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Quantum correlations of a two-qubit system and the Aubry-André chain in bosonic environments
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In this research we analyze two models using the tensor network algorithm. The quantum correlations of a
two-qubit system are first studied in different bosonic reservoirs. Both equilibrium and nonequilibrium scenarios
are discussed. Non-Markovian effects can improve the survival time of the quantum correlations significantly and
weaken the decoherence effect. Non-Markovian dynamics with existing memory can lead to entanglement rebirth
in specific scenarios instead of the eventual entanglement decay or death seen in memoryless Markovian cases.
The system reaches a steady state quickest in sub-Ohmic reservoirs and shows the most apparent non-Markovian
behavior in super-Ohmic reservoirs. The Markovian approximation used in this paper is superior to that in the
Bloch-Redfield master equation. The entanglement dynamics behaves similarly under different approaches when
the system-bath coupling is weak and the memory effect is significant when the system-bath coupling is strong.
We study not only the impact of the environment on quantum correlations, but also how to protect quantum
correlations. Starting from a state in which the two ends are maximally entangled, a one-dimensional Aubry-
André chain model is also studied. We identify distinct phases by monitoring the imbalance dynamics. When
the chain is closed, the imbalance dynamics behaves differently in various phases and so does the entanglement
evolution between the chain’s ends. When the first site couples to a bath, we find that the imbalance dynamics
can still be an effective indicator to differentiate various phases in an early evolution stage since the imbalance
dynamics is only remarkably affected at relatively high temperatures. The distribution of the eigenenergy of the
system can account for it. The entanglement of the chain ends decays rapidly in all phases due to one of the ends
being coupled to the bath directly. However, the entanglement of the chain ends will persist for a perceptible
amount of time in the localization phase if the bath is coupled to the middle site of the chain. Our research shows
that one can utilize the disordered environment as a buffer to protect quantum correlations.
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I. INTRODUCTION

In recent years, theoretical and experimental progress has
demonstrated that quantum correlations (including coherence
[1], entanglement [2], and quantum discord [3]) are essen-
tial resources for quantum information processing, including
quantum teleportation [4], quantum cryptography [5], and
quantum dense coding [6]. Quantum correlations are not only
the primary resources for quantum information but also the
cornerstone of the realization of quantum communication and
quantum computing [7]. A physical system inevitably couples
to the environment, which can cause decoherence that can
eliminate the quantum correlations. However, environments
can restore quantum correlations or preserve them under
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certain conditions [8–10]. Therefore, the study of quantum
correlations in an open system can help determine appropriate
environments for the implementation of quantum computing
or other quantum information processing.

Open quantum system theory plays a crucial role in modern
quantum mechanics. When the coupling between the system
and environment is weak, the memory time of the environ-
ment is short compared to the timescale of the evolution of
the system and the Born-Markov approximation is applicable
[11]. Although this approximation is very effective within
its area of applicability, for most real systems in the strong
system-bath coupling regime or in environments with long-
duration correlations, the approximation is rather limited and
not justified. For instance, the behaviors of superconducting
qubits in circuit-QED systems [12], nitrogen-vacancy cen-
ters in diamonds [13], and quantum dots in semiconductors
[14] all require a strong coupling description. It has been
experimentally demonstrated that non-Markovian behaviors
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inevitably emerge in such strong system-bath coupling sys-
tems [15,16]. The corresponding theoretical approaches go
beyond the Markovian regime to the non-Markovian regime,
which includes the Nakajima-Zwanzig projection operator
equations [11], time-convolutionless master equations [11],
Keldysh-Lindblad equations [17], and reaction coordinate
methods [18]. However, these approaches are also limited
to the weak system-bath coupling regimes. Approaches that
hold for the strong system-bath coupling regime include the
polaron transformed master equation [19,20], the hierarchal
equations of motion method [21], and the influence functional
(IF) method [22–25]. We mainly focus on the IF method in
this paper.

The IF method integrates all the influences from the envi-
ronment [22]. However, the cost of computing the IF without
any approximations is huge and the size of the IF scales
exponentially with the number of time steps. With a finite
memory approximation, Makri and Makarov showed that the
path integral can be reformulated as a propagator of the
augmented density tensor (ADT) that encodes the system’s
history [23,24]. The IF can be assembled as a series of in-
fluence functions, where an influence function quantifies how
the evolution of the system at some time is influenced by the
state of the system at an earlier time. This approach is called
the quasiadiabatic path integral (QUAPI) [23,24]. Naturally,
the IF can be described by a matrix product operator (MPO)
and the ADT can be efficiently represented and propagated in
the form of a matrix product state (MPS) in the tensor network
language [26–30]. The resulting time-evolving matrix product
operator (TEMPO) method is numerically exact. It has been
widely used in many studies, including for the optimal control
of non-Markovian open quantum systems [31], nonadditive
effects of environments [32], quantum heat statistics [33], and
the thermalization of a one-dimensional many-body system
[34]. The TEMPO can be recast in the process tensor (PT)
frame [35], where the PT is a multilinear map from the set of
all possible control operation sequences in the laboratory on
the system to the resulting output states and it can generally
be expressed in MPO form [36]. The process of constructing
the tensor network IF for general dynamics can be found in
[37].

It is of interest to us to investigate the behaviors of the
quantum correlations within systems strongly coupled with
various environments and to understand how to regulate and
control them. On the one hand, this is important for the
theoretical study of open quantum system theory and quan-
tum information science. On the other hand, it can provide
technical support in practical scenarios. For example, the
decoherence and disentanglement of an open system in non-
Markovian environments are apparently distinct from those in
Markovian environments due to the backflow of information.
The memory effect of non-Markovian dynamics may preserve
the quantum correlations over a more extended period, which
opens up the potential for realizing quantum technologies
[38–40]. It has been shown that engineering a structured non-
Markovian environment is also meaningful in protecting the
system from decoherence [41,42]. In this paper we utilize
the process tensor time-evolving block decimation (TEBD)
algorithm [30,34,43] to study the quantum correlations of a
two-qubit system strongly coupled to a bosonic environment

in both equilibrium and nonequilibrium scenarios. The non-
Markovianity influences the dynamics of the correlations
remarkably in all types of baths. The entanglement may un-
dergo rebirth after sudden death due to information backflow
rather than the eventual death seen in the dynamics under
memoryless conditions. Oscillations of the correlations are
common in the different types of baths. The amplitudes of
the correlation dynamics of the two qubits in super-Ohmic
reservoirs are the largest and decay the slowest, showing the
strongest memory effect, while those in sub-Ohmic reservoirs
reach a steady value the quickest. The higher the temperature
is, the faster the system arrives at a steady state. We also study
the Markovian approximation used in this paper, under which
we keep only the influence of the last one-step history of the
system. This approximation works well when the system-bath
coupling is weak and is superior to the Bloch-Redfield master
equation. The memory leads to entanglement revival in the
strong system-bath coupling regime. Thus, one can anticipate
that only the whole memory can provide an exact prediction
when the system-bath coupling is strong.

The protection of entanglement is another crucial sub-
ject. It has been suggested that introducing disorder into the
environment might help to prevent thermalization and pre-
serve entanglement [44]. Inspired by this, we investigate the
quasidisordered Aubry-André (AA) chain coupled with the
environment. The AA model has abundant phases of matter in
various parameter zones, i.e., ergodic, many-body localization
(MBL), and Anderson localization (AL) phases. The AL is
where the idea for the MBL originated. The localization of
noninteracting particles in a disordered system is referred to
as the AL and the particle localization is completely caused
by disordered external potentials [45]. Besides the completely
disordered external potentials, the quasiperiodic external po-
tentials can also cause AL. The AA chain is the well-known
model in such a study. The AL phenomena have been shown
by experiments in both completely disordered systems [46]
and quasiperiodic systems [47]. More recently, once interac-
tions are incorporated, such systems were shown to exhibit
MBL [48–53]. The MBL has many exotic properties. For
instance, due to the existence of the local integrals of motion,
it avoids the fate of thermalization [54]. Naturally, depending
on the disorder intensity, it divides the phases of a matter
into the ergodic or thermal phase (which satisfies the eigen-
state thermalization hypothesis [55,56]) and the MBL phase.
The entanglement entropy of the MBL eigenstates obeys an
area law, whereas a volume law is held for the thermal [53].
The entanglement entropy shows a power-law increase over
time in the thermal phase but grows logarithmically in the
MBL phase. This is also a specific trait of MBL that marks
a difference from the Anderson localization phase, whose
entanglement entropy is bounded [57,58]. There are Poisson
distributions of the energy gap in MBL and the existence
of a mobility edge and so on [52]. The experiments for
realizing the MBL have taken place on various platforms,
including ultracold atoms system [59], ultracold ions [60], and
superconducting circuits system [61,62]. The current studies
concentrate mostly on the system isolated from the envi-
ronment. Only a few studies look at how the environment’s
dissipative effect affects the MBL and AL [63–66]. Under
the framework of the Lindblad equation, they found that
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dissipation eventually destroys localization, which confirms
intuition, and that the steady-state density operator is the
normalized identity. However, on the way to this state, sys-
tems with MBL and non-MBL Hamiltonians behave notably
differently [66].

Beyond the weak coupling and Born-Markov approx-
imation, the AA model strongly coupled with a bath is
investigated. The ends of the chain are maximally entangled,
whereas the remaining parts are initially at a Néel state. The
dynamics of imbalance and entanglement of the ends are
calculated, where the imbalance is a good indicator to identify
the phases of matter. Limited to the computation source, only
finite time dynamics can be explored. When the AA chain is
isolated from the environment, the temporal average of imbal-
ance is very close to zero in the ergodic phase, but that in MBL
and AL retains a finite value. Meanwhile, the entanglement
behaves quite differently in the ergodic and MBL and AL
phases. Rapid decay to zero, resuscitation, and subsequent
death of the concurrence occur in the ergodic phase. Con-
trarily, in the MBL or AL phase, the concurrence fluctuates
around a certain value. Once there is a bath coupled with
the first site of the chain, the imbalance decays to zero more
rapidly in the ergodic phase. However, it is only at relatively
high temperatures that the environment significantly changes
the imbalance dynamics in localization phases, that is to say,
the imbalance in the early evolution can still be an effective
observable to detect localization or the ergodic phases. We ex-
plain it in terms of whether the eigenmodes of the system can
resonate with the environment and lead to energy exchange.
The entanglement of the ends will disappear quickly due to
the direct interaction between the ends of the chain and bath.
Additionally, when the environment is not directly coupled to
the entangled ends but to intermediate sites, the entanglement
of the chain’s ends endures for a considerable amount of time,
which inspires us to exploit the disordered environment as a
buffer to safeguard quantum correlations.

This paper is organized as follows. In Sec. II we introduce
our model. We then derive the influence functional and il-
lustrate it in the tensor network language. We focus on the
PT TEBD algorithm to implement the system evolution. In
Sec. III we introduce some quantum correlations and study
them in different scenarios. In Sec. IV we investigate the
dissipative dynamics of imbalance and entanglement of the
AA chain. We summarize and draw our conclusions in Sec. V.

II. TENSOR NETWORK METHOD FOR STUDYING THE
NON-MARKOVIAN DYNAMICS OF A TWO-QUBIT

SYSTEM IN AN ENVIRONMENT: MODEL AND
EVOLUTION

Let us begin with a simple model, which consists of two
interacting qubits coupled to corresponding baths, as shown
in Fig. 1(a). The total Hamiltonian is given as

Htotal = HS + HSB = HS + HB + HI . (1)

The Hamiltonian of the system is

HS = ω1

2
σ 1

z + ω2

2
σ 2

z + Jσ 1
x σ 2

x , (2)

(a)

(b) (c)

FIG. 1. (a) Sketch of the model, (b) rank-1 tensor or vector (left)
and second-rank tensor contracts with a vector and the connecting
leg represents a contraction in the tensor network language (right),
and (c) augmented matrix product state for the two-qubit system.

where σ 1
i = σi ⊗ I, σ 2

i = I ⊗ σi, and σi are the Pauli matrices.
The superscript 1 (2) stands for the A (B) qubit. The energy
gaps of the qubits are given as ω1 = ω2 = 1 and the coupling
J = 0.375 measures the strength of the interqubit interaction.
The Hamiltonian of the environment plus the interaction be-
tween a single qubit and the corresponding interacting bath is
given as

Hα
B + Hα

I =
∑

k

ωα
k âα†

k âα
k + σα

x

∑
k

(
gα

k âα†
k + gα∗

k âα
k

)
, (3)

where gk is the coupling constant between the qubit and the
environment, âk (â†

k) is the annihilation (creation) operator
of the bosonic environment, and the superscript α indicates
the relevant bath. We assume that the system and baths are
separable at the initial time and that the baths are initially in
Gaussian states, e.g., thermal equilibrium at different tempera-
tures Tα . Meanwhile, the two qubits are also separable initially
and are both prepared in the ground state. A sketch of the
model is shown in Fig. 1(a).

We work in Liouville space in the following calculation,
i.e., the superoperators act on the vectorized density matrices.
This is illustrated in Fig. 1(b). The red circle with one leg is
called a rank-1 tensor or vector in the tensor network language
[26]:

ρ =
∑

i j

ρi j |i〉〈 j| vectorized−→ |ρ〉〉 =
∑

i j

ρi j |i〉 ⊗ | j〉. (4)

The trace is reformulated as Tr· = ∑
k〈〈k, k|· = 〈〈1|·, where

〈〈k, k| = 〈k| ⊗ 〈k| and |1〉〉 is the vectorized unity matrix. The
operator acts on the density matrix and can be reformulated as{

Oρ → OL|ρ〉〉 = O ⊗ I|ρ〉〉
ρO → OR|ρ〉〉 = I ⊗ OT |ρ〉〉

}
(5)

in Liouville space. This is illustrated in Fig. 1(b), where a
second-rank tensor contracts with a vector, where the connect-
ing leg indicates contraction. The time evolution of the total
system is governed by the Liouville operator L = −i[Ĥ , ·],

ρ(t ) = eL tρ(0). (6)

We separate Ltotal = LS + LSB, where LS = −i[Ĥs, ·] rep-
resents the pure system part and LSB represents the remaining
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part, including the interaction and environmental parts. We
discretize time into N uniform steps and perform second-order
Suzuki-Trotter splitting [67] between the system Liouville
operator and the environmental Liouville operator:

eLtotalt ≈ [eLtotalδt ]N

= [eLS (δt/2)eLSBδt eLS (δt/2)]N + O(δt3). (7)

The basis of the whole system is spanned by the product space
|si, bi〉〉 = |s1

i , s2
i , b1

i , b2
i 〉〉 at the ith time step. The initial state

can be represented by |ρtotal(s0, b0)〉〉 = |ρ1
s (s1

0)ρ2
s (s2

0)〉〉 ⊗
|ρ1

b (b1
0)ρ2

b (b2
0)〉〉. We trace out the degree of freedom of the

baths on both sides of Eq. (6) and then insert
∑

i |si, bi〉〉〈〈si, bi|
at the ith time step,

ρs(s
′
N ) = Trb′

N

[ ∑
sN

∑
bN

∑
sN−1

∑
bN−1

· · ·
∑

s0

∑
b0

〈〈s′
N |eLs (δ/t2)|sN , bN 〉〉〈〈sN , bN |eLbsδt eLsδt

× |sN−1, bN−1〉〉 × · · · × 〈〈s1, b1|eLbsδt eLs (δt/2)|s0, b0〉〉〈〈s0, b0|ρ(s0, b0)〉〉
]

= Trb′
N

[∑
sN ,bN

· · ·
∑
s0,b0

∑
s′

N−1

· · ·
∑

s′
0

〈〈s′
N |eLs (δ/t2)|sN , bN 〉〉〈〈sN , bN |eLbsδt |s′

N−1〉〉

× 〈〈s′
N−1|eLsδt |sN−1, bN−1〉〉 × · · · × 〈〈s1, b1|eLbsδt |s′

0〉〉〈〈s′
0|eLs (δt/2)|s0, b0〉〉〈〈s0, b0|ρ(s0, b0)〉〉

]

=
∑
sN ,bN

· · ·
∑
s0,b0

∑
s′

N−1

· · ·
∑

s′
0

〈〈s′
N |eLs (δt/2)|sN 〉〉〈〈s′

N−1|eLsδt |sN−1〉〉 × · · · × 〈〈s′
0|eLs (δt/2)|s0〉〉

× Trb′
N
[〈〈sN , bN |eLbsδt |s′

N−1, bN−1〉〉〈〈sN−1, bN−1|eLbsδt |s′
N−2, bN−2〉〉 × · · ·

× 〈〈s1, b1|eLbsδt |s′
0, b0〉〉|bN 〉〉〈〈s0, b0|ρ(s0, b0)〉〉]

=
∑
sN ,bN

· · ·
∑
s0,b0

∑
s′

N−1

· · ·
∑

s′
0

〈〈s′
N |eLs (δt/2)|sN 〉〉〈〈s′

N−1|eLsδt |sN−1〉〉 × · · · × 〈〈s′
0|eLs (δt/2)|s0〉〉〈〈s0|ρ(s0)〉〉

× I (s1, s′
1; . . . ; sN , s′

N ), (8)

where I (s1, s′
1; . . . sN , s′

N ) is the influence functional [22],

I (s1, s′
1; . . . sN , s′

N )

= Trb′
N
[〈〈sN , bN |eLbsδt |s′

N−1, bN−1〉〉〈〈sN−1, bN−1|eLbsδt |s′
N−2, bN−2〉〉 × · · · 〈〈s1, b1|eLbsδt |s′

0, b0〉〉|ρ(b0)〉〉]. (9)

Any n-dimensional array, such as the density matrix in
Fig. 1(b), can be called an n-rank tensor in tensor network
language. Its expansion coefficient under an orthonormal ba-
sis can be considered a tensor for a general quantum state.
We can utilize tensor train decomposition to obtain its MPS
form [26,27]. With the help of the augmented matrix product
state [34,36,37] in Fig. 1(c), we formally construct an MPS
for the two-qubit system, where the augmented legs measure
the correlation between the system and the two baths. In our
case, the bond dimensions of the augmented legs are equal to
one, which means that there is no initial correlation between
the system and the two baths. Equation (8) is graphically
illustrated in Fig. 2(a). The network is composed of the total
density matrix, which is in the MPS form (the qubits and baths
are represented by respective sites), the pure system Liouville
tensor 〈〈s′

i|eLs (δt/2)|si〉〉, and the environmental Liouville ten-
sor 〈〈si, bi|eLbsδt |s′

i−1, bi−1〉〉. The pure system Liouville tensor
contains the interaction between the two qubits. Therefore,
it has four legs indexed by s1′

i , s2′
i , s1

i , and s2
i . There is no

interaction between the two baths, so their action can be sep-

arated. The environmental Liouville tensor for the single bath
also has four legs indexed by sα′

i−1, sα
i , bα

i−1, and bα
i . The blue

solid line in Fig. 2(a) represents the degree of freedom of the
baths bi and these legs should only connect to themselves. The
black solid line in Fig. 2(a) represents the degree of freedom
of the qubits si. We connect the same indices from the MPS
of the system according to Eq. (8). The same indices being
connected indicates summation. Finally, we trace the degree
of freedom of the baths, where the trace cap is described by
the semicircle in Fig. 2(a). In addition, the contraction of the
influence functional produces the process tensor, as shown
in Fig. 2(b), which is a multilinear map from the set of all
possible control operation sequences in the laboratory on the
system to the resulting output states [35]. The process tensor
includes all the influences of the environment. According to
the time order, we connect it to the pure system Liouville ten-
sor. The process tensor can be recycled. Finally, the evolution
of the system can be carried out with PT TEBD [30,34,43],
as shown in Fig. 2(c). We contract the network layer by layer
from the bottom to the top.
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ℒ ℒ
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ℒ ℒ
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ℒ
2

ℒ

ℒ

ℒ

(a) (b) (c)

FIG. 2. (a) Graphic illustration of Eq. (8) in three time steps, (b) influence functional contracts to the process tensor, and (c) evolution of
the system with the process tensor, which is TEBD-like.

The influence functional and the resulting process tensor can both be constructed in a MPO form [28,29,36,37]. When we choose
the eigenbasis of the environmental part as the computational basis, the influence functional for a single bath can be written as

I (s1, s′
1; . . . ; sN , s′

N ) = exp

(
−

N∑
k=1

k∑
k′=1

(s+
k − s−

k )(ηkk′s+
k − η∗

kk′s−
k )

)

=
N∏

k=1

I0(s±
k )

N−1∏
k=1

I1(s±
k+1, s±

k ) · · ·
1∏

k=1

IN (s±
k−1+N , s±

k ), (10)

where Im = exp[−(s+
k+m − s−

k+m)(ηk+m,ks+
k − η∗

k+m,ks−
k )] and

|s±
k 〉 satisfies σx|s±

k 〉 = s±
k |s±

k 〉 at time tk . The detailed expres-
sions for ηkk′ can be found in [23,24]. Here ηkk′ is dependent
on the spectrum density J (ω),

J (ω) = 2α
ωζ

ω
ζ−1
c

e−ω/ωc , (11)

where ωc is the frequency cutoff. The reservoirs are Ohmic
when ζ = 1, sub-Ohmic when ζ < 1, and super-Ohmic when
ζ > 1. Under the sub-Ohmic spectrum, the lower frequen-
cies ω < ωc dominate. Under the super-Ohmic spectrum, the
higher frequencies ω > ωc dominate. The low-frequency be-
havior is described by J (ω) ∼ ωζ .

Equation (10) can be translated into an MPO form, where
I0 is represented by a second-rank tensor and Im>0 is repre-
sented by a fourth-rank tensor, as shown in Fig. 3(a). The
legs representing the same time points are connected. Through
repetitive singular value decomposition (SVD) and contrac-
tion, as shown in Fig. 3(b), we can reshape the tensor in

Fig. 3(a) into the one in Fig. 3(c). Finally, we contract the
tensor layer by layer from the bottom to the top in Fig. 3(c)
to derive the desired MPO-form tensor in Fig. 3(d). In prac-
tice, one usually implements a memory cutoff to save on
computational costs. The cutoff for a specific bath depends
on its correlation properties. The memory cutoff τc dictates
how long the system histories are kept to capture the non-
Markovianity. We choose Im = I ⊗ I once mδt exceeds τc.

There are three error sources when we run the PT TEBD
program. The first originates from the second-order Suzuki-
Trotter split, which causes the third- and higher-order error
O(δt3). The second type of error comes from the low-rank
matrix approximation when we derive the process tensor
and perform time-evolving block decimation. Suppose X =
USV †, which is the exact SVD. We throw away some lower
singular values in S and corresponding vectors in U and V .
The new X̃ = Ũ S̃Ṽ † and the associated error is ‖X̃ − X‖2 <

ε max S. The third type of error is associated with the mem-
ory cutoff. We throw away small time correlations to save
computational resources. In the PT TEBD procedure, we first
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(a) (b) 

(c) (d) 

FIG. 3. (a) Graphic illustration of Eq. (10) when N = 3, (b) SVD and contraction, (c) by repetitive SVD and contraction, we can reshape
the tensor in (a) into this one, and (d) final desired MPO form of the process tensor.

construct a process tensor for the baths. The PT can then be
recycled for the different initial states of the system. We then
apply the TEBD algorithm to realize the time evolution. So
far, we can only derive the result at the N th time step, but
we are also interested in the intermediate time evolution. In
this situation, we can trace out the latter time legs to obtain
the information at intermediate times, as shown in Fig. 4.
This means we use the trace cap on the legs of the system
after the desired time step. This approach is permitted by the
containment property of the process tensor, which says that if
k � k0 � j0 � j, the process tensor Tk0: j0 is contained in Tk: j

[35].
The main features of the PT TEBD algorithm are that it

is numerically exact and can be applied over wide ranges as
long as the environment is a thermal equilibrium bosonic bath.
It can also dispose of the time-dependent system [31] and the
one-dimensional chain system [34] beyond the simple single-
qubit system. Starting from the QUAPI approach and without
any other approximations, the propagation of the ADT that
encodes the system’s history replaces that of the density ma-
trix. The ADT grows at each time step, so we use the finite
memory approximation to limit its size [23,24]. The number
of elements in the ADT scales exponentially with the memory
cutoff. If the full tensor is considered, one quickly encounters
memory problems. Fortunately, an MPS is a natural tool with
which to represent a high-rank tensor efficiently. The memory
required to store a tensor scales exponentially with its rank
but scales as a polynomial in the MPS representation. The
original TEMPO algorithm describes the propagation of the
ADT in MPS form [28]. The subsequent PT TEBD algorithm
inherits this highly efficient characteristic and integrates the IF

as a process tensor in MPO form [30–32]. Another advantage
of the process tensor is that it is independent of the system
Hamiltonian and the initial state of the system. In addition,

FIG. 4. Graphic illustration of how to derive the intermediate
time evolution at the second time step when the total number of time
steps N = 3. The trace cap is |1〉〉.
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it can be recycled for different system settings [31]. The
evolution of the system is computed by a highly efficient and
well-developed TEBD algorithm.

III. NON-MARKOVIAN QUANTUM CORRELATIONS
UNDER EQUILIBRIUM AND NONEQUILIBRIUM

ENVIRONMENTS

A. Measures of the quantum correlations

In this section we introduce certain important measures of
the quantum correlations. Coherence, being at the heart of
interference phenomena, plays a cornerstone role in quantum
physics as it enables applications that are impossible within
classical mechanics. It can be measured as [1]

Cl1 =
∑
i �= j

|ρi j |. (12)

Quantum entanglement is a major resource for accom-
plishing quantum information processing tasks such as
teleportation [4], quantum key distribution [5], and quantum
computing [2]. Among the many measures of entanglement
of a two-qubit system, the concurrence is extensively used in
many contexts. The concurrence of a two-qubit mixed state ρ

is defined as [68]

C = max(0, λ1 − λ2 − λ3 − λ4), (13)

where λi represents the square root of the ith eigenvalue, in de-
scending order of the matrix ρρ̃, with ρ̃ = (σ2 ⊗ σ2)ρT (σ2 ⊗
σ2), while T denotes transposition.

Another important quantum correlation measure is the
quantum discord [3]. This measures the nonclassical corre-
lation between two subsystems of a quantum system. The
discord includes correlations due to quantum physical ef-
fects but does not necessarily involve the concept of quantum
entanglement. In fact, it is a different type of quantum cor-
relation to the entanglement because separable mixed states
(that is, with no entanglement) can have a nonzero quantum
discord. The quantum discord is sometimes also identified as
a measure of the quantumness of correlation functions. The
geometric discord of a bipartite quantum state is defined as
[69]

D (ρ) = min ‖ρ − ρ0‖2
ρ0∈�, (14)

where � denotes the set of zero-discord states and ‖X −
Y ‖2 = Tr(X − Y )2 is the square-norm in Hilbert-Schmidt
space. This can be evaluated for an arbitrary two-qubit state.
For any two-qubit state, the density matrix is given by the
expression

ρAB = 1

4

(
Ia ⊗ Ib +

3∑
i=1

(aiσi ⊗ Ib + Ia ⊗ biσi )

+
3∑

i, j=1

Ci jσi ⊗ σ j

)
. (15)

The geometric discord is given as [69]

D (ρ) = 1
4 [(‖a‖2 + ‖C‖2) − λmax], (16)

where λmax is the maximum eigenvalue of aaT + CCT , a is
the vector composed of ai, and C is the matrix composed of
Ci j .

B. Ohmic reservoirs

In this section we study the quantum correlations in the
Ohmic reservoirs under different temperatures. The memory
cutoff δkmax is 40 steps and the time interval is δt = 0.2 for
each step. These settings produce sufficient non-Markovian
effects. The truncation error for deriving the process tensor is
ξ = 10−5, and ε = 10−6 for performing TEBD in this study.
In Figs. 5(a)–5(c) we plot the quantum correlations in the
Ohmic baths under different temperatures. The correlations
oscillate over time and their amplitudes decay until the corre-
lations reach certain constants. Such oscillation is widespread
in non-Markovian environments [10,40]. There are no other
new phenomena, even though we prolong the evolution time.
The concurrence vanishes in the higher-temperature zone
(e.g., T � 1) but survives forever in the low-temperature
regime. The entanglement suddenly dies and then reappears
for a higher temperature (e.g., T = 0.5). The sudden death
and rebirth of entanglement have been observed in several
different physical models (see, for instance, Refs. [38,70,71]).
The geometry discord and the coherence can survive at even
higher temperatures. Furthermore, the geometry discord and
the coherence vary nonmonotonically with the temperature
at certain times. We also plot the quantum correlations un-
der the Markovian approximation (meaning that we only
keep one-step memory in the evolution, i.e., δkmax = 1; we
comment more about this approximation in Sec. III E) as a
contrast. In Figs. 5(d)–5(f) the oscillations are weaker than
in the non-Markovian case. The most harvesting quantum
correlations under the memoryless approximation are less
than those without the approximation. Therefore, memory can
boost and maintain the quantum correlations under certain
conditions.

We also plot the quantum correlations under nonequilib-
rium in Fig. 6. The temperature of one of the two baths is 0.01,
while the temperature of the other bath increases above 0.05.
Compared to the equilibrium case, the trends are similar. The
geometry discord and the coherence vary nonmonotonically
with the temperature differences at certain times in Figs. 6(b)
and 6(c). The quantum correlations change almost monotoni-
cally with the temperature differences in Figs. 6(d)–6(f) in the
Markovian case.

C. Sub-Ohmic reservoirs

In this section we study the quantum correlations in the
sub-Ohmic reservoirs with different temperatures. The mem-
ory cutoff δkmax is 50 steps and the time interval is δt = 0.2 for
each step. In contrast to the Ohmic case, the quantum correla-
tions in the sub-Ohmic baths oscillate with lower amplitudes
and the amplitudes decay more rapidly in Figs. 7(a)–7(c). The
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FIG. 5. Equilibrium quantum correlations in the Ohmic reservoirs at different temperatures for (a)–(c) non-Markovian evolution and (d)–(f)
Markovian evolution. The other parameters are δt = 0.2 for both the non-Markovian evolution and the Markovian evolution, ζ = 1, α = 0.1,
and ωc = 4. We have taken h̄ = kB = c = 1 here and in the following figures.

geometry discord and the coherence also vary nonmonoton-
ically with the temperature at certain times. Meanwhile, the
harvesting quantum correlations are hard to retain when the
environment loses memory, as shown in Figs. 7(d)–7(f).

In the nonequilibrium scenario in Fig. 8(a), the entangle-
ment can still survive for a long time at a larger temperature

difference �T = 0.5. In addition, the larger temperature dif-
ference can boost the correlations, as seen in Figs. 8(b) and
8(c). However, the nonequilibrium effect is weak for the case
under the memoryless approximation. The system reaches a
steady state faster when the baths are at higher temperatures
for the Ohmic and sub-Ohmic reservoirs.

FIG. 6. Nonequilibrium quantum correlations in the Ohmic reservoirs at different temperatures for (a)–(c) non-Markovian evolution and
(d)–(f) Markovian evolution. The temperature of one of the two baths is 0.01 and the other bath increases above 0.05. The other parameters
are δt = 0.2 for the non-Markovian evolution, δt = 0.05 for the Markovian evolution, ζ = 1, α = 0.32, and ωc = 4.
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FIG. 7. Equilibrium quantum correlations in the sub-Ohmic reservoirs with different temperatures for (a)–(c) non-Markovian evolution and
(d)–(f) Markovian evolution. The other parameters are δt = 0.2 for both the non-Markovian evolution and the Markovian evolution, ζ = 0.6,
α = 0.1, and ωc = 4.

D. Super-Ohmic reservoirs

In this section we study the quantum correlations in the
super-Ohmic baths under different temperatures. The memory
cutoff δkmax is 40 steps and the time interval is δt = 0.025
for each step. As shown in Fig. 9, the oscillations of the
quantum correlations are more significant here and they are
damped more slowly than in the two previous cases. The

entanglement even undergoes rebirth at high temperatures in
Fig. 9(a). The quantum correlations of the two-qubit system
in the super-Ohmic baths can reach the most significant values
among the three types of baths. Under the Markovian approxi-
mation, the quantum correlations seem to be insensitive to the
temperature. The dynamics of the quantum correlations under
the memoryless approximation also decays more slowly than

FIG. 8. Nonequilibrium quantum correlations in the sub-Ohmic baths under different temperatures for (a)–(c) non-Markovian evolution
and (d)–(f) Markovian evolution. The temperature of one of the two baths is 0.01 and the temperature of the other bath increases above 0.05.
The other parameters are δt = 0.2 for both the non-Markovian evolution and the Markovian evolution, ζ = 0.6, α = 0.1, and ωc = 4.
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FIG. 9. Equilibrium quantum correlations in the super-Ohmic baths under different temperatures for (a)–(c) non-Markovian evolution and
(d)–(f) Markovian evolution. The other parameters are δt = 0.025 for both the non-Markovian evolution and the Markovian evolution, ζ = 2,
α = 0.1, and ωc = 4. The blue solid, yellow dotted, and green dashed lines almost overlap in (b) and (c). All of the colored lines overlap in
(d)–(f).

in the two previous cases. The super-Ohmic environment has
the most considerable memory effect, which is consistent with
Ref. [72].

As shown in Fig. 10, in the nonequilibrium scenario, the
dynamics of the correlations is similar to that in the equi-

librium case. The dynamics of the correlations under the
memoryless approximation is insensitive to the temperature
differences. We find that the reservoirs with memory maintain
the quantum correlations and show a weak decoherence effect
in all cases.

FIG. 10. Nonequilibrium quantum correlations in the super-Ohmic baths under different temperatures for (a)–(c) non-Markovian evolution
and (d)–(f) Markovian evolution. The temperature of one of the two baths is 0.01 and the temperature of the other bath increases above 0.05.
The other parameters are δt = 0.025 for both the non-Markovian evolution and the Markovian evolution, ζ = 2, α = 0.1, and ωc = 4. The
blue solid, yellow dotted, and green dashed lines almost overlap in (b) and (c). All of the colored lines overlap in (d)–(f).

052404-10



QUANTUM CORRELATIONS OF A TWO-QUBIT SYSTEM … PHYSICAL REVIEW A 106, 052404 (2022)

FIG. 11. Entanglement vs time in the Ohmic baths with different coupling strengths to the baths: (a) α = 0.001, (b) α = 0.01, and (c)
α = 0.1. The red dashed line represents PT TEBD with a memory cutoff δkmax = 40, which captures the full non-Markovian effect. The green
dotted line represents the PT TEBD with a memory cutoff δkmax = 1, which is the Markov approximation used in this paper. The blue solid
line represents the Bloch-Redfield theory under the Born-Markov approximation. The temperatures of the two baths are T1 = T2 = 0.2. The
system evolution starts from |00〉. The other parameters are ωc = 4 and δt = 0.2.

E. Comparison with the Bloch-Redfield master theory

We now comment on the Markov approximation used
in our paper. This approximation is similar to the classical
Markov approximation, which means that the probability for
a stochastic process to take the value xn+1 at time tn+1, under
the approximation that it assumed values xi at previous times
ti, only depends on the preceding value xn at time tn. When the
memory cutoff δkmax > 1, the δkmax-rank ADT that encodes
the evolution history of the system is propagated in QUAPI
and the quantum dissipative process can be viewed as the
Markovian dynamics for an ADT [23,24]. When δkmax = 1,
the ADT degenerates into a density matrix. The Markov ap-
proximation used here is superior to the usual Bloch-Redfield
approach. The main distinction is that the Born approxima-
tion, which is valid only up to order g2 in the perturbation
parameter, is not used here. Hence, the system-environment
entanglement is preserved and contributes to the system’s
evolution. The second Markov approximation in the literature
(assuming that the integral limits of time t can be extended to
∞) is also not used here [11,73]. In Fig. 11 we compare the
results from different approaches, including the PT TEBD al-
gorithm with different cutoffs and the Bloch-Redfield master
equation theory. The behaviors of the concurrences are very
similar in the various approaches when the coupling strength
is weak, α = 0.001, in Fig. 11(a). All of them oscillate and
decay. The Bloch-Redfield master equation theory performs
relatively well in this coupling regime. The trends overlap in
PT TEBD with different cutoffs, which alludes to the memory
effect being insignificant in this coupling regime. The differ-
ence in results between these diverse approaches may come
from the nonvanishing system-environment correlations. For
an intermediate coupling strength α = 0.01, the entanglement
vanishes more quickly in PT TEBD than in Bloch-Redfield
theory. The Markov approximation used in PT TEBD still
works well in the intermediate coupling regime α = 0.01 in
Fig. 11(b). For a strong coupling strength α = 0.1, the dy-
namics in PT TEBD and Bloch-Redfield theory are dissimilar
in Fig. 11(c). The Markovian approximation loses efficacy
here. The three approaches give different predictions with a

strong coupling strength. The entanglement is revived when
the memory is fully conserved but dies permanently in the
other two approaches. As we envisioned, the memory effect is
significant in the strong coupling regime.

We discover that memory can boost the correlations at
fixed times. However, more memory is not always better
and too much memory can also cause decoherence. This is
illustrated in Appendix A. We also examine how to confront
decoherence from the environment in practical teleportation in
Appendix B. The decay rates of entanglement and the fidelity
of quantum teleportation can be slowed down drastically by
regulating the external field.

IV. DISSIPATIVE DYNAMICS OF THE
AUBRY-ANDRÉ MODEL

A. Evolution of the imbalance and entanglement

It has been shown that the entanglement in the localized
phases of matter may persist for a long while [44]. Hence,
it is possible to protect the entanglement of the system by
introducing the disorder into the environment. There are two
questions to answer. First, most studies on the MBL and AL
are concentrated on the closed system. It will be thermalized
eventually if the system is open. However, can we still identify
the ergodic phase and the MBL or AL phase, especially when
the system strongly interacts with the environment? Second,
can we protect the entanglement of the system by introducing
the disorder into the environment? To answer the above ques-
tion, we extend our model from a two-qubit system to a spin
chain. Consider a finite spin-1/2 chain with open boundary
conditions containing N sites. The Hamiltonian of the system
is given by

HXXZ =
∑

i

J
{
Sx

i Sx
i+1 + Sy

i Sy
i+1

} + �Sz
i Sz

i+1 −
∑

i

hiS
z
i .

(17)
When � �= J and � �= 0, it is an XXZ chain; when � = 0,
the model is called the XX -spin chain model; when � =
J , it is called the Heisenberg chain. All of these models
have a U(1) symmetry and the

∑
i Sz

i is conserved. After the
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FIG. 12. Shown on top is the imbalance dynamics in various phases. The red solid line is the average value. On the bottom is the
entanglement dynamics in various phases. The time step δt = 0.2. The truncation error ε = 10−6 for performing TEBD.

Jordan-Wigner transformation, the above spin-1/2 XXZ chain
model is equivalent to the interacting spinless fermionic
model,

H =
∑

i

J

2
{c†

i ci+1 + cic
†
i+1}

+ �
∑

i

(
ni − 1

2

)(
ni+1 − 1

2

)
−

∑
i

hini, (18)

where ci (c†
i ) are creation (annihilation) operators and n =

c†
i ci are occupation number operators at site i. When the

system is in a quasiperiodic potential hi = h cos(2πβi) and
� = 0, the model corresponds to the well-studied Aubry-
André model [74]. Owing to the duality of the Aubry-André
model (as it retains the same form after a Fourier transfor-
mation), h/J = 1 is the phase transition point. Here h/J > 1
corresponds to the Anderson localization. In the following,
we set J = 1 as the unit of energy. When � �= 0, it is an
interacting Aubry-André model, in which the MBL phase also
emerges. There have been numerical results showing that the
critical disorder is at hc ≈ 2.4 ± 0.25 in such a model [75].
The external environment influences the evolution of the chain
system. We assume that there is a bath coupled to the first site;
the bath Hamiltonian plus the interaction Hamiltonian is

Hbath + Hinteraction =
∑

k

ωka†
kak + Sz

1

∑
k

gka†
k + g∗

kak . (19)

We mainly consider the environment with its Ohmic
spectrum J (ω) = ∑

k |gk|2δ(ω − ωK ) = 2αωe−ω/ωc in this
section. The spin number is N = 8. We numerically
simulate the dynamics of an initial state 1√

2
(|11010101〉 +

|01010100〉), which means that the two ends of the spin chain
are maximally entangled initially. A similar setting has been
studied in the XXZ model [44]. However, the AA model and
the dissipative effect from the environment have been not con-
sidered. Let us first consider the spin chain isolated from the
environment. To distinguish the phases of the chain, we define

the imbalance I (t ) = Nodd(t )−Neven(t )
Nodd(t )+Neven(t ) . The experiments and the-

ory have shown that the I (t ) vanishes in the ergodic phase but
keeps a nonvanishing value in the localization phases [52,59].

Restricted by computing power, our research can only
concentrate on finite time zones. In Fig. 12 we display the
dynamics of imbalance for both the interacting and noninter-
acting cases. When h = 0.6, the imbalance decays, rises, and
falls around zero for � = 1 and the time average value is very
close to zero. Therefore, the AA chain under these parameters
is in the ergodic phase. When h = 4, the time average of
imbalance keeps a finite value and fluctuates around it. These
confirm a localization phase, in which the system keeps a
memory of the initial state. More concretely, it corresponds to
the MBL phase when � = 1 and the AL phase when � = 0,
respectively. The entanglement dynamics of the chain’s ends
is also computed. From the viewpoint of the open system
theory, the ends serve as a two-qubit system and the remaining
qubits can be viewed as a high-temperature environment. The
concurrence declines to zero rapidly in the ergodic phase
and also revives, but soon dies again at some later time.
The entanglement fluctuates around some finite value in the
MBL or AL phase. Meanwhile, the entanglement exhibits a
fluctuation behavior over a larger timescale in the MBL phase.
The time average of the concurrence in AL is larger than that
in MBL. The differences in imbalance and concurrence in
ergodic and MBL (AL) phases originate from the diffusion
of a particle’s wave packet being absent in a disordered (qua-
sidisordered) environment, implying the initial information is
partially reserved. In addition, the slow entanglement spread-
ing in the MBL and AL phases is limited by a version of the
Lieb-Robinson bound on the information light cone and can
be depicted via out-of-time-order correlations [44,76]. The
nonvanishing entanglement sheds light on applying the MBL
or AL phase to store quantum information.

We now study the dissipative dynamics of the AA chain,
whose first site couples to an Ohmic bath. We find totally dis-
tinct imbalance dynamics in the ergodic phase or the MBL or
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FIG. 13. Imbalance vs time t when the first site in the AA chain couples with the Ohmic environment with different temperatures. The
coupling strength is α = 0.1. The time step is δt = 0.2. The memory cutoff is δkmax = 40. The truncation error ε = 10−5 for performing TEBD
and ξ = 10−5 for deriving the process tensor.

AL phase. The imbalance decays to zero rapidly in the ergodic
phase. The higher the temperature is, the faster the decay
becomes. This is shown in Fig. 13 with the parameters � = 1
and h = 0.6. The imbalance dynamics is slightly influenced
by the bath at low temperatures, for instance, T = 0.1 and
1, but changes significantly by the relatively high temperature
T = 10 in the MBL phase at the parameters � = 1 and h = 4.
The thermalization effect is more significant at high tempera-
tures, which aligns with intuition. These phenomena also take
place in the AL phase at the parameters � = 0 and h = 4. We
also observe that the imbalance dynamics in the MBL phase
changes more remarkably than that in the AL phase at T = 10.
One can anticipate that the AA chain in all cases will be ther-
malized at the long time limit and the dissipation eventually
eradicates localization. However, the systems with MBL or
AL and ergodic Hamiltonians behave notably differently en
route to the steady state. This is consistent with [63–66] and
hints that the imbalance in the early evolution can still be a
reliable observable to identify localization or ergodic phase
even when the system strongly interacts with the bath.

Why does the imbalance influenced by environment in the
distinct phases behave differently and why is the AA chain in
the MBL phase thermalized more easily than in the AL phase?

We attempt to comprehend these issues through the lens of
the eigenenergy spectrum. Certain systems’ eigenmodes res-
onate with the modes of the bath with the corresponding
eigenenergy. As a consequence, the effect of the interaction
is the most obvious at this moment and so is the thermal
flux from the bath. The resonance strength is also bounded
by the spectrum density J (ω), preventing all of the system’s
eigenmodes from interacting with the bath. Taking the impact
of the temperature into account, the thermal flux from the bath
should be proportional to J (ω)n(ω). In Fig. 19 in Appendix C,
one can observe that of the three phases, the ergodic phase
has the greatest number of eigenmodes that can resonate with
bath modes, followed by the MBL phase and the AL phase.
Meanwhile, the total flux contributed by the resonant response
of all eigenenergy levels is the most significant in the ergodic
phase and that in the MBL phase ranks second and so on. As a
result, the AA chain in the ergodic phase is most dramatically
thermalized, while that in the MBL phase ranks second.

The entanglement dynamics between the AA chain’s ends
while one of the ends couples with a heat bath is computed
in Fig. 14. The concurrence dramatically decreases to zero in
the ergodic phase. Additionally, the descent accelerates upon
increasing the temperature. There is no further revival in such
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FIG. 14. Entanglement dynamics when the first spin in the AA chain couples with the Ohmic environment with different temperatures.
The parameters are similar to those in Fig. 13.

a case. The concurrence damps in an oscillatory manner when
the bath is at low temperatures, for instance, T = 0.1, yet
when the bath is at high temperatures in the MBL or AL
phase, it also swiftly decreases to zero. This means that in
environments at high temperatures, it is impossible to discern
between different phases of entanglement evolution. Unlike
imbalance dynamics, the detection of entanglement evolution

can only be employed as an effective means to distinguish
various phases in a transient time period even at low temper-
ature. Why does this happen? First of all, the imbalance is
the mean property of the whole chain and requires a longer
relaxation time. Meanwhile, the entanglement will scramble
to the environment drastically since the bath couples directly
to one of the entangled ends. Thus, the entanglement can no

FIG. 15. Entanglement dynamics when the fourth spin in the AA chain couples with the Ohmic bath at temperatures T = 0.1, 1, and 10.
The parameters are similar to those in Fig. 13.
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FIG. 16. Entanglement dynamics of the system (from left to right) without buffer, with ergodic buffer, with MBL buffer, and with AL
buffer. The temperatures of the baths are T1 = 0.8 and T2 = 0.2. The other parameters are similar to those in Fig. 13.

longer be regarded as a global observable to detect the phase.
To verify this point from the side, we also compute the entan-
glement evolution when the bath couples with the fourth spin
in Fig. 15. The concurrence takes a perceptible amount of time
to decline to zero in the localization phase. In particular, the
existence of the bath only affects the entanglement evolution
slightly in the AL phase. Since there is no direct interaction
between the ends and the heat bath, the environment must first
change the overall nature of the chain before it can further
affect the entanglement of the chain’s ends. To put it another
way, the middle part of the quasidisordered chain acts as a
buffer layer to weaken the spreading of entanglement if the
chain’s ends serve as a two-qubit system. Does this mean that
we can exploit the disordered environment as a buffer layer to
protect the quantum correlation of the system?

B. Entanglement protection: Disordered environment
as a buffer layer

To answer the above question, we investigate the follow-
ing scenario. There is an AA chain with eight sites, whose
two ends are coupled to individual Ohmic baths. The fourth
and the fifth site are maximally entangled, which can be
regarded as the system that needs to be protected. Other
sites, which can be regarded as a protective layer, are all
initially in the ground states. We compute the entanglement
dynamics of the system. As a contrast, we simultaneously
compute the entanglement evolution of the system with-
out the protective layer, i.e., the system couples with the
baths directly, as shown in Fig. 1. The system Hamiltonian
in the unprotected case is HS = ∑

i=4 J{Sx
i Sx

i+1 + Sy
i Sy

i+1} +
�Sz

i Sz
i+1 − ∑

i=4,5 hiS
z
i , where � = 1 and hi = 4 cos(2πβi).

The bath Hamiltonian plus the interaction Hamiltonian for the
single site is the same as Eq. (19).

According to Fig. 16, the entanglement in the bare system
decays to zero in a remarkably brief period of time. Moreover,
the buffer layer has no significant effect if it is in the ergodic
phase. In contrast, the entanglement decays relatively slowly
in a buffered system, where the buffer layer is modeled by the
quasidisordered spin chain in the MBL and AL phases. As we
have seen, the AL buffer layer offers greater protection than
the MBL buffer layer. This is also consistent with our earlier
finding that the AA chains are more resistant to thermalization
in the AL phase. We forecast that the entanglement of the
system with the buffer disappears after a considerable amount

of time. This may offer a fresh concept for the storage of
quantum information.

V. CONCLUSION

We have used the numerically exact PT TEMPO algorithm
to study the quantum correlations within a two-qubit system
in different types of reservoirs. Unlike for a system under the
Markovian approximation, the memory influences the corre-
lation dynamics significantly. Entanglement can reoccur after
sudden death and persist for a long period of time. We find
that environments with memory show a weak decoherence
effect. The memory can improve the harvesting quantum cor-
relations while reducing them depending on the lengths of the
memories. For the various types of baths, the behaviors of the
quantum correlations are somewhat distinct. The differences
are mainly embodied in the duration and the amplitudes of
the oscillations. Concretely, the quantum correlations of the
two qubits oscillate for the longest time in the super-Ohmic
baths, while reaching a steady state the fastest in the sub-
Ohmic baths. The super-Ohmic environment has the strongest
memory effect. After a fixed significant period of time, the
correlations can show nonmonotonic behaviors with varying
temperatures or temperature differences. Under certain con-
ditions, nonequilibrium can boost the quantum correlations.
This suggests a possible method of applying environmental
engineering to promote or maintain the quantum correlations.
We also compared the PT TEBD under the Markovian ap-
proximation with the Bloch-Redfield master equation. The
results for the dynamic behaviors show that the PT TEBD
under the Markovian approximation used in our paper exceeds
the performance of the Bloch-Redfield master equation. The
behaviors are similar when the system-bath coupling is weak.
The differences may derive from the Born approximation used
in the master equation, which omits system-environment cor-
relations. The PT TEBD under the Markovian approximation
still performs well in the intermediate system-bath coupling
regime, but the master equation does not. The dynamic behav-
iors are distinct when the system-bath coupling is strong and
the Markovian approximation loses efficacy. We anticipate
that only the PT TEBD contains the total memory to provide
an exact prediction.

The AA chain at a specific initial state with bipartite entan-
glement, strongly coupled with a bath, was also investigated.
The dynamics of the imbalance and entanglement of the ends
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FIG. 17. Variations of the quantum correlations with respect to the memory cutoff and the temperature difference at the fixed time t = 20:
(a) Ohmic, ζ = 1; (b) sub-Ohmic, ζ = 0.6; and (c) super-Ohmic, ζ = 2. The temperature of one of the two baths is 0.01 and the temperature
of the other bath increases above 0.01. The time step is δt = 0.2 for both Ohmic and sub-Ohmic baths and δt = 0.1 for super-Ohmic baths.

were computed. When the AA chain is closed, the behaviors
of the imbalance and the entanglement are totally different
in the ergodic and the MBL or AL phase. The nonvanishing
entanglement sheds light on applying the MBL or AL phase
to store quantum information. Once there is a bath coupled
with the first site of the chain, the imbalance disappears more
rapidly in the ergodic phase. However, it is only at relatively
high temperatures that the environment significantly changes
the imbalance dynamics in localization phases. Predictably,
in all cases, the AA chain will be thermalized over a long
period of time and dissipation will eventually destroy the
localization. However, on the way to a steady-state system
with MBL or AL and an ergodic Hamiltonian, the behavior
is markedly distinct. That means that the imbalance in the
early evolution can still be a valid observable to differentiate
localization or ergodic phases. We understand this in terms
of whether the eigenmodes of the system can resonate with

the environment and lead to energy exchange. The overall
effect is that the response heat flux from the environment is
the largest in the thermal phase, followed by the MBL phase.
The entanglement of the ends will swiftly break up once there
is a direct interaction between the ends of the chain and the
bath. When the environment is not directly coupled to the
entangled ends but to intermediate sites, the entanglement of
the chain’s ends persists for a long time, which motivates us
to take advantage of the disordered environment as a buffer
to preserve quantum correlations. This was validated in the
following comparisons.
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APPENDIX A: EFFECT OF NONEQUILIBRIUM
AND MEMORY ON QUANTUM CORRELATIONS

To see the influence of nonequilibrium and memory on the
quantum correlations, we plot the variations of the quantum
correlations with respect to the memory cutoff and the tem-
perature difference at a fixed time t = 20 in Fig. 17. It is
clear that the memory can improve the harvesting quantum
correlations in all cases. In Fig. 17 the correlations are seen to
be enhanced by more memory, but they can also be lowered.
This shows that more memory is not necessarily always better
for improving quantum correlations. The entanglement varies
monotonically with the temperature difference and nonequi-
librium may amplify the geometric discord and coherence in
this case, as shown in Fig. 17.

APPENDIX B: ENVIRONMENTAL ENGINEERING
AND TELEPORTATION

We observed the effects of nonequilibrium and memory on
the system’s evolution in the Appendix A and this implies
that we can employ environmental engineering to preserve
or enhance the correlations. In some experiments, the tem-
peratures and the system-environment couplings can both be
relatively flexibly controlled, e.g., for transmon qubits cou-
pled to a one-dimensional transmission-line resonator in a
circuit-QED system [77]. Specific phenomena can be realized
by fine-tuning the electromagnetic fields and other physical
parameters. Actually, coherent control via periodic driving
dubbed Floquet engineering has become a versatile tool in
quantum control [78,79]. Inspired by this, we consider uti-
lizing environmental engineering and external field control
to influence the quantum correlations within the two-qubit
system. For the practical scenario of quantum teleportation,
we will employ this kind of environmental engineering to
enhance fidelity.

The separate initial maximally entangled qubit pair suffer
from the decoherence effect in the qubit distribution proce-
dure. Certain powerful approaches have been proposed to
weaken the decoherence effect and improve the fidelity, for
example, weak quantum measurement [80] and environment-
assisted measurement [81] technology. However, most of the
quantum channels considered are simple phase damping chan-
nels, amplitude damping channels, etc., or their combinations.
Only a few studies have considered the non-Markovian chan-
nel [82,83]. Here we propose a more complicated quantum
channel. The total Hamiltonian of the single qubit plus its bath
is modeled as

Htotal = HS + HSB = HS + HB + HI . (B1)

The system Hamiltonian is HS = ω
2 σz + �(t )

2 σx, where �(t )
2 σx

is induced by the controlled external field and �(t ) =
� sin(�t ) in this study. A similar Hamiltonian has been stud-
ied theoretically and experimentally in quantum-dot systems
[31,84]. The controlled external field is the heart of environ-
mental engineering. The remaining part of the total Hamilto-
nian HB + HI = ∑

k ωkâ†
k âk + σz

∑
k (gkâ†

k + g∗
kâk ). There is

no interqubit interaction in this case. The optimal fidelity of a
general mixed state ρ over all strategies is given as [85]

F = 1
2

[
1 + 1

3 Tr(
√

C†C)
]
, (B2)

FIG. 18. (a) Entanglement and (b) fidelity vs time in the
Ohmic baths with different external field control strengths �(t ) =
� sin(�t ). The blue solid line with circles represents � = 0. The red
solid line with triangles represents � = 10. The green solid line with
squares represents � = 100. The orange solid line is 2

3 , which is the
upper bound for classical teleportation. The temperatures of the two
baths are T1 = T2 = 0.2. The other parameters are ωc = 5, δt = 0.1,
α = 0.1, δkmax = 30, and � = 50. We use a Gaussian-type cutoff in
the density spectrum here, i.e., J (ω) = 2αω exp(− ω2

ω2
c

).

with C already defined in Eq. (15). Note that the state forming
the quantum channel is useful for teleportation only when
F > 2

3 , which is the upper bound for classical teleportation
[86].

The system evolution starts from the maximally entangled
state 1√

2
(|00〉 + |11〉). In Fig. 18 we plot the variation of the

concurrence and fidelity with time and see that their behaviors
are similar. When � = 0, there is no external field control and
both decrease monotonically. However, the concurrence and
fidelity oscillate rapidly and the decay trends are significantly
reduced once we introduce the external field. Remarkably, the
descending slope of the fidelity is minimal when � = 100.
The introduced external field that regularly drives the system’s
dynamics competes with the thermal baths from which the dis-
sipative dynamics originates. This can lead to the attenuation
of the decoherence effect. Therefore, one can use a suitable
modulated external field to prevent the entanglement from de-
caying quickly and hence enhance the fidelity. A more clever
method to enhance entanglement and fidelity that combines
environmental engineering and other technologies is left for
future study.

APPENDIX C: RESONANT RESPONSE OF THE AA CHAIN
TO THE OHMIC ENVIRONMENT

In the main text we argued that the thermal flux from the
heat bath should be proportional to J (ω)n(ω). Here J (ω)n(ω)
varies with ω at different temperatures, as plotted in Fig. 19.
The various marks on the line represent the eigenmodes in
the MBL, AL, and ergodic phases, respectively, which can
resonate with the corresponding modes in the bath. One can
observe that, of the three phases, the ergodic phase has the
greatest number of eigenmodes that can resonate with bath
modes, followed by the MBL phase and the AL phase. Mean-
while, the total flux contributed by the resonant response of all
eigenenergy levels is the most significant in the ergodic phase,
and in the MBL phase it ranks second and so on. As a result,
the AA chain is thermalized most dramatically in the ergodic
phase, followed by the MBL phase.
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FIG. 19. Variation of J (ω)n(ω) with respect to ω at different temperatures. The green triangles, red diamonds, and black stars represent
the eigenmodes in the MBL, AL, and ergodic phases, respectively, which can resonate with the corresponding modes in the bath.
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