
PHYSICAL REVIEW A 106, 052410 (2022)

Communication advantage of quantum compositions of channels from non-Markovianity
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The combined use of quantum channels can grant communication advantages in the form of enhancements
to communication capacities. One such channel composition is the quantum switch, which implements a
system with indefinite causal order by coherent control of the orderings of two or more quantum channels,
resulting in enhanced communication capacities. Here, using the monogamy relation, we studied the flow of
entanglement monotone in these quantum compositions of channels in the environmental representation. We
implemented the two-party quantum switch in this framework, and demonstrated that non-Markovianity is
the source of revival of the entanglement monotone in this setup. The possibility and amount of revival was
shown to depend on the entangling capability of the channels, and the perfect activation of coherent information
with entanglement-breaking channels was also replicated with the perfect revival of entanglement monotone.
Additionally, we showed that a more general non-Markovian circuit can still grant enhancements to coherent
information and Holevo quantity without the presence of indefinite causal order.
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I. INTRODUCTION

Quantum communication theory saw many surprising phe-
nomena not present in classical communication theory due
to the presence of entanglement, such as superdense coding
[1], where quantum communication is used to enhance clas-
sical communication, and quantum teleportation [2], where
classical communication is used to assist quantum commu-
nication. A large part of foundational works on quantum
communication theory are on quantifying the maximum pos-
sible communication rates or capacities of these phenomena
both with and without initial entanglement [3–9]. Similar to
the classical capacity, the quantum capacity of a channel can
be quantified by the rate of qubit transmission instead of bits.
However, unlike the classical case, the combined use of quan-
tum channels can lead to an enhancement of quantum capacity
when used on an initially entangled state. For example, paral-
lel use of a pair of quantum channels on a pair of entangled
qubits can result in a superadditivity of capacities, where the
overall quantum and classical capacities are greater than the
sum of the individual channel capacities [10,11]. Furthermore,
in what is known as superactivation, such an enhancement
is possible for the quantum capacity even if the individual
channels each has zero quantum capacity [12].

Different from superadditivity and superactivation, where
the placement of quantum channels is fixed, there have been
growing interests in the phenomenon of indefinite causal or-
ders, where the orderings of two or more quantum operations
are placed in a superposition of different orders [13]. Such a
setup can be implemented by what is known as the quantum
switch, which puts different orders of quantum operations
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in a coherent superposition controlled by a control system
[14]. The phenomenon of indefinite causal orders has seen
multiple advantages in terms of computation [15–17], metrol-
ogy [18–20], and refrigeration or work extraction [21,22]
tasks. Such advantages also include enhancement to commu-
nication complexities in communication games, as well as
enhancements to classical and quantum capacities as com-
pared to using the channels in series, violating the bottleneck
inequality [23–26]. Like superactivation, this enhancement is
even possible if the individual channels have zero capacities
[27,28]. While these enhancements are usually shown for the
two-party quantum switch, where only two operations are
placed in a superposition of two alternating orders, there are
also works demonstrating enhancements for more than two
parties in more than two superpositions of orders [29,30].

The enhancement of capacities by the quantum switch is
referred to as causal activation, and the origins of this commu-
nication advantage have been a topic of debate. Particularly, it
was shown that a controlled superposition of two independent
channels can replicate and surpass the quantum switch’s en-
hancement, suggesting that the ability to coherently control
superposition might be more significant than the superposi-
tion of orders [31]. Reference [32] also demonstrated this
for a more general class of controlled superposition known
as superposition of direct pure processes, for which it was
suggested that the fundamental resource behind the quantum
switch is the coherent control of a superposition of operations
rather than its indefinite causality. However, it was argued that
these counterexamples have the presence of resources that are
not present in the quantum switch, such as generating side
channels, or using vacuum-extended channels that utilize the
coherence with the vacuum state as a resource [33,34]. Also
in support of the resource of indefinite causality in the quan-
tum switch, Ref. [28] showed that the perfect activation of
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quantum capacities on a pair of channels with zero capacities
was only possible with the quantum switch’s superposition
of causal orders, and not in a superposition of independent
channels or trajectories. Furthermore, Ref. [25] demonstrated
numerically for arbitrary choices of channels that while im-
plementing a controlled superposition of two independent
channels always enhances communication, implementing the
quantum switch can either grant a greater enhancement, or it
can worsen the communication capacities, raising more ques-
tions on the origins of the resource utilized in the quantum
switch. Similarly, on the experimental side of things, despite
that the quantum switch has been implemented experimentally
as a tabletop photonics setup, and verified to enhance the
classical and quantum capacities [35–38], there are still some
doubts as to whether these experimental implementations are
genuine superpositions of causal orders [39].

At the same time, there are actually known situations where
a reduction in information loss, and thus an enhancement to
communication, can be expected and explained in an open
quantum system. These occur in a non-Markovian quantum
process [40]. As a noisy quantum channel is an open system
where the information-carrying system can be thought to be
interacting with an environment and losing information to it,
a non-Markovian interaction can grant the possibility of a
backflow of information where information flowed to the envi-
ronment returns to the information-carrying system, resulting
in an increase in capacity of the channel [41].

A non-Markovian system can exhibit memory effects dur-
ing repeated uses of a channel where a use can be correlated to
a previous use. In other words, the noise induced by the chan-
nel at different points in time is correlated. Such correlation in
time was also shown to reproduce and even surpass the com-
munication advantages of the quantum switch in Ref. [42],
where a particle is sent to a channel in a superposition of
two different times. Additionally, there have been growing
interests in the connections between non-Markovianity and
indefinite causal order. For example, it was shown in Ref. [43]
from an operational approach that a process with indefinite
causal order can be simulated by a measurement on the en-
vironment and conditioning the outcomes, given that there is
initial system-environment entanglement, which indicates the
presence of non-Markovianity. It was also shown in Ref. [44]
that in quantum random walks where the dynamics of the re-
duced coin state is non-Markovian [45], by placing the walk’s
evolution operators in an indefinite causal order, there is an
increase in non-Markovianity as compared to a fixed causal
order. Even more recently, it was shown that for channels
that are non-Markovian but do not offer backflow of informa-
tion, known as eternally non-Markovian channels [46], such
that its non-Markovianity is “hidden,” placing these channels
in the quantum switch setup can activate this hidden non-
Markovianity to allow backflow of information [47].

These works either suggest that non-Markovianity can
replicate the advantages of the quantum switch or its indefinite
causality in the case of Refs. [42,43], or that the quantum
switch can activate or enhance the non-Markovianity already
present in the system in the case of Refs. [46,47]. However,
here we demonstrate that a composition of quantum chan-
nels that implements the two-party quantum switch itself has
intrinsic non-Markovianity in its operation, suggesting that

this non-Markovianity can play a part in causal activation
or in the communication advantages of the quantum switch.
Specifically, we show that there is a revival of an entanglement
monotone between the information-carrying system and a
reference system, which is dependent on the entangling capa-
bilities of the quantum channels. Furthermore, we generalized
the circuit such that its non-Markovianity can be controlled,
and showed that the difference between a superposition of
causal orders and a superposition of trajectories, as explored
in Ref. [28], is due to the presence of this non-Markovianity.
In this non-Markovian framework, it seems to suggest that
non-Markovianity is a resource that is utilized by the quantum
switch, and we demonstrate that enhancements to commu-
nication capacities can be achieved with non-Markovianity
alone, without the presence of indefinite causal order.

This paper is structured as follows. We first review the
definitions of non-Markovianity and its environmental rep-
resentation in Sec. II. We also review the definitions of the
classical and quantum channel capacities, as well as their
relation to the entanglement monotone for which a revival
can indicate the presence of non-Markovianity. In Sec. III,
we focus on the dynamics of this entanglement monotone,
defining its flow and dependence on the entangling capability
of the operations in an example single-pass system. In Sec. IV,
we apply this framework to the two-party quantum switch to
demonstrate the presence of non-Markovianity via the revival
of the entanglement monotone, and show that the revival
depends on the entangling capability of the operations. We
also replicated the perfect activation of quantum capacities
explored in Ref. [28] with the perfect revival of the entan-
glement monotone, and lastly we show that a more general
circuit composition without indefinite causal order can also
grant enhancements to communication capacities.

II. NON-MARKOVIANITY

A. Divisibility and information backflow

A quantum channel in general is described by a completely
positive and trace-preserving (CPTP) map. Under the action
of such a channel with the CPTP map �, a distinguishability
measure D(ρ, σ ) of a pair of quantum states ρ and σ is
contractive [48]:

D(�(ρ),�(σ )) � D(ρ, σ ). (1)

If the map �(τ, 0) that acts from t = 0 to t = τ is a Marko-
vian process, it is divisible for all times 0 � t � τ [49,50],
i.e.,

�(τ, 0) = �(τ, t )�(t, 0), ∀ 0 � t � τ (2)

where both �(τ, t ) and �(t, 0) are CPTP maps. This is called
the divisibility property. Therefore, the contraction of the dis-
tinguishability measure D will be monotonic for the entire
time τ . On the other hand, for a non-Markovian process with
respect to a CPTP map �̄(τ, 0), there are times t where it
cannot be divisible into individual CPTP operations, and thus
the divisibility condition in Eq. (2) does not hold [51]. In this
case, we say that �̄(τ, 0) is CP indivisible or that it violates
CP divisibility at those times t . In other words, we might have
�̄(τ, 0) = �(τ, t )�(t, 0) where �(τ, t ) is not a CPTP opera-
tion. As there is no CPTP description of �̄(τ, 0) at those times
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t , Eq. (1) need not hold for those times. Such revival where
the monotonic relation is violated with D(ρτ , στ ) � D(ρt , σt )
where τ � t is referred to as the backflow of information
from the environment to the system, and is also known as the
BLP definition, named after Breuer, Laine, and Piilo who first
demonstrated this in Ref. [52].

Therefore, a common measure for the non-Markovianity
of a process is the amount of violations of the monotonic-
ity of measure D(ρ, σ ), where D is usually taken to be
the trace distance [52–54]. However, divergence measures
such as the relative entropy S(ρ ‖ σ ) will also fulfill Eq. (1)
[55,56]. Therefore, the Holevo quantity χ (ρ) = ∑

a paS(ρa ‖
ρ) which lower bounds the classical capacity [6,7] is also
monotonic:∑

a

paS(�(ρa) ‖ �(ρ)) �
∑

a

paS(ρa ‖ ρ), (3)

χ (�(ρ)) � χ (ρ), (4)

where ρ = ∑
a paρa. Similarly, the coherent information Ic

which lower bounds the quantum capacity [8,9] was also
shown to be a monotone [5]. These distinguishability or di-
vergence measures that are monotonic under CPTP maps are
information monotones, and their monotonic nature defines
the irreversible loss of information under the application of
a noisy quantum channel. Other choices of the information
monotone include the quantum Fisher information [57,58]
(refer to Ref. [40] for a review of the different types of
measures).

It is important to note that CP indivisibility does not imply
information backflow or revival [59] in general. Processes that
are CP indivisible but do not have information backflow are
referred to as an eternally non-Markovian process [46,47].
Nonetheless, for our purpose, we refer to the violation of
the divisibility property in Eq. (2) as a process that is non-
Markovian. Specifically, we take a nonoperational approach
where the indivisibility is caused by the presence of memory
in the environmental representation.

B. Environmental representation

The violation of the divisibility property, and thus the
presence of non-Markovianity, can be made apparent in the
environmental representation as the presence of memory or
correlations in the environment. Any CPTP map � acting on a
state ρQ ∈ HQ can be represented by an operation on a larger
Hilbert space HQ ⊗ HE with the extended space HE traced
out [49,55]. This operation can be an isometry A that maps A :
HQ → HQ ⊗ HE , known as the Stinespring representation,
or a unitary U that maps U : HQ ⊗ HE → HQ ⊗ HE , known
as the environmental representation as the system E plays
the role of the environment that system Q interacts unitarily
with

�(ρQ) = TrE [U (ρQ ⊗ ρE )U †], (5)

where the unitary U ∈ HQ ⊗ HE . Therefore, for a Markovian
process where the CPTP map is divisible between two time
steps according to Eq. (2) with � = �2 ◦ �1 where �1 and

�2 are valid CPTP maps, we have

�1
(
ρ

Q
0

) = ρ
Q
1 = TrE

[
U1

(
ρ

Q
0 ⊗ ρE

)
U †

1

]
, (6)

�2
(
ρ

Q
1

) = ρ
Q
2 = TrN

[
U2

(
ρ

Q
1 ⊗ ρN

)
U †

2

]
(7)

and the monotonicity of information monotones such as the
coherent information holds:

Ic
(
ρ

Q
2

)
� Ic

(
ρ

Q
1

)
� Ic

(
ρ

Q
0

)
, (8)

where the subscripts denote the time steps.
A necessary condition for the environmental representation

of a CPTP map to hold is for the extended Hilbert space to
be a product state with the system Q, i.e., ρQE = ρQ ⊗ ρE

[60,61]. This condition is reflected in Eqs. (6) and (7) where
each unitary operation U1 and U2 acts on the product states
ρ

Q
0 ⊗ ρE and ρ

Q
1 ⊗ ρN . Hence, two extended systems E and

N that are initially uncorrelated with Q are required, one for
each CPTP map �1 and �2 as shown in Fig. 1(a).

On the other hand, if we limit the system to a single en-
vironment E such that both U1 and U2 act on HQ ⊗ HE as
shown in Fig. 1(b), we have

�1
(
ρ

Q
0

) = ρ
Q
1 = TrE

[
U1

(
ρ

Q
0 ⊗ ρE

)
U †

1

]
, (9)

�2
(
ρ

Q
1

) �= �
(
ρ

Q
1

) = ρ
Q
2 = TrE

[
U2

(
ρ

QE
1

)
U †

2

]
, (10)

where ρ
QE
1 = U1(ρQ

0 ⊗ ρE )U †
1 , and � is not a valid CPTP

operation. Since ρ
QE
1 is not a product state in general, there

is no CPTP map �2 that can map ρ
Q
1 to ρ

Q
2 in general. Thus,

the CPTP map � describing the evolution of ρ
Q
0 → ρ

Q
2 ,

�
(
ρ

Q
0

) = ρ
Q
2 = TrE

[
U2U1

(
ρ

Q
0 ⊗ ρE

)
U †

1 U †
2

]
, (11)

is CP indivisible between the time step of the operation of U2

with � �= �2 ◦ �1. This correlation between the environment
E and system Q, where it is nonseparable into a product
state, is precisely the memory in the system that leads to its
indivisibility and thus non-Markovianity. For the process to
be Markovian, the environment must be memoryless such that
it is a product state with system Q at every time step [40].
The non-Markovianity implies that the monotonicity of the
coherent information can be violated after the operation of U2

with

Ic
(
ρ

Q
2

)
� Ic

(
ρ

Q
1

)
� Ic

(
ρ

Q
0

)
, (12)

where there can be possible information revival for Ic(ρQ
2 ).

The two cases can be generalized by a unitary UN ∈ HN ⊗
HE acting on the extended systems N and E as shown in
Fig. 1(c). If UN = SWAP, we obtain the Markovian case
where U1 and U2 act on different environments E and N
that are initially uncorrelated to Q. If UN = I ⊗ I , where I
is the identity operation, we obtain the non-Markovian case
where both U1 and U2 act on the same environment E . The
operation of UN can be thought of as some kind of information
scrambling in the environment, possibly characterized by an
out-of-time ordered correlator to describe the spreading of
information from E to N [62]. For example, UN might be time
dependent such that in very short timescales we have UN ≈
I ⊗ I , but for a long time interval it approaches UN ≈ SWAP,
as the environment equilibrates over time [63]. However, for
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(a) (b) (c)

FIG. 1. (a) A single-pass circuit that is fully Markovian with U1 and U2 acting on different environments E and N , which are initially
uncorrelated with Q. This is achieved with a SWAP operation on E and N before the operation of U2. (b) A different single-pass circuit that
exhibits non-Markovian effects with U1 and U2 acting on the same environment E . Non-Markovian effects manifest as the violation of the
information monotone, where there can be revival of information after the operation of U2. (c) A single-pass circuit that generalizes (a) and
(b) by having its non-Markovianity controlled by the operation UN . The (a) case is achieved for UN = SWAP, and the (b) case is achieved for
UN = I ⊗ I . The reference system R is also included which purifies the initial state in Q into |QR〉. It should be noted that only system Q is
accessible to a receiver at the end of the circuit, for which a general decoding operation can be performed, which is not shown in the diagram.
Inaccessible systems are terminated with a ground symbol.

our purposes we will simply choose UN based on its entan-
gling capability as will be defined in Sec. III B.

Note that if U1 is a local unitary that acts locally, i.e., U1 =
U Q

1 ⊗ U E
1 , then ρ

QE
1 will remain as a product state regardless

of the operation of UN , and the divisibility condition will be
fulfilled with � = �2 ◦ �1, leading to the Markovian case. As
local unitary operations are nonentangling, this hints at the in-
terplay between entangling dynamics, non-Markovianity, and
the transmission of information, as will be explored in Sec. III.
While there are many choices of information monotones to
determine the presence of non-Markovianity, this interplay
of entanglement dynamics and non-Markovianity leads us to
focus on the entanglement monotone E(ρQR) between the
information-carrying system Q and a reference system R. The
revival of this entanglement monotone in a non-Markovian
process was explored by Rivas, Huelga, and Plenio (RHP)
in Ref. [51], and its monotonic nature is due to the fact that
entanglement cannot increase under the local operation and
classical communication (LOCC) of �Q ⊗ IR. Therefore, a
revival of E(ρQR) implies that �Q is not completely positive,
and thus does not fulfill the divisibility property.

C. Communication capacities and entanglement monotone

We are concerned with the transmission of information in
our system, as well as the quantum switch’s enhancement of
it. Particularly, the quantum switch was shown to enhance the
classical and quantum capacities [23–28], which are defined
by the Holevo quantity and the coherent information. Here,
we define these quantities and describe how their revival in
a non-Markovian system corresponds to the revival of the
entanglement monotone.

A typical communication protocol is shown in Fig. 2 where
Alice would like to transmit some information to Bob who is
in a different laboratory. Alice will encode this information
via an encoding operation E into an information-carrying
quantum state ρQ in system Q, with a reference state R that
purifies Q into |QR〉, such that systems Q and R are entangled.
Alice then sends the state ρQ through a quantum communica-
tion channel � that has an environmental representation of
�(ρQ) = ρQ′ = TrE [U (ρE ⊗ ρQ)U †] to Bob. Bob then per-
forms a general decoding operation D on the received state

ρQ′
to recover the information that Alice sent which is stored

in system B.
The classical capacity [6,7] of a single use of the channel

�, referred to as the one-shot classical capacity χ (�), is

χ (�) = max
{pa,ρ

Q
a }

χ (ρQ,�), (13)

where

χ (ρQ,�) = S(�(ρQ)) −
∑

a

paS
(
�

(
ρQ

a

))
(14)

is known as the Holevo quantity, and ρQ = ∑
a paρ

Q
a is the

state that Alice encoded. The maximization for the one-shot
capacity was shown to suffice for pure states of {ρQ

a }.
In the case of repeated use of the channel, i.e., Alice

and Bob can decide to transmit information by repeated use
of the channel �, where Alice encodes the state |Q⊗nR〉 ∈
HQ⊗n ⊗ HR and sends the n systems Q⊗n through n uses of
the channel �⊗n to Bob, who then performs the decoding
operation D : Q′⊗n → B. In this case, Alice could prepare
product state inputs that are independent to each other for
every use of the channel, or she can prepare input states that
are entangled across different uses of the channel. Similarly,
Bob can perform independent measurements on each output
of the different uses of the channel for his decoding operation,
or he can perform a joint measurement on the outputs of all the
different uses. The general form of the asymptotic classical
capacity over repeated use of the channel that includes these

FIG. 2. A typical communication protocol where Alice encodes
her information into a bipartite-entangled state |QR〉 with an encod-
ing operation E : A → Q ⊗ R and send system Q through a channel
with unitary U : E ⊗ Q → E ′ ⊗ Q′ to Bob, who then perform a
general decoding operation D : Q′ → B.
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cases is

C(�) = lim
n→∞

1

n
χ (�⊗n), (15)

where χ (�⊗n) is the one-shot classical capacity of n parallel
channels �.

Moving on to the case of quantum information [5,8,9], we
require the coherent information Ic which is defined as the
difference between the von Neumann entropies of the output
of the channel Q′ and the resulting environment E ′:

Ic(ρQ,�) = S(ρQ′
) − S(ρE ′

)

= S(�(ρQ)) − S(�̃(ρQ)), (16)

where in the last equality we defined the complementary map
�̃ such that �̃(ρQ) = ρE ′ = TrQ[U (ρE ⊗ ρQ)U †]. Similar to
the Holevo quantity, the one-shot quantum capacity is

Ic(�) = max
{pa,ρ

Q
a }

Ic(ρQ,�), (17)

and the asymptotic quantum capacity over repeated use of the
channel is

Q(�) = lim
n→∞

1

n
Ic(�⊗n), (18)

where Ic(�⊗n) is the one-shot quantum capacity of n parallel
channels �. It should also be noted that the coherent informa-
tion and Holevo quantity are closely related:

Ic(ρQ,�) = S(�(ρQ)) − S(�̃(ρQ))

−
∑

a

paS
(
�

(
ρQ

a

)) +
∑

a

paS
(
�̃

(
ρQ

a

))
= χ (ρQ,�) − χ (ρQ, �̃), (19)

where in the first equality we note that S(�(ρQ
a )) = S(�̃(ρQ

a ))
for all a. Therefore, the coherent information can also be
thought of as how much more classical information Bob has
as compared to those lost to the environment.

For the coherent information to take the maximum value,
we need S(ρE ′

) to be as small as possible while S(ρQ′
)

as large as possible according to Eq. (16). Since the joint
state ρE ′Q′R is pure, this happens when S(ρE ′

) = S(ρQ′R) = 0
which implies that the system Q′R is in a pure state. S(ρQ′

)
then takes the largest value when the systems Q′ and R are
maximally entangled. Therefore, the transmission of quantum
information can also be thought of as the preservation of the
initial entanglement between Q and R or, in other words, the
generation of entanglement between Alice and Bob via the
joint state ρQ′R. Indeed, it was shown by Devetak in Ref. [9]
that the asymptotic quantum capacity Q(�) is equal to the
asymptotic entanglement generation capacity between Alice
and Bob. Alternatively, this preservation of the entanglement
between Q and R was also defined as the entanglement fidelity,
which is the state fidelity of the input and output states |QR〉
and ρQ′R [3,5]. If the channel is ideally noiseless, then the
entanglement fidelity is unity and the initial entanglement of
|QR〉 is perfectly preserved with |Q′R〉 = |QR〉.

It was also shown that the classical information J←
RE ′ that

one can obtain about system R via a measurement on envi-
ronment E ′ has an inverse relation with the entanglement of
ρQ′R with dE(ρQ′R)/dt = −dJ←

RE ′/dt where the entanglement

measure E (not to be confused with environment E ) is cho-
sen to be the entanglement of formation (EoF) [64]. For a
continuous Markovian process, we expect the entanglement
monotone to be decreasing with dE(ρQ′R)/dt < 0, and thus
dJ←

RE ′/dt > 0 for all t , which reflects the flow of classical
information away from Q to E ′. On the other hand, for a
non-Markovian process with a revival of the entanglement
monotone, we have dE(ρQ′R)/dt > 0, and thus dJ←

RE ′/dt < 0
for some t where the classical information flows back into the
information-carrying system Q′.

Ultimately, the capacity to transmit information between
two parties is dependent on the capacity to transmit or gen-
erate entanglement between the two parties, and similar to
the measure dE(ρQ′R)/dt in Ref. [64], in our discrete time
case we are concerned with the change of the entanglement
monotone �E(ρQR) = E(ρQR

t+1) − E(ρQR
t ) at every time step.

�E(ρQR) � 0 would imply the presence of non-Markovianity
and allows the possibility for a revival of the coherent infor-
mation and Holevo quantity, which can correspond to a revival
of the quantum and classical capacities. However, it should be
noted that the presence of revival is dependent on the choice
of entanglement measure E, e.g., revival can be present for
one choice of measure, but absent in another. Nevertheless,
for a Markovian process, we expect no revival for any and
all valid choices of E. On the other hand, if we can find a
single valid choice of E that is nonmonotonic such that a
revival is observed, then we can be sure that the process is
non-Markovian in the interval of the revival [51].

III. ENTANGLING DYNAMICS

It should be noted that the change in the entanglement
monotone E(ρQR) is due to the creation or destruction of
entanglement with the environment E , which is defined by
its maximum change maximized over all input states, and
was shown to upper bound the bidirectional communication
rates between them [65,66], i.e., the greater the entanglement
creation or destruction, the greater the amount of information
flows between the information-carrying system and the envi-
ronment. Due to the monogamous nature of entanglement, this
creation and destruction of entanglement can be seen as a flow
or redistribution of entanglement. Therefore, the dynamics of
the revival of information due to non-Markovianity can be
defined as this flow of entanglement between all involving
parties. In this section, we define this entanglement flow and
review the definitions for the capability of a bipartite unitary to
create or destroy entanglement, before applying to the single-
pass circuit in Fig. 1(c) as an example.

A. Entanglement flow

A qubit A being maximally entangled with a qubit B cannot
be maximally entangled with another qubit C without destroy-
ing its entanglement with B. In a sense, the entanglement that
a system can share with other systems is limited [67]. This is
referred to as the monogamous nature of entanglement, and
is usually expressed as an inequality called the monogamy
relation

Eα (ρA|BC ) � Eα (ρA|B) + Eα (ρA|C ), (20)
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where α is an exponent, and E(ρX |Y ) is an entanglement
measure of the bipartite split of parties X and Y for the state
ρXY . For conciseness, we refer to this as the bipartite split
X |Y . Also note that the entanglement of the bipartite split is
symmetric such that E(ρX |Y ) = E(ρY |X ).

The choice of E and α that fulfills the monogamy relation
is dependent on the dimensions of the system dA ⊗ dB ⊗ dC

[68]. The first of which was shown by Coffman, Kundu, and
Wooters [67], and is referred to as the CKW inequality where
dA = dB = dC = 2 and Eα is taken to be concurrence squared
C2. The CKW inequality was later extended for dimensions of
2⊗n systems for arbitrary n [69].

Equation (20) can be applied recursively for a state of more
than three parties. For example,

Eα (ρA|B(CD) ) � Eα (ρA|B) + Eα (ρA|CD)

� Eα (ρA|B) + Eα (ρA|C ) + Eα (ρA|D), (21)

where in the first inequality we applied Eq. (20) on
Eα (ρA|B(CD) ) by grouping parties C and D, and making the
substitution C → CD. Then, in the second inequality we ap-
plied Eq. (20) again for Eα (ρA|CD).

Note, however, that ρA|CD is a mixed state in general, and if
ρA|B(CD) is a pure state, we require the choice of measure E to
be monogamous for both pure and mixed states for Eq. (21) to
hold. For any measure E, we can define its associated entan-
glement of formation (EoF) E f via a convex roof extension,

E f (ρA|B) = min
{pi,|ψi〉}

∑
i

piE(|ψi〉〈ψi|A|B), (22)

where the minimization is taken over all pure state decompo-
sitions of ρA|B = ∑

i pi|ψi〉〈ψi|A|B. It was shown that if E f is
monogamous for tripartite pure states, then it is also monoga-
mous for tripartite mixed states [68]. Therefore, Eq. (21) holds
for E f , but will only hold for E if E(ρA|B) = E f (ρA|B). This is
trivially true if ρA|B is pure, but for mixed states it is only true
for certain measures such as concurrence squared.

To see how the monogamy relation is useful for describing
the flow of entanglement under bipartite unitaries, we require
a few properties of entanglement. First, we note that if

ρA′B′C′ = (U A ⊗ U BC )ρABC (U A ⊗ U BC )†, (23)

then

E(ρA|BC ) = E(ρA′ |B′C′
), (24)

as entanglement is invariant under local unitaries. For simplic-
ity, we will write ρ

A|BC
t with a subscript t to define the state

ρA|BC at different time steps, while keeping the Hilbert space
labels A, B,C unchanged.

We also define the residual entanglement as the difference
between both sides of the monogamy relation in Eq. (20) with

Eα (ρA|res) = Eα (ρA|BC ) − Eα (ρA|B) − Eα (ρA|C ). (25)

The residual entanglement accounts for all the multipartite
entanglements that are not bipartite entanglements. Note that
similar to Eq. (20), Eqs. (24) and (25) also extend to more than
three parties.

Now, suppose we prepared an information-carrying mixed
state ρQ ∈HQ that is purified as ρQR = |QR〉〈QR|∈HQ ⊗ HR,

and we interact it unitarily with an environment state ρE ∈ HE

by a unitary at time t , Ut ∈ HE ⊗ HQ, such that

ρ
EQR
t = (Ut ⊗ I )ρEQR

t−1 (Ut ⊗ I )†, (26)

we have

Eα
(
ρ

R|QE
t

) = Eα
(
ρ

R|QE
t−1

)
,

Eα
(
ρ

R|Q
t

) + Eα
(
ρ

R|E
t

) + Eα
(
ρ

R|res
t

) = Eα
(
ρ

R|Q
t−1

) + Eα
(
ρ

R|E
t−1

)
+ Eα

(
ρ

R|res
t−1

)
,

�t Eα (ρR|Q) = −�t Eα (ρR|E )

− �t Eα (ρR|res ), (27)

for all time steps t . In the first and second equalities, we ap-
plied Eqs. (24) and (25), respectively, and in the third equality
we have defined

�t Eα (ρ) = Eα (ρt ) − Eα (ρt−1). (28)

The bipartite entanglement of R|Q at the left-hand side is the
entanglement monotone that we are concerned with.

Not only does Eq. (27) tell us that such an interac-
tion redistributes entanglement between R|Q, R|E , as well
as the multipartite entanglement Eα (ρR|res ), it also captures
non-Markovian effects via the revival of the entanglement
monotone of R|Q where any revival must correspond to a
decrease in the entanglement of R|E and the multipartite
residual entanglement. For the case of t − 1 = 0 where en-
vironment E is initially uncorrelated to system Q, we have
Eα (ρR|E

0 ) = Eα (ρR|res
0 ) = 0, and thus the initial entanglement

of R|Q is lost to the environment E and to the multipartite
entanglement with

−�1Eα (ρR|Q) = Eα
(
ρ

R|E
1

) + Eα
(
ρ

R|res
1

)
. (29)

This is as expected for a Markovian process where the en-
tanglement monotone must decrease, which corresponds to
a flow of information away from the information-carrying
system.

Furthermore, we note that the operation of Ut can also cre-
ate or destroy bipartite entanglements between Q|E , which is
dependent on its entangling capability as well as the presence
of initial entanglement. Since we also have

Eα (ρQ|RE ) = Eα (ρQ|R) + Eα (ρQ|E ) + Eα (ρQ|res), (30)

thus,

�t Eα (ρR|Q) = �t Eα (ρQ|RE ) − �t Eα (ρQ|E ) − �t Eα (ρQ|res).
(31)

Now it is also clear that there is direct entanglement flow
between R|Q and Q|E , in accord with Refs. [65,66] where
the entangling capability of a bipartite unitary, which creates
or destroys entanglement between Q|E , upper bounds the
bidirectional communication of the two entangling parties,
which corresponds to a decrease or revival of the entangle-
ment monotone of R|Q.

B. Entangling capability of bipartite unitaries

As we expect entanglement generation, destruction, or
flow to depend on the entangling capability of the channel’s
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bipartite unitary in the environmental representation, here, we
will give a brief review of the entangling capability of bipartite
unitaries which will lead us to the form of unitary that we
use in our numerical results in later sections. While there
are many measures of the entangling capability or entangling
strength of quantum operations [70–72], their differences and
applications are unimportant for our purposes, and we will
take the measures defined in Ref. [73], which focus on the
maximum possible entanglement generation. This family of
measures for the entangling capability of unitaries are denoted
with K (U ), and should not be confused with the family of
measures for the entanglement of states which are denoted
with E(ρ) as discussed in previous sections.

The capability of a bipartite unitary U AB ∈ HA ⊗ HB to
create or destroy bipartite entanglement can be quantified by
the maximum change in entanglement it is capable of,

K�E(U AB) = sup
|ψ〉

|E(U AB|ψ〉) − E(|ψ〉)|, (32)

where the supremum is taken over all |ψ〉 = |ARABRB〉 where
RA and RB are purification states of A and B, respectively. If
there is no initial entanglement between systems A and B, we
have K�E = KE where KE is called the entangling power,

KE(U AB) = max
{|ARA〉,|BRB〉}

E(U AB|ARA〉|BRB〉), (33)

otherwise we have KE � K�E in general.
It was shown that an arbitrary bipartite unitary W AB ∈

HA ⊗ HB can be decomposed into

W AB = (U A ⊗ U B)U AB(V A ⊗ V B), (34)

where U A, U B, V A, and V B are local unitaries, while U AB is
a bipartite unitary that is diagonal in the magic basis [70].
Since entanglement is invariant under local unitary operations,
we have K (W AB) = K (U AB), and we say that W AB is locally
equivalent to U AB under local unitaries. U AB can be expressed
in its operator Schmidt form of

U AB =
∑

i

ciAi ⊗ Bi, (35)

where the sets of operators {Ai} and {Bi} are orthonormal
under the Hilbert-Schmidt inner product in their respective
subspaces, and

∑
i |ci|2 = 1. The number of nonzero ci is

referred to as the Schmidt rank of U AB. For the case of qubits
with dA = dB = 2, up to local unitaries, U AB can be expressed
in the canonical form of

U AB = c0I ⊗ I + c1X ⊗ X + c2Y ⊗ Y + c3Z ⊗ Z, (36)

where I, X,Y, Z are the identity and Pauli matrices.
The Schmidt strength is defined as the Shannon entropy of

the normalized c2
i :

Ksch(U AB) = H

({
c2

i

dAdB

})
. (37)

For the identity operator, we have Ksch = 0, and for the
SWAP gate we have a maximum of Ksch = 2. In general, we
have Ksch(U AB) � KE(U AB) � K�E(U AB), and Ksch(U AB) =
KE(U AB) if U AB has Schmidt rank � 2.

While there are closed-form solutions of KE and K�E for
specific cases [74], in general the maximization is difficult to

compute. For our purposes, we will use a more constrained
form of Eq. (36) of

Uq = (√
1 − qI ⊗ I + i

√
qX ⊗ X

)
× (√

1 − qI ⊗ I + i
√

qZ ⊗ Z
)

= (1 − q)I ⊗ I + i
√

q(1 − q)X ⊗ X

− qY ⊗ Y + i
√

q(1 − q)Z ⊗ Z, (38)

where we have a local unitary of Ksch(Uq) = 0 when q = 0, 1,
and a maximum entangling capability of Ksch(Uq) = 2 when
q = 0.5. The advantages of Uq are that its Schmidt coefficients
depend only on a single variable 0 � q � 1, and that it was
shown numerically that for the range of 0.1 � q � 0.9 where
Ksch(Uq) � 1, we have Ksch(Uq) = KE(Uq) [73].

C. Example: Single pass

As an example, we will demonstrate how the entangling
capabilities of U1, U2, and UN can lead to non-Markovian
effects of entanglement monotone revival for the single-pass
circuit in Fig. 1(c).

First, we note that systems E and N are initially pure and
uncorrelated with systems Q, R, and each other. Therefore, un-
der the operation of U1 in t0 → t1, the bipartite entanglement
of R|Q must decrease as it is a Markovian process:

Eα
(
ρ

R|NEQ
0

) = Eα
(
ρ

R|NEQ
1

)
,

Eα
(
ρ

R|Q
0

) = Eα
(
ρ

R|E
1

) + Eα
(
ρ

R|Q
1

) + Eα
(
ρ

R|res
1

)
,

�1Eα
(
ρR|Q) = −Eα

(
ρ

R|E
1

) − Eα
(
ρ

R|res
1

)
, (39)

where we have simply applied Eq. (27). In the first equality
we have Eq. (24), where the entanglements of ρ

R|NEQ
0 and

ρ
R|NEQ
1 are invariant as U1 acts locally for the bipartite split of

R|NEQ. In the second equality, on the left-hand side we note
that only systems R and Q are entangled at t = 0, and on the
right-hand side we applied Eq. (25), noting that E(ρR|N

1 ) = 0.
Since entanglement measures must be positive, the right-hand
side is negative and thus �1Eα (ρR|Q) � 0, as entanglement
flows to the environment and multipartite entanglement. Next,
since ρ

RQ
1 = ρ

RQ
2 , we have Eα (ρR|Q

1 ) = Eα (ρR|Q
2 ). Then, the

operation of UN in t1 → t2 simply redistributes the bipartite
entanglements of system E :

Eα
(
ρ

Q|NER
1

) = Eα
(
ρ

Q|NER
2

)
,

Eα
(
ρ

Q|E
1

)+Eα
(
ρ

Q|res
1

)=Eα
(
ρ

Q|N
2

)+Eα
(
ρ

Q|E
2

)+Eα
(
ρ

Q|res
2

)
,

�2Eα
(
ρQ|E ) = −Eα

(
ρ

Q|N
2

) − �2Eα
(
ρQ|res

)
, (40)

where again we applied Eqs. (24) and (25) noting that
E(ρQ|N

1 ) = 0 as systems Q and N are uncorrelated before the
operation of UN . Similarly,

Eα
(
ρ

R|NEQ
1

) = Eα
(
ρ

R|NEQ
2

)
,

Eα
(
ρ

R|E
1

)+Eα
(
ρ

R|res
1

)=Eα
(
ρ

R|N
2

)+Eα
(
ρ

R|E
2

) + Eα
(
ρ

R|res
2

)
,

�2Eα
(
ρR|E ) = −Eα

(
ρ

R|N
2

) − �2Eα
(
ρR|res

)
. (41)

As system N is initially uncorrelated with systems Q
and R, interacting systems E and N with UN cannot
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increase the bipartite entanglements of Q|E and R|E . There-
fore, �2Eα (ρQ|E ) � 0 and �2Eα (ρR|E ) � 0. As seen in
Eqs. (27) and (31), any revival of the entanglement monotone
must come from the bipartite entanglement of Q|E , R|E ,
and multipartite entanglement. Therefore, here we see that

the operation of UN will reduce this revival as the bipartite
entanglements of Q|E and R|E are reduced after the operation
of UN .

Finally, for the operation of U2 in t2 → t3, we note that
ρRN

2 = ρRN
3 , and thus

Eα
(
ρ

R|NEQ
2

) = Eα
(
ρ

R|NEQ
3

)
,

Eα
(
ρ

R|E
2

) + Eα
(
ρ

R|Q
2

) + Eα
(
ρ

R|res
2

) = Eα
(
ρ

R|E
3

) + Eα
(
ρ

R|Q
3

) + Eα
(
ρ

R|res
3

)
,

�3Eα (ρR|Q) = −�3Eα (ρR|E ) − �3Eα (ρR|res). (42)

Again, we see that any revival of the entanglement monotone
E(ρR|Q) must correspond to a decrease of entanglement in
environment E and the multipartite entanglement Eα (ρR|res).

In the Markovian case in Fig. 1(a) where UN = SWAP, the
bipartite entanglement of R|E is completely destroyed with
Eα (ρR|E

2 ) = 0 and thus Eα (ρR|EQ
2 ) = Eα (ρR|Q

2 ). Applying the
monogamy relation for the mixed state ρR|EQ,

Eα
(
ρ

R|EQ
2

) = Eα
(
ρ

R|EQ
3

)
,

Eα
(
ρ

R|Q
2

) = Eα
(
ρ

R|E
3

) + Eα
(
ρ

R|Q
3

) + Ẽα
(
ρ

R|res
3

)
,

�3Eα
(
ρR|Q) = −Eα

(
ρ

R|E
3

) − Ẽα
(
ρ

R|res
3

)
, (43)

where

Ẽα
(
ρ

R|res
3

) = Eα
(
ρ

R|EQ
3

) − Eα
(
ρ

R|E
3

) − Eα
(
ρ

R|Q
3

)
, (44)

in contrast to Eq. (42) where we have

Eα
(
ρ

R|res
3

) = Eα
(
ρ

R|NEQ
3

) − Eα
(
ρ

R|N
3

)
− Eα

(
ρ

R|E
3

) − Eα
(
ρ

R|Q
3

)
. (45)

In general, Ẽα (ρR|res
3 ) �= Eα (ρR|res

3 ). Therefore, we see that the
entanglement monotone of E(ρR|Q) must decrease after the
operation of U2 as expected of a Markovian operation. We
note that Eq. (43) is true whenever UN is maximally entan-
gling, i.e., Ksch(UN ) = 2.

The amount of revival in Eq. (42) is dependent on the
entangling capabilities of U1, U2, and UN . Naturally, as the
entangling capability of UN increases, we expect the amount
of information revival to decrease as the system approaches
a Markovian system. If U1 is a highly entangling operation
such that information is lost as there is a large flow of the
entanglement monotone to the environment and multipartite
entanglement, then we expect U2 to enable revival even if
it is weakly entangling. On the other hand, if U1 is weakly
entangling such that almost all information remains in system
Q as the entanglement monotone is largely preserved, then we
expect that U2 can easily displace information away from Q
with a decrease in the entanglement monotone, and is unable
to grant a large revival if any. We will demonstrate the relation
between entangling capabilities and revival to the entangle-
ment monotone numerically.

For the single-pass case in Fig. 1(c), we have a system
of dN ⊗ dE ⊗ dQ ⊗ dR = 2⊗4 for which the extended CKW
monogamy inequality for concurrence squared holds [69].
Therefore, we can choose concurrence squared as our entan-

glement measure with Eα → C2. Our entanglement monotone
is thus the concurrence squared of the bipartite split of R|Q,
C2(ρR|Q).

For simplicity, we prepare the information-carrying system
Q as follows:

ρ
Q
0 = p|0〉〈0| + (1 − p)|1〉〈1|, (46)

with ρE
0 = ρN

0 = |0〉〈0|. For U1, U2, and UN , they will take
the form of Uq in Eq. (38), where we denote their corre-
sponding variable q as q1, q2, and n, respectively. Again,
we note that as we are only concerned with the changes in
entanglement of the system, it will suffice to consider unitaries
in the canonical form of Eq. (36), and Uq covers the entire
range of Schmidt strengths of 0 � Ksch(Uq) � 2. While we
have taken the unitaries to be in the form of Uq here for the
numerical computation, we emphasize that the equations for
entanglement flow are general for all unitaries.

In Fig. 3, for the operation of U1 from time step
t0 → t1, we see that indeed the change in concurrence squared
�1C2(ρR|Q) of the bipartite split of R|Q is negative of the
change in concurrence squared �1C2(ρR|E ) of the bipartite
split R|E , and of the change in residual �1C2(ρR|res), as shown
in Eq. (39). The amount of flow of entanglement from R|Q
to R|E and multipartite entanglement is dependent on the
entangling power KE(U1) of U1 which is equal to its Schmidt
strength Ksch(U1) for 0.1 � q1 � 0.9 and lower bounded by it
otherwise.

FIG. 3. Change in the entanglement monotone of concurrence
squared �1C2(ρR|Q) of bipartite split R|Q after the operation of U1

from time step t0 → t1. The decrease in �1C2(ρR|Q) is accompanied
by a corresponding increase in �1C2(ρR|E ) and �1C2(ρR|res ). The
change is larger for U1 that is more entangling, and for p → 0.5 as
more initial entanglement is carried in the system.

052410-8



COMMUNICATION ADVANTAGE OF QUANTUM … PHYSICAL REVIEW A 106, 052410 (2022)

FIG. 4. The change in the entanglement monotone of concur-
rence squared �3C2(ρR|Q) of R|Q (shown as the color map) after
the operation of U2 from time step t2 → t3 for p = 0.5, and its
dependence on q1, q2, and n. The white lines are values of q1 and q2

that have zero change in concurrence squared, and are the boundaries
between positive and negative changes. A positive change signifies a
revival of of the entanglement monotone due to non-Markovianity.
As the Schmidt strength of UN increases, the amount of revival
decreases. The amount of revival is largest for n = 0 where UN =
I ⊗ I , and no revival is present for n = 0.5 where UN is maximally
entangling as it is fully Markovian.

The amount of entanglement created or destroyed by the
operation of U2 is more complicated as it depends on the oper-
ations of U1 and UN . Here, demonstrating the choices of q1 and
q2 that leads to revival or further decrease in the entanglement
monotone C2(ρR|Q) will suffice for our purposes, which is
shown as the color map in the contour plot in Fig. 4, where
the white lines are values of q1 and q2 that have zero change
in the entanglement monotone, and thus bounds the ranges of
q1 and q2 that give a revival of the entanglement monotone. As
expected, no revival of the entanglement monotone is present
for the case of n = 0.5 where UN is maximally entangling as
it is fully Markovian. The possible values and magnitudes for
the revival also decrease as n → 0.5, and are the greatest for
n = 0 with UN = I ⊗ I as the system is fully non-Markovian
as in Fig. 1(b). It is also important to note that even if the sys-
tem is non-Markovian in the case of n �= 0.5, not all possible
values of q1 and q2 can grant a revival. These U1 and U2 that do
not grant a revival lead to an eternally non-Markovian system
where there is no information backflow despite violating CP
divisibility as described in Sec. II A [46].

IV. QUANTUM SWITCH

A. Non-Markovianity in the quantum switch

The two-party quantum switch puts two operations �A and
�B in a controlled superposition of opposite causal orders,

�B ◦ �A and �A ◦ �B, controlled by a control qubit. For ex-
ample, if the control qubit is |0〉, the operation F = �B ◦ �A

is performed, but if the control qubit is |1〉, the operation
G = �A ◦ �B is performed. The environmental representation
of the quantum switch is shown in Fig. 5(a) with UN = I ⊗ I .
While such a circuit might be regarded as a 4-space-time
event or 4-event quantum switch due to the presence of four
operations on system Q over time, we note that this is only due
to the limitations on the clarity of circuit diagrams to denote
controlled operations, and that Fig. 5(a) can also represent a
two-event quantum switch such as the one in Ref. [75] by
treating the first two and the last two operations as a single
unitary operation each. With UN = I ⊗ I , the circuit reduces
to the quantum switch with Kraus operators of

K sw
i j = |0〉〈0| ⊗ BjAi + |1〉〈1| ⊗ AiBj, (47)

acting on ρC
0 ⊗ ρ

Q
0 such that

�sw(
ρC

0 ⊗ ρ
Q
0

) =
∑

i j

K sw
i j

(
ρC

0 ⊗ ρ
Q
0

)
K sw†

i j , (48)

where �sw is the operation of the quantum switch, and that
{Ai} and {Bj} are the set of Kraus operators for �A and �B,
respectively, such that �A(ρQ

0 ) = ∑
i Aiρ

Q
0 A†

i and �B(ρQ
0 ) =∑

i Biρ
Q
0 B†

i . The shared indices on both paths of the super-
position imply that the operations or environmental noises on
both paths F = �B ◦ �A and G = �A ◦ �B are correlated to
each other.

On the other hand, if UN = SWAP the circuit reduces to a
superposition of independent trajectories where F and G are
independent channels with Kraus operators of

K traj
i jkl = α0|0〉〈0| ⊗ BjAi + α1|1〉〈1| ⊗ AkBl , (49)

where α0 and α1 are complex coefficients that ensure the

completeness relation
∑

i jkl K traj†

i jkl K traj
i jkl = I . Following the ter-

minology of Ref. [34], we refer to the operation

�traj
(
ρC

0 ⊗ ρ
Q
0

) =
∑
i jkl

K traj
i jkl

(
ρC

0 ⊗ ρ
Q
0

)
K traj†

i jkl (50)

as a superposition of trajectories in contrast with the quantum
switch’s superposition of causal orders in Eq. (47). We also
take this opportunity to define a superposition of independent
channels:

K indep
i j = β0|0〉〈0| ⊗ Ai + β1|1〉〈1| ⊗ Bj, (51)

where again β0 and β1 are complex coefficients that ensure
the completeness relation for K indep

i j . It should be clear that the
superposition of trajectories in Eq. (49) is in the form of the
superposition of independent channels in Eq. (51). However,
in the context of the quantum switch, we refer to a superpo-
sition of independent channels as the controlled superposition
of �A and �B, while the superposition of trajectories is the
controlled superposition of F = �B ◦ �A and G = �A ◦ �B

where F and G are independent.
The coefficients α0, α1, β0, and β1 have also been re-

ferred to as vacuum amplitudes, with the resulting operations
of α0BjAi, α1AkBl , β0Ai, and β1Bj referred to as vacuum-
extended channels, and any communication advantage of
such channels is attributed to coherence with the vacuum
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(a) (b)

FIG. 5. (a) The environmental representation of a circuit that reduces to the two-party quantum switch if UN = I ⊗ I , where we have a
superposition of orders. If UN = SWAP, the circuit reduces to a superposition of trajectories where the environments EA and EB are not shared
across time. (b) The same circuit as (a), but with systems C and Q grouped into a single party CQ. It should be noted that only systems C and
Q or CQ are accessible to a receiver at the end of the circuit, for which a general decoding operation can be performed which is not shown in
the diagram. Inaccessible systems are terminated with a ground symbol.

state which is absent in the quantum switch [34]. Further-
more, for a pair of entanglement-breaking channels with zero
quantum capacity, the quantum switch allows the perfect acti-
vation of the quantum capacity, which is unachievable with
the superposition of independent channels and trajectories
[28].

Here in Fig. 5(a), not only is it clear that such a difference
is due to the presence of non-Markovianity, where the UN =
I ⊗ I case of quantum switch can exhibit non-Markovianity,
and the UN = SWAP case of superposition of trajectories is
fully Markovian, the circuit also makes clear the presence of
in-betweens where the amount of non-Markovianity can be
controlled by the entangling capability of UN . [Refer to the
Appendix for proofs that the UN = I ⊗ I and UN = SWAP
cases of Fig. 5(a) indeed correspond to Eqs. (47) and (49).]

The inclusion of the control system C in the controlled
unitaries implies that the operations on system Q are now
tripartite operations acting on systems with dimensions dC ⊗
dEA ⊗ dQ or dC ⊗ dQ ⊗ dEB :

Uc0,A = |0〉〈0|C ⊗ U EAQ
A + |1〉〈1|C ⊗ IEAQ, (52)

Uc1,A = |0〉〈0|C ⊗ IEAQ + |1〉〈1|C ⊗ U EAQ
A , (53)

Uc0,B = |0〉〈0|C ⊗ U QEB
B + |1〉〈1|C ⊗ IQEB , (54)

Uc1,B = |0〉〈0|C ⊗ IQEB + |1〉〈1|C ⊗ U QEB
B . (55)

Both systems C and Q are the accessible systems that a re-
ceiver can measure or decode to receive information from the
sender. In fact, access to the control system C is necessary to
achieve the communication advantage of the quantum switch
[27]. Therefore, we can group the systems C and Q as a single
party as shown in Fig. 5(b). The entanglement monotone that
we are concerned with is now the entanglement of the bipartite
split between R and CQ as a single party, E(ρR|CQ). Each
control unitary can then be rewritten as a bipartite unitary in
the operator Schmidt form in Eq. (35), acting on systems with
dimensions of dEA ⊗ dCdQ or dCdQ ⊗ dEB .

We also note that by controlling the unitaries, not only
is the symmetry of the Schmidt strength Ksch(U E |Q) about
q = 0.5 broken for Ksch(U E |CQ), the maximum achievable
Ksch(U E |CQ) is also reduced. This is plotted for Uq of Eq. (38)
in Fig. 6. An intuitive explanation for this reduction is that by
controlling Uq with a control qubit such that Uq is only applied
if say ρC = |0〉, then one might imagine that Q and E are only
entangled in one path of the superposition and not the other,
and thus the maximum possible entanglement between Q and
E is reduced.

FIG. 6. Schmidt strength Ksch against the variable q of Uq in
Eq. (38). The solid line shows Ksch(Uq ) where the Schmidt strength
is symmetric and can reach a maximum of Ksch = 2 where it is
maximally entangling. The dashed line shows Ksch(Ucq ) where Ucq =
|0〉〈0| ⊗ Uq + |1〉〈1| ⊗ I due to the control of Uq with a control
qubit. The symmetry about q = 0.5 is broken, and the maximum of
Ksch = 2 cannot be reached.
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Applying the monogamy relations, from t0 → t1 and t1 →
t2, we have

Eα
(
ρ

R|NAEAEBNB (CQ)
0

) = Eα
(
ρ

R|NAEAEBNB (CQ)
1 ),

�1Eα
(
ρR|CQ

) = −Eα
(
ρ

R|EA
1

) − Eα
(
ρ

R|res
1 ), (56)

Eα
(
ρ

R|NAEAEBNB (CQ)
1

) = Eα
(
ρ

R|NAEAEBNB(CQ)
2 ),

�2Eα
(
ρR|CQ

) = −Eα
(
ρ

R|EB
2

) − �2Eα
(
ρR|res ), (57)

where again we applied Eqs. (24) and (25), and assumed that
EA, EB, NA, and NB are initially pure and uncorrelated with
CQ, R, and each other. Also note that since system CQ is taken

as a single party, we have

Eα (ρR|res) = Eα (ρR|EANAEBNB (CQ) ) − Eα (ρR|NA )

− Eα (ρR|EA ) − Eα (ρR|EB )

− Eα (ρR|NB ) − Eα (ρR|CQ). (58)

Here from Eq. (56) we see that our change of entanglement
monotone in the first time step �1Eα (ρR|CQ) � 0 as expected.
To show �2Eα (ρR|CQ) � 0, we note that the first two opera-
tions of Uc0,A and Uc1,B are simply the case in Fig. 1(c) with
UN = SWAP. Hence, the proof is the same as in Eq. (43) with
the substitution of E → EA, N → EB, and Q → CQ.

Next, for the operations of UN , they each redistribute the
bipartite entanglement of EA and EB to NA, NB, and multipar-
tite entanglement. Hence, from t2 → t3, we have

Eα
(
ρ

CQ|NAEAEBNBR
2

) = Eα
(
ρ

CQ|NAEAEBNBR
3

)
,

�3Eα (ρCQ|EA ) + �3Eα (ρCQ|EB ) = −Eα
(
ρ

CQ|NA
3

) − Eα
(
ρ

CQ|NB
3

) − �3Eα (ρCQ|res) (59)

and

Eα
(
ρ

R|NAEAEBNB(CQ)
2

) = Eα
(
ρ

R|NAEAEBNB (CQ)
3

)
,

�3Eα (ρR|EA ) + �3Eα (ρR|EB ) = −Eα
(
ρ

R|NA
3

) − Eα
(
ρ

R|NB
3

) − �3Eα (ρR|res ), (60)

where we note that Eα (ρR|CQ
2 ) = Eα (ρR|CQ

3 ). Finally, for the
last two operations from t3 → t4 and t4 → t5, we have

Eα (ρR|NAEAEBNB (CQ)
3 ) = Eα (ρR|NAEAEBNB (CQ)

4 ),

�4Eα
(
ρR|CQ

) = −�4Eα
(
ρR|EB

) − �4Eα
(
ρR|res

)
, (61)

Eα
(
ρ

R|NAEAEBNB (CQ)
4

) = Eα
(
ρ

R|NAEAEBNB (CQ)
5

)
,

�5Eα (ρR|CQ) = −�5Eα (ρR|EA ) − �5Eα (ρR|res ), (62)

where again we see that any revival of the entanglement
monotone with �4Eα (ρR|CQ) � 0 and �5Eα (ρR|CQ) � 0 must
correspond to a decrease in the entanglement with the envi-
ronments EA or EB, and a decrease in the multipartite residual
entanglement. If we consider the Markovian case of UN =
SWAP, we have

Eα
(
ρ

R|EB
3

) = Eα
(
ρ

R|EA
3

) = Eα
(
ρ

R|EA
4

) = 0, (63)

and thus

Eα
(
ρ

R|EB (CQ)
3

) = Eα
(
ρ

R|EB (CQ)
4

)
,

�4Eα (ρR|CQ) = −Eα
(
ρ

R|EB
4

) − Ẽα
(
ρ

R|res
4

)
, (64)

and

Eα
(
ρ

R|EA(CQ)
4

) = Eα
(
ρ

R|EA(CQ)
5

)
,

�5Eα (ρR|CQ) = −Eα
(
ρ

R|EA

5

) − Ēα
(
ρ

R|res
5

)
, (65)

where

Ẽα
(
ρ

R|res
4

) = Eα
(
ρ

R|EB (CQ)
4

) − Eα
(
ρ

R|CQ
4

) − Eα
(
ρ

R|EB
4

)
,

Ēα
(
ρ

R|res
5

) = Eα
(
ρ

R|EA(CQ)
5

) − Eα
(
ρ

R|EA

5

) − Eα
(
ρ

R|CQ
5

)
. (66)

Thus, we have �4Eα (ρR|CQ) � 0 and �5Eα (ρR|CQ) � 0 as
expected for the fully Markovian system where our entangle-
ment monotone decreases for all time steps.

It is also important to note that the operation Uc0,B from
t3 → t4 can affect the Markovianity of the operation Uc1,A in
t4 → t5. We can see this with

Eα
(
ρ

EA|NAEBNBR(CQ)
3

) = Eα
(
ρ

EA|NAEBNBR(CQ)
4

)
,

Eα
(
ρ

EA|EB
3

) + Eα
(
ρ

EA|CQ
3

) + Eα
(
ρ

EA|res
3

) = Eα
(
ρ

EA|EB
4

) + Eα
(
ρ

EA|CQ
4

) + Eα
(
ρ

EA|res
4

)
,

Eα
(
ρ

EA|CQ
4

) = Eα
(
ρ

EA|CQ
3

) − �4Eα (ρEA|EB ) − �4Eα (ρEA|res), (67)

where we see that the operation of Uc0,B in t3 → t4 can change
the bipartite entanglement of EA|CQ. If Eα (ρEA|CQ

4 ) = 0, then
the operation of Uc1,A in t4 → t5 must be Markovian, as EA and

CQ are uncorrelated or, in other words, there is no memory in
the environment as described in Sec. II B. This is only possible
if Uc0,B is maximally entangling, which cannot be achieved as
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shown in Fig. 6. Thus, unlike the example in Fig. 1(c) where
only U2 is capable of revival of entanglement monotone, for
the quantum switch, not only does the operation of both UA

and UB allow revival, the amount of revival is also dependent
on each other.

Ultimately, along with its CP indivisibility, the non-
monotonicity and possibility of revival for the entanglement
monotone of the bipartite entanglement of R|CQ from t3 → t4
and t4 → t5, imply that this implementation of the two-party
quantum switch has intrinsic non-Markovianity in its opera-
tion in those time steps. The system will be Markovian with no
possibility of information revival if we stop the operation of
the circuit at time step t2, which results in the case in Ref. [31]
of a controlled superposition of two independent channels as
in Eq. (51), and its enhancements might be attributed to the
reduction of entangling capacity due to the addition of the
control as shown in Fig. 6.

Non-Markovianity only comes in with the inclusion of
the last two operations from t3 → t5 which completes the
two-party quantum switch. Again, be reminded that CP
indivisibility does not imply information or entanglement
monotone revival, and thus the last two operations can either
reduce or enhance, via information revival, communication
capacity of the entire circuit, which conforms with the re-
sults in Ref. [25] where the Holevo quantities of arbitrary
channels were computed for the quantum switch, and shown
to either performs better or worse than the superposition of
two independent channels. Such a comparison corresponds to
comparing the Holevo quantity at t5 and t2 of the circuit in
Fig. 5(a), with UN = I ⊗ I .

Here, we show this numerically and show that this vari-
ability in performance when compared to the superposition
of independent channels depends on the entangling capa-
bilities of the operations involved. We note that without
loss of generality, the system has dimensions of dR ⊗ dNA ⊗
dNB dEA dEB dCQ = 2 ⊗ 2 ⊗ 25, for which the monogamy rela-
tion still holds for concurrence squared [69]. Note, however,
that concurrence for mixed states that are not dA ⊗ dB = 2 ⊗ 2
is defined via its associated EoF or convex roof extension as
in Eq. (22). Furthermore, since we have C2(|ψ〉) = 2S2(|ψ〉),
where

S2(|ψ〉AB) = 1 − Tr[(ρA)2] (68)

is the linear entropy with ρA = TrB(|ψ〉〈ψ |AB), we can define
the convex roof extension of concurrence squared as

1

2
C2(ρA|B) = S2(ρA|B) = min

{pi,|ψi〉}

∑
i

piS2(|ψi〉), (69)

where the minimization is taken over all pure state decompo-
sitions ρAB = ∑

i pi|ψi〉〈ψi|.
As party CQ has dimensions of dCdQ = 4 for qubits, we re-

quire the computation of concurrence squared for mixed states
of dR ⊗ dCdQ = 2 ⊗ 4 dimensional system for C2(ρR|CQ).
While such a minimization is nontrivial in general, the linear
entropy can be expressed in the form of an expectation value,
and thus its convex roof extension in Eq. (69) can be expressed

as a semidefinite program (SDP) of

minimize S2(ρ) = Tr[AAA′ω12],

s.t. ω12 = ω
†
12, ω

T1
12 � 0,

Tr1(ω12) = Tr2(ω12) = ρ, (70)

where

ω12 =
∑

i

pi|ψi〉〈ψi| ⊗ |ψi〉〈ψi|, (71)

and AAA′ = IAA′BB′ − (SWAPAA′ ⊗ IBB′ ) is a projector to the
antisymmetric space of AB and its second copy A′B′ [76].
The SDP is a convex optimization problem that can be solved
efficiently with several algorithms, and thus allows the com-
putation of the concurrence squared of bipartite mixed states
of arbitrary dimensions [77].

Taking UA, UB, and UN as Uq in Eq. (38), an input system
Q of Eq. (46) with p = 0.5, and ρC

0 = |+〉〈+|, the change in
concurrence squared �C2(ρR|CQ) is plotted as a color map in
a contour plot against variables qA, qB, and n of Uq for UA, UB,
and UN . Figures 7(a) and 7(b) show the plot for t3 → t4 and
t4 → t5 respectively.

Similar to the single-pass case of Fig. 1(c), the maxi-
mum amount of revival decreases for increasing entangling
capability of UN , until the maximally entangling case of
n = 0.5 with Ksch(UN ) = 2 where no revival is observed for
all values of qA and qB. The ranges of qA and qB that do
not grant a revival are eternally non-Markovian processes
where its non-Markovianity is “hidden” [46,47], which ex-
plains the inconsistency in the quantum switch’s enhancement
in Ref. [25]. We emphasize that in Fig. 5, the best choice
of UN for the revival of the entanglement monotone is the
quantum switch case of UN = I ⊗ I with n = 0 where we
have full non-Markovianity. As such, any choices of qA and qB

that can result in revival for the general case of UN �= I ⊗ I ,
should also result in revival for the quantum switch case of
UN = I ⊗ I since any nonlocal UN will reduce the the amount
of non-Markovianity as discussed in Sec. II B.

We visualize this in Fig. 8 for n = 0, 0.015, and 0.03 in
the time steps of t3 → t5 where non-Markovian revival is
possible. Not only do we see the areas of qA and qB where
revivals are possible decrease with increasing n, their revival
magnitudes are also decreasing. More importantly, these areas
where revivals are possible for larger values of n are contained
within the smaller values of n. In other words, any choices of
qA and qB that can result in a revival for a specific n will result
in an even greater revival for a n′ < n.

B. Example: Entanglement-breaking channels

An entanglement-breaking channel �∗ acting on an
information-carrying system Q with (�∗ ⊗ I )|QR〉 com-
pletely destroys the bipartite entanglement between Q|R, i.e.,
zero entanglement monotone, leading to zero coherent infor-
mation, and thus zero quantum capacity [78]. Such channels
have a measure-and-reprepare form of

�∗(ρQ) =
∑

k

|ψk〉〈ψk|〈φk|ρQ|φk〉, (72)

where
∑

k |φk〉〈φk| = I .
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(a) (b)

FIG. 7. The change in the entanglement monotone of concurrence squared �C2(ρR|CQ) of R|CQ (shown as the color map) from (a) t3 → t4

and (b) t4 → t5 for p = 0.5. The white lines are values of qA and qB that have zero change in concurrence squared, and are the boundaries
between positive and negative changes. The amount of revival is largest for n → 0, and disappears for n → 0.5, as the system approaches to a
Markovian process. Revival is observed for both the operation of Uc0,B from t3 → t4 and of Uc1,A from t4 → t5.

In Ref. [28], it was shown that if two entanglement-
breaking channels are placed in the quantum switch setup, it
enables perfect quantum communication, i.e., the initial and
final coherent information are equal. On the other hand, this
perfect activation of quantum capacity was not achievable
if the channels are placed in a superposition of independent
channels or trajectories, albeit some activation is still possible.
Such a difference in advantage was attributed to the difference
between a superposition of independent paths or trajectories,
and a superposition of alternate causal orders. Here, we repli-

cate this result numerically in our framework and suggest
that this perfect activation is indicative of the presence of
non-Markovianity.

First, referring to Fig. 5(a), recall that if we were to stop
the operation of the quantum switch at t2, we obtain the
circuit for the superposition of two independent channels as
in Eq. (51). Therefore, the comparison between the quan-
tum switch and a superposition of two independent channels
discussed in Ref. [28] is in fact a comparison between the
quantum capacities at t5 and t2. As the process from t2 to t5 is

FIG. 8. The change in the entanglement monotone of concurrence squared �C2(ρR|CQ) of R|CQ (shown as the color map) for the total
non-Markovian revival time steps of t3 → t5 for p = 0.5. The white lines are values of qA and qB that have zero change in concurrence squared,
and are the boundaries between positive and negative changes. The area and amount of revival is largest for the quantum switch case of n = 0,
and decreases for increasing n as the amount of non-Markovianity in the system reduces. The bounded areas of the larger values of n are within
the bounded areas of the smaller values.
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FIG. 9. Entanglement monotone of concurrence squared
C2(ρR|CQ) of bipartite split R|CQ at each time step for the circuit
in Fig. 5(a) with entanglement-breaking channels. For the quantum
switch case of UN = I ⊗ I , perfect revival is observed from t3 → t5,
granting perfect activation for the coherent information. For the
Markovian case of UN = SWAP, there is no revival as expected as
C2 is monotonic.

non-Markovian in general, any possible advantage the quan-
tum switch has over the superposition of independent channels
can be thought of as a revival or backflow of information
due to its non-Markovianity. Similarly, the comparison with
a superposition of trajectories as in Eq. (49) corresponds to a
comparison between the quantum switch case of UN = I ⊗ I ,
and the Markovian case of UN = SWAP.

The entanglement-breaking channel discussed in Ref. [28]
has Kraus operators of

{Ki} =
{

X√
2
,

Y√
2

}
. (73)

In the environmental representation of Fig. 5(a), we have

UA = U EAQ =
(

[K1] [K2]
[K2] [K1]

)
(74)

= 1√
2

(
X Y
Y X

)
, (75)

where X and Y are block matrices, and similarly

UB = U QEB = SWAP U EAQ SWAP. (76)

The entanglement monotone of concurrence squared of R|CQ
for each time step is then computed via the SDP in Eq. (70)
and plotted in Fig. 9 for the quantum switch with UN = I ⊗ I
and the Markovian case with UN = SWAP. Again, from t0 →
t2 we have the superposition of two independent channels,
for which some activation of coherent information is pos-
sible as the entanglement monotone C2(ρR|CQ) is nonzero.
As discussed previously, such activation might be due to the
reduction of entangling capability by the coherent control of

superposition as shown in Fig. 6. On the other hand, for the
quantum switch with UN = I ⊗ I , we have a perfect revival of
the entanglement monotone, and thus coherent information,
from t3 → t5. This revival is absent for the Markovian case of
UN = SWAP which results in the superposition of trajectories,
but similar to the superposition of two independent channels,
some activation is still possible as the final entanglement
monotone is nonzero.

Therefore, we replicated numerically the perfect activa-
tion of coherent information in Ref. [28], and note that such
an activation is only possible with the presence of non-
Markovianity. Additionally, we note again that when given a
pair of noisy quantum channels, the quantum switch setup will
outperform a superposition of the two independent channels,
where we stop the operation at t2, if there is a net positive
revival of information from t3 → t5 due to non-Markovianity.

C. Non-Markovianity without indefinite causal order

The presence of non-Markovianity depends on the pres-
ence of memory in the environment or, in other words,
whether the environment is shared between different opera-
tions over time. Therefore, for the quantum switch circuit in
Fig. 5(a), non-Markovianity is still present even if the opera-
tions from time steps t3 → t4 and t4 → t5 are not UB and UA,
provided UN �= SWAP.

We label the unitaries at different time steps in Fig. 5(a)
as Ut0→t1 , Ut1→t2 , Ut3→t4 , and Ut4→t5 , respectively. Note that
we set the fully non-Markovian case of UN = I ⊗ I which is
omitted in this discussion. We obtain the quantum switch with
indefinite causal order if Ut3→t4 = Ut1→t2 , and Ut4→t5 = Ut0→t1
as shown in Fig. 5(a) with Ut0→t1 = Ut4→t5 = UA and Ut1→t2 =
Ut3→t4 = UB.

Here, we demonstrate numerically that the communication
enhancement with Ut3→t4 �= Ut1→t2 and Ut4→t5 �= Ut0→t1 , i.e.,
no indefinite causal order, can also be achieved. We gen-
erate random pairs of unitaries for Ut0→t1 and Ut1→t2 , and
compare the quantum switch case of Ut3→t4 = Ut1→t2 and
Ut4→t5 = Ut0→t1 with the more general case of Ut3→t4 �= Ut1→t2
and Ut4→t5 �= Ut0→t1 , where Ut4→t5 and Ut3→t4 are also pairs
of randomly generated unitaries. The effective channel of the
more general case has Kraus operators of

Kgen
i j = |0〉〈0| ⊗ CjAi + |1〉〈1| ⊗ DiBj, (77)

where the sets of Kraus operators {Ai}, {Bi}, {Ci}, and {Di} are
the Kraus operators for the channels �A, �B, �C , and �D,
which corresponds to the unitary operations of Ut0→t1 , Ut1→t2 ,
Ut4→t5 , and Ut3→t4 , respectively [the proof follows from the
proof of Eq. (47) in the Appendix simply by relabeling the
unitaries]. Note that the presence of non-Markovianity implies
that the effective operations of �C and �D from t3 → t5
are not CPTP operations. We denote σ as the output state

of the general case with σCQ = ∑
i j Kgen

i j (ρC ⊗ ρQ)Kgen†

i j , in
contrast to ρCQ used for the quantum switch. We illustrate
this difference between the quantum switch and the general
case in the space-time diagrams of the channel operations in
Fig. 10, where Fig. 10(a) shows the space-time diagram of the
operation of a quantum switch with the channels �A and �B

placed in a superposition of alternate orders, and in Fig. 10(b)
we have the general case where the final two operations are
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(a) (b)

FIG. 10. (a) The space-time diagram of a quantum switch where the channels �A and �B are placed in a controlled superposition of
alternate causal orders. (b) The space-time diagram of the general case circuit where the last two operations are replaced with different channels
of �C and �D. The solid and dashed lines indicate the two different paths of the controlled superposition, and the dotted lines indicate the
sharing of the environments or non-Markovian memories between the channel operations. Also note that time steps t0 → t1 and t1 → t2 are
combined into a single time step t0 → t2 in the diagram, and vice versa for time steps t3 → t4 and t4 → t5 with the time step t3 → t5.

replaced with channels �C and �D. It is important to note
that similar to the quantum switch, the environments or non-
Markovian memories in EA and EB are still shared between
the operations in the general case.

The concurrence squared, Holevo quantity, and coherent
information of the general case output σ

R|CQ
5 is plotted against

that of the quantum switch output ρ
R|CQ
5 in Fig. 11. The

vertical lines are the ranges of values obtained by the ran-
dom search of unitaries Ut3→t4 and Ut4→t5 for a fixed pair of
Ut0→t1 and Ut1→t2 , while the scatter points are their respective
means. The presence of points or ranges above the diagonal
dashed line implies that there are choices of Ut3→t4 �= Ut1→t2
and Ut4→t5 �= Ut0→t1 that can grant communication advantages

similar to the quantum switch, all without the presence of
indefinite causal order.

Such a comparison is different from Refs. [31] and [28]
where the quantum switch was compared to a superposition
of two independent channels, which has different circuit struc-
tures, and that the information-carrying system was operated
on by a fewer number of channels [34], here the comparison
is made with a set of composed channels that are different.

In this more general construction, we simply ask what are
the best choices of channels �C and �D that can lead to a
large amount of information revival, and showed that there
are choices that are better than the quantum switch’s choice
of �C = �B and �D = �A. One might also think that any

FIG. 11. The concurrence squared, Holevo quantity, and coherent information of the general case of Ut3→t4 �= Ut1→t2 and Ut4→t5 �= Ut0→t1

plotted against the quantum switch case of Ut3→t4 = Ut1→t2 and Ut4→t5 = Ut0→t1 . The vertical lines are the ranges of values of the randomly
searched Ut3→t4 and Ut4→t5 for a fixed pair of Ut0→t1 and Ut1→t2 , and the scatter points are their means. Points or ranges above the diagonal
dashed line are unitaries where the general case performs better than the quantum switch.
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advantages of the general case can be trivially achieved if
channels �C and �D are less noisy than channels �A and �B.
However, this is not true as if the channels �C and �D are
the least noisy case of identity channels, then no revival of
information is possible, and the circuit might perform worse
than the quantum switch. Furthermore, we note that Eq. (77)
does not depend on their local vacuum extensions described
in the “mode picture” of Ref. [33].

For the quantum switch, two closed laboratories will per-
form �A and �B each with no knowledge of the outside global
causal structure, and the orders for which a signal is sent to
the two laboratories are then placed in a controlled superpo-
sition. On the other hand, the general case might require each
laboratory to perform different operations at different time
steps while maintaining the memory in the environment. How
this general case might be implemented and whether it is a
physically possible task is outside the scope of this paper.

V. CONCLUSION

We introduced a framework in the environmental represen-
tation that accounts for non-Markovianity for the quantum
compositions of channels, and deduced that the two-party
quantum switch is intrinsically a non-Markovian process by
implementing it in this framework. In our approach, the flow
of entanglement in the information-carrying system can be
quantified using the monogamy relation, and the revival of
the entanglement monotone suggests that this implementation
of the quantum switch’s communication advantages are not
impartial to this non-Markovianity.

Comparisons of the communication capacities of the quan-
tum switch and a superposition of two independent channels
made in various studies of the quantum switch [25,31,33,34]
were also made clear in this framework as a comparison
between two time steps t2 and t5 in Figs. 5(a) and 10(a),
such that any advantages the quantum switch has over the
superposition of independent channels are only manifest
with non-Markovian revival of information from time steps
t3 → t5. The presence of eternally non-Markovian processes
where non-Markovianity does not lead to revival from time
steps t3 → t5 also explains the inconsistency of the quantum
switch’s enhancement when compared to the superposition of
independent channels at t2 in Ref. [25], and of course for a
fully Markovian system of UN = SWAP where the system re-
duces to a superposition of trajectories, no revival is possible.

The perfect activation of coherent information with
entanglement-breaking channels [28] was also captured by
this framework as a revival in t3 → t5, and we expect this
to be true for other cases of causal activation or enhance-

ment as long as the measure in question is an information
monotone, such as in Ref. [27] where the causal activation
of Holevo information was shown for a pair of completely
depolarizing channels. This non-Markovian revival of infor-
mation from time steps t3 → t5 is crucial in buffering up the
communication capacities of the system, and it was shown
that communication enhancements are possible as long as this
non-Markovianity is present, even without the presence of
indefinite causal orders.

However, it is important to note that this construction
of the quantum switch relies on correlations in time or the
presence of memory in the environment, which is the basis
of its non-Markovianity. Therefore, such a setup does not
include implementations of indefinite causal order that can be
achieved by means that are not captured in this framework,
such as those caused by a superposition of space-times or
gravitational time dilation [79–82]. However, our implemen-
tation mimics current experimental implementations of the
quantum switch which are multipath photonics setup [35–38].
Whether these implementations are a genuine implementation
of indefinite causal orders [39] are outside the scope of this pa-
per. Nevertheless, the various communication enhancements
of the quantum switch relies on the Kraus representation in
Eq. (47), which is also the effective channel for our non-
Markovian implementation of the quantum switch. Hence, we
hope that our framework can offer insights to the workings of
the phenomenon of causal activation, even if it might not be a
physical interpretation of it.

While we have demonstrated that the presence and absence
of revival of entanglement monotone, and thus enhancement
and reduction in communication capacities, are dependent on
the entangling capabilities of the bipartite unitaries, the exact
quantitative relation is still unclear and varies with different
circuit structures. A natural future work is to uncover these
relations and determine the conditions for revival of infor-
mation. We have also taken a nonoperational approach with
the environmental representation; other future works on the
non-Markovianity of the quantum switch can take an opera-
tional approach, and a resource theory of non-Markovianity
can be applied to the quantum switch. Furthermore, it is
unclear whether non-Markovianity also plays a role in other
advantages of the quantum switch such as its computational
advantages [15–17] or in work extractions [21,22]. Mov-
ing away from the quantum switch, the search for an ideal
communication structure to maximize revival or backflow of
information given a set of channels is also significant for
efficient transmission of information in a quantum network
with multiple communication parties, and ultimately a step
towards the goal of a quantum internet.

APPENDIX: PROOF OF ENVIRONMENTAL REPRESENTATION OF QUANTUM SWITCH

Here, we will show that the environmental representation in Fig. 5(a) with UN = I ⊗ I reduces to the quantum switch
operation with Kraus operators of Eq. (47), and that with UN = SWAP it reduces to the superposition of trajectories operation
with Kraus operators of Eq. (49).

We set the initial states as ρC ⊗ ρEA ⊗ ρQ ⊗ ρEB , noting that ρEA = |eA〉〈eA| and ρEB = |eB〉〈eB| are pure. We can omit
systems NA and NB as they do not interact with the rest of the system with UN = I ⊗ I . Therefore, the circuit’s operation for
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UN = I ⊗ I is

TrEA,EB

[(|0〉〈0|C ⊗ IEA ⊗ IQ ⊗ IEB + |1〉〈1|C ⊗ U EAQ
A ⊗ IEB

)(|0〉〈0|C ⊗ IEA ⊗ U QEB
B + |1〉〈1|C ⊗ IEA ⊗ IQ ⊗ IEB

)
× (|0〉〈0|C ⊗ IEA ⊗ IQ ⊗ IEB + |1〉〈1|C ⊗ IEA ⊗ U QEB

B

)(|0〉〈0|C ⊗ U EAQ
A ⊗ IEB + |1〉〈1|C ⊗ IEA ⊗ IQ ⊗ IEB

)
× (ρC ⊗ ρEA ⊗ ρQ ⊗ ρEB )

× (|0〉〈0|C ⊗ U EAQ
A ⊗ IEB + |1〉〈1|C ⊗ IEA ⊗ IQ ⊗ IEB

)†(|0〉〈0|C ⊗ IEA ⊗ IQ ⊗ IEB + |1〉〈1|C ⊗ IEA ⊗ U QEB
B

)†

× (|0〉〈0|C ⊗ IEA ⊗ U QEB
B + |1〉〈1|C ⊗ IEA ⊗ IQ ⊗ IEB

)†(|0〉〈0|C ⊗ IEA ⊗ IQ ⊗ IEB + |1〉〈1|C ⊗ U EAQ
A ⊗ IEB

)†]
= TrEA,EB

[(|0〉〈0|C ⊗ (
IEA ⊗ U QEB

B

)(
U EAQ

A ⊗ IEB
) + |1〉〈1|C ⊗ (

U EAQ
A ⊗ IEB

)
(IEA ⊗ U QEB

B )
)

× (ρC ⊗ |eA〉〈eA| ⊗ ρQ ⊗ |eB〉〈eB|)
× (|0〉〈0|C ⊗ (

IEA ⊗ U QEB
B

)(
U EAQ

A ⊗ IEB
) + |1〉〈1|C ⊗ (

U EAQ
A ⊗ IEB

)(
IEA ⊗ U QEB

B

))†]
=

d2∑
i, j

(
|0〉〈0|C ⊗

Bj︷ ︸︸ ︷
(I ⊗ 〈 j|)U QEB

B (I ⊗ |eB〉)

Ai︷ ︸︸ ︷
(〈i| ⊗ I )U EAQ

A (|eA〉 ⊗ I )

+ |1〉〈1|C ⊗
Ai︷ ︸︸ ︷

(〈i| ⊗ I )U EAQ
A (|eA〉 ⊗ I )

Bj︷ ︸︸ ︷
(I ⊗ 〈 j|)U QEB

B (I ⊗ |eB〉) g)(ρC ⊗ ρQ)

×
(

|0〉〈0|C ⊗
A†

i︷ ︸︸ ︷
(〈eA| ⊗ I )U EAQ†

A (|i〉 ⊗ I )

B†
j︷ ︸︸ ︷

(I ⊗ 〈eB|)U QEB†
B (I ⊗ | j〉)

+ |1〉〈1|C ⊗
B†

j︷ ︸︸ ︷
(I ⊗ 〈eB|)U QEB†

B (I ⊗ | j〉)

A†
i︷ ︸︸ ︷

(〈eA| ⊗ I )U EAQ†
A (|i〉 ⊗ I )

)

=
d2∑
i, j

(|0〉〈0|C ⊗ BjAi + |1〉〈1|C ⊗ AiBj )(ρ
C ⊗ ρQ)(|0〉〈0|C ⊗ A†

i B†
j + |1〉〈1|C ⊗ B†

j A
†
i )

=
d2∑
i, j

K sw
i j (ρC ⊗ ρQ)K sw†

i j , (A1)

where we obtained the quantum switch operations with Kraus operators of Eq. (47).
Similarly, for the case of UN = SWAP where ρNA = |nA〉〈nA| and ρNB = |nB〉〈nB| are pure states, the circuit operation results

in an operation with Kraus operators of Eq. (49):

TrEA,EB,NA,NB

[(|0〉〈0|C ⊗ (
INA ⊗ IEA ⊗ U QNB

B ⊗ IB1
)
SWAPEBNB

(
INA ⊗ U EAQ

A ⊗ IEB ⊗ INB
)

+ |1〉〈1|C ⊗ (
IEA ⊗ U NAQ

A ⊗ IEB ⊗ IB2
)
SWAPNAEA

(
INA ⊗ IEA ⊗ U QEB

B ⊗ INB
))

× (ρC ⊗ |nA〉〈nA| ⊗ |eA〉〈eA| ⊗ ρQ ⊗ |eB〉〈eB| ⊗ |nB〉〈nB|)
× (|0〉〈0|C ⊗ (

INA ⊗ IEA ⊗ U QNB
B ⊗ IB1

)
SWAPEBNB

(
INA ⊗ U EAQ

A ⊗ IEB ⊗ INB
)

+ |1〉〈1|C ⊗ (
IEA ⊗ U NAQ

A ⊗ IEB ⊗ IB2
)
SWAPNAEA

(
INA ⊗ IEA ⊗ U QEB

B ⊗ INB
))†]

=
d2∑

i, j,k,l

(
|0〉〈0|C ⊗ 〈k|nA〉 ⊗

Bj︷ ︸︸ ︷
(I ⊗ 〈 j|)U QNB

B (I ⊗ |nB〉)

Ai︷ ︸︸ ︷
(〈i| ⊗ I )U EAQ

A (|eA〉 ⊗ I ) ⊗〈l|eB〉

+ |1〉〈1|C ⊗ 〈i|eA〉 ⊗
Ak︷ ︸︸ ︷

(〈k| ⊗ I )U NAQ
A (|nA〉 ⊗ I )

Bl︷ ︸︸ ︷
(I ⊗ 〈l|)U QEB

B (|eB〉 ⊗ I ) ⊗〈 j|nB〉
)

(ρC ⊗ ρQ)

×
(

|0〉〈0|C ⊗ 〈nA|k〉 ⊗
A†

i︷ ︸︸ ︷
(〈eA| ⊗ I )U EAQ†

A (|i〉 ⊗ I )

B†
j︷ ︸︸ ︷

(I ⊗ 〈nB|)U QNB†
B (I ⊗ | j〉) ⊗〈eB|l〉
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+ |1〉〈1|C ⊗ 〈eA|i〉 ⊗
A†

k︷ ︸︸ ︷
(〈nA| ⊗ I )U NAQ†

A (|k〉 ⊗ I )

B†
l︷ ︸︸ ︷

(I ⊗ 〈eB|)U QEB†
B (|l〉 ⊗ I ) ⊗〈nB| j〉

)

=
d2∑

i, j,k,l

1

d4
(|0〉〈0|C ⊗ BjAi + |1〉〈1|C ⊗ AkBl )(ρ

C ⊗ ρQ)(|0〉〈0|C ⊗ A†
i B†

j + |1〉〈1|C ⊗ B†
l A†

k )

=
d2∑

i, j,k,l

K traj
i jkl (ρ

C ⊗ ρQ)K traj†
i jkl . (A2)
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[39] N. Paunković and M. Vojinović, Causal orders, quantum circuits
and spacetime: Distinguishing between definite and superposed
causal orders, Quantum 4, 275 (2020).

[40] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and detection,
Rep. Prog. Phys. 77, 094001 (2014).

[41] C. Pineda, T. Gorin, D. Davalos, D. A. Wisniacki, and I. García-
Mata, Measuring and using non-Markovianity, Phys. Rev. A 93,
022117 (2016).

[42] H. Kristjánsson, W. Mao, and G. Chiribella, Witnessing latent
time correlations with a single quantum particle, Phys. Rev.
Res. 3, 043147 (2021).

[43] S. Milz, F. A. Pollock, T. P. Le, G. Chiribella, and K. Modi,
Entanglement, non-Markovianity, and causal non-separability,
New J. Phys. 20, 033033 (2018).

[44] P. Chawla, U. Shrikant, and C. M. Chandrashekar, Superposi-
tion of causal order in quantum walks: Non-Markovianity and
causal asymmetry, arXiv:2205.13217.

[45] J. Naikoo, S. Banerjee, and C. M. Chandrashekar, Non-
Markovian channel from the reduced dynamics of a coin in a
quantum walk, Phys. Rev. A 102, 062209 (2020).

[46] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson,
Canonical form of master equations and characterization of
non-Markovianity, Phys. Rev. A 89, 042120 (2014).

[47] A. G. Maity and S. Bhattacharya, Activating hidden non-
Markovianity with the assistance of quantum SWITCH,
arXiv:2206.04524.

[48] D. Petz, Quasi-entropies for finite quantum systems, Rep. Math.
Phys. 23, 57 (1986).

[49] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[50] V. Gorini, Completely positive dynamical semigroups of
N-level systems, J. Math. Phys. 17, 821 (1976).

[51] Á. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and
Non-Markovianity of Quantum Evolutions, Phys. Rev. Lett.
105, 050403 (2010).

[52] H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the Degree
of Non-Markovian Behavior of Quantum Processes in Open
Systems, Phys. Rev. Lett. 103, 210401 (2009).

[53] S. Wißmann, H.-P. Breuer, and B. Vacchini, Generalized
trace-distance measure connecting quantum and classical non-
Markovianity, Phys. Rev. A 92, 042108 (2015).

[54] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[55] G. Lindblad, Completely positive maps and entropy inequali-
ties, Commun. Math. Phys. 40, 147 (1975).

[56] M. B. Ruskai, Beyond strong subadditivity? improved bounds
on the contraction of generalized relative entropy, Rev. Math.
Phys. 06, 1147 (1994).

[57] X.-M. Lu, X. Wang, and C. P. Sun, Quantum Fisher information
flow and non-Markovian processes of open systems, Phys. Rev.
A 82, 042103 (2010).

[58] P. Abiuso, M. Scandi, J. Surace, and D. D. Santis,
Characterizing non-Markovianity through fisher information,
arXiv:2204.04072.
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