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Learning quantum-state feedback control with backpropagation-free stochastic optimization

Ethan N. Evans ,1,* Ziyi Wang,2 Adam G. Frim ,3 Michael R. DeWeese ,3,4 and Evangelos A. Theodorou1,2

1Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
2Center for Machine Learning, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
3Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA

4Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley,
Berkeley, California 94720, USA

(Received 23 December 2021; revised 15 July 2022; accepted 25 August 2022; published 3 November 2022)

High-fidelity state preparation represents a fundamental challenge in the application of quantum technology.
While the majority of optimal control approaches use feedback to improve the controller, the controller itself
often does not incorporate explicit state dependence. Here, we present a general framework for training deep
feedback networks for open quantum systems with continuous weak measurement that allows a variety of
system and control structures that are prohibitive by many other techniques and can in effect react to unmodeled
effects through nonlinear filtering. Our approach benefits from characteristics of both stochastic sampling and
gradient-based optimization methods yet does not require differentiability as in backpropagation approaches. We
demonstrate that this method is efficient due to inherent parallelizability, robust to open system interactions, and
outperforms landmark state-dependent feedback control results in simulation.
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I. INTRODUCTION

The efficacy of quantum technologies is fundamentally
linked to the ability to accurately prepare, stabilize, and steer
between quantum states. Examples include gate synthesis
and state preparation in quantum computing [1,2], quantum
metrology [3], quantum chemistry [4], nuclear magnetic res-
onance [5,6], and molecular physics [7]. Complex scenarios
require rich tools from optimization and control theory, which
often provide successful protocols with guarantees. The lens
of optimal control theory and stochastic optimization provides
numerous methodologies which cast such efforts as optimiza-
tion problems.

The intention is to communicate that most quantum control
algorithms from the optimal control theory don’t incorporate
explicit state dependence in the controllers [6,8–28]. These
approaches produce that explicitly depend on time but are in-
dependent of the current system state. Time-dependent control
may perform well in certain circumstances where there are
no unmodeled interactions or other effects. However, state-
dependent feedback, i.e., where the control law explicitly
depends on state information, is a primary tool for guaran-
teeing the stability of equilibria in the classical regime.

Quantum control approaches that incorporate feedback are
broken into two subcategories: Measurement-based feedback
control (MFC) and coherent feedback control (CFC) [29].
In MFC, state measurements are obtained through a classi-
cal measurement system coupling, which perturbs the system
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through a measurement backaction, and is used for control
through an ancillary system coupling [30–37]. In constrast,
CFC designs a coherent coupling that controls the system
state without measurement backaction [38–41]. While CFC
methods may have advantages in terms of extracting system
entropy [42], MFC methods can amplify measurement signals
and apply macroscopic fields for feedback [43].

Within the MFC setting, measurements typically cause
a severe discontinuous jump into a system eigenstate (i.e.,
wave-function collapse) and, as a result, are often reserved for
post-experiment feedback. However, continuous weak mea-
surement protocols reduce the discontiuous backaction to a
continuous Wiener diffusion process appended to the system
state evolution, as originally suggested by Belavkin [44–46].
Quantum systems with continuous weak measurements are
also referred to as quantum trajectories, and the partially
observable state measurement can be used throughout a given
experiment for state-dependent feedback control. Continu-
ous measurement schemes have gained significant traction
[47–51] and enable MFC architectures that can effectively
perform control on a variety of tasks [32,52,53]. Continuous
MFC may yet hold the key to reducing the necessary qubit
overhead in modern quantum computing architectures [54]
and has the promise of improving the robustness and perfor-
mance of many other quantum technologies.

In this paper, we apply optimization principles to closed-
loop state-dependent feedback control in a continuous weak
MFC setting. We leverage stochastic optimization and op-
timal control theoretic techniques, as well as tools from
machine learning, to develop a general framework for learning
control policies that perform feedback control for quan-
tum state preparation and stabilization tasks. The proposed
framework updates the control policy parameters through a
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performance-weighted average of quantum trajectories, al-
lowing us to bypass the gradient backpropagation through
dynamics and performance measures. To prove its utility, the
approach is applied to a two-qubit stabilization task, showing
significant improvements over previous works.

II. MODELING APPROACH

Continuous weak measurement yields dynamics driven by
the Belavkin equation [44–46] or, more generally, a stochastic
master equation (SME) of the form:

dρc
t = L0ρ

c
t dt + D[V ]ρc

t dt

+ (
V ρc

t + ρc
t V † − Tr

[
(V + V †)ρc

t

]
ρc

t

)
dWt , (1)

with innovation process:

dWt = dyt − Tr
[
(V + V †)ρc

t

]
dt (2)

where dWt is a standard zero-mean Wiener process in the
classical sense [55] and ρc

t is the system density state condi-
tioned on the measurement outcome. Here, the system closure
includes the system S and the measurement process R with
interaction operator V . One can similarly consider a closure
that includes the system S, the environment B, and the mea-
surement process R, however, this is omitted for brevity.

Equation (1) is a quantum stochastic partial differential
equation (SPDE) with quantum unconditional evolution gov-
erned by the Lindblad terms (L0 + D[V ])ρc

t dt and weak
measurement conditional evolution term (V ρc

t + ρc
t V † −

Tr[(V + V †)ρc
t ]ρc

t )dWt . It is interesting to note that one can
draw parallels between Eq. (1) and the Kushner-Stratonovich
SPDE [30]. Just as in the case of the Kushner-Stratonovich
SPDE, the stochasticity is the result of conditioning on the
measurement process dyt . Following this logic, one can think
of the Belavkin equation in terms of a partially observable
stochastic optimal control problem.

The open quantum system described by Eq. (1) describes
an uncontrolled system. Control is introduced via a control
Hamiltonian, which yields controlled open system dynamics
given by:

dρc
t = L0ρ

c
t dt + D[V ]ρc

t − i
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j
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c
t

]
dt

+ (
V ρc

t + ρc
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(V + V †)ρc

t

]
ρc

t

)
dWt , (3)

which can be equivalently expressed compactly by a simpli-
fied form:

dρc
t = F

(
ρc

t

)
dt + G

(
ρc

t , ut
)
dt + B

(
ρc

t

)
dWt , (4)

where the term F (ρc
t )dt := L0ρ

c
t dt + D[V ]ρc

t describes the
uncontrolled drift of the dynamics, the term G(ρc

t , ut ) :=
−i

∑
j ut, j[Hu, j, ρ

c
t ]dt describes the controlled drift of the dy-

namics, and the term B(ρc
t )dWt := (V ρc

t + ρc
t V † − Tr[(V +

V †)ρc
t ]ρc

t )dWt describes the diffusion. Note that in the closed-
loop control setting, the control u has an explicit dependence
on the state, u = u(ρc

t ), whereas in the time-dependent setting
it may be u = u(t ) but does not have a direct state dependence.

A critical challenge in applying methods from stochastic
optimal control is that the functional B(ρc

t ) can often be singu-
lar, leading to a degenerate diffusion process (see Appendix A

for further details). Such degeneracies prove prohibitive for
a variety of methods introduced in the stochastic optimal
control literature, including path integral control [56–59],
forward-backward stochastic differential equations using im-
portance sampling [60,61], and, recently, spatiotemporal
stochastic optimization [62,63]. In each case, such degenera-
cies must be carefully addressed. In this paper, we overcome
them with a proposed stochastic optimization technique.

The form of the dynamics in Eq. (4) is quite general and
familiar in the context of optimal control theory. From this
perspective, state preparation tasks are described in terms
a positive-definite performance metric or cost functional
J (ρc

t , ut ), which typically uses a distance metric to penalize
deviation from a target state and may additionally seek to re-
duce the control effort exerted onto the system. In many cases,
the cost functional may be discontinuous or nondifferentiable
(e.g., in the case of barrier functions or indicator functions),
which can impose difficulties on control approaches.

For concreteness, consider the task of reaching some target
state ρdes, as evaluated by the cost metric J (ρc

t , ut ). The min-
imizing control is most generally expressed by the following
path integral optimization problem:

u∗ = argmin
u∈U

〈J (ρc, u)〉Q, (5)

subject to the dynamics given by Eq. (4). Here, the expectation
defines a path integral over controlled state trajectories with
path measure Q. The set U is the admissible set of controls and
may impose constraints on the control; one may also include
constraints on state ρc

t , however, these are omitted from this
derivation for simplicity.

III. QUANTUM GRADIENT-BASED ADAPTIVE
STOCHASTIC SEARCH FOR TRAINING

FEEDBACK POLICIES

To solve this problem, we take an approach from stochas-
tic optimization literature known as gradient-based adaptive
stochastic search (GASS) [64]. The GASS approach of-
fers generality, as well as having guarantees of convergence
and rate of convergence. This approach manipulates the
optimization problem by swapping the optimization variables
from the control policy to the distribution parameters of the
policy, thereby bypassing discontinuities and nondifferentia-
bility in the dynamics and cost function. We provide details
in Appendix B. The resulting stochastic optimization problem
takes the form:

θ∗ = argmax
θ

ln 〈S(J (ρc, u))〉Q, f (ϕ;θ), (6a)

ut = �
(
ρc

t ; ϕ
)
, (6b)

ϕ ∼ f (ϕ; θ), (6c)

subject to the dynamics in Eq. (4). The subscript on the
expectation denotes a double expectation with respect both
to the path measure Q of the controlled system dynamics
and to some distribution f belonging to the exponential
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FIG. 1. Diagram of the QGASS policy-learning architecture. A distribution of policy network parameters are sampled from sampling
distribution f (ϕ; θ), which are used to generate a set of trajectory rollouts from the closed-loop open-quantum system dynamics described in
Eq. (3). The state output of the system is the result of a weak measurement process as described in Eq. (1). The performance of each rollout is
evaluated on J (ρ, u) over the trajectory, which is then used to approximate the path integral expectation in the gradient Eq. (7). The gradient is
then used to generate an update to the distribution for the next iteration, and iterations continue until convergence. Network parameter samples
and trajectory rollouts are performed in parallel for computational efficiency.

family of distributions. The function S(·) is a smooth,
nonincreasing shaping function and � is a neural network
which takes state information and outputs a control action.
Such a neural network is typically referred to as a policy net-
work, and in this case is dependent on a set ϕ of weights and
biases, which are sampled from distribution f with parame-
ters θ. GASS has been applied for a variety of optimization
problems [65–67] and has also been explored in the context
of optimal control [68–70], however it is also appealing and
pertinent in the context of policy learning as developed in
this paper. We denote this quantum feedback policy-learning
architecture the quantum gradient-based adaptive stochastic
search (QGASS).

As the name suggests, this approach performs a gradient-
based update to the parameters of the sampling distribution
f (ϕ; θ), namely, the parameter gradient is obtained as:

∇θ ln 〈S(J (ρc, u))〉Q, f (ϕ;θ)

=
〈S(J (ρc, u))(T (x) − ∇θA(θ))〉Q, f (ϕ;θ)

〈S(J (ρc, u))〉Q, f (ϕ;θ)

, (7)

where the sampling distribution f (ϕ; θ) belongs to the expo-
nential family of distributions with sufficient statistics T (x)
and log partition function A(θ). Under a Gaussian sampling
distribution f (ϕ; θ) ∼ N (μ,�), with mean update and fixed
variance for simplicity, the parameter update becomes:

μk+1 = μk + αk
〈S(J (ρc, u))(ϕ − μk )〉Q, f (ϕ;θ)

〈S(J (ρc, u))〉Q, f (ϕ;θ)

. (8)

The QGASS update scheme provides a parallelizable it-
erative training approach, which steers a distribution of
network parameters toward learning optimal values, in turn,

providing a feedback control policy for the system. We in-
clude a detailed derivation of the QGASS parameter update in
Appendix C. Due to the path integral nature of this ap-
proach, the QGASS algorithm is independent of discretization
schemes used for simulation. Furthermore, this approach can
handle discontinuous jump-diffusion dynamics, such as in the
discrete measurement case [32].

IV. QGASS ALGORITHM

The QGASS framework is shown in Fig. 1 . To apply the
algorithm, we first initialize the policy parameter distribution,
and different policy realizations are then sampled from this
distribution. For each policy sample, process noise is sampled
to generate trajectory rollouts; trajectory rollout propagation is
performed in parallel to significantly reduce runtime. Finally,
the parameter update, Eq. (8), is performed through empirical
approximation of the expectation using the cost evaluated
rollouts.

The pseudocode of the QGASS algorithm is presented in
Algorithm 1. The inputs to the optimization include the final
time (T ), the number of iterations (K), the number of network
parameter rollouts (P), the number of trajectory rollouts (R),
the initial state (ρ0), shape function parameter (κ), initial net-
work weights (ϕ(0)), initial sampling distribution mean (θ(0)),
and sampling distribution variance. This algorithmic pseu-
docode is written with multiple layers of for loops, however, in
implementation, these loops were replaced by a vectorized, or
batch computation, that leverages parallelization of the com-
putation. Specifically, we performed vectorized time evolution
of the controlled dynamics over the trajectory rollouts, and
performed CPU parallelization over prarameter rollouts. For
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our experiments, the dynamics were initialized by the QuTip
rand-ket functionality.

V. LEARNING TO CONTROL TWO QUBITS

To illustrate the efficacy of the QGASS framework, we now
demonstrate its use in practice. Specifically, we consider the
control problem of stabilizing a two-qubit system to one of the
Bell pair states of maximal entanglement. A stable solution
to this problem has been proven [71], though the optimality
of the solution was not considered. Consider the two-qubit
quantum system given by the SME [71]:

dρc
t = −iu1(t )

[
σ (1)

y , ρc
t

]
dt − iu2(t )

[
σ (2)

y , ρc
t

]
dt

− 1

2

[
Fz,

[
Fz, ρ

c
t

]]
dt

+ √
η
({

Fz, ρ
c
t

} − Tr[(Fz + F †
z )ρc

t

]
ρc

t

)
dWt . (9)

The given task is to reach and stabilize the symmetric up-
down, down-up maximally entangled Bell state:

|	+〉 = 1√
2

(|↓1↑2〉 + | ↑1↓2〉), (10)

starting from a random initial condition. This bell state can be
written in density matrix form as

ρd =

⎡
⎢⎣

0 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 0

⎤
⎥⎦. (11)

Working in the in the basis of two-qubit Pauli operators
(i.e., two-qubit span = {I ⊗ σx, I ⊗ σy, I ⊗ σz, . . . }), the de-
sired state can be written as:

ρd = 1
4 (I ⊗ I + σx ⊗ σx + σy ⊗ σy − σz ⊗ σz ). (12)

We focus on the expectations of these basis elements with
respect to the conditioned density evolution to evaluate per-
formance.

The performance is measured by a running cost metric
given by:

J (ρ, u) :=
∫ T

0

(
Qsq(1 − Tr[ρdρτ ]) + u�

τ Quuτ

)
dτ, (13)

where Qs is a state cost weighting and Qu is a control
cost weighting. These were set to Qs = diag(10) and Qu =
diag(0.1). Note that this state cost metric utilizes a computa-
tionally efficient trace metric [71] as compared to the standard
trace distance metric [72], which is substantially slower in
implementation as it requires an eigenvalue decomposition at
each time step.

The function q : [0, 1] → [0, α] is an angle resolution
function which is added to help resolve numerically close
angular values. Recall that for a single qubit, the trace in-
ner product can be thought of as measuring perpendicularity
of Bloch phases. Since the cosine function is relatively flat
(derivative near zero) near 0, one may encounter bad numeri-
cal resolution near the desired minimum 1 − Tr[ρdρτ ]) = 0 in
an n-qubit setting. The resolving function applies a logarithm
transformation to improve numerical resolution, and is

Algorithm 1 Quantum gradient-based adaptive stochastic search
optimization

1: Function: θ∗ = OptimizePolicyVars(T, K, R, P, ρ0, κ, ϕ (0), θ(0), σ )
2: for k = 0 to K do
3: μ ← θ(k)

4: for p = 0 to P do
5: ϕp ← SampleWeights(μ, σ )
6: for r = 0 to R do
7: for t = 0 to T do
8: dWt,r ← SampleNoise()
9: ut,r,p ← Policy(ρt,r,p; ϕp)
10: ρt+1,r,p ← Dynamics(ρt,r,p, ut,r,p, dWt,r )
11: Jt,r,p ← RunningCost(ρt,r,p, ut,r,p)
12: end for
13: Jr,p ← ∑

t Jt,r,p + TerminalCost(ρT,r,p)
14: end for
15: Sp ← ShapeFunction(Jr,p; κ )
16: end for
17: θ(k+1) ← γ GradientStep(θ(k), Sp)
18: end for

given by:

q(x) = α
ln(1 + βx)

ln(1 + β )
, (14)

where α is the maximum of the range, and β controls the slope
by effectively changing the base of the natural logarithm. In
our experiments, α = 10, and β = 100.

The cost function is passed through a differentiable and
nonincreasing shape function S(·) : R → R. Many different
shape functions can be used, as explained in greater detail in
Ref. [69]. In our simulated experiments, we used the function

S(J ) := exp(−κJ ), (15)

where κ = 1.0 affects the slope and may be tuned for greater
performance.

This experiment utilized a simulation environment built in
Python, with state evolution adapted from the QuTip Python
library [72], and policy networks coded in PyTorch [73]. All
network weights were initialized by PyTorch’s default layer
initialization, which is a uniform random initialization [74].
The algorithm computation speed is numerically improved
by using vectorized (or batch) computations of the simulated
trajectories, and CPU parellelization for policy parameter roll-
outs, resulting in ∼20 seconds per iteration for 1000 time
steps of an Euler-Maruyama discretization of Eq. (3) with
R = 50 rollouts and P = 200 policy parameter rollouts. The
algorithm was run on a desktop computer with an Intel Xeon
12-core CPU with a NVIDIA GeForce GTX 1060 GPU and
used less than 10 GB of RAM.

A single-layer fully connected (FC) policy network was
used for the experiment and was trained for 850 iterations
of the QGASS algorithm over a 1000 time-step window. The
trained policy network was then applied to an unseen test set
of dynamics, and achieved quick stabilization convergence.
Despite being trained on just 1000 time steps of dynamics,
the linear policy was tested and performed effective stabi-
lization on up to 100 000 timesteps of dynamics. We plot its
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FIG. 2. QGASS performance on a stabilization task. (a) Top panel: Convergence of two-qubit basis elements I (1) ⊗ I (2) (red), σ (1)
x ⊗ σ (2)

x

(blue), σ (1)
y ⊗ σ (2)

y (black), and σ (1)
z ⊗ σ (2)

z (green) for a linear policy trained by QGASS as a function of time. Lines denote the means and
shaded regions denote 2-σ variances, both taken over 1000 sampled trajectories. Bottom panel: Same as top panel for the benchmark feedback
policy given by Ref. [71]. (b) Running state costs, top panel, and running control costs, bottom panel, for the linear policy network trained with
QGASS (red) and the benchmark policy of Ref. [71] (blue). Lines denote means and shaded regions denote 1-σ variances, both taken over
1000 sampled trajectories. The imposed data symmetry from this Gaussian depiction is corrected only when a large variance would lead to an
infeasible negative instantaneous cost

performance in Fig. 2(a). The left subfigure depicts the
QGASS method, and the right subfigure depicts the policy
suggested in Ref. [71] under identical experimental parame-
ters. Solid lines represent mean expectations of basis elements
averaged over 1000 test system trajectories, and shaded re-
gions represent their 2-σ variance. The QGASS method can
be observed to converge in approximately one order of mag-
nitude faster than the benchmark and has dramatically lower
variance.

The efficacy of the policy trained by QGASS can also be
visualized in terms of the cost metric J (ρc

t , ut ). In Fig. 2(b),
the running cost components of the policy trained by QGASS
are depicted. The top subfigure depicts the running state cost
component of J (ρc

t , ut ), given by:

Jstate,t (ρt ) :=
∫ t

0
Qsq(1 − Tr[ρdρτ ])dτ, (16)

while the bottom subfigure depicts the running control cost
component of J (ρc

t , ut ), given by:

Jcontrol,t (u) :=
∫ t

0
u�

τ Quuτ dτ, (17)

where Qs and Qu are state cost and control cost weight-
ings, respectively, which are diagonal matrices weighing the
cost along each state or control dimension. The solid line
depicts the means of the running cost trajectories of each
policy and the shading depicts the 1-σ variance, each com-
puted over 1000 trajectory rollouts. The policy trained by
QGASS has a lower state cost on average, with a significantly
lower 1-σ variance of state cost, which suggests that the state
performance may have better guarantees of performance as
compared to Ref. [71]. The control effort of each policy is

depicted in the right subfigure: it is observed that the policy
trained by QGASS applies a strong initial control impulse to
the system followed by a relatively small control signal: this
policy can be interpreted as a form of bang-bang control. In
contrast, the policy of Ref. [71] injects a fairly constant con-
trol signal over the time window, which yields a cumulative
control effort approximately 12× higher than that of QGASS.

This same state performance may also be visualized
through the commonly used fidelity measure, which is typ-
ically used as a distance measure on qubit states and can
analogously measure task performance. The fidelity measure
F (·, ·) : H2 × H2 → [0, 1] may be thought of as an inverse
cost measure on [0,1] as values closer to 1.0 correspond to
qubits that are more closely aligned, that is, F (ρ1, ρ2) → 1.0
as ρ1 → ρ2. The results are depicted in Eq. (3), and again
demonstrate the advantages of the policy trained by QGASS
both in terms of convergence time as well as lower variance
on the performance. Note that this measure was not used
to measure performance during training since it has a much
higher computational complexity compared to Eq. (16).

Note that the impulsive control signal produced by the
trained policy is likely to be experimentally realizable due to
the viability of pulsed electromagnetic fields. However, if one
were to desire a less impulsive control signal, one could add
a running penalization term on the derivative of the control,
effectively penalizing large rates of change in the control
signal applied to the system [75]. One could also add a con-
trol rate indicator, effectively suppressing this additional cost
until some control rate threshold is reached. This flexibility
is possible since we do not require any differentiability or
even continuity of the cost functional in the QGASS frame-
work. While this will likely lead to a larger time-integrated
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FIG. 3. Comparison of the performance of the policy trained by
QGASS, depicted in red, against the benchmark policy [71], depicted
in blue. Solid lines denote means and shaded regions denote 1-σ
variances, both taken over 1000 sampled trajectories. The imposed
data symmetry from this mean and variance Gaussian fit to the data
is corrected only when a large variance would lead to an infeasible
fidelity greater than 1.0

control effort, one may either introduce terms to the cost
functional or introduce hard constraints to enforce various
experimental hardware constraints, including bounds on the
control rate.

VI. DISCUSSION AND OUTLOOK

In this paper, we suggest a method, the QGASS frame-
work, of training networks to utilize state information in
an explicit state-dependent feedback control scheme, al-
lowing for successful extrapolation and generalization of
the trained feedback scheme outside of the training win-
dow. State-dependent feedback control can be contrasted
with existing methods that utilize a type of time-dependent
control that is iteratively improved through measurement-
based feedback. While omitting explicit feedback is often
much simpler from a controller synthesis and optimiza-
tion perspective, state-dependent feedback provides numer-
ous benefits including stabilization performance over larger
timescales.

Our results also demonstrate the efficacy of applying prin-
ciples from stochastic optimization for MFC. We applied
QGASS to train explicit feedback policy networks to con-
trol and stabilize a two-qubit experiment. The generality of
the problem formulation suggests that this approach can be
applied to the large class of problems involving open quan-
tum systems with either continuous measurement schemes or
discrete measurement schemes. Furthermore, this approach is
quite flexible; while we have only considered one form of a
cost functional and shape functional, there are virtually no
limitations on the form of the cost functional. Combined with
the fast computational speed of iterations, the results suggest
that this approach can scale to larger numbers of qubits, which
we are actively exploring.

One can also generalize the QGASS framework to train
parametric coherent controllers coupled to the quantum

system through implicit feedback (i.e., without an explicitly
recorded measurement outcome). In such a case, the dynamics
follow (deterministic) unconditional evolution governed by
the Lindblad equation, forgoing a weak measurement process
entirely. Furthermore, we conjecture that through careful ex-
periment design, it may be possible to apply QGASS in a
MFC setting to learn a parametric coherent controller, which
is then applied to the system in a CFC setting, which holds
advantages in certain contexts [42,76].

Our approach has similarities to the policy gradient method
[35], wherein gradients of the cost functional with respect
to the control policy parameters are computed. However, the
QGASS approach is distinctive in that it assumes a prob-
ability distribution on the policy parameters and performs
gradient updates on the distribution parameters instead. This
allows one to bypass the often problematic differentiation
steps through the cost functional and dynamics as in policy
gradient methods. In addition, this means that our frame-
work can be easily applied to problems with nondifferentiable
or discontinuous dynamics and cost functions, e.g., photon
counting and control thresholding.

The QGASS derivation for the policy parameter update
holds true for arbitrary policy networks. In the simulated
two-qubit control experiment, we used a rather shallow and
simple linear feedback policy parametrization. An interesting
next step is to investigate the effect of the size and depth of
the policy network. The widespread success of utilizing deep
networks for a variety of learning applications suggests that
deeper network architectures may outperform the results pre-
sented here, especially for experiments with larger numbers
of qubits. In addition, for more complex and higher dimen-
sional experiments, convolutional or long-short term memory
networks are also worth exploring to improve the scalability
and temporal correlation of the policy.
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APPENDIX A: DEGENERATE DIFFUSIONS
IN THE STOCHASTIC MASTER EQUATION

The measurement-based feedback scheme for control of
quantum systems has many advantages, as outlined in the
main text. However, this scheme also has certain pitfalls,
which include problems of degeneracy of the diffusion
dynamics. Degenerate diffusions can cause many control
frameworks to fail, often due to the inability to find inverses or
pseudoinverses of the covariance operator. In this section, we
demonstrate two common examples in the context of quantum
feedback control where this degeneracy may emerge due to a
singular covariance operator.
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1. Degenerate diffusions in the two-qubit system
with continuous measurement

Consider the two-qubit quantum system given by the SME
[71]:

dρc
t = −iu1(t )

[
σ (1)

y , ρc
t

]
dt − iu2(t )

[
σ (2)

y , ρc
t

]
dt

− 1

2

[
Fz,

[
Fz, ρ

c
t

]]
dt

+ √
η
({

Fz, ρ
c
t

} − Tr
(
(Fz + F †

z )ρc
t

)
ρc

t

)
dWt , (A1)

where u j (t ) are two time-varying magnetic fields coupled
to the two qubits, Fz := σ (1)

z ⊗ I (2) + I (1) ⊗ σ (2)
z defines the

coupling between the cavity and the electromagnetic field pro-
duced by the probe laser, as depicted in Ref. [71], Fig. 1.1, and
as usual [·, ·] and {·, ·} are the commutator and anticommuta-
tor, respectively. We can simplify this equation by defining the
usual superoperators:

H[A]ρ := {A, ρ} − 2Tr(Aρ)ρ, (A2)

D[A]ρ := 1
2 [A, [A, ρ]]. (A3)

Also, note that in this system H = 0 and Hu, j = σ
( j)
y . This

yields:

dρc
t = −

∑
j

u j (t )
[
Huj , ρ

c
t

]
dt − D[Fz]ρ

c
t dt

+ √
ηH[Fz]ρ

c
t dWt , (A4)

so we have the form in Eq. (4) repeated here for clarity,

dρc
t = F

(
ρc

t

)
dt + G

(
ρc

t

)
u(t )dt + B

(
ρc

t

)
dWt , (A5)

where we have defined the superoperators:

F (ρ) := −D[Fz]ρ, (A6)

G(ρ)u(t ) := −i
∑

j

u j (t )[Huj , ρ], (A7)

B(ρ) := √
ηH[Fz]ρ. (A8)

A key requirement of many stochastic optimal control meth-
ods is the invertability of the superoperator H[·], which can
become singular. We can see this by simply looking at the Fz

operator. In this case, it becomes

Fz := I (1) ⊗ σ (2)
z + σ (1)

z ⊗ I (2)

=
[

σz 0
0 σz

]
+

[
I 0
0 −I

]

=

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎦ +

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎦

=

⎡
⎢⎣

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⎤
⎥⎦. (A9)

Thus, if the system is in the Bell state,

ρdesired =

⎡
⎢⎣

0 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 0

⎤
⎥⎦, (A10)

the superoperator H[Fz]ρ is a singular operator. The singular-
ity above also arises if we rotate the magnetic fields such that
they are coupled to the x or y axis of the spin representation,
so we have the coupling operator as Fx := σ (1)

x ⊗ I (2) + I (1) ⊗
σ (2)

x or Fy := σ (1)
y ⊗ I (2) + I (1) ⊗ σ (2)

y . In either of the three
cases, the eigenvalues are λ = {0, 0, 2, 2}. This is the case for
any n-qubit system.

2. Degenerate diffusions in the homodyne continuous
measurement experiment

The homodyne detection experiment was among the first
nondemolition measurement experiments, and can be viewed
from the photon counting (jump noise) or continuous dif-
fusion (Brownian noise) cases. In this experiment, a cavity
system emits photons when the atoms in the cavity are excited.
The photon leakage is mixed with a local oscillator of the
same frequency, and the mixed beam is then detected. The
experimental setup is depicted in Ref. [78], Fig. A1.

The dynamics of the dissipative homodyne detection ex-
periment are given in Fock space by the SME:

dρt = −i[H0, ρt ]dt − i
∑

j

u j[Huj , ρt ]dt

− 1

2

√
1 − η

√
γ [a, [a, ρt ]]dt

+ √
η
√

γ ({a, ρt } − 2Tr(aρt )ρt )dWt , (A11)

where H0 is the typical unforced Hamiltonian of the quantum
harmonic oscillator, a is the usual annihilation operator, and
Hu is the Hamiltionian of the external forcing, in this case
provided by a coupled electromagnetic field. Using the previ-
ously defined D and H superoperators in Eqs. (A3) and (A2)
yields the simplified form:

dρt = −i[H0, ρt ]dt − i
∑

j

u j[Huj , ρt ]dt

−
√

1 − η
√

γD[a]ρt dt + √
η
√

γH[a]ρt dWt . (A12)

Again we have the form in Eq. (4), with:

F (ρt ) := −i[H0, ρt ] −
√

1 − η
√

γD[a]ρt , (A13)

G(ρt )u(t ) := −i
∑

j

u j (t )[Huj , ρt ], (A14)

B(ρt ) := √
η
√

γH[a]ρt . (A15)

Investigating the B(ρt ) operator, we again find that it is singu-
lar, as can be seen by the form of the matrix representation of
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the annihilation operator a for an N-level cavity,

a =

⎡
⎢⎢⎢⎢⎢⎣

0
√

1 0 · · · 0
0 0

√
2 0 · · · 0

...
. . .

...

0 · · · 0
√

N
0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, (A16)

which again leads to a singular superoperator for certain
states. This singularity also arises if we use the creation op-
erator a† as the coupling operator.

APPENDIX B: QGASS FORMULATIONS FOR LEARNING
FEEDBACK POLICIES

The GASS method was introduced in Ref. [64] and has
recently been applied as a control optimization strategy (cf.
Ref. [79]). This approach has provable convergence character-
istics, and offers generality and flexibility. In this Appendix,
we will demonstrate this flexibility by exploring several prob-
lem formulations that leverage the approach for training
policy networks for feedback control.

Consider the two qubit Stochastic Master Equation (SME)
in the general simplified form:

dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt , (B1)

where G(ρt , ut ) is a state-dependent controlled drift term. In
the two-qubit problem, G(ρt , ut ) takes the form G(ρt , ut ) =∑2

i ui[σ (i)
y , ρt ], however, in a more general N-qubit experi-

ment, one may require all single-particle Pauli matrices. Thus,
G(ρt , ut ) may have the more general form:

G(ρt , ut ) =
N,3∑

i, j=1

ui j
[
σ

(i)
j , ρt

]
, (B2)

where σ
(i)
j , j ∈ 1, 2, 3 denote single-particle Pauli matrices

of each axis x, y, z. Despite appearing in the context of qubit
systems, the form of Eq. (B1) is quite general and can repre-
sent virtually any open quantum system with continuous weak
measurement.

Quantum control problems often consider the task of
reaching some target state ρdes, as measured by some general
cost metric J (ρt , ut ). The minimizing control is most gen-
erally expressed by the following path integral optimization
problem,

u∗ = argmin
u∈U

〈J (ρ, u)〉Q, (B3a)

such that dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B3b)

where the expectation defines a path integral over controlled
state trajectories with measure Q. The set U is the admissible
set of controls and may impose constraints on the control. One
may also include constraints on state ρ, however, these are
omitted from this derivation for simplicity.

The cost functional J : H2 × Rm → R is some real-
valued, potentially nonconvex, discontinuous, and nondif-
ferentiable functional, which must be minimized. Such a
function imposes many difficulties from the context of op-
timization theory and optimal control theory. In the GASS

approach, we bypass these difficulties through stochastic ap-
proximation. Let f (u; θ) be a distribution belonging to the
exponential family of distributions. Then the optimization
problem is approximated as:

θ∗ = argmin
θ

〈J (ρ, u)〉Q, f (u;θ), (B4a)

s.t. dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B4b)

ut ∼ f (ut ; θ). (B4c)

Furthermore, we introduce the smooth (continuously dif-
ferentiable almost everywhere), nonincreasing shape function
S : R → R and the logarithm function to obtain the following
modified optimization problem:

θ∗ = argmax
θ

log 〈S(J (ρ, u))〉Q, f (u;θ), (B5a)

such that dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B5b)

ut ∼ f (ut ; θ). (B5c)

Solving this optimization problem with gradient-based param-
eter adaptation has been shown to have numerous appealing
convergence characteristics detailed in Ref. [64], however, a
key observation is that this formulation does not incorporate
the measurement from the measurement process dW and is a
purely feed-forward control. In this representation, one may
compare this framework to popular feedforward frameworks
such as GRAPE or Krotov for optimal control of quantum sys-
tems without state feedback (cf. the approaches in Ref. [26]),
however, the goal in defining the Stochastic Master Equation
(SME) in Eq. (B1) is to realize an explicit state feedback
control optimization algorithm. In the following, we consider
a number of modifications to the above optimization problem
to achieve this goal, each able to leverage the QGASS training
approach as outlined in the main paper.

1. SME with linear parametric state feedback compensation

Consider the optimization problem:

θ∗ = argmax
θ

log 〈S(J (ρ, u))〉Q, f (ϕ;θ), (B6a)

s.t. dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B6b)

ut = K1(ϕ1)ρt + K2(ϕ2), (B6c)

ϕ := [ϕ1, ϕ2] ∼ f (ϕ; θ). (B6d)

Under the realization that the controller in Ref. [71] is quite
similar to a P controller on the trace distance to the goal state,
this has a static compensator with an explicit parametric linear
feedback policy. The expectation in Eq. (B6a) is a double
expectation composed of an expectation over the Stochastic
Master Equation (SME) and an expectation over the exponen-
tial family.

Note that this control policy can be realized through a fully
connected network with rectified linear unit activations as:

ut = K (ρt ; ϕ), (B7)
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where K : H2 → Rm is the linear policy network. This moti-
vates the use of nonlinear policy networks.

2. SME with nonlinear parametric state feedback compensation

Consider the optimization problem:

θ∗ = argmax
θ

log 〈S(J (ρ, u))〉Q, f (ϕ;θ), (B8a)

s.t. dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B8b)

ut = �(ρt ; ϕ), (B8c)

ϕ ∼ f (ϕ; θ), (B8d)

where � is a nonlinear feedback policy parametrized by ϕ.
This could be a FC network or a convolutional neural network
but, in general, simply represents a nonlinear function of ρ

without explicit time dependence.

3. SME with nonlinear recurrent state feedback compensation

Consider the optimization problem:

θ∗ = argmax
θ

log 〈S(J (ρ, u))〉Q, f (ϕ,θ), (B9a)

s.t. dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B9b)

utk+1 = �RNN(ρtk , utk ; ϕ), (B9c)

ϕ ∼ f (ϕ; θ), (B9d)

where �RNN is a recurrent neural network (RNN) (e.g., LSTM
network). Incorporating time dependence in the policy en-
dows the compensator with dynamics and enables treatment
of a larger class of problems compared to a static compensator.

One may also apply a neural ordinary differential equa-
tion (NODE) network [80] in place of Eq. (B9c). Instead
of specifying a discrete sequence of hidden layers, NODE
networks parametrize the derivative of the hidden state us-
ing a neural network and, as a result, demonstrate constant
memory cost as a function of network depth, significantly
lower training losses, and can handle time irregularity in the
discretization scheme. In many cases, NODE networks out-
perform RNN networks, and are a closer representation to a
dynamic compensation approach.

4. SME with stochastic actuators and dynamic
feedback compensation

Consider the optimization problem:

θ∗ = argmax
θ

log 〈S(J (ρ, u))〉Q,U, f (ϕ;θ),

(B10a)

such that dρt = F (ρt )dt + G(ρt , ut )dt + B(ρt )dWt ,

(B10b)

dut = Gu(ρt , ut ; ϕ1) + �dVt , (B10c)

ut0 = G0(ϕ2), (B10d)

ϕ := [ϕ1, ϕ2] ∼ f (ϕ; θ), (B10e)

where Q is the measure of the controlled dynamics, U is the
measure of the dynamic compensator, and f (ϕ; θ) is a distri-
bution, parameterized by θ, which belongs to the exponential
family of distributions. We include noise in the compensator
to represent a realistic noisy digital compensation signal,
however, this can be neglected to reduce the sampling com-
plexity. The function J : H2 × Rm → R is some real-valued,
potentially nonconvex and nondifferentiable metric, and the
function S : R → R is a smooth shape function. The function
Gu : H2 × Rm × Rp is the drift of the dynamic compensator.

Here, we must approximate the expectation with finite
samples from three processes, namely, the original Stochastic
Master Equation (SME), the stochastic dynamic compensator,
and the compensator initial condition distribution. This ap-
proach may enable substantially more exploration of the state
space, however, this comes at the cost of sampling three
distributions, which can quickly become computationally ex-
pensive. One may notice that these compensator dynamics are
functionally similar to a stochastic RNN.

APPENDIX C: QGASS PARAMETER
UPDATE DERIVATION

The GASS method was first derived in Ref. [64]. Here we
derive the parameter update under a minimization problem in-
stead of a maximization problem, and use the above notation.
Start with the general optimization problem:

u∗ = argmin
u∈U

J (ρ, u), (C1)

where U ⊆ Rn is a nonempty compact set and J : H × U →
R is a real-valued, potentially nonconvex, discontinuous,
and/or nondifferentiable function. We avoid the inherent
difficulties in F (u) by transforming the problem into an ap-
proximation where u is sampled from the distribution f (u; θ):

θ∗ = argmin
θ

∫
U

J (ρ, u) f (u; θ)du = 〈J (ρ, u)〉 f (u;θ). (C2)

The new problem formulation optimizes with respect to

an upper bound of the original one since 〈J (ρ, u)〉 f (u;θ∗ ) �
J (ρ, u∗). Equality is achieved when all the probability mass of
f (u; θ∗) is at u∗. To facilitate the derivation, we additionally
introduce a logarithmic transform and a shape function that
is differentiable and nonincreasing, S(·) : R → R+, which
transforms our minimization problem into a maximization
one:

θ∗ = argmax
θ

log
∫
U

S
(
J (ρ, u)

)
f (u; θ)du (C3)

= log 〈S(J (ρ, u))〉 f (u;θ). (C4)

We perform gradient updates to update the parameters θ of
the distribution f (u; θ), which is assumed to belong to the
exponential family of distributions:

∇θ log
∫
U

S(J (ρ, u)) f (u; θ)du (C5)

= ∇θ

∫
U S(J (ρ, u)) f (u; θ)du∫

U S(J (ρ, u)) f (u; θ)du
(C6)
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=
∫
U S(J (ρ, u))∇θ f (u; θ)du∫
U S(J (ρ, u)) f (u; θ)du

. (C7)

Now we apply the log trick ∇θ f (u; θ) =
f (u; θ)∇θ log f (u; θ) to obtain:

∇θ log
∫
U

S(J (ρ, u)) f (u; θ)du (C8)

=
∫
U S(J (ρ, u)) f (u; θ)∇θ log f (u; θ)du∫

U S(J (ρ, u)) f (u; θ)du
(C9)

= 〈S(J (ρ, u))∇ρ log f (u; θ)〉 f (u;θ)

〈S(J (ρ, u))〉 f (u;θ)
. (C10)

The exponential family distribution is given by:

f (u; θ) = h(u)(θ�T (u) − A(θ)), (C11)

which is characterized by a set of natural parameters θ, suf-
ficient statistics T (u), base measure h(u), and a log partition
function A(θ). Thus, we have

∇θ log f (u; θ) = ∇θ log[h(u) exp(θ�T (u) − A(θ))]

(C12)

= ∇θ log h(u) + ∇θ (θ�T (u) − A(θ))

(C13)

= T (u) − ∇θA(θ). (C14)

If one optimizes only over the mean of a Gaussian distribution,
then one obtains:

∇θ log 〈S(J (ρ, u)) f (u; θ)〉 f (u;θ) (C15)

= 〈S(J (ρ, u))�−1(u − μ)〉 f (u;θ)

〈S(J (ρ, u))〉 f (u;θ)
, (C16)

where μ is the mean and � is the variance. Thus, the gradient-
ascent parameter update becomes:

�−1μk+1 = �−1μk + �−1 〈S(J (ρ, u))(u − μ)〉 f (u;θ)

〈S(J (ρ, u))〉 f (u;θ)
(C17)

or, more simply,

μk+1 = μk + 〈S(J (ρ, u))(u − μk )〉 f (u;θ)

〈S(J (ρ, u))〉 f (u;θ)
. (C18)

Note that in the cases where we have added a level of
abstraction due to the inclusion of a parameterized policy
network �(ρt ; ϕ), the above derivation yields a parameter
update,

μk+1 = μk + 〈S(J (ρ, u))(ϕ − μk )〉 f (ϕ;θ)

〈S(J (ρ, u))〉 f (ϕ;θ)
, (C19)

where in this case μ is the mean of a Gaussian distribution on
the policy network parameters ϕ.

Due to the path integral nature of this derivation, the so-
called QGASS approach is independent of the discretization
scheme used to discretize the dynamics in Eq. (B1), as in
the quantum trajectories literature. Furthermore, this approach
may consider jump-diffusion dynamics, such as in the discrete
measurement case [32].

Several of the above optimization problems contain two
or three expectations, which is quite different than the above
case wherein the parameter update was derived. To apply
this parameter update to the two and three expectation cases
above, one must simply redefine the shape function. In the
cases of Eqs. (B5), (B6), (B8), and (B9), let the function S(·)
be defined as

S(·) := 〈Ŝ(·)〉Q, (C20)

where Ŝ is a standard shape function which is differentiable
and nonincreasing. Thus, S is nonincreasing and positive
semidefinite, so it may be treated as a shape function. This
shape function may be substituted into Eq. (C19) to yield:

μk+1 = μk + g〈〈Ŝ(J (ρ, u))〉Q(ϕ − μ)g〉 f (ϕ;θ)

g〈〈Ŝ(J (ρ, u))〉Qg〉 f (ϕ;θ)
. (C21)

Similarly, for Eq. (B10), let the function S(·) be defined as:

S(·) := g〈〈Ŝ(·)〉U g〉Q. (C22)

In this case, S(·) is also nonincreasing and differentiable, so
it may be treated as a shape function. This results in the
parameter update:

μk+1 = μk + g〈g〈〈Ŝ(J (ρ, u))〉U g〉Q(ϕ − μ)g〉 f (ϕ;θ)

g〈g〈〈Ŝ(J (ρ, u))〉U g〉g〉 f (ϕ;θ)
. (C23)

The parameter update in Eq. (C19) can be connected to the
information theoretic version of the model predicitive path
integral (MPPI) algorithm for classical systems [81], as ex-
plored in Ref. [69]. The information theoretic MPPI algorithm
applies an exponential shape function S(y; κ ) := exp(−κy)
for y, κ ∈ R, however other shape functions, such as the sig-
moid function, are explored in Ref. [69].

The key difference between the QGASS approach com-
pared to MPPI [81] is that MPPI requires one to perform
importance sampling, which presents challenges when the
diffusion process becomes degenerate, namely, the change of
measures between the controlled and uncontrolled open quan-
tum systems with continuous measurement requires inversion
of an operator that is singular in a multitude of realizable
experiments, such as the two-qubit system and the homodyne
system.

In the context of Ref. [63], policies without explicit time
dependence have been shown to effectively control a num-
ber of SPDE systems for reaching and stabiliziation tasks,
however, these policies can fail for tracking tasks. Both of
these approaches are algorithmically quite similar, and may
have theoretic connections if one can connect the objective
in GASS to an analogous free-energy relative entropy re-
lationship. Aside from the differences in the resulting loss
functional, another primary difference between the two ap-
proaches can be summarized by observing Eq. (C7), wherein
one passes the gradient directly to the distribution f (ϕ; θ) and
skips the implicit dependence of S(J (ρ)) on θ . This skipped
gradient path enables one to bypass the potential disconti-
nuities and nondifferentiability of J , however, in some sense
ignores these contributions to the total gradient. These skipped
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FIG. 4. Comparison of control signals provided by the (a) policy network trained by QGASS and (b) benchmark policy [71]. Control signals
are zoomed in to depict the stabilization portion of the trained policy. Solid lines denote means and shaded regions denote 2-σ variances, both
taken over 1000 sampled trajectories

connections may ignore important gradient information, how-
ever, they offer flexibility and maintain provable convergence
and convergence rate characteristics [64].

APPENDIX D: STABILIZING CONTROL POLICIES
FOR THE TWO-QUBIT EXPERIMENT

The primary results of this paper demonstrate strong per-
formance of the policy trained by QGASS compared to
the benchmark policy. As previously mentioned, this pol-
icy exhibits a bang-bang type control signal, where a strong
impulsive signal is followed by a weaker stabilizing signal.
These control signals are shown in Eq. (4).

This result is quite interesting, especially in the context of
other optimal control approaches such as GRAPE, wherein
control pulses are optimized via gradient ascent. In the limit,
control pulses can be made arbitrarily similar to a bang-bang

solution. In the case of policies trained by QGASS, these
control pulses can effectively react to system measurement.
The emergence of this sort of control solution is in part due to
the control authority given to the policy, which can be seen as
a relaxation of constraints on the energy added to the system
relative to the system energy scale. The authors expect that
the previously mentioned modifications to the cost functionals
to penalize highly impulsive control signals will dramatically
effect the resulting control policy solution, and in general can
be tailored to the control problem and its constraints.

In contrast, the benchmark stabilizing control solution [71]
is composed of conditions on the state, and ultimately injects
more energy into the system than the QGASS solution, yet has
a less impulsive solution, with consistent control effort that
does not vanish like the QGASS solution in the prescribed
time window.
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