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Network nonlocality sharing via weak measurements in the generalized star network configuration
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Network nonlocality exhibits completely novel quantum correlations compared to standard quantum nonlo-
cality. It has been shown that network nonlocality can be shared in a generalized bilocal scenario via weak
measurements [Hou, Liu, and Ren, Phys. Rev. A 105, 042436 (2022)]. In this paper, we investigate network
nonlocality sharing via weak measurements in a generalized star-shaped network configuration with arbitrary
numbers of unbiased dichotomic input k, which includes n branches and adds (m-1) more parties in each
branch to the original star network (n, m = 1, k = 2) scenario. It is shown that network nonlocality sharing
among all observers can be revealed from simultaneous violation of 2n inequalities in the (n, m = 2, k = 2)
and (n, m = 2, k = 3) scenarios for any n branches. The noise resistance of network nonlocality sharing with a
precise noise model is also analyzed.
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I. INTRODUCTION

Quantum nonlocality represents a kind of quantum correla-
tion that differs from the classical consideration. This concept
was mathematically materialized by John Bell [1] based on
local hidden variable (LHV) models and it can be observed in
experiments by violating some specific Bell inequalities. As a
resource, quantum nonlocality has been used to implement se-
cure key distribution [2–5] and randomness generation [6–9].

Different from standard quantum nonlocality, network non-
locality based on the independent sources assumption has
been used to find many distinct phenomena, such as corre-
lations that are compatible with the standard LHV models
but incompatible with the network LHV models [10–13].
Furthermore, the exploration of network nonlocality has been
extended to structures with different topologies [14–24], some
of which have been observed in experiments [25–31] (see
Ref. [32] for a review).

Most works of the Bell scenario focus on one pair of
entangled particles distributed to only two separated ob-
servers, Alice and Bob. If we divide one of the observers,
say Alice, into a series of independent Alices that sequen-
tially measure the same particle and all observers perform
weak or unsharp measurements except the last Alice and
Bob, who each perform strong measurements, then these
observers may be able to simultaneously share nonlocality
(nonlocality sharing). This concept was first proposed by
Silva et al. [33], and the works in nonlocality sharing have
mainly concentrated on the sequential case on one side for
recycling an arbitrarily long sequence of Alices [33–39] or
active nonlocality sharing [40,41]. This kind of theory of
sharing has been generalized to other quantum correlations,
such as steering [42–46], entanglement [47–49], and multipar-
tite nonlocality [38,50,51]. Recently, studies on nonlocality
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sharing have been extended to two-sided scenarios with two-
qubit Clauser-Horne-Shimony-Holt (CHSH) inequality [52]
in unbiased measurement selection, but two-sided nonlocality
sharing was not found [46,53,54].

Hou et al. first studied network nonlocality sharing in
a two-sided situation based on the bilocal scenario, one of
the simplest networks, and observed that four network in-
equalities, with respect to two Alices and two Bobs, can
be simultaneously violated [55]. More recently, Mao et al.
experimentally observed network nonlocality sharing in a star-
shaped network [56]. These two works are both restricted to
the two-setting scenario. An increasing number of inputs pro-
vides advantages in device-independent protocols [57]. In this
paper, we aim to explore network nonlocality sharing in an
n-branch generalized star network scenario with m observers
in each branch and k settings per observer, called the (n, m, k)
scenario. The chained n-locality inequality [29,57], which re-
quires only separable measurements performed by the center
observer Bob, is used. Network nonlocality sharing among all
observers can be revealed from simultaneous violation of 2n

inequalities in the (n, 2, 2) and (n, 2, 3) scenarios. The noise
resistance of network nonlocality sharing with a precise noise
model is also analyzed.

This paper is structured as follows: In Sec. II, we introduce
the generalized n-branch star network model and the chained
n-locality inequality for the star network. In Sec. III, the quan-
tum upper bound for any (n, m, k) star network scenario is
derived. In Sec. IV, star network sharing is discussed in detail
under the optimal relation of weak measurement parameters.
In Sec. V, noise resistance of star network sharing with a
precise noise model is analyzed, and it is summarized in
Sec. VI.

II. GENERALIZED STAR NETWORK MODEL
AND CHAINED n-LOCALITY INEQUALITY

The generalized star network nonlocality scenario, where
n independent sources s1, . . . , sn distribute a two-qubit state
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FIG. 1. The generalized star network configuration. The original
star network only includes all Alicei1, i ∈ {1, . . . , n} and Bob. In
each branch i, Alicei1 shares with Bob a two-qubit state produced
by source si. In the generalized star network configuration, which is
different from the original star network, the first external observer
Alicei1 performs weak measurements of the received particle and
transmits it to the next Alice, who also performs weak measure-
ments, until transmitted to the last Aliceim, who performs strong
measurements.

to the corresponding Alice11, . . . , Alicen1 and the center Bob,
is described in Fig. 1. The inputs of Bob and the periph-
eral Alicei j (i) are denoted by y ∈ {0, . . . , k − 1} and xi j (i) ∈
{0, . . . , k − 1}, respectively, and their outcomes are denoted
by b = b1 . . . bn ∈ {1,−1} and ai j (i) ∈ {1,−1}, respectively,
where i ∈ {1, . . . , n} and j (i) ∈ {1, . . . , m}. The first subscript
of Alicei j (i) denotes the ith branch and the second subscript
tells us the j (i)

th observer in a given branch i.
The n-partite distribution P(a1 j (1) , . . . , an j (n) , b |

x1 j (1) , . . . , xn j (n) , y) is network n-local if it can be written
in the following factorized form:

P(a1 j (1) , . . . , an j (n) , b | x1 j (1) , . . . , xn j (n) , y)

=
∫ [

n∏
i=1

dλiqi(λi ) p(ai j (i) | xi j (i) , λi )

]

×p(b|y, λ1, . . . , λn), (1)

where qi(λi ) is the distribution of the hidden variable λi

and the n sets of distributions of hidden variable λ1, . . . , λn

originate from n independent sources. For brevity, we write
λ = λ1 · · · λn. The local response function for Alicei j (i) only
depends on λi for any given j (i), and that of Bob depends
on λ.

The star network n-local model admits the following non-
linear chained n-locality Bell inequality [29,57]:

S(n,m,k)
j =

k∑
l=1

|Il j |1/n � k − 1,

where Il j

= 1

2n

l∑
x1 j(1) ,...,xn j(n) =l−1

〈
A

x1 j(1)

1 j (1) . . . A
xn j(n)

n j (n) Bl−1
〉
, (2)

where Ak
i j (i) = −A0

i j (i) , A
xi j(i)

i j (i) (Bl ) denotes the observable of

Alicei j (i) (Bob) with input xi j (i) (l) and j = j (1) . . . j (n) denotes
the sequentially involved external observers; e.g., S(3,4,5)

321 rep-
resents a (3,4,5) scenario corresponding to a three-branch star
network with four Alices in each branch, and every observer
in the network has five inputs and involves Alice13, Alice22,
Alice31, and a center Bob.

This inequality is a generalization of the original star net-
work n-locality inequality [15], the bilocal inequality [11],
and the chained CHSH inequality [58]. Here, we point out
that one could also consider other multisetting star network
inequalities [59,60] for different purposes.

The quantum upper bound of Eq. (2) is Ck =
kcos(π/2k) [57], which only depends on the number of
input k. This bound can be achieved when each Alicei j (i)

shares with Bob a maximally entangled state, i.e., the state
not perturbed by measurements of former Alices, and the
measurements to achieve this bound is given in the following.

When the singlet state |ψ−〉 = (|01〉 − |10〉)/
√

2 is shared
in each branch, the measurements of the external observers
are given as

A
xi j(i)

i j (i) = sin

(
xi j (i)π

k

)
σx + cos

(
xi j (i)π

k

)
σz, (3)

where σx and σz are Pauli matrices, and the positive-operator-
value measure (POVM) elements of Alicei j (i) are given by

Mai j(i) |xi j(i)
= I+ai j(i) A

x
i j(i)

i j(i)

2 .
The center observer Bob performs a separable measure-

ment with a product format By = By
1 ⊗ · · · ⊗ By

n, where By
i

represents the measurement performed on the ith subsystem:

By
i = sin

(2y + 1)π

2k
σx + cos

(2y + 1)π

2k
σz. (4)

The POVM elements of Bob are given by Mb|y = Mb1|y1 ⊗
· · · ⊗ Mbn|yn and Mbi|yi = I+biB

y
i

2 .
Recall that the operator corresponding to Bob’s mea-

surements factorizes as By = By
1 ⊗ · · · ⊗ By

n, resulting in

〈Ax1 j(1)

1 j (1) , . . . , A
xn j(n)

n j (n) By〉 =
n∏

i=1
〈Axi j(i)

i j (i) By
i 〉.

052412-2



NETWORK NONLOCALITY SHARING VIA WEAK … PHYSICAL REVIEW A 106, 052412 (2022)

III. QUANTUM UPPER BOUND OF CHAINED
n-LOCALITY INEQUALITIES FOR

THE (n, m, k) SCENARIO

To calculate the quantum upper bound of Eq. (2) for any
n, m, k, we first need to calculate the correlator〈

A
xi j(i)

i j (i) By
i

〉 = 1

k( j (i)−1)

∑
ai j ,xi j ,bi

ai j (i) bi

× P(ai1, . . . , ai j (i) , bi | xi1, . . . , xi j (i) , yi ), (5)

where ai j = ai1, . . . , ai j (i) and xi j = xi1, . . . , xi( j (i)−1).
To obtain the distribution P(ai1, . . . , ai j (i) , bi |

xi1, . . . , xi j (i) , yi ), the following steps are required.
Denote the state that Alicei1 shares with Bob as ρi. Bob

performs single-bit measurements with outcome bi on the
particle he receives, so this subsystem will change to

ρ
bi
AiBi

= (I ⊗ Mbi|yi )ρi(I ⊗ Mbi|yi )
†. (6)

We do not normalize ρ
bi
AiBi

because the probability distribution
can be directly obtained by tracing the final unnormalized
state. After Bob’s measurement, the reduced state on Alicei1

can be obtained by tracing out Bob’s system,

ρ
bi
Ai

= TrB
(
ρ

bi
AiBi

)
. (7)

If j (i) < m, Alicei j (i) performs weak measurements on her
subsystem. According to the discussion in Ref. [33], the re-
duced state can be given in the following recursive formula:

ρi j (i) = Fi j (i)

2
ρi( j (i)−1)

+ 1 + ai j (i) Gi j (i) − Fi j (i)

2

[
M1|xi j(i)

ρi( j (i)−1)(M1|xi j(i)
)†
]

+ 1 − ai j (i) Gi j (i) − Fi j (i)

2

[
M−1|xi j(i)

ρi( j (i)−1)(M−1|xi j(i)
)†
]
,

(8)

where ρi0 = ρ
bi
Ai

, Fi j (i) , and Gi j (i) are weak measurement pa-
rameters and Fi j (i) is called the quality factor, which is the
undisturbed proportion of the state after Alicei j (i) is measured,
and Gi j (i) is called precision factor, which quantifies the in-
formation gain through a measurement. There is a default
assumption that the weak measurement parameters are the
same for k measurements of each observer, and one can also
perform unequal sharpness measurements that may have dif-
ferent results [33,56].

If j (i) = m, then Aliceim wants to achieve the maximal cor-
relation with Bob and will perform projective measurements.
As a result, the state will change to

ρim = Maim|ximρi(m−1)(Maim|xim )†. (9)

From the unnormalized postmeasurement state ρi j (i) , we
can obtain the probability distribution

P(ai1, . . . , ai j (i) , bi | xi1, . . . , xi j (i) , yi ) = Tr[ρi j (i) ]. (10)

Assume Alicei1, i ∈ {1, . . . , n} shares a singlet state with
Bob, and all Alices and Bob perform the measurements re-
quired in the above section. We can derive the quantum upper
bound for the network inequality with a combination of ar-
bitrary observers (taking one Alice in each branch) in an

(n, m, k) scenario (see Appendix A for a proof) as follows:

S(n,m,k)
j = Ck

⎛
⎝ n∏

i=1

j (i)∏
o=1

Tio

⎞
⎠

1/n

, (11)

where

Tio =

⎧⎪⎪⎨
⎪⎪⎩

1 o = j (i) = m

Gio o = j (i) < m
1+Fio

2 o < j (i)

This bound only depends on the number of inputs k and the
weak measurement parameters of the involved Alices (except
the last Alice in every branch) in a star network. In the residual
of this paper, we mark this bound as S j when (n, m, k) is
given. Note that in the case of (n = 1, m = 2, k = 2), this
result can recover the outcome in Ref. [33] as that the central
observer performs separable measurements.

Let us discuss some special cases of Eq. (11).
(1) m = 1, i.e., only one Alice in each branch corresponds

to the scenario without nonlocality sharing, which has been
discussed in Ref. [57] and S1...1 = Ck = kcos( π

2k ). Meanwhile,
if we take k = 2, that backs to the original star network
(n, 1, 2) scenario [15] and S1...1 = √

2.
(2) In a (2, 2, k) scenario, Sj (1) j (2) corresponding to

Alice1 j (1) − Alice2 j (2) − Bob is calculated as follows:

S11 = Ck
√

G11G21, S12 = Ck√
2

√
G11(1 + F21),

S21 = Ck√
2

√
G21(1 + F11), S22 = Ck

2

√
(1 + F11)(1 + F21).

(12)

Note that when k = 2, Eq. (12) is coincident with the result in
Ref. [55].

(3) In a generalized (n, m, k) sce-
nario, S1...1 = Ck (G11 . . . Gn1)1/n and Sm...m =
Ck ( 1+F11

2 . . . 1+Fn1
2 . . .

1+F1(m−1)

2 . . .
1+Fn(m−1)

2 )1/n.
For simplicity, we assume that Gi j (i) and Fi j (i) are symmet-

ric in the following section, i.e., Git = Gt and Fit = Ft , i ∈
{1, . . . , n}, t ∈ {1, . . . , m − 1}. Then, S1...1 and Sm...m in case
(3) are reduced to CkG1 and Ck ( 1+F1

2 . . .
1+F(m−1)

2 ), respectively.

IV. CASES OF THE OPTIMAL TRADE-OFF RELATION
OF WEAK MEASUREMENT PARAMETERS

FOR DIFFERENT NUMBERS OF INPUT

According to the relationship between the quality factor F
and precision factor G, there is an optimal trade-off between
F and G [33], i.e., F 2 + G2 = 1, where G, F ∈ [0, 1], and
optimal means by a measurement from which the most in-
formation can be extracted with the same disturbance.

In a generalized (n, 2, k) scenario, we take G1 =
G, F1 = F . The quantum upper bound is given as Sj =
Ck[Gn1 ( 1+F

2 )n2 ]1/n, where n1 (n2) means the number of 1 (2) in
j and n1 + n2 = n. In total, 2n quantities can be discussed—in
particular, S1...1 = CkG and S2...2 = Ck

1+F
2 .
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FIG. 2. Plot of Sj ∈ {S11, S12, S21, S22} in the (2, 2, k) scenarios (upper subfigure, k ∈ {2, 3, 4}) with the red dot-dashed line, green
dotted line (S12 = S21), and blue dashed line, respectively, and Sj ∈ {S111, S222, S112, S121, S211, S122, S212, S221} in the (3, 2, k) scenario (lower
subfigure, k ∈ {2, 3, 4}) denoted by the red dot-dashed line, blue dashed line, green dotted line (S112 = S121 = S211), and purple dotted line
(S122 = S212 = S221), respectively, and the classical bound (k − 1) with a black solid line as functions of the precision factor G under the
condition of Gi1 = G, i ∈ {1, . . . , n} for (a) k = 2, (b) k = 3, and (c) k = 4.

We analyze the optimal relation of weak measurement
parameters in the following. Obviously, the violation intervals
of all 2n inequalities with respect to G are only determined
by S1...1 and S2...2 together. When k = 2, these 2n quantities
acquired by Eq. (11) can simultaneously exceed the classical
bound 1 in a range of G ∈ { 1√

2
,
√

2(
√

2 − 1)}, and the max-
imum simultaneous violation value is 4

√
2

5 ≈ 1.13137 when
G = 4/5. When k = 3, the quantum upper bounds acquired
by Eq. (11) can simultaneously exceed the classical bound 2 in
a relatively narrow range of G ∈ { 4

3
√

3
, 4

3

√
1
3 (3

√
3 − 4)}, and

the maximum simultaneous violation value is 6
√

3
5 ≈ 2.07846

when G = 4/5. Note that for an (n, 2, k) scenario, no si-
multaneous violation of all quantities in an (n, 2, k) scenario
occurs when k > 3 because the maximal value that can be
achieved in this scenario is 4Ck/5, which is lower than the
classical bound (k − 1) when k > 3. When k = 4, G = 4/5,
these quantities acquired by Eq. (11) simultaneously achieve a

maximum value of 8
5

√
2 + √

2 ≈ 2.9564, which is lower than
the classical bound of 3.

These quantum upper bounds in the (2, 2, k) and (3, 2, k)
scenarios (k ∈ {2, 3, 4}) can be depicted as a function of G
shown in Fig. 2. In the (2, 2, 4) scenario, as depicted in the
upper subfigure of Fig. 2(c), when G =

√
3

2 ≈ 0.8660, S12 and

S21 achieve the maximal value 33/4
√

2+√
2

2 ≈ 2.9783, which is
lower than the classical bound of 3. In the (3, 2, 4) scenario as
depicted in the lower subfigure of Fig. 2(c), when G =

√
5

3 ≈
0.7453, the quantities S122, S212, S221 achieve the maximal

value 21/355/6
√

2+√
2

3 ≈ 2.9671, which is lower than the clas-
sical bound of 3. Simultaneous violation only exists among
S111, S112, S121, S211 in a range of G ∈ {0.8280, 0.9970}, and

the maximal simultaneous violation 210/3

6

√
2 + √

2 ≈ 3.1040

is achieved when G = 2
√

2
3 ≈ 0.9428.

The conclusion that there is no nonlocality sharing among
all observers in the generalized star network when m = 3
can be immediately derived. In this (n, 3, k) scenario, S1...1 =
CkG1, S2...2 = Ck

1+F1
2 G2, and S3...3 = Ck

1+F1
2

1+F2
2 . These three

quantities achieve the maximal value at the same time as
Ck · 20

29 when G1 = 20
29 and G2 = 4/5; when k = 2, this value

is 20
√

2
29 ≈ 0.9753, which is lower than the classical bound

of 1.

V. NOISE RESISTANCE IN NETWORK
NONLOCALITY SHARING

From an experimental perspective, producing perfect max-
imally entangled states is an extremely demanding task.
Therefore, it is natural to consider that imperfect particles
exist in the network and discuss the influence on the network
correlations. In the most common photonic experiments, en-
tangled photons are usually produced through a spontaneous
parametric down conversion (SPDC) process in a nonlinear
crystal, and two different classes of noise affect the SPDC
sources: white noise and colored noise [29,61]. Suppose these
sources distribute the singlet state as previously discussed, and
the noise states can be expressed as

ρw
i = vi |ψ−〉 〈ψ−| + (1 − vi )

I

4
(13)

and

ρc
i = vi |ψ−〉 〈ψ−| + (1 − vi )Mcolor, (14)
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FIG. 3. Comparison of the different noise types affecting S(n,2,k)
j when G = 4/5. Plot of Sj with the visibility v for (a) k = 2 and (b) k = 3,

where the red dot-dashed line, blue dashed line, and green dotted line represent the scenarios of r = 0 (white noise), r = 1 (colored noise),
and r = 1/3, respectively, and the classical bound (k − 1) is expressed with a black solid line. The violation is more sensitive to white noise.

where Mcolor = 1
2 (|01〉 〈01| + |10〉 〈10|) describes the depolar-

ization direction and the colored noise is intrinsic in the SPDC
process.

Consequently, the final state can be modeled by combining
these two different contributions in a normalized form:

ρi = (1 − ri )ρ
w
i + riρ

c
i , (15)

where vi and ri represent the total noise and the fraction of
colored noise of source ρi, respectively.

We focus on the quantum upper bounds among Alice11 −
· · · − Alicen1-Bob and Alice12 − · · · − Alicen2-Bob in the
cases where k = 2 and k = 3.

If ri = 0, which corresponds to there being only white
noise, we obtain

S(n,2,k)
1...1 = Ck

{
n∏

i=1

Gi1vi

}1/n

,

S(n,2,k)
2...2 = Ck

2

{
n∏

i=1

(1 + Fi1)vi

}1/n

. (16)

V = (
n∏

i=1
vi )1/n is the critical visibility for network non-

locality sharing in this situation. When k = 2 and k =
3, there is no simultaneous violation of network inequal-
ity between Alice11 − · · · − Alicen1-Bob and Alice12 − · · · −
Alicen2-Bob with V � 88.39% and V � 96.23%, respec-
tively.

In the following, we consider that the noise parameters
and the weak measurement parameters are the same for all
of the sources and observers Alicei1, respectively, i.e., r1 =
· · · = rn = r, v1 = · · · = vn = v and G11 = . . . Gn1 = G, re-
spectively. The weak measurement parameter relations of the
corresponding Alices are all optimal; then, these quantum
upper bounds are reduced to

S(n,2,k)
1...1 = Ck

2
{G[r(1 − v) + 2v]},

S(n,2,k)
2...2 = Ck

4
{(1 +

√
1 − G2)[r(1 − v) + 2v]}. (17)

Therefore, we can analyze the influence of different noise
types on the network correlation. As illustrated in Fig. 3,

we list the quantities in Eq. (17) for different numbers of
input when G = 4/5, i.e., the parameter achieves the maximal
violation. We find that the violation is more sensitive to white
noise. The concrete proportion of parameter r can be evalu-
ated in the experiment [29]. For the case when r = 1/3, the
critical visibility for k = 2 and k = 3 is 86.07% and 95.48%,
respectively.

The generalized expression for when all of the sources
contain different noise parameters is provided in Appendix B.

VI. SUMMARY AND DISCUSSION

In this paper, the effect of different numbers of inputs
on network nonlocality sharing in a generalized star network
configuration is discussed. In the cases where m = 2 and the
numbers of input are k = 2 or k = 3, all 2n star network
inequalities with respect to Alice1 j (1) − · · · − Alicen j (n) − Bob
can be simultaneously violated for any n branches. A natural
extension to our study would be to reveal network nonlocality
sharing among all observers when k > 3, and we propose
two probable ways to achieve this proposal. The first pos-
sible scheme is to utilize other multisetting star network
inequalities such as the Munshi-Kumar-Pan (MKP) inequality
proposed in Ref. [60]. In each branch, the former Alice must
perform weaker measurements to decrease her violation for
the latter Alice to achieve nonlocal correlation with Bob. As
the number of inputs k increases, the ratio of the quantum
upper bound and classical bound of the MKP inequality ap-
proaches 1.25 when high-dimensional systems are used. A
second possible direction is using the method of unequal
sharpness measurements. Considering different sharpness pa-
rameters for two different measurements by each observer
can significantly increase the number of observers who can
achieve nonlocality sharing [37], and it is interesting to study
whether this phenomenon still holds for a larger input number.

From an experimental perspective, the separable measure-
ment is the simplest possible measurement in practice. Our
result for the star network nonlocality sharing is experimen-
tally observable, and there are some reference experiments:
star network nonlocality has been observed in recent ex-
periments [29,62], and the weak measurement part used
in this paper has been implemented in several experi-
ments [41,48,63,64].
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APPENDIX A: PROOF OF EQ. (11)

We provide detailed proof of Eq. (11) and restate here for readability:

S(n,m,k)
j = Ck

⎛
⎝ n∏

i=1

j (i)∏
o=1

Tio

⎞
⎠

1/n

. (A1)

According to the expression of Eq. (5), we first need to calculate the probability distribution P(ai1, . . . , ai j (i) , bi |
xi1, . . . , xi j (i) , yi ).

If j (i) = m, then according to Eq. (9), we have∑
aim

aimTr[ρim] = Tr
{[

sin
(ximπ

k

)
σx + cos

(ximπ

k

)
σz

]
ρi(m−1)

}
. (A2)

If j (i) < m, then according to Eq. (8), we have∑
ai j(i)

ai j (i) Tr[ρi j (i) ] = Gi j (i) Tr
{[

sin
(xi j (i)π

k

)
σx + cos

(xi j (i)π

k

)
σz

]
ρi( j (i)−1)

}
. (A3)

Recursively compute these states until ρi0 = ρ
bi
Ai

; for example,

1

k

∑
ai( j(i)−1)
xi( j(i)−1)

Tr
{[

sin
(xi j (i)π

k

)
σx + cos

(xi j (i)π

k

)
σz

]
ρi( j (i)−1)

}

= 1 + Fi( j (i)−1)

2
Tr

{[
sin

(xi j (i)π

k

)
σx + cos

(xi j (i)π

k

)
σz

]
ρi( j (i)−2)

}
. (A4)

When ρi is a singlet state, we have

∑
bi

biTr
{[

sin
(xi j (i)π

k

)
σx + cos

(xi j (i)π

k

)
σz

]
ρ

bi
Ai

}
= −

[
cos

(
π (1 − 2xi j (i) + 2y)

2k

)]
. (A5)

Consequently, the correlator is calculated as

〈
A

xi j(i)

i j (i) Bi−1
i

〉 = −
j (i)∏

o=1

Tiocos

(
π [1 − 2xi j (i) + 2(i − 1)]

2k

)
, Tio =

⎧⎪⎨
⎪⎩

1 o = j (i) = m

Gio o = j (i) < m
1+Fio

2 o < j (i)

(A6)

Therefore, in a generalized star network (n, m, k) scenario with the n-branch, m observers in each branch, and k inputs, the
quantum upper bound (shorthand A

xi j(i)

i j (i) as Ai) is given by

S(n,m,k)
j =

k∑
l=1

|Il j |1/n,

= 1

2

k∑
l=1

⎛
⎝
∣∣∣∣∣∣

l∑
x1 j(1) ,...,xn j(n) =l−1

〈A1, . . . , AnBl−1〉
∣∣∣∣∣∣
⎞
⎠

1/n

,

= 1

2

k∑
l=1

⎛
⎝
∣∣∣∣∣∣

l∑
x1 j(1) =l−1

〈
A1Bl−1

1

〉 · · · l∑
xn j(n) =l−1

〈
AnBl−1

n

〉∣∣∣∣∣∣
⎞
⎠

1/n

,

= kcos

(
π

2k

)⎛⎝ n∏
i=1

j (i)∏
o=1

Tio

⎞
⎠

1/n

. (A7)
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APPENDIX B: QUANTUM UPPER BOUND FOR NOISE STATES

In this part we consider the general case for the noise states as

ρi = (1 − ri )ρ
w
i + riρ

c
i . (B1)

When ρi is the state in Eq. (B1), we have∑
bi

biTr
{[

sin
(xi j (i)π

k

)
σx + cos

(xi j (i)π

k

)
σz

]
ρ

bi
Ai

}
= −

[
vicos

(
π (1 − 2xi j (i) + 2y)

2k

)
+ (1 − vi )ricos

xi j (i)π

k
cos

(2y + 1)π

2k

]
.

(B2)

Consequently, the correlator is calculated as

〈
A

xi j(i)

i j (i) Bi−1
i

〉 = −
j (i)∏

o=1

Tio

[
vicos

(
π [1 − 2xi j (i) + 2(i − 1)]

2k

)
+ (1 − vi )ricos

xi j (i)π

k
cos

[2(i − 1) + 1]π

2k

]
. (B3)

After a direct calculation, we have

S(n,2,k)
1...1 = Ck

2

{
n∏

i=1

Gi1[ri(1 − vi ) + 2vi]

}1/n

,

S(n,2,k)
2...2 = Ck

4

{
n∏

i=1

(1 + Fi1)[ri(1 − vi ) + 2vi]

}1/n

. (B4)
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