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Self-testing of different entanglement resources via fixed measurement settings
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Self-testing, which refers to device-independent characterization of the state and the measurement, enables the
security of a quantum information processing task certified independently of the operation performed inside the
devices. Quantum states lie at the core of self-testing as key resources. However, for different entangled states,
usually, different measurement settings should be taken in self-testing recipes. This may lead to the redundancy of
measurement resources. In this work, we use fixed two-binary measurements and answer the question of which
states can be self-tested with the same settings. By investigating the structure of generalized tilted-Clauser-
Horne-Shimony-Holt Bell operators with the sum-of-squares decomposition method, we show that a family
of two-qubit entangled states can be self-tested with the same measurement settings. The robustness analysis
indicates that our scheme is feasible for practical experiment instruments. Moreover, our results can be applied
to various quantum information processing tasks.
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I. INTRODUCTION

Bell nonlocality [1,2] is central to the understanding of
quantum physics. With the advent of quantum information,
Bell nonlocality has been studied as a resource and applied to
various quantum information processing tasks, such as quan-
tum key distribution [3,4], randomness expansion [5,6], and
entanglement witnesses [7,8].

Moreover, if we assume quantum mechanics is the un-
derlying theory, it is shown that certain extremal quantum
correlations uniquely identify the state and measurements
under consideration, a phenomenon known as self-testing
[9,10]. It is a concept of device independence whose ver-
dict relies only on the observed statistics of measurement
outcomes under the sole assumption of no signaling and
the validity of quantum theory [11]. In the 1990s, Popescu
and Rohrlich pointed out that the maximal violation of the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality iden-
tifies uniquely the maximally entangled state of two qubits
[12,13]. In recent decades, self-testing has received substantial
attention. The scenarios for bipartite and multipartite entan-
gled states were presented in Refs. [14–21]. The analysis of
robustness to small deviations from the ideal case for self-
testing these quantum states and measurements was presented
in Refs. [22–25], which made self-testing more practical.
Beyond these works focusing on single-copy states, paral-
lel self-testing of tensor-product states was recently studied.
The first parallel self-testing protocol was proposed for two
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Einstein-Podolsky-Rosen (EPR) pairs in [26,27]. The result
was subsequently generalized for arbitrary n via parallel repe-
tition of the CHSH game in [28] and via parallel repetition of
the magic-square game in [29]. Self-testing of n EPR pairs
via parallel repetition of the Mayers-Yao self-test is given
in [30].

In the most previous works, one measurement setting is
always sufficient to self-test one target state up to local uni-
taries. For example, the tilted-CHSH inequality can self-test
two-qubit pure states |ψ (θ )〉 = cos θ |00〉 + sin θ |11〉 with
corresponding measurements settings {σz, σx} ⊗ {cos μσz +
sin μσx, cos μσz − sin μσx}; meanwhile, μ is uniquely de-
termined by θ . However, the tasks of quantum information
processing may involve multiple states with different en-
tanglement degrees [31]. The whole self-testing of quantum
states results in an increased consumption of the measurement
resource, thus decreasing the feasibility of practical realiza-
tion. Therefore, a self-testing protocol with high practical
performance is meaningful and necessary. In this work, we
focus on this goal and provide a device-independent scheme
that certifies a series of quantum states with reduced mea-
surement resources. Our results show that the generalized
tilted-CHSH operators allowing optimal measurements for
one party could rotate on the Pauli x-z plane. Multiple differ-
ent target states can be self-tested via a common measurement
setting by choosing a properly generalized tilted-CHSH op-
erator. Hence, by utilizing a set of Bell inequalities, we can
self-test two-qubit states with different entanglement degrees
based on only two binary measurements per party. Thus, our
scheme simplifies the measurement instruments and leads to
lower consumption of measurement resources. In addition,
our scheme demonstrates satisfactory robustness in tolerance
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of noise. Further, our scheme can serve for various quantum
information processing tasks with low measurement-resource
costs and, meanwhile, provides secure certification of the de-
vice used in the task. This paper is structured as follows: In
Sec. II A, we give a brief description of the underlying model
and key definitions of our work. In Sec. II B, we propose
a scheme that self-tests different two-qubit entangled states
with the same measurements using a generalized tilted-CHSH
inequality. During this study, we develop a family of self-
testing criteria beyond the standard tilted-CHSH inequality
and prove these criteria using the technique of sum-of-squares
(SOS) decomposition. In Sec. III, the robustness analysis is
illustrated through an example using the SWAP method and
semidefinite programming (SDP). In Sec. IV, the applications
of our results for quantum information processing tasks of
device-independent quantum key distribution, private queries,
and randomness generation are presented. In Sec.V, we sum-
marize the results and discuss future research.

II. SELF-TESTING DIFFERENT ENTANGLED STATES
VIA TWO BINARY MEASUREMENTS

A. Self-testing

Consider the simplest scenario of two noncommunicat-
ing parties, Alice and Bob. Each has access to a black box
with inputs denoted respectively by x, y ∈ {0, 1} and outputs
denoted by a, b ∈ {+1,−1}. One could model these boxes
with an underlying state |ψ〉AB and measurement projectors
{Ma

x }x,a and {Mb
y }y,b, which commute for different parties.

The state can be taken to be pure, and the measurements can
be taken to be projective without loss of generality because
the dimension of the Hilbert space is not fixed and the possible
purification and auxiliary systems can be given to any of the
parties. After sufficiently many repetitions of the experiment
one can estimate the joint conditional statistics, known as
the behavior p(a, b|x, y) = 〈ψ | Ma

x Mb
y |ψ〉. Self-testing refers

to a device-independent certification method where the non-
trivial information about the state and the measurements is
uniquely certified by the observed behavior p(ab|xy), without
assumptions about the underlying degrees of freedom. Usu-
ally, self-testing can be defined formally in the following way.

Definition 1. We say that the correlations p(a, b|x, y) allow
for self-testing if for every quantum behavior (|ψ〉 , {Ma

x , Mb
y })

compatible with p(a, b|x, y) a local isometry � = �A ⊗ �B

exists such that

� |ψ〉AB |00〉A′B′ = |junk〉AB ⊗ |ψ〉A′B′ ,

�(Ma
x |ψ〉AB |00〉A′B′ ) = |junk〉AB ⊗ Ma

x |ψ〉A′B′ , (1)

where |00〉A′B′ is the trusted auxiliary qubits attached by Alice
and Bob locally in their systems and (|ψ〉 , {Ma

x , Mb
y }) are the

target system [10].
That is, the correlations p(a, b|x, y) predicted by quan-

tum theory could determine uniquely the state and the
measurements, up to a local isometry.

B. Self-testing of entangled two-qubit states
with the generalized tilted-CHSH inequality

In this section, we show that different pure entangled two-
qubit states can be self-tested via fixed measurement settings
with the generalized tilted-CHSH inequality. The candidate
target states we considered are {|ψ i〉}, with

|ψ i〉 = cos θi |00〉 + sin θi |11〉 , (2)

where θi ∈ (0, π
4 ]. It has already been proved that a pure

entangled two-qubit state can be self-tested using the stan-
dard tilted-CHSH inequality [14,24]. In the standard scheme,
one measurement setting is required for self-testing one tar-
get state, which results in an increased consumption of the
measurement resources. Utilizing the property of the general-
ized tilted-CHSH inequality, we show that all these entangled
states can be self-tested with the given fixed measurements,
thus simplifying the measurement instruments. We have the
following theorem.

Theorem 1. The family of entangled two-qubit states in
Eq. (2) can be self-tested using the same quantum measure-
ment settings as in Eq. (3) with fixed angle μ. The validity
of the self-testing result comes from the maximum quantum
violation of generalized tilted-CHSH inequalities in Eq. (4).

The measurements in our scheme are chosen to be

A0 = σz, B0 = cos μσz + sin μσx,

A1 = σx, B1 = cos μσz − sin μσx, (3)

with the fixed angle μ ∈ (0, π
4 ].

The key idea of our self-testing scheme is that for a given μ

in the unit measurement settings, a family of Bell inequalities
can be maximally violated by different entangled pairs at
the same time. Once the form of the target source is con-
firmed, the Bell inequalities which achieve their self-testing
are determined based on the observed statistics p(a, b|x, y).
More precisely, the Bell inequalities have the following form,
depending on the input i ∈ {0, 1, 2, . . . , n}:

B[αi,βi] =βiA0 + αi(A0B0 + A0B1) + A1B0 − A1B1, (4)

called the generalized tilted CHSH inequality [32], where
αi � 1. The maximal classical and quantum bounds are

C[αi,βi] = 2αi + βi and η[αi,βi] =
√

(4 + β2
i )(1 + α2

i ), respec-
tively. It has already been proved both theoretically and
numerically that a pure entangled two-qubit state can be self-
tested using a standard tilted-CHSH inequality with α = 1
in Eq. (4) [14,24]. However, whether the generalized tilted-
CHSH inequality can be used in self-testing is still unknown.

We claim that the maximal quantum violation in Eq. (4)
uniquely certifies the corresponding entangled pairs in Eq. (2)

and measurements in Eq. (3) with sin 2θi =
√

4−α2
i β2

i

4+β2
i

and

tan μ = sin 2θi
αi

. Thus, the family of pure entangled two-qubit
states is self-tested with the given α and β and the two
fixed measurement settings μ using the generalized tilted-
CHSH inequality. The self-testing recipe for our scheme is
shown in Fig. 1. In the following, we give a detailed proof of
Theorem 1.

Proof. The proof of Theorem 1 is divided into two steps.
First, we give two types of SOS decompositions for the
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FIG. 1. Self-testing recipe. The fixed untrusted measurement set-
tings are able to test different input states. For a given target state
|ψ i〉, two observers randomly choose their measurements, x for Al-
ice and y for Bob, and collect outcomes a and b to construct the
observation of B[αi,βi].

generalized tilted-CHSH operator B[α,β] (see the Appendix for
details). Moreover, these SOS decompositions establish alge-
braic relations that are necessarily satisfied by any quantum
state and observables, yielding a maximal violation of the
generalized tilted-CHSH inequality. Then these algebraic re-
lations are used in the isometry map to provide the self-testing
of any partially entangled two-qubit state.

a. SOS decompositions for generalized tilted-CHSH in-
equalities. The generalized tilted-CHSH inequalities B[α,β]

have the maximum quantum violation value η[α,β]. This
implies that the operator B̂ = η[α,β]I − B[α,β] is positive
semidefinite for all possible quantum states and measurement
operators Ax and By. This can be proven by providing a set of
operators {Pi} which are polynomial functions of Ax and By

such that B̂[α,β] = ∑
i P†

i Pi holds for any set of measurement
operators satisfying the algebraic properties A2

x = I, B2
y = I

and [Ax, By] = 0.
For convenience, we define three classes CHSH operators:

S0 = A0(B0 − B1) + 1

α
A1(B0 + B1),

S1 = 1

α
A0(B0 + B1) − A1(B0 − B1),

S2 = A0(B0 − B1) − αA1(B0 + B1). (5)

Then we can give two types of SOS decompositions for the
generalized tilted-CHSH operator in Eq. (4). The first decom-
position is given as

B̂[α,β] = 1


 + 2η[α,β]

{
(B̂[α,β] )

2 + α2(βA1 − S0)2

+ (α2 − 1)

[(
−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

)2

+
(
−η[α,β]α

α2 + 1
A0 + B0 + B1

)2
]}

. (6)

The second one is

B̂[α,β] = α2


 + 2η[α,β]

{
α2 − 1

α2

[(
− η[α,β]α

α2 + 1
A0 + B0 + B1

)2

+
(

−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

)2]

+
(

2A0 − η[α,β]

2α
(B0 + B1) + β

2
S1

)2

+ 1

α2

(
2A1 − η[α,β]

2
(B0 − B1) + β

2
S2

)2
}

, (7)

where 
 = 2(α2 − 1)
√

β2+4
α2+1 .

For the special case α = 1 of the standard tilted-CHSH
inequality, our result gives the following decomposition:

B̂[1,β] = 1

2η[1,β]
[(B̂[1,β] )

2 + (βA1 − S0)2] (8)

and

B̂[1,β] = 1

2η[1,β]
[(2A0 − η[1,β]

B0 + B1

2
+ β

2
S1)2

+ (2A1 − η[1,β]
B0 − B1

2
+ β

2
S2)2], (9)

which reproduce the results in Ref. [14]. Thus, we develop a
family of SOS decompositions for generalized tilted-CHSH
inequalities, which is beyond the standard form.

If one observes the maximal quantum violation of the gen-
eralized tilted-CHSH inequality in Eq. (4) by any state |ψ〉 and
measurements Ax and By for x, y ∈ {0, 1}, then each square
of the polynomial functions in the two SOS decompositions
acting on |ψ〉 is equal to zero, i.e., Pi |ψ〉 = 0. Then we can
obtain the anticommutation relations for the measurement
operators acting on the underlying state from the two SOS
decompositions (6) and (7) as follows (for details refer to the
Appendix):

(ZA − ZB) |ψ〉 = 0, (10a)

[sin θXA(I + ZB) − cos θXB(I − ZA)] |ψ〉 = 0. (10b)

Next, we will show that these algebraic relations lead
to the self-testing statement for any partially entangled
two-qubit state.

b. Self-testing of partially entangled states. Based on Def-
inition 1 for self-testing, one needs to construct the isometry
map such that the underlying system can extract the informa-
tion about the target state. The isometry is a virtual protocol;
all that must be done in the laboratory is to query the boxes
and derive p(a, b|x, y). A useful way is the so-called SWAP

method, and the isometry is shown in Fig. 2. The idea of
the SWAP method comes from the ideal case. If state |ψ〉 is
indeed two qubits and the operators are Z = σz and X = σx,
the SWAP operations can extract state |ψ〉 from the ancilla
system. However, in the device-independent framework, it
cannot assume the dimension of the inner state or any form
of the operators. Hence, Z and X are constructed based on
real performed measurements Ax and By such that one can
swap out the desired states and measurements, as shown in
Definition 1. Therefore, we define the unitary operators of
Alice and Bob as

ZA = A0, ZB = B0 + B1

2 cos μ
,

XA = A1, XB = B0 − B1

2 sin μ
. (11)

052418-3



LI, WANG, HAN, AND ZHU PHYSICAL REVIEW A 106, 052418 (2022)

FIG. 2. The local unit Si of the SWAP gate S = SA ⊗ SB

for i ∈ {A, B}. Each unit acts on the corresponding particle of |ψ〉 and
one ancillary qubit prepared in state |0〉. H is the standard Hadamard
gate; Zi and Xi are controlled by the auxiliary qubits.

After this isometry, the underlying systems and the trusted
auxiliary qubits will be

�(|ψ〉) = 1

4
[(I + ZA)(I + ZB) |ψ〉 |00〉

+ XB(I + ZA)(I − ZB) |ψ〉 |01〉
+ XA(I − ZA)(I + ZB) |ψ〉 |10〉
+ XAXB(I − ZA)(I − ZB)] |ψ〉 |11〉 . (12)

From relation (10a), the second and third terms of Eq. (12)
cancel and become zero. Then relation (10b) eventually leads
Eq. (12) to be

�(|ψ〉) =I + ZA

2
|ψ〉 |00〉 + I + ZA

2

sin θ

cos θ
|ψ〉 |11〉

= |junk〉 ⊗ |ψ〉 , (13)

where

|junk〉 = I + ZA

2 cos θ
|ψ〉 . (14)

Thus, the underlying state is equal to the optimal target

form |ψ〉 = cos θ |00〉 + sin θ |11〉, with sin 2θ =
√

4−α2β2

4+β2 .
This completes the self-testing statement.

The generalized tilted-CHSH operator B[α,β] with two pa-
rameters such that the optimal measurements for one party
can rotate on the Pauli x-z plane with respect to the target one

satisfies α tan μ =
√

4−α2β2

4+β2 . The result is that in a self-testing

scenario involving different targets |ψ i〉 defined as in Eq. (2),
one can choose a common measurement setting (3) satisfying
tan μ = sin 2θi

αi
to construct the Bell inequality η[αi,βi] for each

target state. In turn, the maximal violations uniquely certify
the family of states |ψ i〉. Thus, we complete the proof of
Theorem 1.

To be specific, B[α,β] has two special forms when β = 0
and α = 1, which correspond to biased CHSH [33] and stan-
dard tilted-CHSH operators [25], respectively.

Biased CHSH inequality. If β = 0, the Bell inequality in
Eq. (4) is simplified as a symmetrical biased CHSH operator

B[α,0] = α(A0B0 + A0B1) + A1B0 − A1B1 � 2α, (15)

where α = 1
tan μ

, which belongs to the whole set of self-testing
criteria for the Bell state [17]. Its maximal quantum violation

η[α,0] = 4√
1+tan μ

is able to self-test the maximum entangled

state |ψ〉 = 1√
2
(|00〉 + |11〉) and measurement setting (3).

Standard tilted-CHSH inequality. If α = 1, the Bell in-
equality in Eq. (4) turns out to be the standard form

B[1,β] = βA0 + A0B0 + A0B1 + A1B0 − A1B1 � 2 + β,

(16)

with β = 2
√

2 cos2 μ − 1. The maximal quantum violation
of this inequality is given by η[1,β] =

√
8 + 2β2 = 4 cos μ,

achievable with the measurement settings in Eq. (3), and

satisfies sin 2θ =
√

4−β2

4+β2 .

III. ROBUSTNESS ANALYSIS

If the observed statistics deviate from the ideal ones, one
can estimate how far the actual state and measurements are
from the ideal ones, a property known as robustness. Here the
robust self-testings of the different sources are analyzed using
a numerical tool named the Navascués-Pironio-Acín (NPA)
hierarchy and the SDP method [25,34]. For convenience in the
calculations, we take μ = arctan 3

4 (μ ≈ 0.208π ) in the mea-
surements settings (3) as an example to self-test the following
three sates:

|ψ0〉 = 1√
2

(|00〉 + |11〉),

|ψ1〉 = cos θ |00〉 + sin θ |11〉 for θ = 1

2
arcsin

(
3

4

)
,

|ψ2〉 =1

2
(|00〉 +

√
3 |11〉), (17)

which satisfy tan μ = sin 2θi
αi

, with α0 = 4
3 , α1 = 1, and α2 =

2√
3
. Choosing these three states not only leads to an associa-

tion with three special Bell operators (biased CHSH, standard
tilted-CHSH, and generalized tilted-CHSH operators) but also
is convenient for the calculations in the robustness analysis.
To self-test these three target states, the parameters βi in
Bell inequality (4) are set to β0 = 0, β1 = 2

√
7

5 , and β2 =
2
√

3
5 , satisfying sin 2θi =

√
4−α2

i β2
i

4+β2
i

, respectively. By substitut-

ing [αi, βi] in B[αi,βi] in Eq. (4) for i = 0, 1, 2, it can be
found that the first two pairs respectively recover to the biased
inequality (15) and tilted-CHSH inequalities (16), while the
third pair is complex. In particular, by fixing tan μ = 3

4 , the
parameter α can be expressed by β, i.e., α = 8√

25β2+36
; thus,

we can plot the bounds of the Bell inequality B[αi,βi] with
respect to β. As shown in Fig. 3, with the increase of β,
the classical bound gets close to but is not greater than the
quantum one. The maximal quantum bounds for the ideal
self-testing of the three states (17) and measurement settings
(3) are presented by red triangles in Fig. 3. The gap between
classical and quantum bounds at (α0, β0) is much larger than
the other points.
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FIG. 3. The maximal violations of Bell inequalities B[α,β] with
respect to β for tan μ = 3/4. The blue solid and green dashed lines
represent the maximal quantum and classical bounds, respectively.
The red triangles on the blue line are obtained with [αi, βi] for
i = 0, 1, 2, which are ideal scenarios to self-test the three target states
in Eq. (17).

After the isometry given in Fig. 2, the trusted auxiliary
systems will be left in the state

ρswap =
∑
i jst

Ci jst | j〉 〈i| ⊗ |t〉 〈s| , (18)

where Ci jst = 1
16 trAB[(1 + ZA)1−i(XA − ZAXA)i(1 + ZA)1− j

(XA − XAZA) j ⊗ (1 + ZB)1−s(XB − ZBXB)s(1 + ZB)1−t (XB −
XAZB)t ]. Finally, we can express the fidelity for i = 0, 1, 2,

fi = 〈ψ i| ρswap |ψ i〉 . (19)

Here fi is a linear function of two types of operator ex-
pectations: some observed behavior and some nonobservable
correlations which involve different measurements on the
same party, such as 〈ψ | Ma

x Ma′
x′ |ψ〉, with x 	= x′, which are

left as variables.
To get a lower bound on the fidelity, one needs to mini-

mize the fidelity running over all the states and measurements
satisfying observed statistics. Optimizations over the set of
quantum momenta are computationally hard; especially, that
for the underlying Hilbert space dimension is unknown. To
resolve this technical difficulty, here we employ the NPA hier-
archy which was introduced in Refs. [25,34] to bound fidelity.
The NPA hierarchy works as follows. Consider a generic state
and measurement operators {|ψ〉 , Ax, By}. Then, define sets
Ql , each corresponding to a level of the hierarchy composed of
the identity operator and all (noncommuting) products of op-
erators Ax and By up to degree l , e.g., Q1 = {I, Ax, By}, Q2 =
{Q1} ∪ {Qi

1Q j
1}, . . . , Qk = Qk ∪ {Qi

kQ j
1}, where Qi

k is the ith
element of Qk . Define the moment matrix of order l , �k ,
by �i j = 〈ψ | Qi

l
†Q j

l |ψ〉. For any state and measurements
{|ψ〉 , Ax, By}, the matrix �l is Hermitian positive semidefinite
and satisfies some linear constraints given by the orthogonal-
ity conditions of the measurement operators [34]. Thus, we

FIG. 4. The lower bounds of fidelity with the target state
(left vertical axis) and randomness entropy (right vertical axis)
with respect to the observation of Bell inequality. We denote
B[αi,βi] as Bi for i = 0, 1, 2. The observed violation is transformed

Vi = observation−C[αi ,βi ]

η[αi ,βi ]−C[αi ,βi ]
. The fidelity with Bell state |ψ0〉 using the stan-

dard CHSH and biased forms are presented by gray and blue solid
lines, respectively. The fidelities with |ψ1〉 and |ψ2〉 are represented
by green and purple solid lines, respectively. The randomness for
each Bell inequality is plotted on the right vertical axis with dashed
colored lines.

can tackle the optimization problem by minimizing the corre-
sponding elements of the matrix � under linear constraints on
� � 0 to obtain certified lower bounds to the optimal solution:

min fi = 〈ψ i| ρswap |ψ i〉
such that � � 0, (20)

B[αi,βi] = observed violation value i = 0, 1, 2,

where � is a 46 × 46 moment matrix of the quantum local
level one Q1 = {I, ZA, XA} ⊗ {I, ZB, XB} and is augmented by
necessary terms such as ZAXA, XAZBXB, ZAXAZB, etc., to ex-
press the fidelity. Thus, we are able to formulate this problem
as a SDP, a type of convex optimization for which efficient
numerical solvers exist to find global minima and that also
returns the error bounds on the optimal guess.

The robustness analyses are shown in Fig. 4 on the left
vertical axis. For the Bell state, the fidelity bound by the
standard CHSH is higher than using the biased one when the
violations are close to the maximal quantum bounds. This
result agrees with the work in Ref. [17] that for μ closer to
π
4 , the criterion has a greater capacity for noise tolerance. For
partially entangled states, the tilted-CHSH inequality is sen-
sitive to noise for the weakly entangled state, while the
generalized tilted-CHSH operator performs better. This may
result from the fact that, for μ = arctan( 3

4 ), the gap between
the quantum and classical bounds for the generalized tilted-
CHSH operator is larger than the standard one shown in
Fig. 3, thus providing better distinguishability between dif-
ferent states.

So far, we have provided a scheme to self-test different
entangled states using fixed measurement settings based on
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the generalized tilted-CHSH inequality, which is robust with
regard to the tolerance of noise. Next, we demonstrate the
applications of our results to simplify the implementations of
secure quantum information tasks such as quantum key distri-
bution (QKD), quantum random number generation (QRNG),
and a quantum private query (QPQ).

IV. APPLICATIONS IN QUANTUM INFORMATION TASKS

Quantum systems with the self-testing property play im-
portant roles in quantum information processing. Especially,
for protocols which have a high demand for security, self-
testing is able to guarantee the security independently of
the devices. This is precisely the fact that motivates device-
independent (DI) quantum information processing. In last few
years, DI technologies have been studied intensively. Among
them, QKD, QRNG, and QPQ, as the core and bases of
quantum cryptography, have attracted huge attention.

A. Device-independent quantum key distribution
and private query

DIQKD allows distant parties to create and share a crypto-
graphic key, whose security relies only on the certification of
nonlocal quantum correlations [4]. In the simplest protocol,
entangled particles are repeatedly prepared and distributed
between two parties, Alice and Bob. Alice holds two mea-
surements Ax for x ∈ {0, 1}, Bob has three measurements By,
y ∈ {0, 1, 2}. To ensure the security of the task, Alice and
Bob perform the CHSH test by randomly choosing two mea-
surements Ax and By, x, y ∈ {0, 1}, respectively, to certify the
source device independently. The maximal quantum bound
2
√

2 implies that the source is the maximum entangled state
|ψ〉 = 1√

2
(|00〉 + |11〉) and measurements are A0=σz, A1=σx,

B0 = σx+σz√
2

, and B1 = σx−σz√
2

. Then the measurement A0 for
Alice and the last one, B2 = σz, for Bob are used to extract
a secure key.

Later, motivated by this idea, Yang et al. proposed a
DIQPQ protocol [35]. In the protocol, Alice and Bob share
an entangled state with 1√

2
(|0〉A |φ0〉B + |1〉A |φ1〉B), where

|φ0〉B = cos
θ

2
|0〉 + sin

θ

2
|1〉 ,

|φ1〉B = cos
θ

2
|0〉 − sin

θ

2
|1〉 . (21)

Before the process of QPQ [36], Alice and Bob perform
a CHSH-like test to certify the source and measurements,
which guarantee the measurements for Alice are in the bases
{|0〉 , |1〉} and {|+〉 , |−〉} and Bob’s are in basis {|ψ0〉 , |ψ⊥

0 〉}
or {|ψ1〉 , |ψ⊥

1 〉}. If the outcome for Bob is |ψ⊥
0 〉 (|ψ⊥

1 〉), he
can conclude that the raw key bit at Alice must be 0 (1). Bob
and Alice execute classical postprocessing, so that informa-
tion from Bob in the key reduces to one bit or more. Alice
knows the whole key, whereas Bob generally knows several
bits of the key.

According to our work, the measurements for Alice and
Bob in the two protocols above can be set as

A0 = σz B0 = cos 2θσz + sin 2θσx,

A1 = σx B1 = cos 2θσz − sin 2θσx, (22)

which are available to self-test the two entangle sources in
DIQKD and DIQPQ tasks at the same time. For instance, the
parameters in Eq. (4) can be set according to the task, i.e.,
α = 1

tan 2θ
and β = 0 for the DIQKD protocol and α = 1 and

β = 2 cos θ√
1+sin2 θ

for the DIQPQ protocol. In this way, different

entangled states not only can be certified as the source in QKD
but also can be used to generate a secure key in the QPQ task.
This simplifies the measurement resources to achieve different
types of quantum information processing.

B. Device-independent quantum random number generation

DIQRNG is able to access randomness by observing the
violation of Bell inequalities without any assumptions about
the source and measurement device. The randomness of the
output pairs conditioned on the input pairs for the entangled
pairs can be quantified by the min-entropy [5] H∞(ab|xy) =
− log2 max p(ab|xy). For a given observed violation Vi of the
Bell inequality B[αi,βi], where Vi is defined in the caption of
Fig. 4, we are able to obtain a lower bound on the min-entropy,

H∞(ab|xy) � Vi, (23)

satisfied by all quantum realizations of the Bell scenario. Let
P∗(ab|xy) denote the solution to the following optimization
problem:

obj P∗(ab|xy) = max p(ab|xy)

such that � � 0,

B[αi,βi] = observed violation value i = 0, 1, 2,

where the optimization is carried over all states ρ and all mea-
surement operators, defined over Hilbert spaces of arbitrary
dimension. The minimal value of the min-entropy compatible
with the Bell violation V and quantum theory is then given by
H∞(ab|xy) = − log2 maxab P(ab|xy).

Using the same Bell inequalities as in Sec. III and running
SDP with the NPA hierarchy, we plot the lower bounds of
the entropy in Fig. 4 on the right vertical axis. It is worth
pointing out that in a device-independent framework, if the
violation is a maximal quantum bound for CHSH 2

√
2, the

randomness is obtained with 1.2283 bits and the underlying
structure is a Bell state with an orthogonal basis [5]. Here we
show that if the two observers self-test the state with the biased
basis in Eq. (3), the lower bound of randomness is 1.1519 bits,
which is slightly lower than in the CHSH scenario. However,
we point out that with this biased basis, the random numbers
can also be certified by partially entangled states. As for the
two partially entangled target states whose concurrences are
C(|ψ1〉) = 3

4 and C(|ψ2〉) =
√

3
2 ≈ 0.866, the secure random-

ness can be extracted with 0.4195 and 0.5669 bit, respectively.
In other words, with these measurement settings, we can ex-
tract randomness in both the maximum entangled and partially
entangled states.
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V. CONCLUSION

Self-testing results are usually known for a set of a quan-
tum state and the corresponding measurement simultaneously.
However, different entangled resources are needed for var-
ious quantum information tasks with diverse requirements.
In this paper we proposed a scheme that self-tests a family
of entangled states with different entanglement degrees using
the same fixed measurement settings. By providing the SOS
decompositions of the generalized tilted-CHSH inequality, we
extended the self-testing criteria of general two-qubit states
with two binary measurements per party. Previous work based
on symmetric biased CHSH [33] and standard tilted-CHSH
[14] operators can be regarded as special cases of these crite-
ria. The self-testing criteria obtained in our work are appealing
from two aspects. For general two-qubit entangled states, we
broaden their self-testing criteria. The self-testing can be car-
ried out with a series of different measurement settings on the
Pauli x-z plane by setting different values of α in the gen-
eralized tilted-CHSH inequality. More importantly, different
entangled states can be self-tested by maximally violating the
corresponding Bell inequalities with the same fixed measure-
ment settings. This can simplify the measurement instruments
of self-testing in an experimental realization. Moreover, our
scheme demonstrates satisfactory robustness in relation to
tolerance of noise.

Furthermore, our scheme can provide secure certification
for different device-independent quantum information pro-
cessing tasks with fewer resources. This work is instrumental
for improving the practical performance of self-testing. In
addition, this work is of intrinsic interest for foundational
studies on Bell nonlocality and quantum certification. In the
future, it would be interesting to study more Bell nonlocalities
with the self-testing property and to find more criteria with the
same measurements for different states.
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APPENDIX: THE SOS DECOMPOSITION
FOR THE GENERALIZED TILTED-CHSH INEQUALITY

We provide the method to obtain the SOS decompositions
of the generalized tilted-CHSH operator

B[α,β] = βA0 + αA0B0 + αA0B1 + A1B0 − A1B1, (A1)

where α � 1, in detail.
The optimal quantum violation of (A1) is proved to be

η[α,β] =
√

(1 + α2)(4 + β2) by optimizing over all quantum
states and measurements [32]. The bound implies the operator

B̂ = η[α,β]I − B[α,β] is positive semidefinite for all possible
quantum states and measurement operators Ax and By. This, in
turn, can be proven by providing a set of operators {Pi} which
are polynomial functions of Ax and By such that

B̂[α,β] =
∑

i

P†
i Pi (A2)

holds for any set of measurement operators satisfying the
algebraic properties A2

x = I, B2
y = I, and [Ax, By] = 0. The

form (A2) is called a SOS decomposition.
Our goal is to find SOS decompositions of generalized

tilted-CHSH inequalities as in Eq. (A2) in terms of a set
of polynomials {Pi}. Our technique for SOS decompositions
is based on Ref. [14]. For simplicity, the search space is
restricted to the span of a canonical basis of nine monomials

S1+AB = {I, A0, A1} ⊗ {I, B0, B1}. (A3)

Let {Ri}i denote the different bases of the vector space of
polynomial Pi. Therefore, Pi can be expressed by the bases
Pi = ∑

μ qμ
i Rμ. Then B̂ is rewritten as

B̂ =
∑
μv

∑
i

R†
μqμ

i qv
i Rv =

∑
μv

R†
μMμvRv. (A4)

The task becomes finding a positive-semidefinite matrix
M such that Eq. (A4) holds. By decomposing both sides of
the equality B̂ = ∑

μv MμvR†
μRv in a basis of the quadratic

products of all elements in S1+AB, we obtain a canonical basis
with a size of 25 for these products as

S2
1+AB ={I, A0, A1, A0A1, A1A0}

⊗ {I, B0, B1, B0B1, B1B0}. (A5)

We write R†
μRv = F i

μvEi, where Ei takes over S2
1+AB and each

Fi is a matrix of coefficients such that B̂ = siEi. Then the SOS
condition reduces to

si = Tr(M†Fi ), i = 1, 2, . . . , 25. (A6)

The remaining task is to solve a set of 25 linear equality
constraints on M as well as the positive-semidefiniteness con-
straint M � 0.

A valid SOS decomposition for B̂[α,β] must be made up
of terms for which Pi(cos θ |00〉 + sin θ |11〉) vanishes in this
maximally violating quantum system. Indeed, writing the
most general P in the search space as r · V, where

V = (I, A0, A1, B0, B1, A0B0, A0B1, A1B0, A1B1), (A7)

and requiring the four components of Pi |ψ〉 to vanish,
Ref. [14] showed that for α = 1 the space of candidates Pi

is spanned by the following five operators:

−ZA + ZB,

−I + ZAZB,

−I + cZB + XAXB,

−XA + sXB + cXAZB,

−cXA + sZAXB + XAZB, (A8)
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where c = cos 2θ , s = sin 2θ , and operators Z and X are
defined as

ZA = A0, ZB = B0 + B1

2 cos μ
,

XA = A1, XB = B0 − B1

2 sin μ
. (A9)

We express the maximal violation of the generalized tilted-
CHSH operator (A1) with α and θ :

η[α,θ] = 2(α2 + 1)√
α2 + sin2 2θ

, (A10)

which can be achieved only by the state |ψ〉 = cos θ |00〉 +
sin θ |11〉 and the corresponding measurements Ax and By for

x, y ∈ {0, 1} defined in (A9), and the parameters satisfy

β = 2 cos 2θ√
α2 + sin2 2θ

, cos μ = α√
α2 + sin2 2θ

,

sin μ = sin 2θ√
α2 + sin2 2θ

. (A11)

Now we choose the basis Ri = {ri · V} for the subspace
containing the SOS polynomials for the generalized tilted-
CHSH (A1) and label the columns with the operators defining
V, where the ri vectors are defined as follows:

I A0 A1 B0 B1 A0B0 A0B1 A1B0 A1B1
r1 = (

0 − 2α√
α2+s2 0 1 1 0 0 0 0

)
,

r2 = ( − 2α√
α2+s2 0 0 0 0 1 1 0 0

)
,

r3 = ( − 2√
α2+s2 0 0 c

α
c
α

0 0 1 −1
)
,

r4 = (
0 0 − 2√

α2+s2 1 −1 0 0 c
α

c
α

)
,

r5 = (
0 0 − 2c√

α2+s2 0 0 1 −1 1
α

1
α

)
.

(A12)

These basis operators separate the space into two isotypical
subspaces, i.e., subspaces that fall under the same irreducible
representation of the cyclic group: R1,2,3 are invariant under
the symmetry transformation of B[α,β], while R4,5 change sign.

The block structure of symmetric SOS matrices is therefore
3 ⊕ 2, where the first block corresponds to the trivial represen-
tation and the second corresponds to the parity representation
where the group generator is represented by −1.

For convenience, we define three classes of CHSH operators:

S0 = A0(B0 − B1) + 1

α
A1(B0 + B1),

S1 = 1

α
A0(B0 + B1) − A1(B0 − B1), (A13)

S2 = A0(B0 − B1) − αA1(B0 + B1).

Then we can provide two different SOS decompositions of the generalized CHSH inequalities B[α,β] in Eq. (A1). The first one
can be given as

B̂[α,β] = 1


 + 2η[α,β]

{
(α2 − 1)

[(
cos 2θ

α
R1 − R3

)2

+ R2
1

]
+

(
cos 2θ

α
R1 − αR2 − R3

)2

+ α2R2
5

}
= 1


 + 2η[α,β]

(
(α2 − 1)

{[
−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

]2

+
(
−η[α,β]α

α2 + 1
A0 + B0 + B1

)2
}

+ [η[α,β] − βA0 − αA0(B0 + B1) − A1(B0 − B1)]2 + α2R2
5

)
= 1


 + 2η[α,β]

(
(α2 − 1)

{[
−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

]2

+
(

− αη[α,β]

α2 + 1
A0 + B0 + B1

)2}

+ B̂2
[α,β] + α2

{
βA1 −

[
A0(B0 − B1) + 1

α
A1(B0 + B1)

]}2)
= 1


 + 2η[α,β]

(
(α2 − 1)

{[
−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

]2

+
(

− η[α,β]α

α2 + 1
A0 + B0 + B1

)2}
+ B̂2

[α,β] + α2(βA1 − S0)2

)
, (A14)
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where 
 = 2(α2 − 1)
√

β2+4
α2+1 . The second decomposition is given as

B̂[α,β] = α2


 + 2η[α,β]

{
α2 − 1

α2

[(
cos 2θ

α
R1 − R3

)2

+ R2
1

]
+

[
2(α2 + 1)

αη[α,β]
R1 − β

2

(
1

α
R2 − R3

)]2

+ 1

α2

(
η[α,β]

2
R4 − β

2
R5

)2}

= α2


 + 2η[α,β]

(
α2 − 1

α2

{[
−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

]2

+
(

− αη[α,β]

α2 + 1
A0 + B0 + B1

)2}

+
{

2A0 − η[α,β]

2α
(B0 + B1) + β

2

[
1

α
A0(B0 + B1) − A1(B0 − B1)

]}2

+ 1

α2

{
2A1 − η[α,β]

2
(B0 − B1) + β

2
[A0(B0 − B1) − αA1(B0 + B1)]

}2)
= α2


 + 2η[α,β]

(
α2 − 1

α2

{(
− η[α,β]α

α2 + 1
A0 + B0 + B1

)2

+
[
−βA0 + η[α,β]

α2 + 1
− A1(B0 − B1)

]2}

+
[

2A0 − η[α,β]

2α
(B0 + B1) + β

2
S1

]2

+ 1

α2

[
2A1 − η[α,β]

2
(B0 − B1) + β

2
S2

]2)
, (A15)

where 
 is defined the same as in (A14).

Hence, we complete the SOS decompositions for B̂[α,β]

such that B̂[α,β] = ∑
i P†

i Pi and Pi are the polynomial func-
tions of Ax and By. The existence of SOS decompositions
(A14) and (A15) implies that any state |ψ〉 and operators
Ax and By achieving the maximal quantum bound η[α,β] will
result in Pi |ψ〉 = 0. In particular, we are interested in the
following four terms:

P1 |ψ〉 = B̂[α,β] |ψ〉 , (A16a)

P2 |ψ〉 = (βA1 − S0) |ψ〉 , (A16b)

P3 |ψ〉 =
[

2A0 − η[α,β]

2α
(B0 + B1) + β

2
S1

]
|ψ〉 , (A16c)

P4 |ψ〉 =
[

2A1 − η[α,β]

2
(B0 − B1) + β

2
S2

]
|ψ〉 , (A16d)

which can be linearly combined to form the operators

(ZA − ZB) |ψ〉 = 0, (A17a)

[sin θXA(I + ZB) − cos θXB(I − ZA)] |ψ〉 = 0 (A17b)

in the case of yielding the maximal quantum bound. The
algebraic relations (A17a) and (A17b) established by the SOS
decompositions (A14) and (A15) are necessarily satisfied
by any quantum state and observables achieving the maxi-
mal quantum bound. Moreover, they are important for the
self-testing of partially entangled states |ψ〉 = cos θ |00〉 +
sin θ |11〉 using the isometry circuit.
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