and Eq. (28), we can ob-
tain cos � = √

2 sin θ1 and sin � =
√

2 cos2 θ1 − 1 in which
θ1, θ2 ∈ [0, π/4], and � ∈ [0, π/2]. We can calculate the fi-
delity of the APCCM

F1 = (1 + cos � )/2, F2 = (1 + sin � )/2. (29)

For 1 → 2 APCCM, according to the analytic fidelity
equation (29) with the condition θ1 ∈ [0, π/4], we plot the
diagram as shown in Fig. 4. When we choose θ1 = π/6 and
θ2 = arccos

√
2/3, the fidelities reduce to F1 = F2 = 1/2(1 +

1/
√

2) ≈ 0.8536 > 0.8333, which also confirms the fact that,
because some information of the state cloned by PCCM is
known in advance, the fidelity of the copy cloned by SPCCM
should be higher than that of SUQCM.

If we choose θ1 ≡ π/6 and θ2 ≡ arccos
√

2/3, the fideli-
ties reduce to F1 = F2 = 1/2(1 + 1/

√
2) ≈ 0.8536 and the

optimal 1 → 2 APCCM is transformed to optimal 1 → 2
symmetrical PCCM (SPCCM)

USPCCM|�〉xy
E |�〉a2 |�〉a3

= 1

2
|000〉 + 1

2
√

2
(|01〉 + |10〉)|1〉

+eiφ

[
1

2
|111〉 + 1

2
√

2
(|10〉 + |01〉)|0〉

]
. (30)

The robustness against dissipation and control error for the
1 → 2 SPCCM is considered in the next section via numerical
simulation of the master equation.

C. Implementation of RSCM

We also analyze the cloning transformation of the states
corresponding to the x-z plane vectors on the Bloch sphere,
namely RSCM. The azimuthal angle φ of the input state is
0 or π , accordingly, |�〉(in)

a1
= |�〉xz

E = cos θ
2 |0〉1 ± sin θ

2 |1〉1.
From Eqs. (22) and (23), the fidelities for the two copies in
1 → 2 RSCM can be derived as

F1 = P2
1 + P2

3 + sin2 θ

2
[(P2 + P4)2 − (P1 − P3)2],

F2 = P2
1 + P2

2 + sin2 θ

2
[(P3 + P4)2 − (P1 − P2)2]. (31)

As presented in Ref. [17], the solution P1 = P2 + P3 + P4

ensures that fidelities of 1 → 2 RSCM are independent of the
input state. We can obtain

F1 = P2
1 + P2

3 , F2 = P2
1 + P2

2 . (32)

Considering P1 = P2 + P3 + P4, the normalization condition
P2

1 + P2
2 + P2

3 + P2
4 = 1, and Eq. (32), we can calculate [17]

P1 =

√
F1 − 2

√
F 3

1 − F 4
1

(
F1 + 2

√
F 3

1 − F 4
1

)
√

2F1(2F1 − 1)
,

P2 =
F1(2F1 − 1)

(
F1 − F 2

1 +
√

F 3
1 − F 4

1

)
√

2

√
F1 −

√
F

3−2F 4
1

1

(
F 2

1 +
√

F 3
1 − F 4

1

) ,

P3 = 1√
2

√
F1 − 2

√
F 3

1 − F 4
1 ,

P4 =

√
F 3

1 − F 4
1

√
F1 − 2

√
F 3

1 − F 4
1

√
2F 2

1

,

F2 = 1/2 +
√

F1(1 − F1). (33)

Since the fidelities F1 and F2 are related to the three rotation
angles θ1, θ2, and θ3, the analytical value of the fidelity of the
real-state cloning machine should not be plotted.

As long as the parameters meet the conditions of Eq. (33),
the optimal 1 → 2 asymmetrical (symmetrical) RSCM can be
realized. For the present protocol, we take an example: if we
want to get F1 = 1, F2 = 1/2, the condition θ1 = π/4, θ2 =
θ3 = 0 can be deduced.

However, there is an exception in the 1 → 2 asymmetri-
cal RSCM (ARSCM) scheme. From P1 of Eq. (33), we find
that the value of F1 = 1/2 cannot be obtained. In this case,
as presented in Ref. [17], the relation P1 = P2 = 1/

√
2 and

P3 = −P4 = 0 can maintain the validity of the protocol, that is
to say θ1 = 0, θ2 = π/4, and the corresponding fidelity values
are F1 = 1/2, F2 = 1.

For 1 → 2 symmetrical RSCM (SRSCM), we set θ1 ≡
θ2 ≡ π/8 and θ3 = π/4 and the optimal 1 → 2 SRSCM can
be implemented as follows:

USRSCM|�〉xz
E |�〉a2 |�〉a3

= cos
θ

2

[(
1

2
+ 1√

8

)
|000〉 + 1

2
|+〉|1〉

+
(

1

2
− 1√

8

)
|110〉

]
+ sin

θ

2

[(
1

2
+ 1√

8

)
|111〉

+ 1

2
|+〉|01〉 +

(
1

2
− 1√

8

)
|001〉

]
, (34)

where |+〉 = (|01〉 + |10〉)/
√

2. Accordingly, the fidelities
of 1 → 2 SRSCM are F1 = F2 = 1/2(1 + 1/

√
2) ≈ 0.8536,

which are the same as that of 1 → 2 SPCCM. The robustness
against dissipation and control error for the 1 → 2 SRSCM is
considered in the next section via numerical simulation of the
master equation.
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FIG. 5. (a) Fidelities of 1 → 2 SUQCM versus control erro ε.
(b) Fidelities of 1 → 2 SUQCM versus decay �. The parameters
are chosen as θ1 = arctan 1/

√
5, θ2 = arctan 1/2, θ and φ can take

any value, we choose θ = π/3 and φ = π/9 for the numerical sim-
ulation. ε ∈ [−0.1, 0.1], � ∈ [1, 3] kHz. Its dissipation dynamics is
described by Eq. (36) with �max = 2π × 10 MHz and V = 2π ×
249 MHz.

With the choice of θ1 = arcsin 1/
√

6, θ2 = arctan 1/3, and
θ3 = π/4 + arctan 1/3 we can implement the optimal 1 → 3
SERSCM. The corresponding transformation form is

USERSCM|�〉xz
E |�〉a2 |�〉a3

= cos
θ

2

[√
3

2
|000〉 + 1√

12
(|001〉 + |100〉 + |110〉)

]

+ sin
θ

2

[√
3

2
|111〉 + 1√

12
(|100〉 + |010〉 + |001〉)

]
,

(35)

with the fidelities of the three clones F1 = F2 = F3 = 5/6.

IV. EFFECT OF DISSIPATION AND CONTROL ERROR
ON THE FIDELITY OF QUANTUM CLONING MACHINE

In the present Rydberg cloning scheme based on the opti-
mized NGQC, it is inevitable that the control error and the
dissipation caused by atomic spontaneous emission should
result insystem decoherence. Considering the spontaneous
emission from highly excited states to ground states, the
evolution of the system is governed by the Lindblad master
equation

ρ̇(t ) = i[ρ(t ), H (t )] + 1

2

∑
l

∑
s

[
2Ls

l ρLs†
l

− (
Ls†

l Ls
l ρ + ρLs†

l Ls
l

)]
, (36)

in which ρ(t ) is the density matrix of the systematic state,
H (t ) is the Hamiltonian of the system, and Ls

l = √
�/2|s〉l〈r|

is the Lindblad operator with the subscript l labeling the
lth atom and s = 0, 1 representing the two ground states.
Here, for the 87Rb atom, the Rydberg states are |r〉c =
|r〉t = |71s1/2〉. The C6 parameter can be evaluated to be
1020 GHz μm6 [77]. When two atoms are placed d = 4 μm,
the corresponding strength of the vdW interaction is V =
2π × 249 MHz and �max = 2π × 10 MHz. The fidelity F =
|〈ψideal|ψ (t )〉|2 is used to estimate the effectiveness of the

FIG. 6. (a) Fidelity F1 of 1 → 2 SPCCM versus control error ε

and decay �. (b) Fidelity F2 of 1 → 2 SPCCM versus error ε and
decay �. The parameters are chosen as θ = π/2, θ1 ≡ π/6, and
θ2 ≡ arccos

√
2/3. φ can take any value, we choose φ = π/2 for the

numerical simulation, ε ∈ [−0.1, 0.1], � ∈ [1, 3] kHz. Its dissipation
dynamics is described by Eq. (36), with �max = 2π × 10 MHz and
V = 2π × 249 MHz.

present cloning scheme, where |ψideal〉 is the target state ex-
periencing the ideal gate and |ψ (t )〉 is the state governed by
the master equation in Eq. (36).

Next, we check the robustness against systematic error
for the 1 → 2 SUQCM. The leading Hamiltonian would be
H ′(t ) = (1 + ε)H (t ), where H (t ) is the ideal Hamiltonian
and ε ∈ [−0.1, 0.1], which is regarded as slow quasistatic
noise [78,79]. As shown in Figs. 5(a) and 5(b), we plot the
fidelity of 1 → 2 SUQCM versus error ε and decay rate �,
respectively, in which the decay rate � ∈ [1, 3] kHz. It needs
to be specifically pointed out that in Figs. 5–7 all control
errors and decoherence are taken into account in the entire
evolution process of the system (including U23 and three CNOT

operations P12, P31, and P23).
For 1 → 2 SPCCM and SRSCM, the same characteris-

tics produced by geometric quantum computation are also
present and the effects of systematic errors and decoherence
are within our acceptable limits. In Figs. 6 and 7, we show the

FIG. 7. (a) Fidelity F1 of 1 → 2 SRSCM versus control error
ε and decay �. (b) Fidelity F2 of 1 → 2 SRSCM versus error ε

and decay �. The parameters are chosen as φ = 0, θ1 = θ2 = π/8,
and θ3 = π/4. θ can take any value, we choose θ = π/3 for the
numerical simulation, ε ∈ [−0.1, 0.1], � ∈ [1, 3] kHz. Its dissipation
dynamics is described by Eq. (36), with �max = 2π × 10 MHz and
V = 2π × 249 MHz.
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number fitting of 1 → 2 SPCCM and SRSCM against error ε

and decay �, respectively. Meanwhile, the optimal fidelity is
F1 = F2 = 1/2(1 + 1/

√
2) ≈ 0.8536, which is the same for

the SPCCM and SRSCM and higher than that of SUQCM
under the case of no error and decoherence.

V. CONCLUSION

In summary, we propose a scheme for the construction of
fast and robust quantum cloning machines. Using the Rydberg
blockade mechanism and the optimized NGQC, we realize
the two-qubit geometric gates. Based on the quantum circuit
constructed by the two-qubit geometric gates, we implement
the 1 → 2 symmetrical (asymmetrical) universal cloning,
1 → 2 optimal symmetrical (asymmetrical) phase-covariant
quantum cloning, 1 → 2 optimal symmetrical (asymmet-
rical) real-state quantum cloning, and 1 → 3 symmetrical
economical real-state quantum cloning. Through numerically
simulating the fidelities of the cloning machine under control
error and spontaneous emission, we confirm the feasibility of
the Rydberg quantum cloning scheme. Therefore, our scheme
may provide an alternative way to experimentally carry out
simple and robust quantum cloning.
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APPENDIX A: FIDELITIES OF THE GEOMETRIC
QUANTUM GATES

In the geometric gates based on the Rydberg atomic
system, their fidelity should inevitably be affected by the
dissipation caused by spontaneous emission from highly ex-
cited states to ground states. The evolution process taking
dissipation into account is governed by the Lindblad master
equation in Eq. (36). Using the same atomic parameters as
in Sec. IV, we estimate the experimental feasibility of the
gates and present the numerical simulation of the fidelities of
the NOT and CNOT gates. Moreover, assuming the initial state
|ψ (0)〉 = cos χ |0〉 + sin χ |1〉, using the shape of �(t ) and
ϕ1 shown in Fig. 8(a) with �max = 2π × 10 MHz, the decay
rate � = 2.5 kHz [80] in Fig. 8(b), we present the numerical
simulation of single-qubit NOT gate with the fidelity defined
by F = 1

2π

∫ 2π

0 〈ψ |ρ(t )|ψ〉dχ with the ideal final state |ψ〉 =
UNOT|ψ (0)〉. Moreover, with the same maximum value �max =
2π × 10 MHz, taking the two-qubit CNOT gate as an exam-
ple, we use the fidelity F = 1

(2π )2

∫ 2π

0

∫ 2π

0 〈ψ |ρ(t )|ψ〉dχ1dχ2

to evaluate the performance of the nonadiabatic geometric
operation in which the initial state is |ψ (0)〉 = (cos χ1|0〉c +
sin χ1|1〉c) ⊗ (cos χ2|0〉t + sin χ2|1〉t ). Meanwhile, the pop-
ulations of the corresponding states in the evolution pro-
cess are also given in Fig. 8. In Fig. 8(a), we take the
single-qubit NOT gate and the two-qubit CNOT gate as ex-

-0.5
0

0.5

0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

FIG. 8. (a) The Rabi frequency � and ϕ1 versus t/τ for the
NOT gate. The parameters are �max = 2π × 10 MHz and V = 2π ×
249 MHz. Suppose the initial state is |ψ (0)〉 = cos χ |0〉 + sin χ |1〉.
(b) Populations of |0〉, |1〉, and |r〉 in single qubit NOT qubit.
(c) Populations of |00〉, |01〉, |10〉, and |11〉 in two-qubit gates CNOT.
Suppose the system is initially in the state |ψ (0)〉 = (cos χ1|0〉c +
sin χ1|1〉c ) ⊗ (cos χ2|0〉t + sin χ2|1〉t ).

amples, and in Fig. 8(a) we draw the change rule of the
pulse envelope acting on the (target) qubit versus time. In
addition, in Figs. 8(b) and 8(c), we show the populations
of {|0〉, |1〉, |r〉, |00〉, |01〉, |10〉, |11〉} of single(two)-qubit and
the fidelities of the NOT gate and CNOT gate can reach 99.98%
and 99.92%, respectively.

APPENDIX B: COMPARISON WITH THE SCHEME
IN REF. [18]

Different types of quantum cloning machines were imple-
mented by employing the interaction between electron-spin
and the optical coherent pulse in Ref. [18]. If it was real-
ized in the Rydberg atom, we can use laser drive to realize

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
F-UQCM
F-PCCM
F-RSCM

45.9 45.95 46
0.98

0.99

1

FIG. 9. The fidelities of the three-qubit entangled state in
Eq. (19) versus t , in which τ = 22.214 μs, � = 2.5 × 103 kHz,
�max = 2π × 10 MHz, and V = 2π × 249 MHz. The input state
to be cloned is |�〉in

a1
= cos θ/2|0〉1 + eiφ sin θ/2|1〉1, for the

UQCM, PCCM, and RSCM, the corresponding parameters are
(θ = π/3, φ = π/9), (θ = π/2, φ = π/8), and (θ = π/3, φ = 0),
respectively. The cloning framework in Eq. (19) is obtained by re-
peating all of single- and two-qubit unitary operations in the order
required by the cloning scheme in Ref. [18] in the Rydberg atom.
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FIG. 10. The fidelities of the three-qubit entangled state in
Eq. (19) versus t , in which τ = 22.214 μs, � = 2.5 × 103 kHz,
�max = 2π × 10 MHz, and V = 2π × 249 MHz. The input state to
be cloned is |�〉in

a1
= cos θ/2|0〉1 + eiφ sin θ/2|1〉1, for the UQCM,

PCCM, and RSCM, the corresponding parameters are (θ =
π/3, φ = π/9), (θ = π/2, φ = π/8), and (θ = π/3, φ = 0), re-
spectively. In our scheme, the cloning framework in Eq. (19) is
achieved by directly constructing the unitary operation required by
the cloning machine in the Rydberg atom based on the optimized
NGQC.

the single(two)-qubit operations in their scheme. We can se-
lect different parameters based on Eq. (8) to realize some
single-qubit and two-qubit operations of Ref. [18]. For exam-
ple, when we constructed the cloning machine mentioned in

Ref. [18] in the Rydberg atom, the U23 operation was realized
by 15 single-qubit gates and 2 double-qubit gates (the quan-
tum gate eiπ/4σz2σz3 required to construct U23 in Ref. [18] can
be realized by the controlled-z geometric and single-qubit op-
eration [81]). The three CNOT operations are realized through
four single-qubit gates and one two-qubit gate, respectively.

In Fig. 9, in the Rydberg atom system, by repeating the
unitary operation steps in Ref. [18], we plot the fidelities of
the state in Eq. (19) for different input states to be cloned
and we give the fidelities of the three-qubit entangled state
required by the corresponding UQCM, PCCM, and RSCM;
the values are 99.01%, 99.11%, and 99.05%, respectively. In
our scheme, the cloning framework in Eq. (19) is achieved
by directly constructing the unitary operation required by the
cloning machine in the Rydberg atom based on the optimized
NGQC. The fidelities of three-qubit entangled state required
by the corresponding UQCM, PCCM, and RSCM are shown
in Fig. 10: the values are 99.59%, 99.92%, and 99.58%,
respectively.

Comparing Figs. 9 and 10, it is easy to see that our
scheme based on the optimized NGQC direct implementa-
tion of the unitary operation required to build the cloning
machine requires only 8τ compared to the 46τ required to
repeat Ref. [18] in the Rydberg atom, which results in a higher
fidelity of our scheme, as longer operation times inevitably
lead to greater decoherence. The present scheme to optimize
quantum cloning using geometric quantum control in Ryd-
berg atoms provides a path to robust and simplified quantum
cloning, which is meaningful for experiments and has impli-
cations for quantum cloning in other quantum systems as well.
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