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Geometric property of energetic cost in transitionless quantum driving
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Transitionless quantum driving is a useful approach to mimic the adiabatic evolution of a quantum system
so that the system can rapidly evolve from its initial state to the target state without transitions between
instantaneous eigenstates of the reference Hamiltonian. To quantify the energetic cost in the transitionless
quantum driving process, the instantaneous cost is defined as the Frobenius norm of the driving Hamiltonian
and the integral of instantaneous cost is used to describe the total cost in the entire evolution. In this paper, we
find that the minimal integral of instantaneous cost has a geometric property being equal to the length of the
evolution path on the Riemannian manifold spanned by the control parameters with a positive definite metric,
but independent of the evolution details such as the changing rate of the parameters. Based on this property,
we further show that the optimal transitionless quantum driving with the minimum total cost corresponds to
the geodesic path on the Riemannian manifold, which provides a method for optimizing transitionless quantum

driving.
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I. INTRODUCTION

As a fundamental element of quantum technologies, ac-
curate and noise-resistant quantum control is a topic that
has attracted much attention. However, controlling the evo-
lution of a quantum system with high fidelity is a difficult
task due to the existence of control errors and environment-
induced decoherence. The adiabatic theorem [1-3] inspires
adiabatic control techniques [4-8], which are inherently re-
sistant to control errors but require the quantum system
to evolve adiabatically. Adiabatic evolutions must satisfy
the adiabatic condition which requires a long run time [9],
and this makes adiabatic control techniques vulnerable to
environment-induced decoherence. Therefore, accelerating
the adiabatic evolution process is an interesting issue in the
development of quantum technologies.

Shortcuts to adiabaticity [10,11], which include transi-
tionless quantum driving [12-18], invariant-based inverse
engineering [19,20], and fast-forward approaches [21,22],
were used to speed up adiabatic processes in a number of
applications, such as quantum computation [23-30], quantum
heat engines [31-33], quantum state preparation [23,34-38],
and so on [39-44]. This makes it possible to achieve fast and
robust quantum control. Among varieties of shortcuts to adia-
baticity, transitionless quantum driving is a useful approach
to mimic the adiabatic evolution of a quantum system, so
that the system can rapidly evolve from its initial state to
the target state without any transitions between instantaneous
eigenstates of the reference Hamiltonian. Transitionless quan-
tum driving was applied to realize nonadiabatic geometric
quantum computation [24], nonadiabatic holonomic quantum
computation [25], and the merits of both its rapidity and
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robustness were verified by experiments in nitrogen-vacancy
centers [26] and superconducting circuits [27,28].

The energetic cost associated with a quantum evolution
process is often neglected when we are only interested in a
particular quantum phenomenon, but it is vital to take such
cost into account when developing quantum technologies
[45-48]. To quantify the energetic cost in the transition-
less quantum driving process, cost functions based on the
Frobenius norm of the driving Hamiltonian were proposed
[17,45,49-56]. Among these, the instantaneous cost function
was defined as the Frobenius norm of the driving Hamiltonian
[17,45], and its integral was used to describe the total cost in
the entire evolution process [49]. They are closely related to
the energy coupling constants and the level gaps of a quan-
tum system, which are typical characteristics of a quantum
evolution process. Minimizing the energetic cost is relevant
to the quantum technologies based on transitionless quantum
driving. The question is how to find the driving Hamilto-
nian that can minimize the cost of transitionless quantum
driving. Several efforts were undertaken to address this issue
[45,50,56]. Specifically, a minimal energy-demanding scheme
for transitionless quantum driving was proposed in Ref. [50],
where the Hamiltonian that minimizes the energetic cost was
obtained by properly choosing the quantum phases.

In this paper, we find that the minimal integral of instanta-
neous cost has a geometric property being equal to the length
of the evolution path on the Riemannian manifold spanned
by the control parameters with a positive-definite metric, but
independent of the evolution details such as the changing rate
of the parameters. Based on this property, we further show that
the optimal transitionless quantum driving with the minimum
total cost corresponds to the geodesic path on the Riemannian
manifold. That is, finding the optimal control Hamiltonian
for transitionless quantum driving is equivalent to finding the
geodesic path on the Riemannian manifold, which provides
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a method for optimizing transitionless quantum driving. Fur-
thermore, we give two examples to illustrate the usefulness of
our finding.

II. GEOMETRY OF ENERGETIC COST

First, we introduce the approach of transitionless quantum
driving that is used to speed up the adiabatic process of the
quantum system.

Consider an N-dimensional quantum system defined
by the time-dependent Hamiltonian Href(X(t)), known as
the reference Hamiltonian, with its instantaneous eigenval-
ues {En(X(t))} and eigenstates {|E,,(5:(t)))}, where A(t) =
(A (1), A2(t), ..., AM (1)) are time-dependent parameters. The
Hamiltonian Href(X(t)) varies along the curve in parameter
space that connects the initial point %(0) and the final point
X(7), where 7 is the final time. Hereafter, we use Hef(¢), E, (1),
and |E, (1)) to denote Hyet(%(2)), E,(A(1)), and |E,(A(1))), re-
spectively, for simplicity. According to the adiabatic theorem,
if Het(t) varies slowly enough, the system initially in the
nth eigenstate |E,(0)) will evolve transitionlessly along the
instantaneous eigenstate |E,(f)) up to a phase factor.

However, a low evolution speed means a long run time
from the initial state to the final state, which may make the
system vulnerable to environment-induced decoherence. To
speed up the adiabatic process of the quantum system, tran-
sitionless quantum driving [14] can be used. The key idea of
transitionless quantum driving is to find a driving Hamiltonian
H (1) instead of H¢(t), which can drive the system exactly
along the eigenstates of H(f) but need not vary slowly.
To find such a Hamiltonian, we can start from the evolution
operator

N
U@) =Y e"E, () (E, 0, (1)

n

which can guarantee that the system initially in |E,(0))
evolves along the nth instantaneous eigenstate up to the phase
factor (), Here, v, (¢) can be an arbitrary real function of ¢.

By using H(t) = —iU @)U (), we immediately obtain the
Hamiltonian,

N
H(t) = iZ [0, En()En ()] + iyvaOIE,(O)ER0)I]. (2)

The system derived by the driving Hamiltonian H (¢) will
evolve from the initial point X(O) to the final point X(r) in
the parameter space along the same path as that defined by
the reference Hamiltonian H,.¢(#) without any transitions be-
tween the eigenstates and |¢, (1)) = e"V|E,()) satisfies the
Schrodinger equation defined by H (¢).

Second, we show that the minimal integral of instantaneous
cost has a geometric property being equal to the length of the
evolution path on the Riemannian manifold spanned by the
control parameters with a positive-definite metric but indepen-
dent of the evolution details such as the changing rate of the
parameters.

To quantify the energetic cost associated with tran-
sitionless quantum driving, cost functions based on the

Frobenius norm of the driving Hamiltonian were proposed
[17,45,49-56]. Although the concrete expressions of the
functions are slightly different depending on the physical
implementation, the norm of the driving Hamiltonian plays
the most crucial role in the definition of cost. Here, we take
the Frobenius norm of the driving Hamiltonian, ||H(?)| =
Vir[HT(#)H (t)], as the instantaneous cost [17,45] and use its
integral to describe the total cost in the entire evolution [49],
which is expressed as

C=/0 H (o)l dt. A3)

The integral C can also be interpreted as the action arising
from the driving Hamiltonian [17].

Substituting Eq. (2) into Eq. (3), we can obtain the integral
C corresponding to the driving Hamiltonian H(¢). Obvi-
ously, the integral C is dependent on the choice of y,(t)
in Eq. (1). For a given evolution path X(t), t €10, 7], the
integral C takes the minimal value if and only if y,(¢) =
—ifOt(B,/En(t/)|En(t’))dt’ [50]. Therefore, in the condition of
the integral C taking minimal value, the driving Hamiltonian
H (¢) must have the form

N
H(t) =) [10,Ea(0))(Ea(0))]
+ (U E(OIE,(O) En(O)NE O] (4)

Since Y 10 E (O E(] = Y (En(O)]0En(0))|En(0))
(En(1)] and (0, E,(1)|En(1)) = —(En(1)[0;E, (1)), we obtain

N

H(@) = i) (En(OI0,E(0)|En(0)) (En(1)]

m,n

N
+i Y (O EnOIE () En(O)En ()]

N

=1 Z (En(O0En () En())(En ()] (5)
m,n (m#n)

It is interesting to note that, for the system driven by H(?),
the parallel transport condition, (¢,()|H (t)|¢,(t)) =0, i.e.,
(n(0)|0;0n(t)) =0,forn=1,2,..., N, is automatically sat-
isfied and hence the phase y,(t) = —ifé(atrE,,(t’)|E,,(t’))dt/
is a purely geometric phase, which is useful for nonadiabatic
geometric computation [57-63].

Note that the phrase “minimal integral” is used to represent
the least value of the integral of instantaneous cost for a given
evolution path. Obviously, different evolution paths in param-
eter space may have different minimal values of the integral,
and we will use the phrase “minimum integral” to represent
the least value of the integral in all the paths considered.

We now proceed to reveal the geometric property of the
minimal integral of instantaneous cost in the transitionless
quantum driving process. The Frobenius norm of the driving
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Hamiltonian in Eq. (5) can be then expressed as

IH®)| = ( i

m,n (m#n)

1

(O En(0)|En (1)) (Em(t)|atEn(t)))

1

N 2
= (Z<8,En(r)|PM|a,En(t)>) : (©6)

n

where P, = 1 — |E,(t))(E,(t)| is the projector operator onto
the state space orthogonal to |E,(¢)). Since |E,(t)), i.e.,
{|E,,(X(t)))}, is time dependent through parameters X(t) =
(A1), A2(2), ..., AM (1)), expression (6) can be further writ-
ten as

1

N 2
IH @) = (Da,tEn(rNPm|avEn<t)>xﬂxv)

n

v :
= (Zgii’SMV> , )

where the repeated indices © and v are summed and the metric
n

g\ is defined as

g = ReQ)1) (8)

wv?

with Q) = (8, E,(1)|PL,]9,E, (1)) being the quantum geo-
metric tensor of the |E,(¢))-state manifold [64].
We further define the positive-definite metric

N
8uv = Zggfg, (9)
n

which induces a Riemannian manifold on the parameter space.
As a result, Eq. (7) can be then recast as

IHO| = \/guvhk A" (10)

Substituting Eq. (10) into Eq. (3), we immediately obtain

T — i@
C= / ek A dt = / e iy, (1)
0 A

0)

Equation (11) clearly indicates that the minimal integral
of the Frobenius norm of the Hamiltonian in the evolution
process has a geometric property. It is equal to the length
of the curve X(t) (t € [0, 7]) on the Riemannian manifold in-
duced by the metric g,,, being only dependent on the evolution
path but independent of the evolution speed along the path.
Moreover, the rate 9,C, i.e., the instantaneous cost ||H (7), is
just equal to the evolution speed ./ gw)(“)(” along the curve
(@)

Third, we demonstrate that the optimal transitionless
evolution with the minimum integral of instantaneous cost
corresponds to the geodesic path connecting the initial and
final points X(O) and X(t) on the Riemannian manifold.

We show that the minimal integral of instantaneous cost is
equal to the length of the evolution path A(r) of the quantum
system in parameter space. However, different evolution paths

in parameter space correspond to different values of the inte-
gral. There are infinitely many paths that connect the initial
point X(O) and the final point X(t) in parameter space. After
having obtained the minimal integral for a given path, it is
ready for us to find the path that corresponds to the minimum
value of the integral.

The above discussion indicates that for the given initial
and final points %(0) and X(7), the shorter the evolution path
connecting them, the smaller is the integral C. From this,
we can conclude that the evolution path corresponding to the
minimum value of the integral C is the geodesic path on the
Riemannian manifold spanned by the control parameters with
the metric g,,. The geodesic path X(t) (t € [0, t]) determined
by the geodesic equation

RING dr’ dia°
ar T o dr dt =0, u=12,....M, (12)

where the Christoffel symbol is defined as

Tl = 18" (580 + 00800 — p8uo). (13)

with g*? = (g7,

By resolving the geodesic equation (12) with the bound-
ary condition given by the initial point %(0) and the final
point A7) in parameter space, we can obtain the evolution
path that corresponds to the minimum value of the integral
C. Substituting the time-dependent parameters satisfying the
geodesic equation into Eq. (5), we can obtain the optimal
driving Hamiltonian H (¢). In passing, we would like to point
out that the result about the minimum integral of instantaneous
cost can be regarded as a kind of minimum action principle for
transitionless quantum driving.

So far, we fulfilled the general discussions related to the ge-
ometric property of the cost in transitionless quantum driving
process. Our discussions also provide a method for optimiz-
ing transitionless quantum driving. Indeed, starting from the
parameterized eigenstates {|E, (L' (1), A2(t), ..., AM(t)))} of a
reference Hamiltonian, we can calculate the metric g,, and
the Christoffel symbol I' by using Eqgs. (8), (9), and (13),
and write out the geodesic equation (12). Then, resolving the
geodesic equation, we can obtain the parameters as functions
of t. Substituting these parameters into Eq. (5), we can fi-
nally work out the driving Hamiltonian H(¢). Note that the
Hamiltonian that can drive the system along the geodesic path
as well as lead to the minimum integral C is not unique.
H[X(c(¢))] is also such a Hamiltonian if and only if H[A(1)]
is such a Hamiltonian, where «(¢) is a monotone-increasing
real function.

It is interesting to see that the work of optimizing the
transitionless quantum driving is equivalent to resolving the
geodesic equation. In fact, geometry-based methods were
used in other optimal controls, such as designing the optimal
and robust control fields of quantum systems [65,66] and
finding the optimal scheme for the shortcut to the isothermal
process [67].
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III. EXAMPLES

A. Example 1: Optimizing the transitionless quantum
driving of a two-level system

We take a two-level system to illustrate our method. Sup-
pose the reference Hamiltonian is

Hyes(t) = Q0o(sin 0 cos o, + sin 0 sin poy, + cosfa;), (14)

where 6 = 6(t) and ¢ = () are time-dependent parameters
and oy, o,, o, are Pauli matrices. The parameterized eigen-
states of Hy.¢(¢) can be expressed as

|E1 (1)) = si o ~#10) 9I1>
1 _smze 0052 ,

0 0.
|E»(t)) = cos §|0) + sin Ee""|1), (15)

corresponding to the eigenvalues E; = — and E, = ),
respectively. The system being initially in the state |E,(0)),
n = 1, 2 will evolve to the target state |E, (7)) along the eigen-
state |E,(t)) if H(t) changes slowly enough.

We aim to find the optimal evolution path by which the
driving Hamiltonian can transitionlessly drive the system fast
from the initial state to the target state as well as with the min-
imum integral C. To this end, we follow the method proposed
in the last section.

Starting from the parameterized eigenstates given in
Eq. (15), we can obtain the metric g,, by using Egs. (8) and

)
0
g=<2 in6 ) (16)
0 *
Substituting it into Eq. (13), we then have the Christoffel sym-
bols I'),, = —sin6 cos§ and I'j = 'Y, = cot 6. Substituting

the Christoffel symbols into Eq. (12), we finally obtain the
geodesic equation

d*o de\?
——sin@cos@(—q]) =0,

dt? dt
d*e dody
— +2cotd —— = 0. 17
dt? t2co dt dt 7

To resolve the geodesic equation with the given bound-
ary conditions, i.e., the starting and terminal points (6p, o)
and (0;, ¢.), which correspond to the initial and final states,
respectively, we can find out the optimal evolution path
[6(2), ()], t € [0, t]. For the two-level system, the optimal
evolution path is the minor arc of the great circle on the spher-
ical coordinate system spanned by the control parameters.
Substituting Eq. (15) with & = 6(¢) and ¢ = ¢(¢) into Eq. (5),
we can obtain the driving Hamiltonian in the basis {|0), [1)},

CLOAD) Q@)e
H(t) - E<Q(I)ei<l>(t) —A(t) >’ (18)

where  A(1) = ¢(t)sin® 6(¢) and Qt)e 10 =
e O[—if(t) — p(t)sinO(t)cosH(t)]. It can be realized
experimentally by applying a near-resonate driving field with
Rabi frequency €2(¢), phase ®(¢), and detuning A(¢) to the
two-level system, as shown in Fig. 1.

To further specify the example, we may assume the sys-
tem is required to evolve along the eigenstate |E;(¢)) from

i 1)

FIG. 1. Energy level diagram of the two-level system driven by
external field with Rabi frequency 2(z), phase ®(¢), and detuning
A(t).

the initial state |E;(0)) = —|1) to the target state |E|(7)) =
\/%(e‘i‘/’(f)IO) — |1)), which corresponds to the starting and
terminal points (6, ¢9) = (0, ¢;) and (0;, ¢;) = (7/2, @)
in the parameter space. Then the optimal evolution path
can be expressed as 0(t) = wt/2, (t) = ¢(1),t € [0, 1] and
the driving Hamiltonian reads H(t) = w /4[—sin¢(7)oy +
c0s ¢(7)oy].

B. Example 2: Optimizing the evolution path of nonadiabatic
geometric gates

We showed that the minimal integral of instantaneous cost
in the transitionless quantum driving process has the geomet-
ric property expressed by Eq. (11),1.e.,C = for \ /gw){/*){" dt.
The driving Hamiltonian corresponding to the minimal inte-
gral of instantaneous cost is given by Eq. (5), i.e., H(t) =
iZZ#(E,,,(t)IBfEn(I))|Em(t))(En(t)|. Noting that such a
Hamiltonian is exactly the same as the general Hamiltonian
proposed for nonadiabatic geometric quantum computation in
Ref. [57] [see Eq. (4) in that reference], our finding can be
used to optimize the evolution path of nonadiabatic geometric
gates.

For the system driving by the Hamiltonian H(¢) de-
fined by Eq. (5), if it is initially in the state |E,(0)), it
will evolve along the state |¢,(¢)) = expliy,(t)]|E,(t)) with
Va(t) = —ifé(aﬂEn(t’)|En(t’))dt/. When the system under-
goes a cyclic evolution in the parameter space, i.e., 2(0) =
X(t), its final state will be |¢,(t)) = expliy,(t)]|E.(0)).
¥.(7) is purely a geometric phase since the parallel transport
condition, (¢,(¢)|H (¢)|¢,(t)) = 0 is satisfied automatically.
Consequently, the evolution operator at the final time reads

N

Ur) =Y "D |E,0)(E, 0. (19)
Therefore, the Hamiltonian H(¢) defined in Eq. (5) can be
used to realize nonadiabatic geometric quantum gates by en-
coding logical qubits into span{|E,(0))}.
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We again take the two-level system as an example. How-
ever, the optimal path in this case cannot be obtained by
resolving the geodesic equation in Eq. (12) since the con-
straint condition is the geometric phase y (7) here instead of
the starting and target points (6, ¢p) and (6;, ¢, ) in Example
1. For simplicity, we continue to use the same symbols as
those in Example 1 and directly quote the above equations as
well.

By substituting |E;(0)) and |E,>(0)) into Eq. (19), the
unitary operator for the two-level system can be expressed as
U(r) = " DIE|(0))(E1(0)] 4 ¢~ P|E>(0)) (E2(0)], where
y(t) = %for[l — cos 6(t)]@(t)dt. For a cyclic evolution, the
evolution path in the parameter space is a closed curve and
hence y(tr) can be rewritten as the integration along the
evolution path P,

y = lf (1 —cosB)de. (20)
2 Jp

If we let n = (sin 8y cos ¢y, sin Gy sin ¢, cos Gy) and use o =
(0%, 0y, 0;), the unitary operator can be simply rewritten as

U(r) = e 7me, 1)

It plays the role of an arbitrary one-qubit geometric gate with
the rotation axis n and rotation angle 2y ().

To find the optimal path for realizing the gate U (t) with
the minimum integral C, we substitute the metric g in Eq. (16)
into the formula (11), obtaining

1 L
Cz—/ /62 + ¢%sin’ @ dt
ﬁ 0

[ 2
= %fl <£> + sin20dg0. 22)
P

Here, C describes the total cost corresponding to the path P.
Noting that there are infinitely many paths that can realize the
same gate U (t) and each path corresponds to a different C in
general, we aim to pick out the one that corresponds to the
minimum value of integral C.

To this end, we need to calculate the extremum of the func-
tional C under the constraint Eq. (20) by using the Lagrange
multiplier method. The optimal path 6 = 6(¢) satisfies the
differential equation

gradC+ Agrady =0, (23)

where A is a Lagrangian multiplier to be determined and the
gradient is defined by Euler-Lagrange equations

rad C — oF@,9) d [0F(9,9)
gract = "2 A A
0G0,9) d (0G0, )
dy = 2299 4 (9689.9)) 24
gracy 26 d(p( 20 24)

with F(0, ¢) = % /(%)2 +sin” 0, G(9, ¢) = (1 — cos0),

and 0 = df/dg. By substituting F (6, ¢) and G(8, ¢) into
Eq. (23), the differential equation of 6 = 6(p) can be

Z

X

FIG. 2. The optimal evolution paths for nonadiabatic geometric
gate U = exp[—imo,/4] on the sphere.

explicitly written as

d26 2 [/do\* 2
—sinf — + £A [(—) + sinze}

dy? 2 do

(55) o
+2cosf | — ) +sin“Ocosf =0. 25)
dg
By resolving the above differential equation with the bound-
ary conditions 08(¢)|y=¢, = 60, 0(¢)ly=y, = 6 and the con-
strain condition (20), the optimal path 6 = 8(¢) can be
obtained. However, it is a difficult task to resolve Eq. (25)
analytically and we need to resort to numerical calculation in
general.

Fortunately, we can provide an alternative method, which
is only based the geometric properties of y and C but without
the need of Eq. (25) to work out the optimal path for realizing
the geometric gate U = ¢~ ™™ In fact, if we take 6(¢) and
@(t) as the polar angle and the azimuthal angle of a spherical
coordinate system, respectively, y in Eq. (20) is equal to the
half of the solid angle enclosed by the evolution path £ on
the sphere while C in Eq. (22) is just equal to the length of
the same path except for a constant coefficient. Therefore, the
optimal path which encloses a given solid angle but has the
shortest length must be the small circle on the sphere. The op-
timal path for realizing the geometric gate U = e~ (V"% with
the minimum integral C is not unique. It can be taken as any
one of the small circles that pass through the point (6, ¢o) as
well as enclose the solid angle 2y. A sketch of the optimal
paths for the geometric gate U = exp[—imo,/4] is shown as
Fig. 2.

IV. CONCLUSION

In conclusion, we proved that the minimal integral of in-
stantaneous cost in the transitionless quantum driving process
has a geometric property being only dependent on the evolu-
tion path in the space of control parameters, but independent
of the evolution details such as the changing rate of the
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parameters. It is equal to the length of the evolution path
on the Riemannian manifold induced by the metric defined
in Eq. (9). Based on this property, we further demonstrated
that the optimal transitionless evolution with the minimum
integral of instantaneous cost corresponds to the geodesic path
on the Riemannian manifold, as described by Eq. (12), which
can be regarded as a kind of minimum action principle for
transitionless quantum driving. Our finding provides a method
for optimizing transitionless quantum driving. We illustrated
the application of the method by a two-level system. In ad-
dition, we also illustrated the usefulness of our finding in the

geometric quantum computation and showed that the optimal
path, which realizes the geometric gate U = e~V with
the minimum integral of instantaneous cost, is the small cir-
cles that pass through the starting point as well as enclose the
solid angle 2y.
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