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Efficient measures to determine the similarity of quantum states, such as the fidelity metric, have been widely
studied. In this paper, we address the problem of defining a similarity measure for quantum operations that can
be efficiently estimated. Given two quantum operations, U1 and U2, represented in their circuit forms, we first
develop a quantum sampling circuit to estimate the normalized Schatten 2-norm of their difference (‖U1 − U2‖S2 )
with precision ε, using only one clean qubit and one classical random variable. We prove a Poly( 1

ε
) upper bound

on the sample complexity, which is independent of the size of the quantum system. We then show that such
a similarity metric is directly related to a functional definition of similarity of unitary operations using the
conventional fidelity metric of quantum states (F ): If ‖U1 − U2‖S2 is sufficiently small (e.g., � ε

1+√
2(1/δ−1)

) then
the fidelity of states obtained by processing the same randomly and uniformly picked pure state |ψ〉 is as high
as needed [F (U1 |ψ〉 ,U2 |ψ〉) � 1 − ε] with probability exceeding 1 − δ. We provide example applications of
this efficient similarity metric estimation framework to quantum circuit learning tasks, such as finding the square
root of a given unitary operation.

DOI: 10.1103/PhysRevA.106.052409

I. INTRODUCTION

Recent advances in quantum approximate optimization al-
gorithms (QAOA, [1,2]), the variational quantum eigensolver
(VQE, [3]), and the promise of implementing such algorithms
using noisy intermediate-scale quantum (NISQ) devices [4]
rekindled the prospect of a new era in quantum comput-
ing. Researchers started experimenting with quantum machine
learning algorithms such as quantum neural networks (QNN)
[5–9] and quantum circuit learning [10–14] that are based on
variational quantum algorithms [15,16]; a recent work stud-
ied the price of the ansatz used in such variational methods
[17]. These algorithms assumed a hybrid model which takes
advantage of both classical and quantum computations: loss
functions are obtained by summing the outputs of a quantum
machine whereas the variational parameters of the model (cir-
cuit) are learned using a classical optimizer.

A critical factor in the formulation of a learning algo-
rithm is the design of its loss functions, which often involves
computing a similarity measure between a target objective
and the output of the parameterized model (Fig. 1). In VQE,
for instance, the objective is to determine the lowest-energy
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eigenstate of a given Hermitian operator H . The learning
framework assumes an ansatz comprising a quantum circuit
with a fixed topology, but where each gate is parameterized
to generate a candidate eigenstate vector |ψ (ξ )〉 = U (ξ ) |0〉,
where U (ξ ) is the unitary operator determined by the pa-
rameters ξ . Such a pure state vector |ψ (ξ )〉 is an eigenstate,
if H |ψ (ξ )〉 = λ |ψ (ξ )〉, where λ is to be minimized when
searching for the ground state. Thus, the objective function
of VQE can be interpreted as minimizing the cosine simi-
larity between |ψ (ξ )〉 and H |ψ (ξ )〉 or the expectation value
〈ψ (ξ )| H |ψ (ξ )〉. This loss term can be physically estimated
by performing measurements corresponding to the observ-
ables used to define H . This similarity metric is related to
the well-known measure of fidelity used for determining the
similarity of quantum states, [18–20] and was extensively
applied to distinguishing quantum states [21–29].

In contrast, consider the problem where one wants to learn
a given quantum operation V , which is also available when
controlled by a clean qubit (see Table I). That is, the task
is to learn ξ such that U (ξ ) ≈ V . This problem of learn-
ing quantum operations is much less studied, in spite of its
applications to quantum circuit synthesis [30–33] (where low-
depth approximations of quantum circuits are needed) and
to distinguish quantum operations and channels [29,34–58].
The main difficulty of such learning tasks is the design of a
similarity metric between U (ξ ) and V that can be efficiently
estimated. In Gilchrist et al.’s work [59], for example, a sim-
ilarity metric that was blind to input unitary operations was
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TABLE I. Hadamard test circuit. Given an arbitrary quantum
operation V controlled by a clean qubit, the above circuit computes
Re〈ψ (ξ )|V |ψ (ξ )〉, where |ψ (ξ )〉 = U (ξ ) |0〉 and U (ξ ) is a quantum
circuit parameterized by ξ .

studied and validated, but the estimation of the metric was
inefficient because it required an exponential number of quan-
tum states. Other metrics such as the diamond norm [60,61]
were conceptualized to distinguish quantum operations, but
they heavily relied on the classical information of the input
unitaries such as their eigendecompositions [62,63].

The Schatten norm, studied and explored from an infor-
mation theory perspective [64–66], is another candidate, and
the approximation of which was proven to be DQC1-complete
[67,68]. These approximation schemes [67,68], however, re-
quired an exponential classical sample complexity when a
clean qubit (e.g., the control bit of the Hadamard test cir-
cuit in Table I) was provided. Herein we present a random
sampling method, using few samples [e.g., O( ln(2/δ)

2ε2 ) sample
complexity] and an efficient sampling circuit design [e.g.,
O(1) in depth], to estimate the normalized trace and nor-
malized Schatten 2-norm of any given quantum operation.
We then formulate a similarity metric for quantum operations
using the notion of fidelity of quantum states and show how
such a metric is closely related to the normalized Schatten
2-norm. As a consequence, we can use the normalized Schat-
ten 2-norm of the difference between U (ξ ) and V as a loss
function to learn a target quantum operation V .

The paper is organized as follows. In Sec. II, we provide
the background concepts and notations. In Sec. III, we present
a sampling method to approximate the normalized trace of
matrices that are unitarily similar to diagonal matrices, as

FIG. 1. A schematic illustration of variational quantum algo-
rithms. In the case of VQE, the initial state is |0〉, the parameterized
circuit is U , the target objective is a Hamiltonian H , the sim-
ilarity measure is the cosine similarity, and the loss term is
〈0|U †(ξ )HU (ξ ) |0〉.

TABLE II. Hadamard test: Re{〈ψ |V |ψ〉}.

well as to approximate the normalized Schatten 2-norm of
arbitrary N × M matrices. We prove an upper bound of the
sample complexity of such a sampling method. In Sec. IV,
we introduce the normalized Schatten 2-norm of mixed quan-
tum operations, which can be estimated efficiently using the
sampling method from the previous section and the Hadamard
test circuits shown in Tables I. We also present an optimized
circuit design for the approximation. In Sec. V, we relate the
normalized Schatten 2-norm to a similarity metric of quantum
operations. Finally, in Sec. VI, we present an application of
the efficient approximation of the normalized Schatten 2-norm
to quantum circuit learning.

II. BACKGROUND AND NOTATIONS

Given an n-qubit quantum system, a quantum state is spec-
ified by a density matrix ρ = ∑

i pi |ψi〉 〈ψi|, where |ψi〉 ∈
CPN−1 (CP denotes the complex projective space) are pure
state vectors and N = 2n is the dimension of the Hilbert
space representing the quantum system. To deal with the
equivalence class on CPN−1 we adopt the convention of nor-
malization that a pure state |ψ〉 is a point on the boundary of a
unit ball centered at the origin, i.e., |ψ〉 ∈ ∂BCN (0, 1) and thus
has a unit norm, i.e., 〈ψ | |ψ〉 = 1. We use the term “quan-
tum operation” to refer to a unitary map of a density matrix
ρ → UρU †. This linear operator is a type of a Liouville space
superoperator. A unitary operator U ∈ CN×N working on n
qubits can generally be decomposed as a product of unitary
operators, where each Ui is a unitary operator acting on only
a reduced number of qubits. For example, U = 	L

i=1Ui, Ui =
U j,k

i ⊗ Is−{ j,k} where s is the set of qubits and U j,k
i ∈ C4×4

acts on the jth and kth qubits. Such few-qubit operations
(e.g., U j,k

i ) are referred to as gates, and a quantum circuit is
a visual representation of a sequence of gates used to repre-
sent a quantum operation. Some well-known quantum gates

include σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

H =
(

1√
2

1√
2

1√
2

−1√
2

)
, CNOT =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠, S =
(

1 0
0 i

)
,

Rx(θ ) = e−i θ
2 σx , Ry(θ ) = e−i θ

2 σy , and Rz(θ ) = e−i θ
2 σz . In the

simplest instance we can define a parameterized quantum
circuit U (θ ) as a circuit with learnable parameters θ for its
rotational gates. The parameters θ are called variational pa-
rameters. Given an arbitrary quantum unitary V and a state
|ψ〉, the expectation of V , 〈ψ |V |ψ〉, can be estimated using
a method called the Hadamard test [69], as shown in Ta-
bles II and III. Letting Pr(1) be the probability of observing
|1〉 from measuring the control qubit in Tables II and III,
then 1 − 2 Pr(1) evaluates Re{〈ψ |V |ψ〉} and Im{〈ψ |V |ψ〉},
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TABLE III. Hadamard test: Im{〈ψ |V |ψ〉}.

respectively. The control bit in the Hadamard test is called a
clean qubit.

In this paper, we also consider a generalization of the
definition of quantum operations comprising finite linear
combinations of unitary quantum operations. We use Ũ to de-
note such mixed quantum operations Ũ = ∑K

κ=1 ακUκ , where
Uκ ∈ CN×N are unitary quantum operations and

∑K
κ=1 |ακ | �

1. For simplicity, we only consider the case when K is of O(1).
In the case when ακ � 0 and

∑K
κ=1 ακ = 1, a mixed quantum

operation
∑K

κ=1 ακUκ represents a quantum computing mix-
ture model that applies the unitary operation Uκ to any state
ρ with probability ακ and yields a density matrix output of∑K

κ=1 ακUκρU †
κ . Such a mixed quantum system is a special

case of a larger class, completely positive trace-preserving
(CPTP) maps [18], and could, in principle, be used to model
quantum errors. In general, one could ask the following ques-
tion: Given a mixed quantum system as an oracle, can one
design a variational quantum algorithm to approximate it to
a high accuracy? This is one of the learning problems we
address in Sec. VI.

For any matrix A ∈ CN×M , let A = W �T † be the singular
value decomposition (SVD), where � = diag(σi ) and σi �
0 are the singular values. Note that AA† is always diago-
nalizable with eigenvalues σ 2

i and AA† = W �T †T �†W † =
W (��†)W † = W �̂W †, where �̂ = diag(σ 2

i ). Moreover, let
|wi〉 be the column vectors of W (also called left-singular
vectors) under bra-ket notation AA† = ∑N

i=1 σ 2
i |wi〉 〈wi|.

A square matrix A ∈ CN×N is unitarily similar to a diag-
onal matrix D if A = W DW † where W is unitary and D is
diagonal in CN×N . In particular, for any matrix A ∈ CN×M ,
AA† is unitarily similar to diag(σ 2

i ). Another result we use
is that all unitary matrices are also unitarily similar to the
diagonal matrices [70].

Given two quantum states’ density matrices ρ1, ρ2,
the fidelity is customarily defined as Fρ (ρ1, ρ2) =
[Tr(

√√
ρ1ρ2

√
ρ1)]2 [18]. Given two pure states

ρ1 = |ψ1〉 〈ψ1| and ρ2 = |ψ2〉 〈ψ2|, it can be shown that
Fρ (ρ1, ρ2) = |〈ψ1| |ψ2〉|2. In this paper we work with pure
states, and this simplified version of fidelity between wave
functions will be used and denoted as F (|ψ1〉 , |ψ2〉). In
general, fidelity measures how similar two quantum states are
and ψ1 = ψ2 if and only if F (ψ1, ψ2) = 1.

Definition 1. The normalized Schatten p-norm [64–68] for
arbitrary matrix A ∈ CN×M and p ∈ [1,∞) is defined as

‖A‖Sp =
(∑

i σi
p

N

) 1
p

,

where σi are the singular values of A. Note that the Schatten
2-norm is related to the Frobenius norm via ‖A‖S2 = ‖A‖F√

N
.

We can relate the normalized Schatten norm of the differ-
ence of two unitary operations to a functional definition of
similarity using the fidelity of states.

Definition 2. Let |ψ〉 be a random variable defined on a
distribution J = Uni[∂BCN (0, 1)], i.e., |ψ〉 is uniformly ran-
dom over all pure quantum states, we define two unitary
operations U1, U2 to be pure-state (δ, ε)-similar if

Pψ∼J (F (U1 |ψ〉 ,U2 |ψ〉) � 1 − ε) � 1 − δ.

Let X1, X2,..., Xm be independent random variables with
Xi ∈ [ai, bi] ⊂ R almost surely and define Sm = ∑m

i=1 Xi, the
Chernoff-Hoeffding inequality [71] states

P (|Sm − E[Sm]| > ε) < 2e
− 2ε2∑m

i=1 (bi−ai )2 .

A special case is when X1,..., Xm are independent and iden-
tically distributed random variables (iidrv) on [0,1] almost
surely. Setting X = Sm

m , we obtain the following inequality:

P (|X − E[X1]| > ε) < 2e−2ε2m.

Note that when m(ε, δ) = O( ln(2/δ)
2ε2 ), P (|X − E[X1]| � ε) �

1 − δ.

III. EFFICIENT SAMPLING ALGORITHMS FOR
APPROXIMATING NORMALIZED TRACE AND

SCHATTEN NORMS

We first consider any matrix A ∈ CN×N that is unitarily
similar to a diagonal matrix (e.g., unitary matrices, Hermitian
matrices, etc.) and present an efficient sampling technique
to approximate its normalized trace. Recall that A can be
decomposed as

A = W DW † =
N∑

i=1

di |wi〉 〈wi| ,wi ∈ W,

where W is unitary and D is diagonal. The goal is to find a
distribution D and a random vector x ∼ D such that

Ex∼D 〈x| A |x〉 = Tr(A)

N
.

It suffices to show Ex∼D 〈w| |x〉 = 1
N for all unit vectors w ∈

CN . As discussed in [67] and [68], this is equivalent to the
uniform sampling of |x〉 (with replacement) from the standard
basis {e1, . . . , eN }, which, in general, requires �(N ) sam-
pling complexity. We show in Lemma 1 that if we construct
x(θ ) using a continuous classical random variable θ , then
Eθ 〈w| |x(θ )〉 = 1

N holds as desired. Under such a construc-
tion we can efficiently approximate the normalized trace Tr(A)

N .
Lemma 1. Let A ∈ CN×N be unitarily similar to a di-

agonal matrix and let n = 
log2 N�. Define a geomet-
ric sequence (ω)n

i=1 with wi = 2i. Let random vari-
able θ ∼ D = Uni[−π, π ], and define a random vec-
tor x(θ ) ∈ RN with N entries x0, . . . , xN−1 and xi(θ ) =√

2n

N 	n
j=1 cosbi j (ω jθ ) sin1−bi j (ω jθ ), where bi1 . . . bin is the n-

bit binary representation of i. For example, when N = 2n −
1, we obtain x(θ ) ∈ RN where the only missing entry is
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sin(ω1θ ) sin(ω2θ ) . . . sin(ωn−1θ ) sin(ωnθ ),

x(θ ) =
√

2n

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ω1θ ) . . . cos(ωn−1θ ) cos(ωnθ )
cos(ω1θ ) . . . cos(ωn−1θ ) sin(ωnθ )
cos(ω1θ ) . . . sin(ωn−1θ ) cos(ωnθ )
cos(ω1θ ) . . . sin(ωn−1θ ) sin(ωnθ )

. . .

sin(ω1θ ) . . . cos(ωn−1θ ) cos(ωnθ )
sin(ω1θ ) . . . cos(ωn−1θ ) sin(ωnθ )
sin(ω1θ ) . . . sin(ωn−1θ ) cos(ωnθ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then

Eθ∼D 〈x(θ )| A |x(θ )〉 = Tr(A)

N
.

Proof. We first note that any signed sum of any subset of
ωi’s is a nonzero integer, i.e. ∀S ⊂ {1, . . . , n} :

∑
s∈S ±ωs ∈

Z\{0}. This statement can be proved by induction, and we
omit the proof here. For any such nonempty S ⊂ {1, . . . , n}, it
follows that

Eθ∼D	s∈Se±i2ωsθ = 1

2π

∫ π

−π

e2
∑

s∈S ±iωsθdθ = 0. (1)

Next, we show that for all j �= k, Eθ∼Dx jxk = 0, and
Eθ∼Dxi

2 = 1
N . For any pair ( j, k), let c1c2 . . . cn be the binary

representation of j ⊕ k. We define S0 = {p ∈ N ∩ [1, n] :
cp = 0}, S1 = {q ∈ N ∩ [1, n] : cq = 1}, and 2S0 , 2S1 to be the
corresponding power sets. Note that S0 ∩ S1 = ∅,

Eθ∼Dx jxk

= Eθ∼D
2n

N
	p∈S0

1 ± cos(2ωpθ )

2
	q∈S1

sin(2ωqθ )

2

= Eθ

2n

N

∑
S∈2S0

±1

2|S0|+|S1| 	q∈S1 sin(2ωqθ )	p∈S cos(2ωpθ )

= Eθ∼D
2n

N

1

2|S0|+|S1|
∑

S∈2S0

±1

2|S|(2i)|S1| 	q∈S1 (ei2ωqθ

− e−i2ωqθ )	p∈S (ei2ωpθ + e−i2ωpθ )

= 1

N

1

(2i)|S1|
∑

S∈2S0

±1

2|S|Eθ∼D	q∈S1 (ei2ωqθ − e−i2ωqθ )

	p∈S (ei2ωpθ + e−i2ωpθ ).

When j �= k, j ⊕ k �= 0 and S1 �= ∅. It follows from
Eq. (1) that all Eθ∼D	q∈S1 (ei2ωqθ − e−i2ωqθ )	p∈S (ei2ωpθ +
e−i2ωpθ ) evaluates to 0. Therefore, Eθ∼Dx jxk = 0.

Analogously when j = k, S0 = {1, . . . , n} and S1 = ∅,

Eθ∼Dx2
j = 1

N
+ 1

N

∑
S∈2S0 \∅

±1

2|S|Eθ∼D	p∈S (ei2ωpθ

+ e−i2ωpθ ) = 1

N
.

We thus showed that x is unbiased under the standard basis
{e1, e2, . . . , eN } [72]. It remains to show that for arbitrary
unit vector w, Eθ∼D|〈x| |w j〉|2 = 1

N . We decompose w in the

standard basis, i.e., w = ∑N
j=1 w je j ,

Eθ∼D|〈x| |w〉|2 =
N∑

j,k=1

Eθ∼Dx jxkw
∗
j wk

=
N∑

j=1

Eθ∼D|x j |2|w j |2 = 1

N
.

The main claim Eθ∼D 〈x| A |x〉 = Tr(A)
N follows. �

By Lemma 1, for an arbitrary matrix A ∈ CN×N that is
unitarily similar to a diagonal matrix, we can approximate
Tr(A)

N using m random samples. Namely, we randomly sample
θ1, . . . , θm ∼ D = Uni[−π, π ] and use x(θi ) as defined in
Lemma 1 to approximate

T̂r(A)

N
= 1

m

m∑
i=1

〈x(θi )| A |x(θi )〉 . (2)

We study the sample complexity for such an approximation to
achieve a low error rate with high success probability.

Theorem 1. Let A ∈ CN×N be unitarily similar to a di-
agonal matrix. For any δ, ε > 0, with sample complexity
m(ε, δ) = O( ln(2/δ)

4ε2 ), samples θ1, . . . , θm(ε,δ) ∼ Uni[−π, π ],
and x(θi ) as defined in Lemma 1, the following holds for the
classical approximation of Tr(A)

N using (2):

P

(
| T̂r(A)

N
− Tr(A)

N
| < ε

)
> 1 − δ.

Proof. The theorem follows from the Chernoff-Hoeffding
bound for complex numbers where we bound the precision for
both real and imaginary parts to be within ε√

2
. �

The sampling method in Eq. (2) can be generalized to
estimate the normalized Schatten p-norms when p is even, but
in this paper we are particularly interested in the case when
p = 2.

For arbitrary matrix A ∈ CN×M , AA† is unitarily similar to
a diagonal matrix in CN×N with σ 2

i along its diagonal. We ob-

serve that ‖A‖S2 =
√

Tr(AA† )
N , based on which we approximate

‖A‖S2 . Namely,

‖̂A‖S2
=

√
̂Tr(AA†)

N
. (3)

Theorem 2. Let A ∈ CN×M be an arbitrary matrix.
For any δ, ε > 0, with sample complexity m(ε, δ) =
O( ln(2/δ)

2ε2 min{ε−2, ‖A‖−2
S2

}), samples θ1, . . . , θm(ε,δ) ∼
Uni[−π, π ], and x(θi ) as defined in Lemma 1, the following
holds for the classical approximation of ‖A‖S2 using Eq. (3):

P (|‖̂A‖S2
− ‖A‖S2 | < ε) > 1 − δ.

Proof. It suffices, see Appendix, to show

P

(
|

̂Tr(AA†)

N
− ‖A‖2

S2
| < ε max{ε, ‖A‖S2}

)
> 1 − δ,

which follows from the result of normalized trace approxima-
tion in Theorem 1 and the Chernoff-Hoeffding bound. �

Since all sampled state vectors x(θi ) have dimension
N , classically evaluating each 〈x(θi )| AA† |x(θi )〉 requires
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Poly(N ) arithmetic operations. Next, we show how we can
take advantage of quantum computing to speedup the eval-
uations and thus make the approximation of the normalized
Schatten 2-norms more efficient.

IV. QUANTUM APPROXIMATION OF NORMALIZED
SCHATTEN 2-NORMS FOR MIXED QUANTUM

OPERATIONS

We apply the general results from the previous section to
quantum operations. Let n be the number of qubits in a
quantum system and N = 2n. A quantum operation (usually
denoted as U ) can be defined by a unitary matrix in CN×N .

Recall that we define a mixed quantum operation to be a
linear combination of a finite K ∼ O(1) quantum operations
with coefficients (α)K

κ=1 satisfying
∑K

κ=1 |ακ | � 1:

Ũ =
K∑

κ=1

ακUκ .

While all Uκ are unitary quantum operations which are uni-
tarily similar to diagonal matrices, their linear combinations Ũ
may not be. Therefore, the approximation of the normalized
trace from Theorem 1 does not generalize to mixed quantum
operations. Nevertheless, the approximation of the normalized
Schatten 2-norms does generalize and we present explicit
quantum circuit constructions to approximate ˜‖U‖S2

. We start
with a toy example when Ũ = 1√

2
U1 − 1√

2
U2. For an arbitrary

pure state |x〉 ∈ ∂BCN (0, 1),

〈x| ŨŨ † |x〉 = 1
2 〈x| (U1 − U2)(U †

1 − U †
2 ) |x〉

= 1
2 (2 − 2Re{〈x|U1U

†
2 |x〉}) = 1 − Re{〈x|U1U

†
2 |x〉}.

Similarly, we can generalize such result to mixed quantum
operations Ũ = ∑K

κ=1 ακUκ , where
∑K

κ=1 |ακ | � 1,

〈x| ŨŨ † |x〉 = 〈x|
K∑

κ1,κ2=1

ακ1α
∗
κ2Uκ1U

†
κ2

|x〉

=
K∑

κ=1

|ακ |2 +
∑
κ1<κ2

2Re{ακ1α
∗
κ2 〈x|Uκ1U

†
κ2

|x〉}

=
K∑

κ=1

|ακ |2 +
∑
κ1<κ2

2Re{ακ1α
∗
κ2}Re{〈x|Uκ1U

†
κ2

|x〉} (4)

−
∑
κ1<κ2

2Im{ακ1α
∗
κ2}Im{〈x|Uκ1U

†
κ2

|x〉}.

Since Uκ1 ,Uκ2 are quantum unitaries, the adjoint of them can
be efficiently constructed by reversing the order of the gates.

We show a simple construction of the quantum sampling
circuit S(θ ) (illustrated in Table IV). Let n be the number of
qubits, we define a geometric sequence (ω)n

i=1 with wi = 2i.

S(θ ) =
n⊗

i=1

Ry(2ωiθ ). (5)

Note that S(θ ) |0〉 creates a quantum state |x(θ )〉 with a state
vector matching the one defined in Lemma 1.

TABLE IV. S(θ ): sampling circuit for three qubits.

To apply the Hadamard test to evaluate
Re{ακ1α

∗
κ2 〈x(θ )|Uκ1U

†
κ2

|x(θ )〉}, measurement circuits such
as which in Table V are used.

Lemma 2. O( 2 ln(2/δ)
ε2 ) measurements suffice to bound the

error from a Hadamard test to be within ε with probability
1 − δ.

Proof. Assume m measurements are performed on
the control bit of the Hadamard test with outcomes
M1, M2, . . . , Mm ∈ {0, 1}, we can approximate Pr(1) using
̂Pr(1) = 1

m

∑m
i=1 Mi. Applying the Chernoff-Hoeffding bound

P (|[1 − 2 ̂Pr(1)] − [1 − 2 Pr(1)]| > ε)

= P

(
|̂Pr(1) − Pr(1)| >

ε

2

)
< 2e−ε2m/2.

When m � 2 ln(2/δ)
ε2 , 2e−ε2m/2 � δ, and this completes the

proof. �
Lemma 3. Given an arbitrary pure state |x〉 ∈ ∂BCN (0, 1)

and a mixed quantum operation Ũ = ∑K
κ=1 ακUκ with∑K

κ=1 |ακ | � 1 and K ∼ O(1), O( 32K4 ln(4K2/δ)
ε2 ) measurements

suffice to estimate 〈x| ŨŨ † |x〉 to an error within ε with prob-
ability at least 1 − δ.

Proof. According to Eq. (4), 〈x| ŨŨ † |x〉 can be esti-
mated with a summation of O(2K2) measurements from
the Hadamard tests. By the assumption

∑K
κ=1 |ακ | � 1,

2Re{ακ1α
∗
κ2} and 2Im{ακ1α

∗
κ2} are both � 2. Applying the tri-

angle inequality and the union bound, it suffices to bound the
error of each Hadamard test to be within ε

4K2 with probability
at least 1 − δ

2K2 . We then apply Lemma 2 and obtain an upper

bound on the sample complexity, m = O( 32K4 ln(4K2/δ)
ε2 ).

With the assumption K ∼ O(1), Lemma 3 implies a low-
order polynomial measurement complexity to estimate the
measurement outcome of the Hadamard test to a marginal
error. Thus, we make an assumption that all measurements
are error-free from now on.

For an arbitrary mixed quantum operation Ũ , we can
approximate ˜‖U‖S2

using m random samples. Namely, we
randomly sample θ1, . . . , θm ∼ D = Uni[−π, π ] and use the

TABLE V. Circuit for estimating Re{〈0| S†(θi )Uκ1U
†
κ2

S(θi ) |0〉}
using Hadamard test as in Table II.
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FIG. 2. For each randomly generated mixed quantum operations
Ũ = 1√

2
U1 − 1√

2
U2 where U1, U2 are randomly generated using the

QR decomposition [73], we plot the error of the approximation̂̃‖U‖S2
with respect to the sample size m as defined in Theorem 3.

A six-qubits system is considered. The means and standard errors
(±σ error bars) are computed over 30 sets of random samples.

sampling circuit S as defined by Eq. (5) to approximate

̂̃‖U‖S2
=

√√√√ 1

m

m∑
i=1

〈0| S†(θi )ŨŨ †S(θi ) |0〉, (6)

where each 〈0| S†(θi )ŨŨ †S(θi ) |0〉 can be measured with neg-
ligible error by Lemma 3.

Theorem 3. For an arbitrary mixed quantum operation
Ũ , we can estimate its normalized Schatten 2-norm ef-
ficiently using quantum sampling circuits of depth over-
head O(1). Moreover, for any δ, ε > 0, with sample
complexity m(ε, δ) = O( ln(2/δ)

2ε2 min{ε−2, ˜‖U‖−2
S2

}), samples
θ1 . . . , θm(ε,δ) ∼ Uni[−π, π ], and S(θi ) as defined by Eq. (5),
the following holds for the quantum approximation of ˜‖U‖S2

using Eq. (6):

P (| ̂̃‖U‖S2
− ˜‖U‖S2

| < ε) > 1 − δ.

Proof. The theorem follows from Theorem 2, Table V, and
Lemma 3. �

Note that the sample complexity for the approximation of
the normalized Schatten 2-norm is independent of the number
of qubits and is polynomial to 1

ε
, which implies a potential

quantum advantage. In Fig. 2, we present simulated results
supporting the relation ε ∝ m(ε, δ)−1/2 which is in agreement
with Theorem 3. In the next section, we build a connection
from the normalized Schatten 2-norm of the difference of
quantum operations to the similarity metric defined in Sec. II.

V. FROM THE NORMALIZED SCHATTEN 2-NORM TO A
FIDELITY-BASED SIMILARITY METRIC

Recall the definition of pure-state (ε, δ)-similarity. Let
|ψ〉 be a random state sampled from the distribution J =
Uni[∂BCN (0, 1)], we define two unitary operations U1, U2 to

be pure-state (δ, ε)-similar if

Pψ∼J (F (U1 |ψ〉 ,U2 |ψ〉) � 1 − ε) � 1 − δ.

The following lemma is significant as it relates pure-state
(ε, δ)-similarity to the normalized Schatten 2-norm.

Lemma 4. Let U1,U2 be two unitary quantum opera-
tions. U1, U2 are pure-state (ε, δ)-similar if ‖U1 − U2‖S2 �

ε

1+√
2(1/δ−1)

.
Proof. We apply statistical analysis to study the expecta-

tion and the variance of F (U1 |ψ〉 ,U2 |ψ〉) when ψ ∼ J =
Uni[∂BCN (0, 1)]. For any pure state |ψ〉,
F (U1 |ψ〉 ,U2 |ψ〉) = |〈ψ |U †

1 U2 |ψ〉|2

� Re2{〈ψ |U †
1 U2 |ψ〉} =

(
1 −

∑N
i=1 σi

2|〈wi| |ψ〉|2
2

)2

� 1 −
N∑

i=1

σi
2|〈wi| |ψ〉|2,

where wi and σi are the left-singular vectors and singular
values of U1 − U2. Let ε̂ = ‖U1 − U2‖S2 and ψ ∼ J ,

Eψ∼JF (U1 |ψ〉 ,U2 |ψ〉) � 1 − ‖U1 − U2‖2
S2

� 1 − ε̂2.

We next compute the variance of the fidelity

Varψ∼J [F (U1 |ψ〉 ,U2 |ψ〉)]

= EψF2(U1 |ψ〉 ,U2 |ψ〉)

− (EψF (U1 |ψ〉 ,U2 |ψ〉))2 � 1 − (1 − ε̂2)2 � 2ε̂2.

Application of the Chebyshev-Cantelli inequality, for arbi-
trary c > 0,

Pψ∼J (F (U1 |ψ〉 ,U2 |ψ〉) � 1 − c) � 1 − 2ε̂2

(c − ε̂2)2 + 2ε̂2
.

Setting c = ε and 2ε̂2

(c−ε̂2 )2+2ε̂2 = δ, it suffices to have ε̂ �
ε

1+√
2(1/δ−1)

. �
Empirical relations between F (U1 |ψ〉 ,U2 |ψ〉) and

‖U1 − U2‖S2 are illustrated in Figs. 3 and 4. In both
experiments, U1 is a fixed random unitary generated by
QR decomposition [73] and U2 is constructed by applying
rotation operators to U1. Figure 4 supports the bound derived
in Lemma 4 as the probability for U1, U2 to be pure-state
[(1 + √

8)‖U1 − U2‖S2 , 0.2]-similar is much higher than 0.8
for all pairs of U1 and U2 used (setting δ = 0.2).

The lemma can be generalized to mixed quantum op-
erations. Let J = Uni[∂BCN (0, 1)], we define two mixed
quantum operations Ũ1, Ũ2 to be pure-state (ε, δ)-similar if

Pψ∼J

(
F (Ũ1 |ψ〉 , Ũ2 |ψ〉) �E2

ψ

〈ψ | Ũ1Ũ
†
1 + Ũ2Ũ

†
2 |ψ〉

2
− ε

)
� 1 − δ.

Lemma 5. Let Ũ1, Ũ2 be two mixed quantum oper-
ations and J = Uni[∂BCN (0, 1)]. Ũ1, Ũ2 are pure-state
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FIG. 3. Empirical relation between approximated mean
Eψ∼Uni[∂BCN (0,1)]F (U1 |ψ〉 ,U2 |ψ〉) and ‖U1 − U2‖S2 . For each pair
of U1 and U2, the mean fidelity is computed over 1000 randomly
sampled (with replacement) states ψ ∼ Uni[∂BCN (0, 1)] and error
bars shown (±σ ) are smaller than the symbols. A six-qubit system
is considered.

(ε, δ)-similar if ‖Ũ1 − Ũ2‖S2 �
√

ε2−(1/δ−1)(τ−τ 4 )
2τ [ε+(1/δ−1)τ 2] , where τ =

Eψ∼J
〈ψ |Ũ1Ũ †

1 +Ũ2Ũ †
2 |ψ〉

2 .
Proof. For any given pure state |ψ〉 ∈ ∂BCN (0, 1),

F (Ũ1 |ψ〉 , Ũ2 |ψ〉) � Re2{〈ψ | Ũ †
1 Ũ2 |ψ〉}

=
( 〈ψ | Ũ1Ũ

†
1 |ψ〉 + 〈ψ | Ũ2Ũ

†
2 |ψ〉

2

−
∑N

i=1 σi
2|〈wi| |ψ〉|2
2

)2

,

FIG. 4. Verification of Lemma 4 when δ = 0.2. For 48 pairs
of random U1 and U2, we plot the percentage of 1000 randomly
sampled (with replacement) ψ ∼ Uni[∂BCN (0, 1)] which satisfy
F (U1ψ,U2ψ ) � 1 − (1 + √

8.0)‖U1 − U2‖S2 . A six-qubits system
is considered.

where wi and σi are the left-singular vectors and singular

values of Ũ1 − Ũ2. Let τ = Eψ∼J
〈ψ |Ũ1Ũ †

1 |ψ〉+〈ψ |Ũ2Ũ †
2 |ψ〉

2 and
ε̂ = ‖Ũ1 − Ũ2‖S2 ,

Eψ∼JF (Ũ1 |ψ〉 , Ũ2 |ψ〉)

� Eψ

( 〈ψ | Ũ1Ũ
†
1 |ψ〉 + 〈ψ | Ũ2Ũ

†
2 |ψ〉

2

)2
− τ ε̂2

� τ 2 − τ ε̂2.

Varψ∼J [F (Ũ1 |ψ〉 , Ũ2 |ψ〉)]

= EψF2(Ũ1 |ψ〉 , Ũ2 |ψ〉) − (EψF (Ũ1 |ψ〉 , Ũ2 |ψ〉))
2

� τ − (τ 2 − τ ε̂2)2 � τ − τ 4 + 2τ 3ε̂2.

Applying the Chebyshev-Cantelli inequality, for arbitrary c >

0,

Pψ∼J
(
F (Ũ1 |ψ〉 , Ũ2 |ψ〉) � τ 2 − c

)
� 1 − τ − τ 4 + 2τ 3ε̂2

(c − τ ε̂2)2 + τ − τ 4 + 2τ 3ε̂2
. (7)

Setting c = ε and τ−τ 4+2τ 3 ε̂2

(c−τ ε̂2 )2+τ−τ 4+2τ 3 ε̂2 = δ, it suffices to have

ε̂ �
√

ε2−(1/δ−1)(τ−τ 4 )
2τ [ε+(1/δ−1)τ 2] . �

Unlike for unitary quantum operations, the error bound for
mixed quantum operations depends on τ , which incorporates
the difference of Ũ1 and Ũ2 in “size.” Combining Lemma 4
and Theorem 3, we obtain the following theorem.

Theorem 4. Consider arbitrary ε, δ, δ̂ > 0 and input uni-
tary quantum operations U1, U2. Consider m independent
samples θ1, . . . , θm ∼ Uni[−π, π ]. Let S(θi ) be as defined by
Eq. (5) and the corresponding quantum approximations be as
defined by Eq. (6). Then P [U1,U2 are (ε, δ)-similar] � 1 − δ̂

if the following inequality holds:

̂‖U1 − U2‖S2
+ min{ 4

√
2 ln(2/δ̂)

m
,

√
2 ln(2/δ̂)

m

‖U1 − U2‖−1
S2

} � ε

1 + √
2(1/δ − 1)

.

Proof. Following from Lemma 4, it suffices to show that
‖U1 − U2‖S2 � ε

1+√
2(1/δ−1)

with probability at least 1 − δ̂. By
Theorem 3, with m samples,

P

( | ̂‖U1 − U2‖S2
− ‖U1 − U2‖S2 |√

2
� min{ 4

√
ln(2/δ̂)

2m
,√

ln(2/δ̂)

2m

√
2‖U1 − U2‖−1

S2
}
)

� 1 − δ̂.
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TABLE VI. Sample based quantum circuit learning

Input: Target unitary V .

Output: ξ and U (ξ ) which approximates V .
1: � ← ∅ �� saves the random samples
2: fori : 1 → m do �Generating m samples
3: θi ∼ Uniform[−π, π ] �D = Uniform[−π, π ]
4: � ← � ∪ θi

5: endfor
6: Randomly initialize ξ .
7: loop
8: f (ξ ) = 2 − 1

m

∑m
i=1 2�{〈0| S†(θi )V †U (ξ )S(θi ) |0〉} �Objective

9: ξ ← ξ − η∇ξ f (ξ ) �Gradient Descent
10: endloop

For any x, x0, c,

P (|x − x0| � c) = P (x0 − c � x � x0 + c)

� P (x � x0 + c).

We obtain

P

(
‖U1 − U2‖S2 � ̂‖U1 − U2‖S2

+ min{ 4

√
2 ln(2/δ̂)

m
,√

2 ln(2/δ̂)

m
‖U1 − U2‖−1

S2
}
)

� 1 − δ̂.

The main claim follows. �

VI. APPLICATIONS TO QUANTUM CIRCUIT LEARNING

Quantum circuit learning is one of the most natural applica-
tions of the similarity metric. A problem setting is as follows:
given a target unitary quantum operation V , represented via
its clean-qubit controlled circuit, find a parameter set ξ̂ of a
variational circuit U (ξ ) that best approximates V . Theorem
4 inspires a circuit learning algorithm whose cost function

̂‖U (ξ ) − V ‖2

S2
utilizes the normalized Schatten 2-norm of the

difference between U (ξ ) and V (see Algorithm VI). We in-
crease the similarity between U (ξ ) and V by minimizing the
cost function.

A quantum circuit diagram for approximating
Re{〈0| S†(θi )V †U (ξ )S(θi ) |0〉} is shown in Table VII.

To obtain an estimate of the gradient with respect to ξi, we
could apply a black-box gradient approximation [10,74–77]

∂ f

∂ξi
≈

ε→0

f (ξi + ε) − f (ξi − ε)

2ε
.

A better accuracy of the approximation can be achieved by
increasing m, which is consistent with Theorem 4. One possi-

TABLE VII. Circuit for three qubits: approximating
Re{〈0| S†(θi )V †U (ξ )S(θi ) |0〉}

ble application of the algorithm is learning the square root of
a quantum operation V , where we use U (ξ )U (ξ ) to approxi-
mate V .

VII. CONCLUDING REMARKS

In summary, we defined and introduced the normalized
Schatten norms and a set of similarity metrics between quan-
tum operations that can be efficiently estimated. We discussed
sufficient and necessary conditions for a sampling circuit to
estimate the normalized Schatten 2-norm and showed one
optimal design of such sampling circuits. We then studied
the sample complexity required by the sampling circuit and
obtained an upper bound that was polynomial to 1

ε
. With such

an efficient sampling method, we were able to estimate the
normalized Schatten 2-norms of mixed quantum operations.
We next related the similarity of quantum operations based
on the normalized Schatten 2-norm to a similarity metric
induced by the traditional fidelity metric used for quantum
states. Finally, we showed how such a connection could lead
to a design of the loss function for circuit learning for tasks
such as approximating a given quantum circuit or its square
root.

In this paper we emphasized circuit learning applications
to the problem of approximating unitary operations. We did
not explore learning of mixed operations. A similar circuit
learning approach would apply to mixed quantum operations
with a corresponding modification of the loss term at the
line 8 of Algorithm VI. However, as noted in Lemma 5, the
error bound posed on the normalized Schatten 2-norm of
the difference of the mixed operations is also a function of

τ = Eψ∼J
〈ψ |Ũ1Ũ †

1 +Ũ2Ũ †
2 |ψ〉

2 . When τ is not close 1, there is a
weaker correlation between the normalized Schatten 2-norm
of the difference and the fidelity-based similarity metric.

APPENDIX: THEOREM 2 SUPPLEMENT

We complete the proof of theorem 2 by showing the fol-
lowing implication:

P

(∣∣∣∣ ̂Tr(AA†)

N
− ‖A‖2

S2

∣∣∣∣ < ε max{ε, ‖A‖S2}
)

> 1 − δ

⇒ P (|‖̂A‖S2
− ‖A‖S2 | < ε) > 1 − δ.

Proof. Based on our classical approximation algorithm de-
fined by Eq. (3),

‖̂A‖S2
=

√
̂Tr(AA†)

N
.

Let M = T̂r(AA† )
N = ‖̂A‖2

S2
, we divide the proof into two cases.

If ε < ‖A‖S2 ,

|M − ‖A‖2
S2

| � ε‖A‖S2

⇒ ‖A‖2
S2

− ε‖A‖S2 � M � ‖A‖2
S2

+ ε‖A‖S2

⇒ ‖A‖2
S2

− 2ε‖A‖S2 + ε2 � M � ‖A‖2
S2

+ 2ε‖A‖S2 + ε2

⇒ (‖A‖S2 − ε
)2 � M �

(‖A‖S2 + ε
)2

⇒ |
√
M − ‖A‖S2 | � ε.
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If ε � ‖A‖S2 , |M − ‖A‖2
S2

| � ε2, which leads to the following
series of implications:

⇒ ‖A‖2
S2

− ε2 � M � ‖A‖2
S2

+ ε2

⇒ 0 � M � ‖A‖2
S2

+ 2ε‖A‖S2 + ε2

⇒ 0 � M � (‖A‖S2 + ε)2

⇒ |
√
M − ‖A‖S2 | � ε.
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