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Impact of time-correlated noise on zero-noise extrapolation
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Zero-noise extrapolation is a quantum error mitigation technique that has typically been studied under the
ideal approximation that the noise acting on a quantum device is not time correlated. In this paper, we investigate
the feasibility and performance of zero-noise extrapolation in the presence of time-correlated noise. We show
that, in contrast to white noise, time-correlated noise is harder to mitigate via zero-noise extrapolation because it
is difficult to scale the noise level without also modifying its spectral distribution. This limitation is particularly
strong if “local” gate-level methods are applied for noise scaling. However, we find that “global” noise-scaling
methods, e.g., global unitary folding, can be sufficiently reliable even in the presence of time-correlated noise.
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I. INTRODUCTION

The theory of fault-tolerant error-corrected quantum com-
putation may result in speedups in a number of computations,
most notably the factoring of numbers using Shor’s algorithm
[1–3], but also in quantum simulation and chemistry [4–8],
linear systems [9–12], and other areas [13–18]. While ongoing
progress has improved the performance of individual qubits
and has allowed quantum computers to scale to a larger num-
ber of qubits, current systems are not sufficiently performant
for useful fault-tolerant operations. Despite this apparent lim-
itation, we are in or rapidly nearing a regime where quantum
systems could perform useful computations without (or with
less) error correction, the so-called noisy intermediate-scale
quantum (NISQ) era [19].

In this regime of NISQ computations, it is imperative
that any potential errors be reduced or mitigated in order
to maximize the utility from these imperfect devices and/or
small distance codes. A number of potential techniques have
been proposed to mitigate errors in the NISQ regime in-
cluding quantum control [20–31], decoherence-free subspaces
[32–34], readout error mitigation [35–38], Pauli frame ran-
domization [39–41], and optimal compilation [42–47]. One
recently proposed technique motivated by NISQ limitations is
zero-noise extrapolation (ZNE) [48–53]. This aims to mitigate
the impacts of any errors on a computation by performing
a series of computations with scaled error levels and then
postprocessing to interpolate to the zero-noise limit of the
computation.

ZNE techniques have been primarily investigated under
the assumption that the errors to be mitigated are uncorre-
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lated in time. On the other hand, time-correlated noise (in
particular 1/ f α noise) has been widely observed in physical
systems including superconducting devices [54–58], quantum
dots [59,60], and spin qubits [61]. In NISQ devices, such as
those offered by the IBM Quantum Experience, evidence of
correlated noise has been observed both indirectly through
the use of dynamical error suppression [62,63] and directly
through quantum noise spectroscopy (QNS) estimation of the
noise [64]. This has been further substantiated by recent stud-
ies that have suggested the dynamics of such devices are more
accurately captured by non-Markovian models [65,66].

To estimate the noise present in these real physical systems,
one can use QNS [67–69] wherein the outcomes of a set of
distinct control pulses or circuits are analyzed. Key to this
approach is that while these different probe sequences may
in fact represent identical circuits under ideal conditions, they
interact with any noise present in different ways. This can
be understood through the filter function formalism [70,71]
which describes the “frequency response” of a given probe
sequence. Broadly speaking, the impacts of noise (in terms
of fidelity) are approximately proportional to the integral of
the product of the power spectrum of the noise with the filter
function of the control, called an overlap integral. In what
follows, we will show how this intuition can also be applied
to different ZNE schemes in the presence of temporally corre-
lated dephasing noise.

The recently developed [72] and experimentally vali-
dated [64] Schrödinger wave autoregressive moving average
(SchWARMA) technique provides a natural mechanism for
the exploration of so-called digital ZNE techniques [51,52,73]
that operate at the gate level in a quantum circuit. Building
on techniques from classical time-series modeling in statistics
and signal processing, SchWARMA was conceived as a highly
flexible mechanism for simulating a wide-range of spatiotem-
porally correlated errors in quantum circuits.
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In the following, we first review the SchWARMA model-
ing and simulation formalism as well as a concise overview
of ZNE and discuss different methods for scaling noise. Next,
we show how these different schemes are impacted by time-
correlated dephasing noise despite the fact that they behave
equivalently for uncorrelated noise. We then interpret these
noise-scaling schemes using the language of filter functions
and show that these results are well described by the intuition
provided by the filter functions. Our findings indicate that,
for time-correlated noise, the noise-scaling method known as
global unitary folding [51,74] produces more accurate noise-
scaled expectation values and ZNE results.

II. BACKGROUND

A. Time-correlated noise: The SchWARMA model

Consider a single-qubit Hamiltonian

H (t ) = Hz(t ) + Hc(t ) (1)

consisting of a semiclassical dephasing noise component
Hz(t ) along with a deterministic idealized control component
Hc(t ) corresponding, for example, to the external driving in-
duced by laser pulses. If we further define Hz(t ) = η(t )σ z

with η(t ) a wide-sense stationary Gaussian stochastic process,
we can say that this noise process is not time correlated
if E[η(t )η(t ′)] = E[η(|t − t ′|)η(0)] = 0 for all t �= t ′, where
E(·) represents the average over many statistical realizations.
σ i, i = x, y, z are the Pauli matrices. Equivalently, we can say
that the noise process is time correlated if the power spectrum

Sη(ω) =
∫ ∞

0
dt E[η(t )η(0)]e−iωt (2)

is not constant as a function of ω (i.e., not a “white” process).
This semiclassical noise setting is the standard setting for
QNS [67–69] and is an alternative to general open quantum
systems approaches that consider couplings to quantum baths.
The semiclassical noise approximation assumes that the bath
is in thermal equilibrium and at infinite temperature, yielding
regimes with no back action on the environment from the
qubits, as well as equal populations of qubit states after long
term decay [75–81].

In the SchWARMA modeling approach [72], the impact
of the continuous time Hamiltonian in (1) is modeled in a
quantum circuit formalism by inserting correlated Z-error op-
erators after each “gate” determined by the control Hc. This
is accomplished by generating a time-correlated sequence of
rotation angles yk defined from independent Gaussian inputs
xk using an autoregressive moving average (ARMA) model
[82,83]:

yk =
∑p

i=1
aiyk−i︸ ︷︷ ︸

AR

+
∑q

j=0
b jxk− j︸ ︷︷ ︸

MA

, (3)

where the set {ai} defines the autoregressive portion of the
model and {b j} defines the moving average portion with p and
q + 1 elements of each set, respectively. The time correlations
are defined via the resulting power spectrum

Sy(ω) = |∑q
k=0 bk exp(−ikω)|2

|1 + ∑p
k=1 ak exp(−ikω)|2

, (4)

FIG. 1. Noise power spectrum of four different dephasing
SchWARMA noise models corresponding to white noise, low-pass
noise, 1/ f noise, and 1/ f 2 noise. These noise models are used in
Sec. III to test the effect of time-correlated noise on zero-noise
extrapolation

and ARMA models can approximate any discrete-time power
spectrum to arbitrary accuracy [84]. For the scope of this
paper we focus on the four paradigmatic noise spectra shown
in Fig. 1, namely, white noise, low-pass noise, 1/ f noise, and
1/ f 2 noise.

Dividing the circuit trajectory defined by Hc(t ) into consec-
utive gates Gk , the SchWARMA approach models the impact
of correlated noise Hz(t ) by adding in a random Z (θk ) =
exp(iykσ

z ) after each gate, which can then be Monte Carlo
averaged to produce an expectation value. This model can be
extended to multiqubit Hamiltonians

H (t ) =
n∑

j=1

η j (t )σ z
j + Hc(t ), (5)

by generating independent, yet identically defined,
SchWARMA-generated errors on each qubit. In principle,
these could of course be heterogeneous and correlated
between qubits.

B. Zero-noise extrapolation with colored noise

ZNE is an error mitigation technique which relies on the
ability to increase the noise in a quantum circuit [48,49,85].
Like other error mitigation techniques, the target is to estimate
an expectation value

E (λ) := Tr[ρ(λ)O] (6)

at zero noise. The noise scale factor λ dictates how much
the base noise level λ = 1 is scaled in the quantum circuit
which prepares the system density matrix ρ, and O is a
problem-dependent observable. The key insight of ZNE is to
(i) evaluate E (λ) at several noise scale factors λ � 1, then
(ii) fit a statistical model to the collected data and infer the
zero-noise value E (λ → 0). We refer to these two steps as
noise scaling and inference, respectively.
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Compared to other error mitigation techniques, zero-noise
extrapolation requires very few additional quantum resources.
Correspondingly, it has received some attention in recent lit-
erature; e.g., it was implemented in Refs. [50,51,73,74,86,87]
and in Ref. [53] on 26 superconducting qubits to produce
results competitive with classical approximation techniques.
References [51,52,73] formally introduced digital noise scal-
ing, in which noise is scaled at a gate level without pulse-level
control.

While ZNE is straightforward to implement and requires
relatively few additional quantum resources, the quality of
the solution depends critically on both the inference and
noise-scaling method and can be improved by a correct char-
acterization of the hardware noise. In this paper, we fix the
inference method by assuming a particular noise model and
focus on the effects of the noise-scaling method.

1. Noise-scaling methods

a. Ideal noise scaling. In a purely theoretical setting, the
ideal way of scaling the noise would be to multiply the Hamil-
tonian Hz in Eq. (1) by a constant

√
λ:

H ′(t ) =
√

λHz(t ) + Hc(t ). (7)

Equivalently, the scale factor can be absorbed into a redefini-
tion of the stochastic noise amplitude: η′(t ) = √

λη(t ). From
Eq. (4), it is evident that the noise power spectrum gets scaled
by λ:

Sη′ (ω) = S√
λη(ω) = λ Sη(ω). (8)

If one could directly control the noise, this would be the
ideal way of scaling its power and, therefore, the ideal way
of applying zero-noise extrapolation. In simulations using
SchWARMA, noise can be scaled by transforming the nu-
merator coefficients bk → √

λbk . In a typical experimental
scenario, of course, one cannot directly control the noise of a
quantum device. Even in instances where it is possible to scale
the noise spectrum through, e.g., manipulating the master
clock [64] or flux lines, precise characterization of the native
noise spectrum and calibration of the noise injection would
be required. Due to these difficulties in directly scaling noise,
several indirect noise-scaling techniques have been proposed
and applied in recent literature. We define several of these
in the following subsections (see Fig. 2 for an overview) in
order to analyze their performance in the presence of time-
correlated noise in Sec. III.

b. Pulse stretching. The intent of pulse stretching is to
scale the impacts of the noise on the system by “stretching”
the underlying control Hamiltonian, replacing (1) with

H (t ) = Hz(t ) + 1

λ
Hc(t/λ), (9)

for some dimensionless time-scaling factor λ. In principle,
this scales the impacts of the noise by increasing the over-
all time duration of the circuit. More precisely, if we define
t ′ = t/λ, the density operator ρ(t ′) of the system evolves with
respect to the effective Hamiltonian:

H ′(t ′) = λ Hz(λt ′) + Hc(t ′). (10)

(b)

(c)

(a)

FIG. 2. A sample three-qubit circuit with four gates under the
action of three digital noise-scaling methods we consider in this
paper. (a) Local folding, in which each gate G gets mapped to
G �→ G(G†G)n for scale factor λ = 2n − 1. (b) Global folding, in
which the entire circuit C gets mapped to C �→ C(C†C)n. In (a) and
(b), gray shading shows the “virtual gates” which logically compile
to identity. (c) Gate Trotterization, in which G �→ (G1/λ)λ for each
gate G.

The corresponding noise power spectrum is

Sη′ (ω) = λ2
∫ ∞

0
dt ′ E[η(λt ′)η(0)]e−iωt ′

= λ

∫ ∞

0
dt E[η(t )η(0)]e−iωt/λ = λ Sη(ω/λ). (11)

From the equation above, it is evident that for a white (con-
stant) spectrum, pulse stretching can be used to effectively
scale the noise power by λ as in the ideal case defined in
Eq. (8). In fact, the equivalence between the ideal noise scal-
ing and the pulse-stretching technique was already shown in
Ref. [48], under the hypothesis of a quantum state ρ evolving
according to a master equation with a time-independent noise
operator acting as L(ρ) (more details about the consistency
between our findings with the results of Ref. [48] are given in
Appendix A). On the other hand, Eq. (11) shows that, for a
colored spectrum, pulse stretching does not exactly reproduce
the ideal noise scaling defined in (8). Indeed, on the right-hand
side of Eq. (11) we observe that the original spectrum is also
stretched with respect to the frequency variable ω. This fact
is a manifestation of the intuitive idea that slowing down the
dynamics of the system corresponds to effectively speeding up
the time scale of the environment. Such frequency stretching,
while irrelevant in the white-noise limit, becomes relevant for
time-correlated noise.

In the SchWARMA formalism, there is not a mechanism
for stretching pulses per se as it operates at the gate level in
a circuit [without pulse-level control on Hc(t )]. However, as
discussed in the supplement to Ref. [72], it is possible to ma-
nipulate and stretch the spectrum of a SchWARMA model. So,
for the task of numerically simulating pulse stretching, instead
of implementing Eq. (10) one can simply implement Eq. (11)
by directly transforming the spectrum of the SchWARMA
model.

c. Local unitary folding. A possible way of effectively
increasing the noise of a circuit is to insert after each
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noisy controlled-NOT (CNOT) gate the product of two addi-
tional CNOT gates [52,73]. In this way the ideal unitary is
not changed, but the real dynamics are more noisy. More
generally, Ref. [51] introduced several digital noise-scaling
methods that are based on the unitary folding replacement rule

G → G(G†G)n, n = 0, 1, 2, . . . , (12)

where G is a unitary operation associated to an individual gate.
If noise is absent, the replacement rule leaves the operation
unchanged since G†G is equal to the identity. In contrast,
if some base noise is associated to G, the unitary folding
operation approximately scales the noise by an odd integer
factor λ = 1 + 2n.

More precisely, by applying the unitary folding replace-
ment to all the gates of an input circuit

U = Gd Gd−1 . . . G1 (13)

which is composed of d gates Gj , we obtain new circuit U ′ of
depth d ′ = (1 + 2n)d given by

U ′ = Gd (G†
d Gd )nGd−1(G†

d−1Gd−1)n . . . G1(G†
1G1)n. (14)

The depth of the new circuit U ′ is scaled by λ = d ′/d =
1 + 2n and, similarly, any type of noise which depends on
the total number of gates will be effectively scaled by the
same constant λ. In Ref. [51], partial folding methods were
proposed to obtain arbitrary real values of λ, but for simplicity
in this paper we only consider odd-integer scale factors. We
refer to (14) as local unitary folding.

d. Global unitary folding. Instead of locally folding all the
gates, we can apply Eq. (12) to the entire circuit. In this way,
the circuit U defined in Eq. (13) is simply mapped to

U ′ = U (U †U )n. (15)

Also in this case the total number of gates of the new circuit
U ′ is multiplied by λ = d ′/d = 1 + 2n corresponding to an
effective scaling of the noise.

e. Gate Trotterization. In this paper we also introduce
another local noise-scaling method, acting at the level of
individual gates, that we call gate Trotterization since it can
be considered as a discretization of the continuous pulse-
stretching technique. According to the gate Trotterization
technique, each gate of the circuit is replaced as follows:

G → (G1/λ)λ, λ = 0, 1, 2, . . . . (16)

For example, a Pauli-X rotation gate RX (θ ) is replaced by
λ applications of RX (θ/λ). Equation (16) is similar to the
local version of the unitary folding rule (12) and, indeed,
both methods replace a single gate with the product of λ

gates. Compared to Eq. (12), the Trotter-like decomposition
used in Eq. (16) is more uniform since equal elementary
gates are used. On the other hand, a possible drawback of the
gate Trotterization method is that G1/λ may be compiled by
the hardware in different ways depending on λ and, therefore,
the circuit depth may not get scaled as expected.

III. RESULTS

In the previous section, we defined several noise-scaling
methods that can be used in zero-noise extrapolation. In this

section, we study how these different methods affect the per-
formance of ZNE in the presence of time-correlated noise.
For all the simulations presented in this section we used
the following PYTHON libraries: MEZZE [88] for modeling
SchWARMA noise, MEZZE’s TensorFlow Quantum [89] in-
terface for simulating quantum circuits, and MITIQ [74] for
applying unitary folding and zero-noise extrapolation. Code
for specifying the circuits and the dephasing noise spectra
used is also available in Ref. [88].

A. Zero-noise extrapolation with colored noise

In this section we numerically simulate a simple ZNE
experiment with different noise-scaling methods and with dif-
ferent noise spectra. The results are reported in Fig. 3 and
demonstrate the detrimental effect of time-correlated noise
on ZNE. In Fig. 3(a) the noise spectrum is white and all
noise-scaling methods produce nearly identical expectation
values. Correspondingly, the zero-noise limits (marked with
stars in the plot) are nearly identical. On the other hand, in
Fig. 3(b), the noise is colored (a 1/ f “pink” spectrum) and
different noise-scaling methods produce different expectation
values. Correspondingly, the zero-noise limits (marked with
stars in the plot) are also different. This is the main qualitative
result that this paper aims to highlight: compared to white
noise, time-correlated noise can be much harder to mitigate
via zero-noise extrapolation.

In the rest of this section, we study this aspect in a more
quantitative way. In particular we study the performances of
different noise-scaling methods for different types of noise
spectra and different types of circuits.

B. Comparing noise-scaling methods

Observing Fig. 3(b) we notice that, at least for the par-
ticular circuit considered in the example, some noise-scaling
methods perform better than others in the presence of time-
correlated noise. In particular the extrapolation based on
the global folding technique produces a relatively good ap-
proximation of the ideal result even in the presence of
time-correlated noise.

To better investigate this phenomenon, we consider the
relative noise-scaling error

	(λ) :=
∣∣∣∣E (λ) − E∗(λ)

E∗(λ)

∣∣∣∣, (17)

as a figure of merit. Here, E (λ) is the expectation value of
interest evaluated with some particular noise-scaling method
and scale factor λ, and E∗(λ) is the expectation value simu-
lated with a noise spectrum ideally scaled according to Eq. (8).
In Fig. 4 we plot the relative error defined in Eq. (17) for each
noise-scaling method, after averaging the results over mul-
tiple instances of two-qubit randomized-benchmarking (RB)
circuits. Here the expectation value of the observable O =
|00〉〈00| is considered. The results of Fig. 4 are consistent
with those of Fig. 3 discussed in the previous subsection. In
fact, even after averaging over multiple random circuits, we
observe that in the presence of white noise all noise-scaling
methods are practically equivalent to each other and are char-
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FIG. 3. Comparison of different zero-noise extrapolations ob-
tained with different noise-scaling methods. We consider a represen-
tative (randomly generated) single-qubit randomized benchmarking
circuit affected by dephasing noise of fixed integrated power. The
two subfigures correspond to different noise spectra: (a) white noise
and (b) 1/ f pink noise. Both spectra are shown in Fig. 1. The expec-
tation value E (λ) = Tr[Oρ(λ)] is associated to the observable O =
|0〉〈0| measured with respect to the noise-scaled quantum state ρ(λ).
The colored triangles represent the noise-scaled expectation values;
the dashed-dotted lines represent the associated exponential fitting
curves; the colored stars represent the corresponding zero-noise ex-
trapolations. The figure shows that the zero-noise limit obtained with
global unitary folding (green star) is relatively close to the ideal result
(gray star) even in the presence of strong time correlations in the
noise. The “true” points (gray circles) are obtained by assuming the
ideally scaled noise spectrum of Eq. (8); the associated fitting curve
(solid gray line) produces the ideal zero-noise extrapolation (gray
star).

acterized by a small relative noise-scaling error. However,
for all colored noise spectra, global folding is optimal when
compared to other noise-scaling methods.

We repeat the same experiments using mirror circuits [90]
and quantum approximate optimization algorithm (QAOA)-
like circuits instead of RB circuits. The former provides
another type of randomized circuit structure used for bench-
marking, and the latter provides a structured circuit. Figure 5
shows the results using two-qubit mirror circuits. These cir-
cuits have 26 single-qubit gates and eight two-qubit gates on
average. As with the randomized benchmarking circuits, 3000

FIG. 4. Average relative errors in noise-scaling two-qubit ran-
domized benchmarking circuits with (a) white noise, (b) low-pass
noise, (c) 1/ f noise, and (d) 1/ f 2 noise. Panel (a) shows no
significant difference in scaling methods under white noise (no
time correlations). Panels (b)–(d) show that global scaling is the
lowest-error digital scaling method. The two-qubit randomized
benchmarking circuits used here have, on average, 27 single-qubit
gates and five two-qubit gates. For each circuit execution, 3000
samples were taken to estimate the probability of the ground state as
the observable. Points show the average results over 50 such circuits
and error bars show one standard deviation.

samples were taken when executing each circuit to estimate
the probability of sampling the correct bitstring. As shown in
Fig. 5, the conclusion that global unitary folding most closely
matches true noise scaling holds on average for mirror circuits
as well. These results were averaged over 50 random mirror
circuits.

Figure 6 shows the same experiment using QAOA cir-
cuits. These n = 2 qubit circuits have p = 2 QAOA rounds
using the standard mixer Hamiltonian HM = ∑n

i=1 σ x
i and

driver Hamiltonian HC = ∑
i j σ

z
i σ z

j . Denoting this circuit as
U , we append U † such that the final noiseless state is |00〉

FIG. 5. Relative errors in noise-scaling two-qubit mirror circuits
with (a) white noise, (b) low-pass noise, (c) 1/ f noise, and (d) 1/ f 2

noise. Panel (a) shows no significant difference in scaling methods
under white noise (no time correlations). Panels (b)–(d) show global
scaling is optimal with time-correlated noise. The two-qubit mirror
benchmarking circuits used here have, on average, 26 single-qubit
gates and eight two-qubit gates. For each circuit execution, 3000
samples were taken to estimate the probability of the correct bitstring
(defined by the particular mirror circuit instance) as the observable.
Points show the average results over 50 such circuits and error bars
show one standard deviation.
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FIG. 6. Relative errors in noise-scaling two-qubit p = 2 QAOA
circuits with (a) white noise, (b) low-pass noise, (c) 1/ f noise,
and (d) 1/ f 2 noise. Panel (a) shows no significant difference in
scaling methods under white noise (no time correlations). Panels
(b)–(d) show global scaling is optimal with time-correlated noise.
The two-qubit p = 2 QAOA circuits used here have eight single-
qubit gates and four two-qubit gates. For each circuit execution,
3000 samples were taken to estimate the probability of the ground
state as the observable. (Note that the QAOA circuit U is echoed
such that the total circuit is UU † = I without noise.) Points show the
average results over 50 such circuits and error bars show one standard
deviation.

independent of the randomly chosen angles β and γ . A total
of 50 circuits with random angles were simulated for the final
results, again using 3000 samples to estimate the ground-state
probability for each circuit execution. The results in Fig. 6
have the highest variance of the three circuit types, but on
average we still see that global unitary folding is closest to
true noise scaling out of all scaling methods considered.

The conclusions of this subsection suggest that, even for
different types of circuits, the effect of time-correlated noise
on noise-scaling methods is qualitatively similar. This intu-
ition is consistent with the theoretical discussion presented in
the next section, in which the performances of noise-scaling
methods are linked to their effective frequency modulation
effects.

We emphasize that the comparison considered in this paper
is focused on one particular figure of merit: the robustness of
a noise-scaling method with respect to time-correlated noise.
Our results suggest that global folding outperforms the other
methods considered with respect to this specific figure of
merit. In a real-world scenario, the optimal noise-scaling
method should be determined according to a more general
cost-benefit analysis, e.g., taking into account the sampling
cost, coherence time, and other hardware limitations. For in-
stance, it may not be possible to use global noise scaling if
the circuit length is comparable to the coherence time of the
computer; in such circumstances, pulse stretching can amplify
errors via small scale factors [53], although potentially inac-
curately in the presence of time-correlated noise as we have
shown in this section.

IV. DISCUSSION AND PHYSICAL INTERPRETATION

In classical signal processing and control theory, the
frequency response of a linear circuit or filter is used to
understand how a circuit interacts with its input in the fre-

quency domain. Using frequency domain techniques, one
can understand and design filters that amplify (or pass
through) frequencies that have signal content while attenu-
ating frequencies that contain only noise. In what follows,
we introduce an analogous concept for quantum circuits that
allows us to approximate the fidelity of a circuit subjected
to dephasing noise. This circuit frequency response indicates
where a given circuit is particularly sensitive or insensitive
to noise in a given frequency range. We then analyze the
impact of the various noise-scaling techniques on this circuit
frequency response to interpret the results of the previous
section.

A. Frequency response of a circuit

The natural extension of the frequency response of a cir-
cuit to the quantum context is the so-called filter function
formalism [70,71]. Details of the specific approach used here
for multiqubit, spatiotemporally correlated dephasing noise
can be found in Appendix B, but the gist of the technique is
that a circuit on n qubits of time duration T defines a set of
real-valued switching functions

fαβ (t ) = 1

N
Tr[U0(T, t )AαU �

0 (T, t )Aβ ], (18)

defined by the action of a circuit’s reverse-time propagator
U0 [see Eq. (B2)] on a set of traceless, Hermitian operators
{Aα} that satisfy 〈Aα, Aβ〉 = 1

N Tr[AαAβ] = δα,β where N = 2n

(typically, the Aα are multiqubit Pauli matrices).
The Fourier transforms Fαβ (ω, T ) = ∫ T

0 dt fαβ (t )eiωt of
these switching functions are used to define filter functions:

Fαβ,α′β ′ (ω, T ) = Re [Fαβ (ω, T )Fα′β ′ (−ω, T )]. (19)

Similar to classical frequency domain analysis, these filter
functions interact with the dephasing noise spectra Sα,α′ (ω)
in a multiplicative fashion. Their product forms the integrand
of the so-called overlap integral which is a key component of
the second cumulant C(2)

O :

C (2)
O (T )

2
=

∑
α,β,α′,β ′

∫ ∞

0

dω

2π
Sα,α′ (ω)Fαβ,α′β ′ (ω, T )Aββ ′ .

(20)

The overlaps between the noise power spectrum and filter
functions scale operators Aββ ′ that are dependent on the ob-
servable O [see Eq. (B9)]. The magnitude of C(2)

O (and thus
the overlaps) can then be used to approximate the expectation
of the noisy observable 〈O〉 ≈ Tr[exp(−C(2)

0 /2)ρS,0(T )O],
where ρS,0(T ) is the final state of the ideal noiseless circuit
[see discussion around Eq. (B5) in Appendix B].

The expression in Eq. (20) captures potential cross cor-
relations in noise, but here, since we consider independent
σ z-dephasing noise on each qubit, Sα,α′ = 0 when α �= α′ and
α is not a σ z operator on a given qubit. Furthermore, for the
examples below we compute the filter functions using instan-
taneous gates as specified by a circuit, but these expressions
hold for piecewise constant controls to accommodate pulse
shaping. In the context of noise-scaling experiments, Eq. (20)
provides a mechanism for understanding how the different
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FIG. 7. Filter function analysis of a CPMG circuit. Top: CPMG
circuit with a delay of two gate times. Bottom: Plots of switching
functions and filter functions of the CPMG circuit and its various
scaled versions.

noise-scaling techniques perturb the filter functions to impact
the resulting scaled expectations and thus the extrapolation
process.

The calculations for the multiqubit case are quite in-
volved, so in order to build better intuition we will also
consider the simpler case of a single qubit subject to dephas-
ing noise and single-axis σ x control, i.e., H (t ) = η(t )σ z +
�(t )σ x. For this case, the filter function formalism can be
recast in terms of a single complex switching function fz(t ) =
exp[−i

∫ t
0 dτ �(τ )] with Fourier transform Fz(ω). The filter

function Fzz(ω) = |Fz(ω)|2 and power spectrum Sz,z(ω) =
Sη(ω) define the overlap integral:

χ =
∫ ∞

−∞

dω

2π
Sη(ω)|Fz(ω)|2. (21)

The overlap integral can be used to derive an approximation to
the expectation of the noisy circuit states ρ and an observable
O, via

E [Tr[ρ O]] ≈ A + B exp(−χ ), (22)

where A and B are functions of the ideal final state and ob-
servable O. An example Carr-Purcell-Meiboom-Gill (CPMG)
[91,92] circuit and its corresponding fz and |Fz(ω)|2 are shown
in Fig. 7.

B. Spectral analysis of noise-scaling methods

First, we will consider the simpler case of a single qubit
subject to dephasing noise and single-axis σ x control, with
the CPMG circuit in Fig. 7 serving as our canonical example.
Using the filter function prediction from Eq. (22) we have that
direct noise scaling produces states ρdir (λ) with expectation

E{Tr[ρdir (λ) O]} ≈ A + B exp(−λχ ), (23)

where χ is the overlap integral of the base circuit. Note that
direct noise scaling does not affect the circuit itself, and thus

its switching and filter functions are unchanged. Similarly,
following Eq. (10), we have that pulse stretching produces the
expectation

E{Tr[ρpul(λ) O]}

≈ A + B exp

(
−λ

∫ ∞

−∞

dω

2π
Sz,z(ω/λ)|Fz(ω)|2

)
, (24)

with similar expressions for Eq. (20), which is clearly not
equal to Eq. (23) in general. Equivalently, stretching the pulse
amounts to stretching the switching functions and thus “com-
pressing” a filter function response by a factor of λ. This
shifts the filter function to lower frequencies, and thus the
overlap with low-frequency noise will likely increase by a
factor greater than λ. An example of the impact of pulse
stretching on a CPMG circuit is shown in Fig. 7, showing that
the switching function is perfectly scaled in time, resulting in
the corresponding frequency compression.

Gate Trotterization is similar in spirit to pulse stretching,
but performed “digitally.” However, repeating a gate’s control
waveform λ times with amplitude 1/λ is in general different
from stretching a gate’s control waveform (except in the case
of rectangular pulses). Figure 7 shows a similar qualitative
impact of gate Trotterization on the filter function as pulse
stretching, in that the filter function is compressed to the
low frequencies. Since, unlike pulse stretching, the switching
function now has intermediate values between ±1 the filter
function is distorted and not a “perfect” compression.

Like pulse stretching and gate Trotterization, local folding
also increases the proportion of the filter function that overlaps
with low-frequency noise. However unlike pulse stretching
and gate Trotterization, local folding also appears to generate
response at high frequency. Qualitatively, local folding “pulls”
the filter function to the extreme frequencies from the mid-
dle of the spectrum. This behavior can be interpreted from
the switching function, which now has (brief) oscillations
whenever the original switching function had a change, and
otherwise remains constant (see Fig. 7). These oscillations
increase the high-frequency content of the filter function,
whereas the longer duration of constant values increases the
low-frequency content. Explicit filter function calculations for
local folding can be found in Appendix D that generalize these
observations to the multiqubit case. With these general trends,
we would again expect that the overlap integrals produced
would not be particularly close to direct noise scaling.

Of the noise-scaling methods studied, it appears that global
folding preserves the most structure from the unscaled filter
function. The circuit response shown in Fig. 7 shows that
scaling preserves the qualitative shape of the base circuit’s fil-
ter function, but in accordance with well-known results about
CPMG sequences the frequency response is sharpened as it
is repeated. Qualitatively, it looks like the impact of global
folding serves to “resolve” a coarse frequency response of the
base circuit. Explicit calculations of the filter function (see
Appendix C) show that the scaled portion of the circuit dom-
inates the filter function response and approach a common,
nontrivial limit. Thus, scaling in this case preserves some
structure and produces overlap integrals that are somewhat
close to direct noise scaling.
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FIG. 8. Largest magnitude filter function of a two-qubit random-
ized benchmarking circuit of Clifford depth 2 (actual depth 17) for
different scale factors λ. All filter functions are normalized by their
maximum values (otherwise the integral of the filter function scales
by λ). Different subplots correspond to different noise-scaling meth-
ods. All noise-scaling methods change the frequency response of
the circuit; however, global folding tends to preserve the qualitative
shape of the response function and, for this reason, it gives better
performances for zero-noise extrapolation with colored noise.

The CPMG sequence considered in the above discus-
sion was chosen as an intuitive example for its well-studied
frequency response [67], as well as clarity of exposition.
However, the ZNE simulations considered here use multiqubit
random circuits the frequency response of which is less well
studied. For these more complex circuits, we continue to see
the same general trends in the filter function responses, as
shown in Fig. 8. These circuits are longer and have greater
gate density than the CPMG example, and as such produce
switching functions with many transitions that in turn lead
to filter functions with many peaks and valleys. The spectral
trends for the pulse stretching, local folding, and gate Trot-
terization methods in Fig. 8 are quite clearly consistent with
the CPMG example, and in particular all exhibit increasing
low-frequency concentration as λ increases (in addition to
high-frequency concentration for local folding). On the other
hand, global folding appears to be approaching some limit
that at least somewhat resembles the initial distribution of
the frequency response (and can be assessed analytically—
see Appendix C). We interpret this as generalization of the
sharpening of the spectral features well known for the CPMG
sequence, and multiple peaks are resolved from initially broad
peaks as λ increases.

These observations in the different noise-scaling strategies
explain the trends in Figs. 3 and 4. As global folding produces
scaled filter functions that best preserve the general balance
across different frequency ranges, the overlap integrals of

the globally folded circuits are the closest to the ideal scal-
ing produced by direct noise scaling. The remaining three
scaling approaches all produce some level of concentration at
low frequencies, and thus tend to have much greater overlap
with the low-frequency noise here. As the pulse stretching
and gate Trotterization approaches are very similar in spirit,
they produce similar extrapolations. Furthermore, unlike local
folding, these two approaches have all their concentration at
low frequency, thus producing the most overlap leading to
the worst extrapolation error. Local folding, which includes
some high-frequency content (based on the proportion of the
original circuit’s frequency response above π/2), produces
overlaps that lie between the global folding and the stretching
or Trotterization approaches.

We note that the trends observed above and the intuition
behind them are direct consequences of the correlated noise
classes considered, all of which are fundamentally low fre-
quency. Thus, pulse stretching, gate Trotterization, and local
folding produce larger overlaps with the low-frequency noise
and drastically bias the noise extrapolation process. In con-
trast, if the noise was band limited (say between π/4 and
3π/4 in normalized frequency) we would expect that global
folding would continue to track direct noise scaling the best.
However, analysis of the other three techniques would be
challenging as the overlap integral with these would essen-
tially vanish as the scaling increased. Without knowing the
true expectation and the underlying noise spectra, it would
be unclear if the leveling out of the scaled expectation values
would be due to the overlap integral approaching infinity (i.e.,
too much noise) or vanishing (i.e., decoupling from the noise).
Similarly, if the noise were purely high frequency, we would
expect the pulse stretching and gate Trotterization approaches
to be insensitive, the local folding method to be more sen-
sitive, and global folding between them. Finally, extremely
narrow band noise could potentially lie in a “valley” in the
scaled response (obviously this is circuit dependent), and thus
overlap integrals would vanish for all the noise-scaling ap-
proaches considered here.

V. CONCLUSION

In this paper, we have demonstrated the effect of time-
correlated noise on zero-noise extrapolation. Using the
SchWARMA technique to model time-correlated dephasing
noise, we presented the results of several numerical ex-
periments showing that global unitary folding produces the
lowest error relative to direct noise scaling. We analyzed our
observed results and provided a physical interpretation in
terms of the spectral analysis of the considered noise-scaling
methods.

Noise injection as a method for noise scaling is a the-
oretically ideal mechanism for noise scaling, but given the
limitations on estimating, emulating, and injecting the native
spectra and noise mechanism(s), this is not likely feasible in
most situations. On the other hand, global noise folding is
broadly applicable and our paper suggests its use in global
noise scaling for zero-noise extrapolation, if possible, when-
ever noise may be time correlated. An obviously important
consideration is which quantum computer architectures may
have time-correlated noise, a question we do not explic-
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itly consider in this paper, but do note that time-correlated
noise has been widely observed in both research-grade qubit
experiments and cloud-based NISQ systems, in a variety of
platforms [54–66]. We note that global folding is not the only
possible noise-scaling method suitable for time-correlated
noise: other methods could be defined and analyzed, e.g.,
folding the first half and second half of the gates in a unitary
separately. Our paper provides the theoretical and practical
tools to analyze the performance of such methods under a
wide variety of noise models.

Software for reproducing all numerical results is available
in Ref. [88].
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APPENDIX A: CONSISTENCY BETWEEN DIFFERENT
THEORIES OF PULSE STRETCHING

Our paper is based on a semiclassical theory of time-
correlated noise, according to which the pulse-stretching
technique induces two effective changes on the noise spec-
trum: (i) it scales the noise level by a constant λ and (ii) it
stretches the noise spectrum on the frequency axis by the same
constant. Both effects are formally summarized in Eq. (11)
derived in the main text.

In Ref. [48], a different formalism, based on a master
equation with a time-independent noise operator, was used to
study the pulse-stretching technique. More precisely, a sys-
tem evolving according to the following master equation was
considered:

∂

∂t
ρ(t ) = −[K (t ), ρ(t )] + L[ρ(t )], (A1)

where K (t ) is the system Hamiltonian and L is a time-
independent noise superoperator. As shown in Ref. [48], the
effect of pulse stretching, i.e., K (t ) −→ 1/λK (t/λ), is equiv-
alent to an effective master equation:

∂

∂t ′ ρ(t ′) = −[K (t ′), ρ(t ′)] + λL[ρ(t ′)], (A2)

where t ′ = λt . In practice pulse stretching induces a multi-
plicative scaling of the noise operator L −→ λL.

The master equation Eq. (A1) is typically used to model
Markovian noise (no time correlations). In this case, the
Hilbert space of the environment can be traced out such that ρ

represents the reduced state of the system evolving according
to the master equation Eq. (A1). In this white-noise regime,
also our semiclassical theory of pulse stretching predicts a
simple multiplicative scaling of noise power and this is indeed
consistent with Eq. (A2).

What happens for a non-Markovian environment with a
colored noise spectrum? In this case, our semiclassical theory

suggests that pulse stretching induces, in addition to a mul-
tiplicative scaling, also a scaling of the frequency axis of the
noise spectrum [see Eq. (11)]. This may seem to contradict the
simple multiplicative scaling of the noise L −→ λL derived
in Ref. [48] and reported in Eq. (A2). However, as explained
below, both theoretical derivations are actually consistent with
each other.

In principle, the master equation (A1) can be used to model
a non-Markovian bath by representing with ρ the global quan-
tum state (system and bath) instead of the reduced state of
the system. In this global picture, a non-Markovian bath can
be modeled by a time-independent noise operator L(ρ) that
includes an interaction Hamiltonian term HSB and the bare
Hamiltonian HB acting on the bath only (see Supplemental
Material of Ref. [48])

L[ρ(t )] = −i[HSB + HB, ρ(t )], (A3)

which we can split as the sum of two terms L = LSB + LB,
where LSB(ρ) = −i[HSB, ρ] and LB(ρ) = −i[HB, ρ]. In this
case, the simple multiplicative scaling L −→ λL induced
by the pulse-stretching technique according to Eq. (A2) has
actually two physically different effects: (i) LSB −→ λLSB

corresponding to a scaling of the noise power and (ii) LB −→
λLB corresponding to an effective scaling of all the charac-
teristic frequencies of the bath and, therefore, to a frequency
stretching of the noise spectrum. These two effects are consis-
tent with the semiclassical theory of pulse stretching presented
in this paper and, in particular, with Eq. (11).

APPENDIX B: FILTER FUNCTION FORMALISM
FOR QUANTUM CIRCUITS

Consider an n-qubit system governed by a Hamiltonian

H (t ) = H0(t ) + HE (t ), (B1)

where H0(t ) defines a sequence of control operations applied
to the quantum system and HE (t ) defines the error Hamilto-
nian. We will assume piecewise-constant evolution such that
H0(t ) = ∑

i si(t )Hi, where si(t ) = 1 when t ∈ [ti−1, ti ) and
si(t ) = 0 otherwise. The resulting pure control evolution is

U0(T, 0) = T+e−i
∫ T

0 H0(s)ds

= UKUK−1 · · ·U1

= UK :1, (B2)

with Uj = e−i(t j−t j−1 )Hj and T designating the total circuit
runtime. The last equality is defined in anticipation of the
subsequent switching function calculations.

The error Hamiltonian can include anything from system-
atic control noise to interactions between the system and its
environment. Here, we focus on semiclassical, spatiotempo-
rally correlated noise: HE (t ) = ∑

α bα (t )Aα . The operators Aα

are Hermitian and traceless and form an operator basis on
the system Hilbert space with respect to the Hilbert-Schmidt
norm, i.e., 〈Aα, Aβ〉 = 1/NTr[AαAβ] = δα,β , with N = 2n de-
noting the Hilbert-space dimension. The noise couples to the
system via bα (t ), which are defined as classical wide-sense
stationary, Gaussian variables. Hence, the statistical properties
of bα (t ) are characterized by the mean bα (t ) and the two-point
correlation functions Cαβ (t1 − t2) = bα (t1)bβ (t2). Note that
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this model can be used to represent both additive control noise
and interactions between the quantum system and a classical
environment.

Assuming the weak noise limit, i.e., ‖HE (t )‖T � 1, we
can examine the dynamics generated by H (t ) perturbatively
by moving into an interaction picture with respect to H0(t ).
This is performed by representing the full dynamics oper-
ator U (T ) = T+e−i

∫ T
0 H (s)ds as U (T ) = ŨE (T )U0(T ), where

ŨE (T ) = e−i
∫ T

0 H̃E (s)ds with

H̃E (t ) = U0(T, t )HE (t )U †
0 (T, t )

=
∑

α

U0(T, t )AαU †
0 (T, t )Bα (t )

=
∑
α,β

fαβ (t )Aβbα (t ). (B3)

Note that the rotated error Hamiltonian is expressed in terms
of a “reverse” interaction picture with respect to the pure
control evolution. The functions fαβ (t ) are known as the
switching functions and are defined by

fαβ (t ) = 1

N
Tr[U0(T, t )AαU †

0 (T, t )Aβ ]. (B4)

As we will see, the switching functions are an integral part of
the filter function formalism.

The dynamics of an observable with respect to U (T ) can
be written as

〈O〉 = Tr[ρS (T )O]

= Tr[ŨE (T )U0(T )ρS (0)U †
0 (T )Ũ †

E (T )O]

= Tr[�(T )ρS,0(T )O], (B5)

where the last equality conveniently illustrates the utility
of the particular rotated frame chosen above. The term
�(T ) = O−1ŨE (T )OŨE (T ) constitutes the error operator,
while ρS,0(T ) = U0(T )ρS (0)U †

0 (T ) defines the time-evolved
state resulting from the noiseless circuit implementation. The
error operator can be expressed as a cumulant expansion
�(T ) = exp[

∑∞
n=1(−i)nC (n)

O (T )/n!] that can be truncated to
second order if the noise is sufficiently weak and the time is
sufficiently short [69].

We will focus on zero-mean noise, and thus bα (t ) = 0 and
C (1)

O (T ) = 0. As a result, the first nonzero term is C (2)
O (T ),

which can be written as

C (2)
O (T )

2
=

∑
α,β,α′,β ′

∫ ∞

0

dω

2π
Sα,α′ (ω)Fαβ,α′β ′ (ω, T )Aββ ′ .

(B6)

The noise power spectral density Sαα′ (ω) is defined via

Cαα′ (t1 − t2) = 1

2π

∫ ∞

−∞
Sαα′ (ω) eiω(t1−t2 )dω, (B7)

while the filter functions are

Fαβ,α′β ′ (ω, T ) = Re [Fαβ (ω, T )Fα′β ′ (−ω, T )] (B8)

with Fαβ (ω, T ) = ∫ T
0 dt fαβ (t )eiωt . The operator Aββ ′ is de-

fined as

Aββ ′ = AβAβ ′ − O−1AβOAβ ′ − AβO−1Aβ ′O

+ O−1AβAβ ′O. (B9)

We will now use this representation to derive analytical ex-
pressions for the filter functions resulting from various unitary
folding techniques.

APPENDIX C: FILTER FUNCTION PERSPECTIVE
ON GLOBAL FOLDING

Consider a global folding protocol defined as UGF [(2M +
1)T, 0] = U0(T )[U †

0 (T )U0(T )]M , where U0(t ) is the unitary
representing the desired quantum algorithm and M is the
number of folding repetitions to be performed. The total time
required to implement the algorithm is denoted by T .

1. Switching functions

The switching functions resulting from the global folding
protocol are given by

fαβ (t ) =
{

f (1)
αβ (t ) : t ∈ [0, 2MT )

f (2)
αβ (t ) : t ∈ [2MT, (2M + 1)T )

. (C1)

We partition them into two terms: the first, denoted with
superscript (1), is defined during the global folding as

f (1)
αβ (t ) = 1

N
Tr[U0(T )�(2MT, t )Aα�†(2MT, t )U †

0 (T )Aβ].

(C2)
The operator �(2MT, t ) captures the partial (reverse) unitary
dynamics of [U †

0 (T )U0(T )]M . By again expanding into the op-
erator basis of Aα , we define an additional switching function

yαγ (t ) = 1

N
Tr[�(2MT, t )Aα�†(2MT, t )Aγ ], (C3)

such that

�(2MT, t )Aα�†(2MT, t ) =
∑

γ

yαγ (t )Aγ . (C4)

As a result, we can express f (1)
αβ (t ) as

f (1)
αβ (t ) = 1

N

∑
γ

yαγ (t )Tr[U0(T )AγU †
0 (T )Aβ]. (C5)

The advantage of this representation is that we have now
defined the switching function f (1)

αβ (t ) in terms of a mir-
ror symmetric switching function yαγ (t ). Mirror symmetric
switching functions satisfy the property

yαγ (t ) = yαγ (2T − t ), (C6)

which we will find useful when examining the filter functions
of global folding. Lastly, the second term of the switching
function fαβ (t ) is defined after the global folding and given
by

f (2)
αβ (t ) = 1

N

∑
j

g j (t )

× Tr
[
UK : j+1e−i(t j−t )Hj Aαei(t j−t )HjU †

K : j+1Aβ

]
, (C7)

with g j (t ) = �(t − t j−1) − �(t − t j ), and �(t ) denoting the
Heaviside function.
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2. Filter functions

The filter functions are defined via products of Fourier
transforms of switching functions. Since the switching func-
tions can be partitioned into two terms, the filter functions can
be partitioned into four terms:

Fαβ,α′β ′ (ω, T ) =
2∑

i, j=1

G(i, j)
αβ,α′β ′ (ω, T ) (C8)

where

G(1,1)
αβ,α′β ′ (ω, T ) = sin2(MωT )

sin2(ωT )
F (1)

αβ (−ω, T )F (1)
α′β ′ (ω, T ),

(C9)

G(1,2)
αβ,α′β ′ (ω, T ) = ei(3M+1)ωT sin(MωT )

sin(ωT )

× F (1)
αβ (−ω, T )F (2)

α′β ′ (−ω, T ), (C10)

G(2,1)
αβ,α′β ′ (ω, T ) = [

G(1,2)
αβ,α′β ′ (ω, T )

]∗
, (C11)

G(2,2)
αβ,α′β ′ (ω, T ) = F (2)

αβ (ω, T )F (2)
α′β ′ (−ω, T ). (C12)

The component filter functions are determined by

F (1)
αβ (ω, T ) =

∫ 2T

0
dt f (1)

αβ (t )eiωt , (C13)

F (2)
αβ (ω, T ) =

∫ T

0
dt f (2)

αβ (t )eiωt . (C14)

Note that G(1,1)
αβ,α′β ′ (ω, T ) and G(1,2)

αβ,α′β ′ (ω, T ) exhibit “comb-
like” behavior conveyed by the presence of the quotient of
sinusoidal functions. These factors appear from the M repeti-
tions of global folding, and they are responsible for the more
distinct features in the filter function as M increases.

APPENDIX D: FILTER FUNCTION PERSPECTIVE
ON LOCAL FOLDING

Local folding is generically described by the total unitary

ULF(T, 0) = UK (U †
KUK )M · · ·U1(U †

1 U1)M

= UK �K (TK ) · · ·U1 �1(T1), (D1)

where each gate is subject to a folding interval. Each local
folding is equivalent in repetition, occurring M total times for
each of the gates Uj . It is assumed that each gate takes an
equivalent amount of time τ , and therefore the timing of each
gate is given by

t ( j)
k = [(2M + 1)( j − 1) + k]τ, (D2)

for j = 1, . . . , K and k = 1, . . . , 2M + 1. We define the local
folding unitary � j (Tj ) = (U †

j Uj )M , where the total time Tj =
t ( j)
2M , for convenience and in anticipation of the subsequent

calculations. At intermediate times, the folding operator is

given by

� j (Tj, t ) =
{

(U †
j Uj )M−kei(t (k)

k −t )Hj : k odd

(U †
j Uj )M−kU †

j e−i(t ( j)
k −t )Hj : k even

. (D3)

Note that we have defined the local folding operator with
respect to the total time as this will naturally appear from
the “reverse” propagator U0(T, t ); see Eq. (B3). Further-
more, note that for brevity we will use the notation � j (t ) =
� j (Tj, t ).

1. Switching functions

While local folding utilizes a more complex folding pro-
cedure than global folding, the switching functions can still
be partitioned into folding and postfolding terms. Specifically,
the folding terms reside in the domain t ∈ [t ( j−1)

2M+1, t ( j)
2M ) and the

postfolding terms can be defined within t ∈ [t ( j)
2M, t ( j)

2M+1). This
construction allows for the switching function to be expressed
as fαβ (t ) = f (1)

αβ (t ) + f (2)
αβ (t ), where

f (μ)
αβ (t ) =

∑
j

g(μ)
j (t ) f (μ, j)

αβ (t ). (D4)

The indices μ = 1, 2 characterize the folding and postfolding
terms, respectively. The functions g(1)

j (t ) = �[t − t ( j−1)
2M+1] −

�[t − t ( j)
2M] and g(2)

j (t ) = �[t − t ( j)
2M] − �[t − t ( j)

2M+1] capture
the piecewise features of the gate folding periods and their
final implementation.

During a local folding period, the switching function is
defined by

f (1, j)
αβ (t ) = 1

N

∑
γ

y( j)
αγ (t )Tr[QK : j�

†
j (Tj )Aγ � j (Tj )Q

†
K : jAβ],

(D5)
where Qk: j = Uk�k (Tk ) · · ·Uj� j (Tj ). As in the global folding
case, we introduce an additional switching function

y( j)
αγ (t ) = 1

N
Tr[� j (t )Aα�

†
j (t )Aβ] (D6)

which satisfies the mirror symmetric condition described in
Eq. (C6) for the jth local folding interval. Once again, this
property will prove useful during the calculation of the filter
functions.

Local folding operations are followed by the implementa-
tion of the folded gate. The switching function describing this
postfolding period is

f (2, j)
αβ (t ) = 1

N
Tr

[
QK : j+1e−i(t ( j)

2M+1−t )Hj AαQ†
K : j+1ei(t ( j)

2M+1−t )Hj Aβ

]
.

(D7)

Partial time evolution during t ∈ [t, t ( j)
2M+1) captures the

switching function dynamics during the gate. Note that
this contribution disappears if the gates are assumed to be
instantaneous.

2. Filter functions

There are four primary filter functions that characterize the
self-interference and cross-interference between local folding
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and postfolding intervals. While this is a similar construc-
tion to the global folding case in that the filter function
F (i, j)

αβ,α′β ′ (ω, τ ) is equivalent to Eq. (C8) with T = τ , the dis-

tinction lies within the definition of G(i, j)
αβ,α′β ′ (ω, τ ). All four

terms are composed of K2 terms, where each constituent term
captures the interactions between the jth and kth interval.
More concretely, the G(i, j)

αβ,α′β ′ (ω, τ ) filter functions are given
by

G(1,1)
αβ,α′β ′ (ω, τ ) = sin2(Mωτ )

sin2(ωτ )

K∑
j,k=1

eiω[t (k−1)
2M+1−t ( j−1)

2M+1]F (1, j)
αβ (−ω, τ )

× F (1,k)
α′β ′ (ω, τ ), (D8)

G(1,2)
αβ,α′β ′ (ω, τ ) = ei(M+1)ωτ sin(Mωτ )

sin(ωτ )

K∑
j,k=1

eiω[t (k)
2M−t ( j−1)

2M+1]

× F (1, j)
αβ (−ω, τ )F (2,k)

α′β ′ (−ω, τ ), (D9)

G(2,1)
αβ,α′β ′ (ω, τ ) = [

G(1,2)
αβ,α′β ′ (ω, τ )

]∗
, (D10)

G(2,2)
αβ,α′β ′ (ω, τ ) =

K∑
j,k=1

eiω[t (k)
2M−t ( j)

2M ]F (2, j)
αβ (ω, τ )F (2,k)

α′β ′ (−ω, τ ).

(D11)

Each component filter function

F (1, j)
αβ (ω, τ ) =

∫ 2τ

0
dt f (1, j)

αβ (t )eiωt , (D12)

F (2, j)
αβ (ω, τ ) =

∫ τ

0
dt f (2, j)

αβ (t )eiωt (D13)

denotes the Fourier transform of the folding and postfolding
switching functions, respectively. As in the global folding
case, the pure folding filter function G(1,1)

αβ,α′β ′ (ω, τ ) is propor-
tional to a quotient of sinusoidal functions, thus exhibiting
comblike behavior with increasing folding repetition M. De-
spite this similarity, and many others, local folding produces
a very distinct folding filter function.

In particular, local folding leads to low- and high-
frequency localization in the filter function as M grows. This
behavior can be attributed to the local folding periods, with
the contribution of the self-interference term G(1,1)

αβ,α′β ′ (ω, τ )
being most influential. This term captures two distinct types of
interactions between the jth and kth folding periods that are
dependent upon the modulation properties of the switching
functions. Products of relatively static switching functions
will lead to component filter functions that have greatest sup-
port at low frequencies, while those that demonstrate rapid
fluctuations will produce filter functions that tend towards
high frequencies. This effect is exacerbated by the sinusoidal
(frequency comblike) expression as the number of folding
repetitions increases.
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