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We investigate the ultimate quantum limit of resolving the temperatures of two thermal sources affected by
diffraction. More quantum Fisher information can be obtained with a priori information than without a priori
information. We carefully consider two strategies: simultaneous estimation and individual estimation. We prove
that the simultaneous estimation of two temperatures satisfies the saturation condition of the quantum Cramér-
Rao bound and performs better than the individual estimation in the case of a small degree of diffraction given the
same resources. However, in the case of a high degree of diffraction, the individual estimation performs better.
In particular, at the maximum diffraction, the simultaneous estimation cannot get any information, which is
supported by a practical measurement, while the individual estimation can still get the information. In addition,
we find that for the individual estimation, a practical and feasible estimation strategy using the full Hermite-
Gauss basis can saturate the quantum Cramér-Rao bound without being affected by the attenuation factor at the
maximum diffraction.
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I. INTRODUCTION

In classical optics, optical imaging resolution is limited
by the diffraction. For over a century, Rayleigh’s criterion
was used as a limit of the resolution of two incoherent point
sources [1,2]. In the last decade, the limit has been beaten by
a variety of super-resolution techniques, such as fluorescence
microscopy [3–5].

Tsang et al. [6] first investigated the imaging resolution
limit with the tool of quantum metrology. They obtained
the lower bound of the separation between two incoherent
point sources and showed that the spatial-mode demultiplex-
ing can approach the optimal measurement, which is superior
to direct measurement. This seminal work opened up a wide
range of interest in exploring quantum imaging using quantum
Fisher information (QFI). The studies that followed mainly
extended the super-resolution technique to deal with two-
dimensional [7] and three-dimensional imaging [8–11], many
sources [12–16], the effects of noise [17,18], and optimal
measurement for practical super-resolution imaging [19].

Up to now, very little work has been done to investigate the
effect of diffraction on quantum thermometry, which mainly
involves improving precision standards for temperature sens-
ing in the quantum regime [20]. Improving temperature
measurement precision is important in quantum thermo-
dynamics and modern quantum technology [21–23]. The
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commercially available pyrometer is one of the most common
noncontact thermometers and measures the thermal infrared
radiation naturally emitted by all heated samples [24,25]. As
with quantum imaging, it is necessary to study the effect of
diffraction on temperature measurement precision to obtain
the optimal temperature measurement.

In this paper, we fill in the gaps above. We investigate
the ultimate quantum limit of resolving the temperatures of
two thermal sources affected by diffraction. When one knows
a priori that the two temperatures are always the same, the
maximum diffraction reduces the QFI of the high temperature
by half, and the diffraction has little effect on the measurement
of the low temperature. We find that the a priori information
can help us to obtain twice as much QFI as can be obtained
without the a priori information (the two temperatures are
independent). More importantly, we find that simultaneous
estimation is superior to individual estimation in the case of
a small degree of diffraction. In the case of a high degree
of diffraction, individual estimation can perform better. In
addition, we utilize a practical and feasible estimation strategy
based on the optimized error transfer formula to obtain the
individual temperature estimation uncertainty, which can satu-
rate the quantum Cramér-Rao bound (QCRB) at the maximum
diffraction. Finally, we show that the diffraction will reduce
the precision of the simultaneous estimation with a practical
measurement operator, which cannot obtain any information
at the maximum diffraction.

This paper is organized as follows. In Sec. II, we intro-
duce the imaging model and the density matrix in which
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FIG. 1. Schematic diagram of the diffraction-limited imaging of
thermal states from two pointlike sources. The two sources’ modes
c1(2) describe the light from the two thermal sources with distance
d and are populated with photon numbers N (1 ± γ ). a1(2) are the
nonorthogonal imaging modes due to the diffraction.

temperature information is encoded. In Sec. III, we obtain the
QFI when the two thermal sources have the same temperature.
In Sec. IV, simultaneous estimation and individual estimation
are used to obtain the QFI, and we compare the merits of the
two strategies. In Sec. V, we investigate a practical and feasi-
ble estimation of a single parameter. In Sec. VI, we calculate
the Fisher information (FI) obtained by the direct imaging.
The simultaneous estimation with a practical measurement
operator is studied in Sec. VII. We present a brief conclusion
and feasibility analysis in Sec. VIII.

II. THE IMAGING MODEL

We consider the model of a linear optical imaging system
in the far field, as shown in Fig. 1. Two thermal pointlike
sources are monochromatic with frequency ω and located in
the object plane, orthogonal to the optical axis, at positions
−d/2 and d/2. We define T1 and T2 as temperatures of the
two sources associated with the field operators c1 and c2,
respectively. We assume that the two sources emit a total
mean photon number equal to 2N , where N = 1

2 [1/(χ1 −
1) + 1/(χ2 − 1)] with χi = eω/Ti (the reduced Planck con-
stant h̄ = 1 and Boltzmann constant κB = 1 throughout this
paper). The sources can be described by the density ma-
trix ρ0 = ρc1 [(1 − γ )N] ⊗ ρc2 [(1 + γ )N], where γ = (χ1 −
χ2)/(χ1 + χ2) takes into account the possibly different tem-
peratures of the two sources. In the Glauber-Sudarshan P
representation, the density matrix can also be described by

ρ0 =
∫

d2α1d2α2Pc1,c2 (α1, α2)|α1, α2〉〈α1, α2|, (1)

where |α1〉 and |α2〉 are coherent states of the field operators
c1 and c2, respectively, and the Glauber-Sudarshan P function
is Pc1,c2 (α1, α2) = Pc1 (α1)Pc2 (α2), with

Pc1,c2 (α1, α2) = 1

π2N2(1 − γ 2)
e[−|α1|2/(1−γ )−|α2|2/(1+γ )]. (2)

The point-spread function ψ (x) determines the field
operators on the image plane, which read

a†
1 =

∫
dxψ (x + d/2)a†

x, a†
2 =

∫
dxψ (x − d/2)a†

x, (3)

where a†
x is the canonical creation operator for a field localized

at position x on the image plane, and the point-spread function
ψ (x) is assumed to be real up to a global phase.

A diffraction-limited optical system transforms the source
operators as [26]

c1 −→ √
ηa1 +

√
1 − ηv1, (4)

c2 −→ √
ηa2 +

√
1 − ηv2, (5)

where η is an attenuation factor and v1 and v2 are auxiliary
environmental modes in the vacuum state.

The operators c†
1 and c2 do not commute due to the nonzero

overlap between the two point-spread functions ψ (x + d/2)
and ψ (x − d/2). To obviate this problem, the orthonormal
image modes are introduced:

ψ±(x) = ψ (x + d/2) ± ψ (x − d/2)√
2(1 ± s)

, (6)

where s is the overlap between the source images

s =
∫

d2xψ∗(x + d/2)ψ (x − d/2). (7)

s quantifies the diffraction introduced by the imaging opti-
cal system. s = 1 represents the maximum diffraction. s = 0
means that there is no diffraction. By taking the sum and
difference of the relations in Eqs. (4) and (5), one can obtain

c± := c1 ± c2√
2

→ √
η±a± +

√
1 − η±v±, (8)

where a± = (a1 ± a2)/
√

2(1 ± s) are orthogonal symmetric
and antisymmetric mode operators associated with the modes
ψ±(x) and the effective attenuation factors are η± = η(1 ± s)
and v± associated with auxiliary modes in the vacuum state.
Inverting Eq. (8), we can write

a± := √
η±c± +

√
1 − η±v±. (9)

The density matrix on the image plane can be obtained by
using Eq. (9) to propagate the quantum state of source in
Eq. (1) [27], as shown in the Appendix,

ρ =
∫

d2α+d2α−Pa+,a− (α+, α−)|α+, α−〉〈α+, α−|, (10)

where the corresponding P function is

Pa+,a− (α+, α−) = 1

π2detV
e−A†V −1A, (11)

with the definition A = (α+, α−)T and

V =
(

N+ γ
√

N+N−
γ
√

N+N− N−

)
,

in which, N± = Nη(1 ± s).

III. TWO THERMAL SOURCES
WITH THE SAME TEMPERATURE

We first consider that temperatures of the two sources are
always the same, i.e., T1 = T2 = T . According to Eq. (11), the
density matrix on the image plane is a product state, which can
be described in the number-diagonal states of the form

ρ = ρ+ ⊗ ρ−, (12)
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FIG. 2. The QFI F (T ), computed from Eq. (16), vs the degree of
diffraction s. The dimensionless parameters are given by ω = 1 and
η = 0.5.

with the density matrices associated with the field operators
a±

ρ± =
∞∑

n=0

p±(n)|n〉±〈n|, (13)

where

p±(n) = (M±)n

(M± + 1)n+1
, (14)

M± = η(1±s)
eω/T −1 , and |n〉± = 1√

n!
(a†

±)n|0〉 denote Fock states with
n photons on the image plane. Because it is a diagonal state,
the QFI of the temperature T can be directly calculated:

F (T ) =
∞∑

n=0

[∂T p+(n)]2

p+(n)
+ [∂T p−(n)]2

p−(n)
(15)

= 2χ2ω2η(χ− 1+ η− s2η)

(χ − 1)2T 4(−1 + χ+ η− sη)(−1+ χ+ η+ sη)
,

(16)

where the shorthand ∂T = ∂
∂T and χ = eω/T .

At low temperature ω/T 	 1, we can achieve

F (T ) = 2ω2η

T 4eω/T
. (17)

It is independent of the degree of diffraction s, which can show
that the diffraction has little effect on the measurement of low
temperature.

At high temperature, ω/T 
 1, we can obtain

F (T ) ≈ 2η[ω/T + η(1 − s2)]

T 2[ω/T + η(1 − s)][ω/T + η(1 + s)]
. (18)

In this case, we find that F (T )|s=1/F (T )|s=0 = 1/2. This
means that the maximum diffraction reduces the QFI by half.

In the general case, we can see that the diffraction will
reduce the QFI of the temperature as shown in Fig. 2. At
the maximum diffraction, we still obtain a finite QFI. This
demonstrates that the diffraction has no great influence on
temperature measurement in the case of two thermal sources
with the same temperature.

IV. ESTIMATING TWO DIFFERENT TEMPERATURES

In this section, we want to estimate the temperatures T1

and T2 of the two thermal sources. In this case, the two
temperatures are independent. The estimation precision of
(T1, T2), governed by its covariance matrix Cov(T1, T2), is
lower bounded via the QCRB [28]

Cov(T1, T2) � (νH)−1, (19)

where H is the QFI matrix and ν denotes the classical
contribution from repeating the experiment. There are two
measurement strategies: One is the simultaneous estimation
of the two temperatures, and the other is the individual es-
timation of the two temperatures. A lot of works [29–38]
have clearly shown that simultaneous estimation can be more
precise than individual estimation given the same resource.
We are going to look at whether this is true in the diffraction
case.

For the simultaneous estimation, the total estimation uncer-
tainty of the two temperatures is given by

(δ2T1 + δ2T2)|sim = tr[Cov(T1, T2)] � tr(νH)−1

= 1

ν

H11 + H22

H11H22 − |H12|2 , (20)

where Hi j (i, j = 1, 2) represent the elements of the QFI
matrix H.

For the individual estimation, the estimation uncertainties
of the two temperatures are given by

δ2T1|ind � 1

ν/2

1

H11
, (21)

δ2T2|ind � 1

ν/2

1

H22
, (22)

where we consider that T1 and T2 are individually measured
ν/2 times so that the total number of measurements is consis-
tent with the case of simultaneous estimation. In the case of
individual estimation, the lower bound in Eqs. (21) and (22)
can be saturated with the large number of repeated measure-
ments (ν 	 1).

In the case of simultaneous estimation, the lower bound
in Eq. (20) is saturated by satisfying the weak commutation
relation when collective measurements on multiple copies of
samples are permitted [39–42], which is described as [43]

tr(ρ[L1,L2]) = 0, (23)

where Li (i = 1, 2) are the symmetric logarithmic deriva-
tives, which are defined as operator solutions of equations
∂iρ = 1

2 (Liρ + ρLi ), where ∂i = ∂Ti denotes the partial
derivative with respect to the ith element of the vector of
estimated parameters (T1, T2).

The quantum state ρ is a Gaussian state. For the Gaussian
state, the QFI matrix H and symmetric logarithmic derivatives
can be described as [44]

Hi j = 1

2
vec[∂iσ ]†R−1vec[∂ jσ ] + 2∂id†σ−1∂ jd, (24)

Li = �A†R−1vec[∂iσ ]�A − 1

2
tr(σR−1vec[∂iσ ])

+ 2�A†σ−1∂id, (25)
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where the elements of the displacement vector d and the covariant matrix σ are defined as di = tr[ρAi] and σi j = tr{ρ�Ai,�Aj},
A = (a+, a−, a†

+, a†
−)T , �Ai = Ai − di, R−1 = σ̄ ⊗ σ − K ⊗ K, and K = diag(1, 1,−1,−1). The overbar, as in σ̄ , denotes the

complex conjugate, and {·, ·} denotes the anticommutator. vec[·] denotes vectorization of a matrix, which is defined as a column
vector constructed from columns of a matrix. By calculation, the variance matrix can be achieved:

σ =

⎛
⎜⎜⎜⎝

2N+ + 1 −2γ
√

N+N− 0 0
−2γ

√
N+N− 2N− + 1 0 0

0 0 2N+ + 1 −2γ
√

N+N−
0 0 −2γ

√
N+N− 2N− + 1

⎞
⎟⎟⎟⎠.

A. Increasing QFI with the a priori information

When we have the a priori information, we know a priori
that the two temperatures of the two sources are always equal,
i.e., T1 = T2. With the a priori information, the saturated
uncertainty of T1 is given by

δ2T1|pri = 1

ν/2

1

F (T1)
, (26)

where the QFI F (T1) is described in Eq. (16).
Without the a priori information, when T2 → T1, we can

obtain the analytical results of the QFI matrix based on
Eq. (24):

H11(T2 → T1)

= H22(T2 → T1)

= χ2
1 ω2η

T 4
1 (χ1− 1)2[(1− χ1− η)2− s2η2](−1+ χ1+ η− s2η)

× [(
1 + χ2

1

)
(s2 − 2) − 2(s2 − 1)2η2 − 4(s2 − 1)η

+ χ1(4 − 4η + s2(4η − 2))
]
. (27)

In this case, the uncertainty of the temperature T1 is

δ2T1|ind = 1

ν/2

1

H11(T2 → T1)
. (28)

When there is no diffraction (s = 0), F (T1) = H11(T2 →
T1) + H22(T2 → T1) = 2H11(T2 → T1). However, when
there is diffraction (s �= 0), F (T1) > 2H11(T2 → T1), as
shown in Fig. 3. In particular, when s = 1, F (T1) =
2(H11 + H22) = 4H11. This shows that more QFI can
be obtained with the a priori information of T1 = T2 than

FIG. 3. The ratio 2H11/F (T ), computed from Eq. (27), vs the
degree of diffraction s. The dimensionless parameters are given by
ω = 1 and η = 0.5.

without the a priori information when subjected to diffraction.
At the maximum diffraction (s = 1), the a priori information
can help us to obtain twice as much QFI as can be obtained
without the a priori information.

B. Simultaneous estimation versus individual estimation

For simultaneous estimation, we show that the lower bound
in Eq. (20) can be saturated by analytically deriving

tr(ρ[L1,L2])

= vec[∂1σ ]†R−1(σ̄ ⊗ K − K ⊗ σ )R−1vec[∂2σ ]

+ 4∂1d†σ−1Kσ−1∂2d = 0. (29)

From now on, we set ν = 1 for the sake of convenience
because this paper is independent of the number of measure-
ments. The QFI matrix can be analytically derived by Eq. (24).
However, the general form is verbose. Results are presented
by using numerical values, as shown in Figs. 4–6. We define
the factor μ as the ratio of the simultaneous uncertainty and
the individual uncertainty, i.e.,

μ = (δ2T1 + δ2T2)|sim

δ2T1|ind + δ2T2|ind
= H11H22

H11H22 − |H12|2 , (30)

where the latter equation comes from the saturated QCRB.
From Fig. 4, we can see that in the case of s = 0.5, the

simultaneous estimation uncertainty is less than the individual
uncertainty given by the same resource, i.e., the ratio factor
μ < 1. This shows that the simultaneous estimation performs
better than the individual estimation. When the temperature

FIG. 4. The ratio of the simultaneous uncertainty to the in-
dividual uncertainty, μ, vs the two temperatures T1 and T2.
The dimensionless parameters are given by ω = 10, η = 0.5,
and s = 0.5.
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FIG. 5. The ratio between the individual uncertainty and the
simultaneous uncertainty, 1/μ, vs the degree of diffraction s. The
dimensionless parameters are given by ω = 10, T1 = 8, and T2 = 10.

difference (|T1 − T2|) is relatively large or both temperatures
are relatively high (T1 	 ω and T2 	 ω), we find that the ratio
μ is close to 1/2. This indicates that simultaneous estimation
in this case is a better use of resources to improve measure-
ment precision.

From Fig. 5, we can see that the ratio of the individual
uncertainty and the simultaneous uncertainty, 1/μ, decreases
with the increase in s. In particular, the ratio 1/μ approaches
0 as the diffraction degree approaches 1. This indicates that
the advantage of the simultaneous estimation decreases as
s increases. At the maximum diffraction, the simultaneous
estimation uncertainty will be infinite, which means that the
maximum diffraction completely prevents the simultaneous
estimation from obtaining the information of both tempera-
tures. In addition, we can see that the attenuation factor η has
very little effect on the ratio, especially if s is around 0 and 1.

As shown in Fig. 6, although the individual estimation un-
certainty (δ2T1|ind + δ2T2|ind) also increases with s, it is always
finite. This means that the individual estimation can obtain
the information of the two temperatures when subjected to the
maximum diffraction.

V. A PRACTICAL AND FEASIBLE ESTIMATION
OF A SINGLE PARAMETER

A simple way to measure the individual estimation er-
ror of the single parameter Ti is given by the error transfer

FIG. 6. The individual uncertainty δ2T1|ind + δ2T2|ind vs the de-
gree of diffraction s. Here, the values of the selected parameters are
the same as in Fig. 5.

formula [45,46]

(δTi )
2 = (δX )2/(∂i〈X 〉)2, (31)

where (δX )2 = 〈X 2〉 − 〈X 〉2 and 〈·〉 = tr[·ρ]. It just needs to
measure the average value of a single measurement observable
X .

For a single parameter, Gessner et al. [47] provided
an analytical optimization over all possible linear combi-
nations of some given possible measurement observables
X = (X1, . . . , XK )T .

With the optimal linear combinations Xm = m · X ∝
�−1[Ti, X]D[Ti, X] · X, the corresponding optimized mea-
surement sensitivity can be described as

M[Ti, X] = maxm̃(∂i〈Xm̃〉)2/(δXm̃)2 (32)

= D[Ti, X]T �−1[Ti, X]D[Ti, X], (33)

where linear combinations Xm̃ = m̃ · X, D[Ti, X] =
(∂i〈X1〉, . . . , ∂i〈XK 〉)T , and the elements of the covariance
matrix are �k,l [Ti, X] = 〈XkXl〉 − 〈Xk〉〈Xl〉. The optimized
sensitivity given by Eq. (33) is obtained by the measurement
coefficient vector m̃ = m. The measurement sensitivity obeys
the chain of inequalities M[Ti, X] � F[Ti, Xm] � Hii. Here,
F[Ti, Xm] denotes the Fisher information of Ti obtained from
the measurement of Xm; Hii denotes the QFI of Ti as shown
in Eq. (24).

Photon counting after spatial-mode demultiplexing has
been shown to be the measurement that allows one to ap-
proach the ultimate limit for the separation estimation [6,26].
Suppose that we have access to K orthonormal spatial modes
{υk (x)} with associated field operators ak and that the photon
number in each mode can be obtained from the photon count-
ing operator Nk = b†

kbk . bk = gk+a+ + gk−a− with gk± =∫
dxυ∗

k (x)ψ±(x). Then, the mean photon number in each
mode is

〈Nk〉 = Nη(| f+,k|2 + | f−,k|2) − γ Nη(| f+,k|2 − | f−,k|2),

(34)

where f±,k = ∫
dxυ∗

k (x)ψ (x ± d/2).
Next, we focus on the case of a Gaussian point-spread

function ψ (x) =
√

2/π� 2 exp(−x2/� 2). For a small aver-
age number of photons, demultiplexing Hermite-Gauss (HG)
modes can help us to approach the QCRB. Hence we also
consider the orthonormal spatial modes

υk (x) = uk (x) = NkHn

(√
2x

�

)
e−x2

, (35)

where Hn(x) are the Hermite polynomials and the normaliza-
tion constant Nk = [(π/2)� 22kk!]−1/2.

Letting Xk = Nk , X = N = (N1, . . . , NK )T , the measure-
ment sensitivity of Ti can be obtained by Eq. (33):

M[Ti, N] = (2η∂iN )2

[∑K
k=0 β2

k (d )

2Nη
− A+

A+A− − B2
S2

1

+ 2B

A+A− − B2
S1S2 − A−

A+A− − B2
S2

2

]
, (36)
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where

A± = 2

1 ± γ 2
+ 2Nη

K∑
k=0

β2
k (d ), (37)

B = 2Nη

K∑
k=0

(−1)kβ2
k (d ), (38)

S1 =
K∑

k=0

(−1)kβ2
k (d ), (39)

S2 =
K∑

k=0

β2
k (d ). (40)

Here, βk (d ) = f±,k = 1√
k!

exp[ d2

8� 2 ](± d
2�

)k . When the num-
ber of received photons is low Nη 
 1, the sensitivity can be

simplified as

M[Ti, N] ≈ (2η∂iN )2

∑K
k=0 β2

k (d )

2Nη

=
K∑

k=0

(∂iNk )2

Nk
= Nt

K∑
k=0

(∂i pk )2

pk
, (41)

where the total number of thermal photons Nt = ∑K
k=0 Nk and

the probability pk = Nk/Nt . The above equation shows that
the FI is obtained, which means that the estimation strategy
based on the optimized error transfer formula can saturate the
Cramér-Rao bound.

When the full HG basis is measured, i.e., K −→ ∞, we
can obtain the sensitivity of the single parameter Ti

M[Ti, N] = (2η∂iN )2

[
1

2Nη
− 2s2(1 − γ 2) + 2(1 + γ 2) + 2Nη(1 − γ 4)(s − 1)2

4 + 8Nη + 4N2η2(1 − s2)(1 − γ 4)

]
, (42)

where ∂iN = χiω

2T 2
i (1−χi )2 . As shown in Fig. 7, the measurement

sensitivity M[T1, N] gradually approaches the QFI as the de-
gree of diffraction s increases. In other words, as s increases,
the estimation strategy based on the optimized error transfer
formula tends to be the optimal method by using the full
HG basis. At the maximum diffraction s = 1, the estimation
strategy can saturate the QCRB without being affected by the
attenuation factor η.

VI. DIRECT IMAGING

In this section, we calculate the estimation precision of
the single parameter Ti obtained by direct imaging. Then, we
make a simple comparison with the previous results from the
Hermite-Gaussian mode demultiplexing.

The direct imaging estimates the temperature from the
density distribution, which is given by

I (r) = 〈(ψ+(x)a+ + ψ−(x)a−)†(ψ+(x)a+ + ψ−(x)a−)〉
= Nη[(1+ γ )|ψ (x+ d/2)|2+ (1 − γ )|ψ (x− d/2)|2].

(43)

FIG. 7. The ratio of the measurement sensitivity and the QFI,
M[T1, N]/H11, vs the degree of diffraction s. Here, the values of the
selected dimensionless parameters are given by ω = 1 and T1 = 1.

By dividing by the total photon number 2N , we can get the
probability distribution

P(x) = η

2
[(1 + γ )|ψ (x + d/2)|2 + (1 − γ )|ψ (x − d/2)|2].

(44)

Due to the loss, the probability that no photon is detected is
1 − η. The FI can be achieved:

F (Ti ) =
∫ ∞

∞
dx(∂iP(x))2/P(x) (45)

=
∫ ∞

∞
dxη(∂iγ )2 f (x)/2, (46)

where the factor f (x) is described by

f (x) = η(|ψ (x + d/2)|2 − |ψ (x − d/2)|2)2

2P(x)
. (47)

From the above equations, we can find that the factor f (x)
is equal to 0 at the maximum diffraction s = 1 (d = 0). This
leads us to find that the FI of the temperature F (Ti ) is equal
to 0. This means that the direct imaging cannot obtain any
information of the temperature at the maximum diffraction.
In sharp contrast, the HG mode demultiplexing is still able
to get the information. At the maximum diffraction, the HG
mode demultiplexing is the optimal measurement. This shows
that the HG mode demultiplexing can perform better than the
direct imaging in terms of temperature estimation in the case
of diffraction limitation.

VII. SIMULTANEOUS ESTIMATION WITH A PRACTICAL
MEASUREMENT OPERATOR

In this section, we use a practical measurement to estimate
the two parameters T1 and T2 simultaneously. We consider
a simple measurement operator E = ∑∞

k=0 Nk , which is the
direct sum of all the photon counting after the HG spatial-
mode demultiplexing. It is independent of the estimation
parameters Ti.
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FIG. 8. The reciprocal of the simultaneous estimation uncer-
tainty 1

(δ2T1+δ2T2 )|sim
obtained by the measurement operator E changes

with the degree of diffraction s. Here, the values of the selected
dimensionless parameters are given by T1 = 1, ω = 1, and η = 1/2.

After a simple calculation, we can obtain that
E= ∑∞

k=0 Nk = a†
+a+ + a†

−a− = (n+ + n−)|n+, n−〉〈n+, n−|.
Conditioned on a detection event, the probability of detecting
n+ and n− photons in the modes of a+ and a− is given
by Pn+,n− = 〈n+, n−|ρ|n+, n−〉, which can be further
expressed as

Pn+,n−

=
(1 − γ 2)1+n++n−Nn+

+ Nn−
− 2F1

[
1 + n+, 1 + n−, 1,

γ 2

λ+λ−

]
λ

n++1
+ λ

n−+1
−

,

(48)

where the parameters in the denominator are λ± = 1 + N± −
N±γ 2 and the hypergeometric function 2F1[1 + n+, 1 +
n−, 1,

γ 2

λ+λ−
] = ∑∞

m=0

[(1+n+ )(1+n− ) γ 2

λ+λ− ]m

m! .
With this measurement probability, the FI can be

calculated by

F i j
C =

∞∑
n+,n−=0

∂iPn+,n−∂ jPn+,n−

Pn+,n−
. (49)

As shown in Fig. 8, the reciprocal of the simultaneous esti-
mation uncertainty 1

(δ2T1+δ2T2 )|sim
decreases with the degree of

diffraction s. When s = 1, 1
(δ2T1+δ2T2 )|sim

= 0. This shows that
the diffraction will reduce the precision of the simultaneous
estimation with the practical measurement operator E , which
cannot obtain any information at the maximum diffraction.
These results support the previous results using the saturated
QCRB as shown in Sec. IV B.

VIII. CONCLUSION

We have investigated the effect of diffraction on quantum
thermometry. When we know a priori that the temperatures
of the two thermal sources are always equal, the diffraction
will reduce the estimation precision, but not by much: At
low temperature, the diffraction has little effect on the estima-
tion precision; at high temperature, the maximum diffraction
yields half as much QFI as no diffraction. More QFI can be
obtained with the a priori information (the two temperatures
are always equal) than without the a priori information (i.e.,

the two temperatures of the two thermal sources are indepen-
dent). In particular, at the maximum diffraction, the a priori
information can help us to obtain twice as much QFI as can
be obtained without the a priori information. What is more,
we carefully consider two strategies: simultaneous estimation
and individual estimation. The simultaneous estimation of two
temperatures is proved to satisfy the saturation condition of
QCRB. Given the same resources, the simultaneous estima-
tion performs better than the individual estimation in the case
of a small degree of diffraction. However, in the case of a high
degree of diffraction, the individual estimation performs bet-
ter. In particular, at the maximum diffraction, the simultaneous
estimation cannot get any information, which is supported
by a practical measurement, while the individual estimation
can still get the information. In addition, we find that for
the individual estimation, a practical and feasible estimation
strategy based on the optimized error transfer formula can
saturate the Cramér-Rao bound when the number of received
photons is low. At the maximum diffraction, the practical
and feasible estimation strategy using the full HG basis can
saturate the QCRB without being affected by the attenuation
factor. The HG mode demultiplexing can achieve higher tem-
perature estimation precision than the direct imaging in the
case of diffraction limitation.

Since the focus of our research is temperature estimation,
we assume that the separation of the two thermal sources
is known. It is difficult to precisely estimate the separation
using conventional technology when the intensity distribution
of the two sources on the image plane is close. Spatial-mode
demultiplexing has been shown to greatly enhance the pre-
cision of the separation estimation [48]. More importantly,
experimentally, the positions of the two light sources can be
controlled in advance, rather than measured on the imaging
plane. In addition, multiple parameters including separation
and temperature can also be measured simultaneously us-
ing the QFI matrix. The impact of the unknown centroid
and separation of the two thermal sources on the estimation
of temperatures deserves further study. Our study illustrates
the effect of diffraction on the temperature measurement
precision and the advantages and disadvantages of different
measurement strategies, which lays a foundation for con-
structing a remote precision thermometry to obtain surface
temperature distributions [49,50].

ACKNOWLEDGMENTS

We acknowledge Qiongyi He for helpful discussions and
constructive comments on the paper. This research was
supported by the National Natural Science Foundation of
China under Grant No. 62001134, Guangxi Natural Sci-
ence Foundation under Grant No. 2020GXNSFAA159047,
and National Key R&D Program of China under Grant No.
2018YFB1601402-2.

APPENDIX: THE DENSITY MATRIX
ON THE IMAGE PLANE

We now use Eq. (9) to propagate the density matrix ρ0 of
the sources to the density matrix ρ on the image plane.
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When we transform the coherent state |α1, α2〉 of the field
operators c1 and c2 to the coherent state |α+, α−〉 of the field
operators a±, we can obtain the following mapping relation
according to Eq. (9) and the auxiliary modes in the vacuum
state

√
η+c±|α1, α2〉〈α1, α2| → a±|α+, α−〉〈α+, α−|

⇒
√

η±/2(α1 ± α2)|α1, α2〉〈α1, α2| → α±|α+, α−〉〈α+, α−|.
(A1)

Based on above equations, we obtain the mapping relations

α1 → α1+ = α+/
√

2η+ + α−/
√

2η−; (A2)

α2 → α2− = α+/
√

2η+ − α−/
√

2η−. (A3)

Then, with the two equations above we further obtain

∫
d2α1d2α2Pc1,c2 (α1, α2)|α1, α2〉〈α1, α2|

→
∫

d2α1+d2α2−Pc1,c2 (α1±, α2±)|α+, α−〉〈α+, α−|
(A4)

=
∫

d2α+d2α−Pa+,a− (α+, α−)|α+, α−〉〈α+, α−|. (A5)

At this point, Eq. (10) has been derived.
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