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Tensor networks offer a novel and powerful tool for solving a variety of problems in mathematics, data science,
and engineering. One such network is the multiscale entanglement renormalization ansatz (MERA). The MERA
exhibits a hierarchical structure of layers, where each layer corresponds to a particular length (or energy) scale.
The structure can be easily constructed using isometric and disentangler transformations. The following question
arises: Is it possible to use the MERA to build hierarchical quantum secret sharing (HQSS)? The paper answers
the question in the affirmative. In particular, it shows how a hierarchy of participant trust and authority relates to
a MERA structure. The structure consists of binary and ternary MERA modules, which generate secret shares for
participants. Because a binary MERA can be replaced by its ternary sibling and vice versa, our HQSS scheme is
dynamic, allowing promotion and demotion of participants from the different layers but also enrollment of new
ones and disenrollment of old ones from the same layer. The correctness and security of our dynamic hierarchical
quantum secret sharing scheme are discussed.
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I. INTRODUCTION

Threshold secret sharing was introduced independently
by Shamir [1] and Blakley [2]. The Shamir scheme applies
polynomial interpolation, while the Blakley scheme uses ge-
ometric objects. In both schemes, there is a group of n
participants. Each participant holds their share. The schemes
allow recreating a secret by any t participants. In many appli-
cations, however, some participants are more trustworthy than
others. For example, in the banking industry, a branch head
is more trustworthy than a clerk. To deal with such circum-
stances, hierarchical secret sharing (HSS) has been proposed.
There are many HSS solutions in the literature. In the Kothari
scheme [3], the secret is a scalar and shares are linear varieties.
In the Tassa scheme [4], polynomial derivatives are used to
achieve different levels of authorization (trust). Farras and
Padró [5] used the properties of hierarchically minimal vectors
to construct an ideal HSS. Based on Birkhoff interpolation,
Traverso et al. [6] presented their dynamic and verifiable HSS.
Recently, Chen et al. [7] designed a multipartite HSS, which
is based on polymatroid-based techniques and linear algebraic
techniques. Zhang et al. [8] proposed a decentralized and
fair hierarchical threshold secret sharing using blockchain.
Yuan et al. [9] constructed a hierarchical multisecret sharing
scheme. Their scheme is based on linear homogeneous recur-
rence relations and a one-way function.

A quantum variant of HSS was first studied by Wang et al.
[10]. In their hierarchical quantum secret sharing (HQSS)
scheme, participant authorizations belong to one of two pos-
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sible levels. The follow-up works explore various entangled
states, including six-qubit cluster states, eight-qubit cluster
states, nonmaximally four-qubit cluster states, and arbitrary
two-qubit states via the cluster state [11–16]. All the above
HQSS schemes allow sharing a single secret only. However, in
many applications, there is a need to handle multiple secrets.
This is the case where groups with different authorization lev-
els wish to share their secrets among themselves. For instance,
in a drug company, directors may need to share highly sen-
sitive information about a new drug formula with managers
about a production plan and workers about a work timetable
roster.

Qin et al. [17] designed their HQSS using a special high-
dimensional entangled state. At different authorization levels,
participants share secrets in different ways. The hierarchy of
secrets means that participants at the ith level can collectively
recover the secret on the level but also all secrets from levels
below, i.e., i − 1, . . . , 1; conversely, secrets above the ith level
are not accessible. This secret sharing is static and does not
allow participants to be promoted (i.e., moved to a higher
level of hierarchy) or demoted (i.e., dropped to a lower level).
Mishra et al. [18] proposed their dynamic hierarchical quan-
tum secret sharing (DHQSS) that permits the movement of
participants up and down along a hierarchical structure.

Tensor networks developed in [19–21] offer an exciting
and new approach to solving various problems in mathe-
matics, data science, machine learning, and quantum key
distribution [22–31]. In particular, the multiscale entan-
glement renormalization ansatz (MERA) is a fascinating
refinement of tensor networks [32,33]. It provides solutions
to error correction [34,35] and machine learning [36,37]
problems. Tensors in the MERA are organized in layers,
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FIG. 1. Hilbert space coarse graining with one block equal to two sites.

where each layer corresponds to a different length (or energy)
scale. In other words, using entanglement renormalization and
isometric operations, a layer (hierarchical) structure of the
MERA is formed with a new state.

Inspired by the new developments in quantum secret shar-
ing, we investigate the potential of the MERA in designing
new DHQSS. Note that the MERA exhibits an inherent hierar-
chical structure. Each level of the structure corresponds to an
appropriate length scale. The MERA seems to be a suitable
tool for quantum many-body state sharing. In addition, both
the binary MERA and the ternary MERA allow the movement
of participants from the different layers up and down along
a hierarchical structure. Additionally, new participants from
the same layer can be enrolled and old ones from the same
layer can be disenrolled. Our MERA-based solution shares
the advantages of the schemes of Qin et al. [17] and Mishra
et al. [18]. Note that the MERA is also a high-dimensional
entangled state. Lancien et al. pointed out in [38] that a
high-dimensional entangled state is more robust against noise
than a low-dimensional one [39]. Another advantage of the
application of entangled states is better security. Shares held
by participants are unknown before measuring a state of a
particle that carries a share. Even a dealer does not know
participant shares. Note that in classical secret sharing, the
dealer knows all shares. This means that QSS offers a higher
security level.

The rest of the paper is organized as follows. Section II
introduces the background. Section III describes our HDQSS.
The correctness of our HQMBSS is proven in Sec. IV. Perfor-
mance analysis is presented in Sec. V. Section VI summarizes
the paper.

II. BACKGROUND

This section presents two main building blocks of our
schemes. We first introduce entanglement renormalization,
which includes coarse-graining transformation and boundary
deforming. Next we define the multiscale entanglement renor-
malization ansatz and discuss its properties.

A. Entanglement renormalization

We define the Hilbert space before renormalization as

H ≡
⊗
s∈L

Hs, (1)

where s indicates a site on lattice L. The renormalized Hilbert
space is defined as

H ′ ≡
⊗
s′∈L′

H ′
s′ . (2)

In the spirit of coarse graining (see Fig. 1), one site s′ after
renormalization corresponds to multiple sites {s} ≡ B ⊂ L
(called a block) before renormalization. We relate the Hilbert
spaces (before normalization and after normalization) accord-
ing to the linear mapping

w : H ′
s′ → HB =

⊗
s∈B

Hs, (3)

where w is called an isometry such that w†w = I . Here isom-
etry refers to the mapping of the inner product (modulus)
preservation, that is,

|ψ〉 → w|ψ〉, |φ〉 → w|φ〉,
w†w = I ⇒ 〈φ|ψ〉 = 〈φ|w†w|ψ〉. (4)

The isometry w guarantees that the inner product of two
quantum states in a small space is equal to the inner product
of their images mapped to a large space. Note that in Sec. III,
the isometry w is used to design a hierarchical structure for
quantum state secret sharing. Obviously, w is not an invertible
mapping, but it can induce an inverse mapping w′ as

w′ :
⊗
s∈B

Hs → H ′
s′ . (5)

The way of induction is to shrink the indicators on different
sides of the tensor (the following will not distinguish between
the two in terms of notation, that is, we uniformly use the
symbol Hs; see Fig. 1). In fact, it is equivalent to unitary plus
projection (or projection). That is, we take a certain unitary
transformation of several columns, similar to the truncation
operation in the singular value decomposition. Its physical
interpretation is to recombine and distribute the degrees of
freedom of the block into short-range, high-energy, and ir-
relevant parts and long-range, low-energy, and relevant parts
before discarding the former and outputting merely the latter
as shown in Fig. 2.

We divide the original lattice into different blocks so that
each block B corresponds to wB. By mapping each block, the
original quantum state can be coarse grained into a new state
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(a) (b)

FIG. 2. Flow chart of the real-space renormalization-group transformation for (a) the binary MERA and (b) the ternary MERA.

in a subspace, that is,

W =
⊗
B

wB, |�〉 → |� ′〉 = W |�〉. (6)

Therefore, the role of w is to select a subspace H′
s′ such

that |� ′〉 obtained by projection contains all relevant
properties of |�〉.

The disadvantage of the above coarse graining is that en-
tanglement between blocks is “roughly” truncated. This issue
leads us to the following question: Can short-range entangle-
ment between blocks be manually weakened by a local unitary
transformation before coarse graining? The answer is yes. To
be exact, for all n adjacent sites on both sides of the partition
boundary ∂ (for a one-dimensional system n = 2), an n-qubit
unitary gate ui is applied to address the problem, which is

U =
⊗
i∈∂

ui, (7)

uiu
†
i = u†

i ui = I ⊗ I, (8)

where ui is called a reversible disentangler (see Fig. 3). Dis-
entanglers preserve information and the dimension of the state
space of the sites. Isometries pack two or three sites into one,
keep the ground-state properties, and project high-dimension
states in the low-energy subspace.

One may ask the following question: Does a random ap-
plication of the disentangling (unitary) transformation change
the properties of the original quantum state? One can argue
that a local unitary transformation can only alter a short-
range entanglement. In addition, a short-range entanglement
is inherently unimportant for the state after coarse graining.
Consequently, such a local unitary transformation is allowed
when necessary. Moreover, disentangling transformation reor-
ganizes or adjusts the border between blocks, while entangled
degrees are on the same side of the border.

We take an example from the work in [40] to explain
how disentanglers work. The example includes four spin- 1

2
(r1s1s2r2) particles in a chain and an isometry matrix w that
is used to coarse grain the two middle particles. A whole
many-body state is described by

|ψ〉 = 1√
2

(|0〉r1 |1〉s1 + |1〉r1 |0〉s1

) 1√
2

(|0〉r2 |1〉s2 + |1〉r2 |0〉s2

)
= 1

2
(|0101〉 + |0110〉 + |1001〉 + |1010〉).

Obviously, pairwise spins of particles (r1, s1) and (r2, s2)
are in maximally entangled states, which is the worst case.
It means that the following reduced density matrix is in the
maximally mixed state:

ρs1s2 = Trr1r2ρ = Trr1r2 |ψ〉〈ψ |
= 1

4 (|00〉〈00| + |11〉〈11| + |10〉〈10| + |01〉〈01|).
Coarse graining causes many errors if we want to retain the
whole state space. Thus, we use a disentangler u that operates
on the pairs (r1, s1) and (s2, r2). The disentangler is in the
form

u =

⎡
⎢⎢⎢⎣

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦. (9)

When the disentangler u given by Eq. (9) operates on
1√
2
(|01〉 + |10〉), the outcome is⎡
⎢⎢⎢⎣

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0
1√
2

1√
2

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ = |00〉. (10)
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FIG. 3. Illustration of our proposed DHQMBSS based on the binary and the ternary MERA.

In other words, we have

1√
2

(|01〉 + |10〉)
u−→ |00〉. (11)

As demonstrated above, once the disentangler u is applied on
|ψ〉, the state of the four spins becomes |0000〉. Consequently,
the corresponding reduced density matrix is

ρs1s2 = |00〉〈00|.

To sum up, entanglement renormalization consists of the
following two steps: (1) boundary deforming |�〉 → U |�〉
and (2) coarse graining U |�〉 → WU |�〉.

The entanglement between sites after coarse graining actu-
ally reflects the (longer-range) entanglement between blocks
before coarse graining. Therefore, with the iteration of the
entanglement renormalization group (ERG), the short-range
entanglement is continuously renormalized while the long-
range entanglement properties of the quantum state are
gradually extracted (the data in Ref. [34] show this effect
well). That is to say, different ERG layers contain entangled
information of different length scales of the original quantum
state. In other words, different entanglement renormalization
layers contain entangled information of different length scales
of the original quantum state (see Figs. 2 and 3).

Definition 1 (matrix product state [22]). A matrix product
state (MPS) representation of any many-body state is defined

as

|ψ〉 =
∑
s1···sn

∑
a1···an−1

As1
a1

As2
a1a2

· · · Asn−1
an−2an−1

Asn
an−1

× |s1s2 · · · sn−1sn〉,
where As1

a1
and Asn

an−1
represent rank-2 tensors and

As2
a1a2

, . . . , Asn−1
an−2an−1 represent rank-3 tensors.

The above relation can be simplified as

|ψ〉 =
∑

s1s2···sn

As1 As2 · · · Asn−1 Asn |s1s2 · · · sn−1sn〉.

Let take the three-photon many-body state |ψ〉 = 1√
3
(|001〉 +

|011〉 + |110〉), for example. One of the representations
(which is not unique) of the MPS that corresponds to the
many-body state |ψ〉 as

|�〉 =
(

1√
3

0
)(

1 0
0 0

)(
1
0

)
|001〉

+
(

1√
3

0
)(

1 0
0 1

)(
1
0

)
|011〉

+
(

0
1√
3

)(
0 0
0 1

)(
0
1

)
|110〉, (12)

where the coefficient (i.e., the probability amplitude) 1√
3

for
states |001〉, |011〉, and |110〉 is written as the product of three
matrices.
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B. Multiscale entanglement renormalization ansatz

Definition 2 (multiscale entanglement renormalization
ansatz [41–44]). The MERA consists of a series of alternately
arranged unitary matrices (disentangler operators) and isomet-
ric matrices of different scales.

We use two different types of MERA, i.e., binary and
ternary. Figure 2 shows the flow charts of the real-space
renormalization-group transformation for the binary and the
ternary MERA. They will be used in our proposed scheme
(see Sec. III). Compared to a binary MERA, a ternary MERA
scales as a lower power of the bond dimension. In contrast,
if local entanglement needs to be removed, then the binary
MERA is more effective. Hence, the binary MERA can lower
the bond dimension. Moreover, the choices for the block size
can be used to design a dynamic hierarchical quantum secret
sharing.

III. DESIGN OF DYNAMIC HIERARCHICAL QUANTUM
MANY-BODY STATE SHARING FROM MERA

In the section we present our dynamic hierarchical quan-
tum many-body state sharing (DHQMSS) scheme using the
MERA. Our scheme targets theory innovation and its appli-
cations, where access to a document or secret key must be
handled jointly by participants assigned to different layers
of quantum secret sharing. Moreover, participants at differ-
ent layers have different range entanglement. The number of
participants and shared secrets may vary for different layers.
A shared state (secret) at a certain layer is recovered by all
participants at the layer. To determine the final state, however,
participants need classical information provided by a dealer.
Note that any participant from a higher layer is able to obtain
shared secrets by participants at lower layers. The converse
does not hold (see Fig. 3).

Importantly, both the binary MERA and the ternary MERA
are viable alternatives to produce intermediate states in our
scheme. The dealer is able to dynamically adjust secret shar-
ing parameters and execute enrollment and disenrollment
operations to accept new participants and remove the un-
wanted ones from the same layer. Moreover, the promotion
and demotion of participants from the different layers are
allowed in our scheme.

A. Description of DHQMSS

In our secret sharing scheme, both the binary MERA and
the ternary MERA are used to design the hierarchical struc-
ture (see Fig. 3), which is our theoretical innovation in this
paper. Both MERA versions apply similar disentanglers U .
There are, however, subtle differences in functionalities of the
isometries W . The MERA modules in Fig. 3 are constructed
for a lattice L made of N = 16 sites. For a two-to-one (binary)
MERA, its tensors are of types (1,2) and (2,2). The (1,2)
tensors are called an isometry W matrix and the (2,2) tensors
are called a disentangler U . The following relations hold:∑

α,γ

(W )μαγ (W †)αγ

μ′ = Iμμ′,

∑
α,γ

(U )μv
αγ (U †)αγ

μ′v′ = Iμμ′Ivv′ .

For a three-to-one (ternary) MERA, the isometries W are
of type (1,3), but the disentanglers U are still of type (2,2).
Similarly, the following relations hold:∑

α,β,γ

(W )μαβγ (W †)αβγ

μ′ = Iμμ′ ,

∑
α,γ

(U )μv
αγ (U †)αγ

μ′v′ = Iμμ′Ivv′ .

Note that the concept of isometric matrix can be extended to
isometric tensors w(w1,w2), where w(w1,w2) satisfies the
condition

w : Vin → Vout, ww† = I =
(

1 0
0 1

)
. (13)

In our DHQMSS, the secret is a many-body state such as
the MPS that is prepared by 1√

2
(|00〉 + |11〉) and 1√

2
(|01〉 +

|10〉). The entangled state in the MPS is first disentangled by
U and then the long range is compressed into |0〉 or |1〉 by
W to obtain |ψ [i]〉. The disentangler U and isometry matrix W
(note that U and W have many choices, a detailed introduction
in the latter example), |0〉 and |1〉, respectively, are public, but
which exact U and W are used for short-range and long-range
entanglement are private.

Moreover, it is assumed that there are n layers, and
each participant is assigned to one of these layers.
For the jth layer, there are l j participants denoted by
Bob j,1, Bob j,2, . . . , Bob j,l j who can share a quantum many-
body state |ψ〉. Recovery of |ψ〉 requires the collaboration of
all l j participants at the same layer or cooperation of alterna-
tive participants at a proper combination of different layers. In
addition, a participant at the jth layer can acquire the shared
secrets at lower layers, while secrets at higher layers are not
accessible. A more detailed description is given below.

Step 1: Generation of hierarchical states and shares. The
dealer, Alice, first prepares the shared entangled state |ψ〉 of
m = 2n photons (here n and m denote the number of lay-
ers and entangled photons of the shared many-body state,
respectively) and the number of participants is determined
based on a practical setting (because the binary MERA and
the ternary MERA are viable alternatives, which affects the
number of participants). Alice first transforms |ψ〉 into a new
state |ψ [1]〉 ≡ (WU )|ψ〉. Then she allocates a single entangled
photon of |ψ [1]〉 to a single participant from the first layer.
Each participant holds their photon as an individual share.

Using the same method, Alice allocates shares [i.e., |0〉’s
or |1〉’s, which are prepared by compressing the long-range
entangled photons in terms of |ψ [ j]〉 ≡ ( WU · · · (WU︸ ︷︷ ︸

j

|ψ〉))] to the

participants from the jth layer, where j = 1, 2, . . . , n. More-
over, in the processing of the renormalization group (see
Fig. 3), the isometry matrix W and the disentangler U may
differ on the photons of the lattices from the same layer. To be
exact, U (u1, u2, u3, u4, u5, u6) and W (w1,w2,w3,w4), which
are unique option sets on |ψ〉, are defined as

u1 =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0
1√
2

0 0 − 1√
2

⎤
⎥⎥⎥⎥⎦,
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u2 =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦,

u3 =

⎡
⎢⎢⎢⎣

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦, u4 =

⎡
⎢⎢⎢⎣

1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎦,

u5 =

⎡
⎢⎢⎢⎣

0 0 0 1
1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

⎤
⎥⎥⎥⎦, u6 =

⎡
⎢⎢⎣

1√
2

0 0 − 1√
2

0 1 0 0
1√
2

0 0 1√
2

0 0 1 0

⎤
⎥⎥⎦,

w1 =
[

1√
2

0 0 1√
2

0 1√
2

1√
2

0

]
,

w2 =
[

0 1√
2

1√
2

0
1√
2

0 0 1√
2

]
,

w3 =
[

1√
2

0 0 0 0 0 0 1√
2

0 1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

0

]
,

w4 =
[

0 1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

0
1√
2

0 0 0 0 0 0 1√
2

]
.

Note that u1, u2, u3, u4, u5, u6 and w1,w2,w3,w4 can be cho-
sen by the dealer at random. The reason to define the six
disentangler matrices and four isometric matrices is that the
two kinds of two-photon entangled states 1√

2
(|00〉 + |11〉)

and 1√
2
(|01〉 + |10〉) and one kind of three-photon entangled

state 1√
3
(|000〉 + |111〉) are used; these two-photon entangled

states can be disentangled into one of two states of their
own or one of the other states, so, six disentangler matrices
are needed [see Eqs. (14)–(17) and (22)–(25)]. Mean-
while, renormalized two-photon entangled states 1√

2
(|00〉 +

|11〉) and 1√
2
(|01〉 + |10〉) and three-photon entangled states

1√
3
(|000〉 + |111〉) are mapped into a single photon with the

help of isometric matrices, and to guarantee the security of our
scheme, the different two-photon and three-photon entangled
states must have the same probability to be compressed into
|0〉 or |1〉 [see Eqs. (30)–(35)].

Summing up, given an entangled state |ψ〉, the dealer it-
eratively transforms it using the disentanglers and isometric
matrices. As a result, Alice obtains a sequence of hierarchical
states

|ψ〉 WU→ |ψ [1]〉 WU→ |ψ [2]〉 WU→ · · · WU→ |ψ [n]〉, (14)

where |ψ [ j]〉 ≡ ( WU · · · (WU︸ ︷︷ ︸
j

|ψ〉)) and j = 1, 2, . . . , n.

Step 2: Share distribution. Alice sends appropriate shares
to the participants Bob j,1, Bob j,2, . . . , Bob j,l j from the l j ( j =
1, 2, . . . , n) layer via a quantum channel. The transmission of

the sequences is protected by the decoy particles. The detailed
process is described in the next step.

Step 3: Decoy particles for eavesdropping detection.
The dealer prepares decoy particles for randomly cho-
sen bases Bz = {|0〉, |1〉} and Bx = {|+〉, |−〉}, where |±〉 =
(|0〉 ± |1〉)/

√
2. The decoy particles are subsequently inserted

into the shared state sequence randomly, recording the particle
positions and initial states. Upon the receipt of the partici-
pants’ acknowledgment of receiving the particles, Alice, the
dealer, announces the positions of the decoy particles and tells
the participants about a collection of bases to measure decoy
particles.

After the measurement is accomplished, the participants
inform Alice about their outcomes via an authenticated broad-
cast channel. Alice computes the error rate by comparing the
initial states of the decoy particles with participant measure-
ments. If the error rate is higher than a certain threshold,
the protocol is aborted; otherwise, it continues. Note that we
assume that the dealer is honest and follows the protocol
faithfully. This implies that l j participants at the jth layer are
able to reconstruct the many-body state |ψ [ j]〉.

Step 4: Secret recovery. After receiving the entangled
photon sequences from the MPS state, the participants at
the jth layer use the basis {|0〉, |1〉} to measure their par-
ticles. Prior to a recovery of the state |ψ〉, the participants
Bob j,1, Bob j,2, . . . , Bob j,l j need to mutually verify their iden-
tities. If the verification is positive, then they can proceed
with the recovery of |ψ [ j]〉, j = 1, 2, . . . , n. To obtain the
many-body state |ψ〉, the dealer needs to send the specific
U and W to the participants who can use U and W to
obtain U † and W †. Finally, according to Eq. (12), the collec-
tion of Bob j,1, Bob j,2, . . . , Bob j,l j can recover the many-body
state |ψ〉.

B. Examples

Here we are going to illustrate our secret sharing. Figure 3
is also helpful. Suppose that there are 17 participants who are
assigned to three layers of hierarchy. At the first layer, there
are nine participants denoted by Bob1,1, Bob1,2, . . . , Bob1,9.
At the second layer, there are five participants, denoted by
Bob2,1, Bob2,2, . . . , Bob2,5. Three participants Bob3,1, Bob3,2,
and Bob3,3 are at the third layer. Further we assume that
our shared many-body state is a matrix product state in
the form |ψ〉 =∑s1···s16

A[1]A[2] · · · A[15]A[16]|s1s2 · · · s15s16〉,
where A[1], A[16] are vectors; A[2], A[3], . . . , A[15] are all order-
3 tensors of dimension dp × dc × dc; dp is the physical
dimension; and dc is the bond dimension. Note that the
MPS formalism is particularly suited for describing sequential
schemes for the generation of multipartite states.

For the shares of Bob1,1, Bob1,2, . . . , Bob1,9, Alice
first performs operations U (u1, u2, u3, u4, u5, u6) and
W (w1,w2,w3,w4), which are defined in step 1 on |ψ〉.
She obtains |ψ [1]〉. Note that u1, u2, u3, u4, u5, u6 and
w1,w2,w3,w4 can be chosen at random. In the MPS, it
is assumed that any entanglement between two sites is either√

2
2 (|00〉 + |11〉) or

√
2

2 (|01〉 + |10〉) [45]. The vectors can be
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equivalently represented as

√
2

2
(|00〉 + |11〉) =

√
2

2

⎡
⎢⎣

1
0
0
1

⎤
⎥⎦,

√
2

2
(|01〉 + |10〉) =

√
2

2

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦.

When operations u1 and u2 are performed on the vectors to
achieve disentanglement we obtain

u1

⎛
⎜⎝

√
2

2

⎡
⎢⎣

1
0
0
1

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0
1√
2

0 0 − 1√
2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

1√
2

0
0
1√
2

⎤
⎥⎥⎦

=

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ = |00〉, (15)

u3

⎛
⎜⎝

√
2

2

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎣

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0√
2

2√
2

2

0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ = |00〉, (16)

u1

⎛
⎜⎝

√
2

2

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0
1√
2

0 0 − 1√
2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0√
2

2√
2

2

0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ = |01〉, (17)

u4

⎛
⎜⎜⎝

√
2

2

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

0 1 0 0
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

√
2

2

0
0√

2
2

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ = |01〉. (18)

The above calculations in Eqs. (14)–(17) can be abbreviated
as

1√
2

(|00〉 + |11〉)
u1−→ |00〉, 1√

2
(|01〉 + |10〉)

u3−→ |00〉,
(19)

1√
2

(|01〉 + |10〉)
u1−→ |01〉, 1√

2
(|00〉 + |11〉)

u4−→ |01〉.
(20)

Because u1, u3, and u4 are unitary, their inverses are u−1
1 = u†

1,
u−1

3 = u†
3, and u−1

4 = u†
4. Thus we obtain the relations

|00〉 u†
1−→ 1√

2
(|00〉 + |11〉), |00〉 u†

3−→ 1√
2

(|01〉 + |10〉),

(21)

|01〉 u†
1−→ 1√

2
(|01〉 + |10〉), |01〉 u†

4−→ 1√
2

(|00〉 + |11〉).

(22)

Similarly, we have

u2

⎛
⎜⎝

√
2

2

⎡
⎢⎣

1
0
0
1

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

√
2

2
0
0√

2
2

⎤
⎥⎥⎦

=

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ = |11〉, (23)

u5

⎛
⎜⎝

√
2

2

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎣

0 0 0 1
1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0√
2

2√
2

2

0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ = |11〉, (24)

u2

⎛
⎜⎝

√
2

2

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0√
2

2√
2

2

0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ = |10〉, (25)

u6

⎛
⎜⎝

√
2

2

⎡
⎢⎣

1
0
0
1

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎣

1√
2

0 0 − 1√
2

0 1 0 0
1√
2

0 0 1√
2

0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

√
2

2

0
0√

2
2

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ = |10〉. (26)

As before, we abbreviate Eqs. (22)–(25) as

1√
2

(|00〉 + |11〉)
u2−→ |11〉, 1√

2
(|01〉 + |10〉)

u5−→ |11〉,
(27)

1√
2

(|01〉 + |10〉)
u2−→ |10〉, 1√

2
(|00〉 + |11〉)

u6−→ |10〉.
(28)
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As u2, u5, and u6 are unitary, their inverses are u−1
2 = u†

2,
u−1

5 = u†
5, and u−1

6 = u†
6. We can write the relations

|11〉 u†
2−→ 1√

2
(|00〉 + |11〉), |11〉 u†

5−→ 1√
2

(|01〉 + |10〉),

(29)

|10〉 u†
2−→ 1√

2
(|01〉 + |10〉), |10〉 u†

6−→ 1√
2

(|00〉 + |11〉).

(30)

According to Eqs. (20), (21), (28), and (29), if |00〉, |01〉,
|10〉, and |11〉 are known, the corresponding entangled vec-
tor can be calculated. However, according to Eq. (20), the
vectors corresponding to |00〉 can be decoded into two entan-
gled states 1√

2
(|00〉 + |11〉) and 1√

2
(|01〉 + |10〉); according to

Eq. (21), the vectors corresponding to |01〉 can be decoded
into two entangled states 1√

2
(|00〉 + |11〉) and 1√

2
(|01〉 +

|10〉); according to Eq. (28), the vectors corresponding to
|11〉 can be decoded into two entangled states 1√

2
(|00〉 + |11〉)

and 1√
2
(|01〉 + |10〉); according to Eq. (29), the vectors cor-

responding to |10〉 can be decoded into two entangled states
1√
2
(|00〉 + |11〉) and 1√

2
(|01〉 + |10〉), which suggests the de-

coding is not unique. Removing their uncertainty requires
specific information on U (u1, u2, u3, u4, u5, u6).

When the operations w1 and w2 are performed on any long-
range entangled states

√
2

2 (|00〉 + |11〉) or
√

2
2 (|01〉 + |10〉)

and w3 and w4 are performed on long-range entangled states√
2

2 (|000〉 + |111〉), we obtain

w1

(√
2

2
(|00〉 + |11〉)

)

=
√

2

2

[
1 0 0 1

0 1 1 0

]⎡⎢⎢⎢⎣
√

2
2

0
0√

2
2

⎤
⎥⎥⎥⎦ =

[
1
0

]
= |0〉, (31)

w1

(√
2

2
(|01〉 + |10〉)

)

=
√

2

2

[
1 0 0 1
0 1 1 0

]⎡⎢⎢⎢⎣
0√

2
2√
2

2

0

⎤
⎥⎥⎥⎦ =

[
0
1

]
= |1〉, (32)

w2

(√
2

2
(|00〉 + |11〉)

)

=
√

2

2

[
0 1 1 0
1 0 0 1

]⎡⎢⎢⎣
√

2
2
0
0√

2
2

⎤
⎥⎥⎦ =

[
0
1

]
= |1〉, (33)

w2

(√
2

2
(|01〉 + |10〉)

)

=
√

2

2

[
0 1 1 0

1 0 0 1

]⎡⎢⎢⎢⎣
0√

2
2√
2

2

0

⎤
⎥⎥⎥⎦ =

[
1
0

]
= |0〉, (34)

w3

(√
2

2
(|000〉 + |111〉)

)

=
√

2

2

[
1 0 0 0 0 0 0 1
0 1 1 1 1 1 1 0

]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2
0
0
0
0
0
0√

2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

1
0

]
= |0〉, (35)

w4

(√
2

2
(|000〉 + |111〉)

)

=
√

2

2

[
0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1

]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2
0
0
0
0
0
0√

2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

0
1

]
= |1〉. (36)

Alice determines

|ψ [1]〉 =
∑
s′

1···s′
9

A[1]
1 · · · A[9]

1 |s′
1 · · · s′

9〉

and sends |s′
1〉, . . . , |s′

9〉 to Bob1,1, Bob1,2, . . . , Bob1,9, respec-
tively. Communication is done via a quantum channel with
decoy states. The A[1]

1 , A[2]
1 , . . . , A[9]

1 are obtained by U and W ,
which are transmitted via an authenticated classical channel.
In a similar way, Alice calculates shares and distributes them
to Bob2,1, Bob2,2, . . . , Bob2,5 and Bob3,1, Bob3,2, Bob3,3.

For step 4, Bobi,q knows his W and measures his particles
(see Fig. 4). The following relations hold:

w
†
1|0〉 =

√
2

2

⎡
⎢⎣

1 0
0 1
0 1
1 0

⎤
⎥⎦[10
]

=

⎡
⎢⎢⎣

√
2

2
0
0√

2
2

⎤
⎥⎥⎦ =

√
2

2
(|00〉 + |11〉),

w
†
1|1〉 =

√
2

2

⎡
⎢⎣

1 0
0 1
0 1
1 0

⎤
⎥⎦[01
]

=

⎡
⎢⎢⎣

0√
2

2√
2

2
0

⎤
⎥⎥⎦ =

√
2

2
(|01〉 + |10〉),
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FIG. 4. Graphical presentation of how the isometry W and the
noninjectivity of W † would work in the binary and the ternary
MERA.

w
†
2|0〉 =

√
2

2

⎡
⎢⎣

0 1
1 0
1 0
0 1

⎤
⎥⎦[10
]

=

⎡
⎢⎢⎣

0√
2

2√
2

2
0

⎤
⎥⎥⎦ =

√
2

2
(|01〉 + |10〉),

w
†
2|1〉 =

√
2

2

⎡
⎢⎣

0 1
1 0
1 0
0 1

⎤
⎥⎦[01
]

=

⎡
⎢⎢⎣

√
2

2
0
0√

2
2

⎤
⎥⎥⎦ =

√
2

2
(|00〉 + |11〉),

w
†
3|0〉 =

√
2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 1
0 1
0 1
0 1
0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

1
0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2
0
0
0
0
0
0√

2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
√

2

2
(|000〉 + |111〉),

w
†
4|1〉 =

√
2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0
1 0
1 0
1 0
1 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

0
1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

2
0
0
0
0
0
0√

2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
√

2

2
(|000〉 + |111〉).

Taking into account the above relations and information about
u1, u2, u3, u4, u5, and u6, Bobi,q can recover |ψ〉. It is impor-
tant to note that the secret MPS |ψ〉 can only be recovered
jointly by all participants from the ith layer. Each Bobi,q can
also discover his own secret share sk with k = 1, 2, . . . , i − 1
based on his own measurement outcome.

IV. CORRECTNESS OF DHQMSS

Theorem 1. Given a shared MPS |ψ〉, shares |siq〉 are held
by participants Bobi,q at the ith layer, where i = 1, 2, . . . , n
and q = 1, 2, . . . , li, and W and U . Then all participants at the
ith layer can collectively recover the state |ψ [i]〉 and further
recover |ψ〉.

Proof. According to step 4, participants at the ith
layer, i.e., Bobi,1, Bobi,2, . . . , Bobi,li , measure the particles
|si1si2 · · · sili〉 to obtain the many-body state in the ith
layer, i.e., |ψ [i]〉. Moreover, based on |si1si2 · · · sili〉 and W †,
Bobi,1, Bobi,2, . . . , Bobi,li can obtain the long-range entan-
gled state. Then, according to U †, the states from the
long-range entanglement can be further recovered and so can

their corresponding short-range entangled state. Therefore,
the participants Bobiq at the ith layer can easily derive |ψ〉
based on Eq. (13), and Theorem 1 is proved. �

Theorem 2. Given a shared MPS |ψ〉, shares |siq〉 are held
by participants Bobiq at the ith layer, where i = 1, 2, . . . , n
and q = 1, 2, . . . , li, and W and U . Then all participants
at the ith layer can recover jointly the secret states at
|ψ [i−1]〉, |ψ [i−2]〉, . . . , |ψ [1]〉.

Proof. As described in the proof of Theorem 1, Bobiq at
the ith layer can recover |ψ [i]〉. Then, according to Eq. (13)
and Fig. 3, with W † and U †, Bobiq can further derive
s(i−1) j, s(i−2) j, . . . , s1 j . Therefore, by combining the mea-
sured results of n particles, Bobiq can obtain the secrets
|ψ [i−1]〉, |ψ [i−2]〉, . . . , |ψ [1]〉. This concludes the proof. �

V. PERFORMANCE ANALYSIS

In this section we investigate the confidentiality and secu-
rity of the shared secrets at different layers of hierarchy. We
also discuss the dynamic property of our scheme that allows
us to enroll new participants and disenroll old ones and the
promotion and demotion of participants.

A. Confidentiality at single layer

Before discussing the confidentiality at a single layer, we
need to make clear which parameters are public and which
are secret. In our DHQMSS, the secret is a many-body state
such as the MPS which is prepared by 1√

2
(|00〉 + |11〉) and

1√
2
(|01〉 + |10〉); the entangled state in the MPS is first dis-

entangled by U (u1, u2, u3, u4, u5, u6) and then the long-range
entangled state is compressed into |0〉 or |1〉 by W to obtain
|ψ [i]〉. Here U (u1, u2, u3, u4, u5, u6), W (w1,w2,w3,w4), |0〉,
and |1〉 are public, but which exact U (u1, u2, u3, u4, u5, u6)
and W (w1,w2,w3,w4) chosen by the dealer Alice are used
for short-range and long-range entanglement are private. Also,
there are three kinds of general attackers, that is, an outsider
who is not a participant but who knows the public parameters
and wants to guess or compute secret elements, a single dis-
honest participant who knows all public information and their
own secret share, and a group of colluding and dishonest par-
ticipants who know public information and their own secret
shares.

Participants at the ith layer Bobi,1, Bobi,2, . . . , Bobi,li mea-
sure the particles |si1si2 · · · sili〉 in |ψ [i]〉 to obtain quantum bits
of the ith layer as their shares. Here |ψ [i]〉 is the maximally en-
tangled state generated by Alice and the particles |si1si2 · · · sili〉
are obtained by randomly choosing W (w1,w2,w3,w4). To be
exact, according to Eqs. (30)–(35), the state |0〉 corresponds
to w1,w2,w3 and the state |1〉 corresponds to w1,w2,w4,
respectively. Therefore, to quantify the protocol’s security,
we present a function of our protocol’s input parameters
W (w1,w2,w3,w4) as follows:

Pr(w) =
{ 1

3 for w = wk, k = 1, 2, 3, 4
2
3 for w �= wk, k = 1, 2, 3, 4,

that is to say, the correct probability that the attacker Eve can
guess is 1

3 for |0〉 and |1〉, respectively.
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Moreover, to recover the secret |ψ〉, Eve needs to guess
a correct U (u1, u2, u3, u4, u5, u6) based on Eqs. (20), (21),
(28), and (29). To be exact, according to Eq. (20), the state
|00〉 can be decoded into two entangled states 1√

2
(|00〉 +

|11〉) and 1√
2
(|01〉 + |10〉); according to Eq. (21), the state

|01〉 can be decoded into two entangled states 1√
2
(|00〉 +

|11〉) and 1√
2
(|01〉 + |10〉); according to Eq. (28), the state

|11〉 can be decoded into two entangled states 1√
2
(|00〉 +

|11〉) and 1√
2
(|01〉 + |10〉); according to Eq. (29), the state

|10〉 can be decoded into two entangled states 1√
2
(|00〉 +

|11〉) and 1√
2
(|01〉 + |10〉). That is, (u1, u3), (u1, u4), (u2, u5),

and (u2, u6) can correspond to the same state with prob-
ability 1

2 . Therefore, to quantify the protocol’s security,
we present a function of our protocol’s input parameters
U (u1, u2, u3, u4, u5, u6) as

Pr(u) =
{

1
2 for u = um, m = 1, 2, . . . , 6
1
2 for u �= um, m = 1, 2, . . . , 6.

This means that the correct probability that the attacker Eve
can guess is 1

2 for |00〉, |01〉, |10〉, and |11〉, respectively.
Therefore, any li − 1 participants in the ith layer cannot

recover the secret |ψ〉. This is because our scheme needs
classical information to further remove uncertainty when all
participants work together. The detailed explanation is as
follows. For example, if the unknown state for the lith par-
ticipant is |0〉, then each of the li − 1 states can be correctly
guessed with probability 1

3 and then according to Fig. 3 she
needs to guess a correct U (u1, u2, u3, u4, u5, u6) [(u1, u3),
(u1, u4), (u2, u5), and (u2, u6) can correspond the same state]
with probability 1

2 and the probability of correctly decoding
becomes 1

2 × 1
3 = 1

6 . Consequently, for all states in the ith
layer, the correct probability for all states is 1/6(li−1). There-
fore, the probability of the many-body state |ψ〉 is 1/6(li−1).
Therefore, based on any participant’s or a group of colluding
and dishonest participants’ state or states, they cannot deduce
other participants’ states. Based on this short discussion, we
conclude that the confidentiality in one layer of our proposed
scheme is against the three kinds of general attackers.

B. Confidentiality at different layers

As proved in Theorem 2, participants can access the shared
secret states at lower layers, i.e., a participant in the ith layer
knows the secret states |ψ [i−1]〉, |ψ [i−2]〉, . . . , |ψ [1]〉. We will
prove that the participants cannot obtain the shared many-
body state at a higher layer, i.e., the participants in the ith layer
cannot obtain |ψ [i+1]〉, |ψ [i+2]〉, . . . , |ψ [n]〉.

We recall the MERA entangled state generated by Alice
in Sec. III. As explained in Theorem 2, the ith quantum bits
of the states |ψ [i−1]〉, |ψ [i−2]〉, . . . , |ψ [1]〉 can be deduced from
the states of the particles |si1si2 · · · sili〉. However, the ith quan-
tum bits of the secret state |ψ [i+1]〉, |ψ [i+2]〉, . . . , |ψ [n]〉 cannot
be deduced from the particles |si1si2 · · · sili〉. This is because
W (w1,w2,w3,w4) and correct (u1, u3), (u1, u4), (u2, u5), and
(u2, u6) can correspond to the same state, without the classical
information, and the participants from the ith layer cannot
obtain the corresponding correct states.

C. Security against measurement attacks

A measurement attack can be launched by an adversary,
Eve, who is eavesdropping on a quantum channel. This means
that Eve measures transmitted photons. According to step 3 of
our secret sharing scheme (see Sec. III), transmitted photons
are protected by decoy photons. Since during transmission
decoy photons are randomly interleaved with secret sharing
photons, Eve is unable to tell apart decoy photons from secret
sharing ones. If Eve decides to eavesdrop, then she needs to
measure photons and select one of two bases at random. The
probability of a correct guess is 1

2 (a more detailed analysis
is the same as in Sec. V A). Since in our DHQMSS scheme
U and W are adjustable, the measurement attacks are ana-
lyzed based on the example in Sec. III B. In the example,
(u1, u3), (u1, u4), (u2, u5), and (u2, u6) correspond to the same
states, respectively, so the probability of Eve correctly guess-
ing them is 1

2 , respectively. Also, |0〉 and |1〉 correspond to
three different isometric matrices, respectively, so the prob-
ability of Eve correctly guessing them is 1

3 , respectively (a
more detailed analysis is the same as in Sec. V A). For a
single transmitted state |0〉 or |1〉, the probability of correctly
decoding becomes 1

2 × 1
3 = 1

6 . In other words, the error rate
is 1 − 1

6 = 5
6 . Therefore, the error rate of decoy particles is

1
2 × 5

6 = 5
12 . According to the current quantum technology,

the noise rate in a typical quantum channel ranges from 2%
to 8.9% [46–49]. This result is significantly lower than the
expected value 5

12 ≈ 41.7%, so Eve’s measurements can be
easily detected.

D. Security against intercept-and-resend attacks

In this attack, Eve intercepts and resends transmitted MPS
photons via a quantum channel. Eve measures an MPS photon
sent by Alice using the any basis {|ξ0〉, |ξ1〉} (Bz = {|0〉, |1〉} or
Bx = {|+〉, |−〉}). Depending on her measurement outcome,
Eve sends to Bob her own MPS whose state is prepared using
either Bz or Bx. We can define their projection operators as
follows:

P(ξ0) = |ξ0〉 〈ξ0| , P(ξ1) = |ξ1〉 〈ξ1| . (37)

According to Azuma and Ban’s work [50], explicit forms
of P(ξ0) and P(ξ1) are taken into consideration. Also referring
to the work in [51], an arbitrary rotation matrix of group
SU(2), which is defined by a set of three generators Tk , and Tk

satisfy the Lie algebra [Ti, Tj] = iεi jkTk , with ε123 = 1. The el-
ement of SU(2) is given by the matrix U = exp(iT · ω), where
ω is a vector that has components ωk in a given coordinate
frame and Tk = 1

2σk , k = x, y, z, with standard Pauli matrices

σx = [0 1
1 0], σy = [0 −i

i 0 ], and σz = [1 0
0 −1], and these Pauli

matrices satisfy the relation σiσ j = δi j + iεi jkσk . According to
three angles θ , ϕ, and ψ , the Euler parametrization V (α, β, γ )
of any matrix of SU(2) transformation is defined as

V (α, β, γ ) = exp

(
− i

2
ασz

)
exp

(
− i

2
βσy

)
exp

(
− i

2
γ σz

)

=
[

e−i(α+γ )/2 cos(β/2) −e−i(α−γ )/2 sin(β/2)
ei(α−γ )/2 sin(β/2) ei(α+γ )/2 cos(β/2)

]
,

(38)
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where 0 � α < 4π , 0 � β < 4π , and 0 � γ < 4π . Accord-
ing to [50], P(ξ0) and P(ξ1) can be written in the following
form:

P(ξ0) = V (α, β, γ )

[
1 0
0 0

]
V †(α, β, γ )

=
[

cos2(β/2) (1/2)e−iα sin(β )
(1/2)eiα sin(β ) sin2(β/2)

]
, (39)

P(ξ1) = V (α, β, γ )

[
0 0
0 1

]
V †(α, β, γ )

=
[

sin2(β/2) −(1/2)e−iα sin(β )
−(1/2)eiα sin(β ) cos2(β/2)

]
. (40)

When Eve measures using the basis of either |ξ0〉 or |ξ1〉, she
assumes that Alice transmits a classical bit 0 or 1, respectively.
We follow the work of Azuma and Ban [50] and define Pt as
the probability of the event that Eve makes a correct guess of a
key bit sent by Alice, where t ∈ {x, y} is known to both Alice
and Bob j,1, Bob j,2, . . . , Bob j,l j .

Here Qt is defined as the probability of the event that Alice
and Bob fail to detect the Eve measurement when both of them
apply the t basis. The probabilities Pt and Qt can be written as

Pt = 1

2

∑
i∈{0,1}

〈it |P(ξi )|it 〉,

Qt = 1

2

∑
i∈{0,1}

∑
j∈{0,1}

[〈it |P(ξ j )|it 〉]2 for t ∈ {x, y}. (41)

They can be transformed into the following forms (where t ∈
{x, y}):

Px = 1
2 (1 + cos α sin β ),

Qx = 1
8 [5 + cos(2α) − 2 cos2 α cos(2β )],

Py = 1
2 (1 + sin α sin β ),

Qy = 1
8 [5 − cos(2α) − 2 sin2 α cos(2β )]. (42)

It is reasonable to assume that Eve selects her eavesdropping
strategy so that Px = Py, implying that sin α = cos α. Without
loss of generality, we can assume that α ∈ [0, 2π ). Thus, we
get that α implies either π/4 or 5π/4. For the case α = π/4,
we obtain

Px = Py = 1
2 [1 + (1/

√
2) sin β]. (43)

Likewise, we assume that β ∈ [0, 2π ). As Px = Py, we get

Px = Py ∈
{

2 − √
2

4
,

2 + √
2

4

}
. (44)

For the case α = 5π/4, the following relation holds:

Px = Py = 1

2

[
1 −
(

1√
2

)
sin β

]
. (45)

As Px = Py, we get

Px = Py ∈
{

2 − √
2

4
,

2 + √
2

4

}
. (46)

The above considerations are done under a reasonable as-
sumption that Eve’s strategy is symmetric or Px = Py. Eves’s

optimum intercept-and-resend attacks occur when α = π/4
and β = π/2 and when α = 5π/4 and β = 3π/2. In the case
of the optimal attack, Eve guesses correctly a key bit with
a probability close to 0.8535. The probability that Alice and
Bob fail to detect Eve’s eavesdropping is 3

4 . When Alice sends
n qubits, Bob detects the send-and-intercept attack with a
probability 1 − 0.8535n. On the other hand, Alice and Bob
discover eavesdropping with a probability 1 − ( 3

4 )n.

E. Security against entangle-and-measure attacks

We assume that Eve prepares a new state by entangling
the MPS with an auxiliary state |0E 〉, i.e., |� ′〉. The at-
tack cannot be detected when Bob j,1, Bob j,2, . . . , Bob j,l j use
the Bz basis for their measurements. Recall that our trans-
mitted photons are compressed by W and U in order to
implement the layer hierarchy. This means that even if Eve
obtains a compressed photon, she cannot extract any useful
information without knowing detailed W and U . Further-
more, Eve’s entanglement eavesdropping can be discovered
by Bob j,1, Bob j,2, . . . , Bob j,l j when they check whether or
not the condition

∏N
n=1 jx

nl
= 1 holds. Note that

∏N
n=1 jx

nl
is

equal to either 0 or 1 with equal probability. For |� ′〉, the
relation jEx

l

∏N
n=1 jx

nl
= 1 holds (but not for

∏N
n=1 jx

nl
) [52].

Thus, our scheme is secure against the entangle-and-measure
attack.

F. Security against collusion attacks

Dishonest participants may collude to steal other partic-
ipants’ secret information. However, in our scheme, photons
are not transmitted one by one among the participants. Instead,
the dealer, Alice, transmits photons to each participant directly
via dedicated quantum channels. Therefore, there is no chance
for a dishonest participant to transmit the forged particles
to other participants and steal their secret share information.
Therefore, our scheme can resist the dishonest participants’
collusion attack.

G. Participant enrollment and disenrollment
from the same layer

The scheme allows new participants from the same layer
to join. To facilitate this, the dealer only needs to modify
the binary and ternary MERA numbers and adjust isometric
matrices used. After such modification, new shares are issued.
When participants from the same layer need to be removed,
again the dealer needs to reduce or modify the structure of the
binary and the ternary MERA and adjust selection of isometric
matrices. After such modification, old shares become void.
Recall our analysis from Sec. IV. It ensures that our scheme
provides the confidentiality of the shared quantum state and
shares or photons held by participants. Let us consider enroll-
ment and disenrollment operations.

Enrollment. We claim that our scheme can be easily up-
dated to accommodate a new participant from the same layer
because the QSS hierarchical structure use a collection of
binary and ternary MERA modules. If a new participant from
the same layer joins, the collection is upgraded from a binary
to a ternary MERA or alternatively a ternary MERA can be
extended to two binary MERA modules. There is a need to
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regenerate shares only for participants affected by the change,
which is implemented by replacing

∑
α,β,γ (w)μαβγ (w†)αβγ

μ′ =
Iμμ′ with

∑
α,γ (w)μαγ (w†)αγ

μ′ = Iμμ′ .
Disenrollment. This is because the binary and the ternary

MERA are alternately used. For the elastic use, when an old
participant from the same layer resigns or terminates, we can
change the construction of one binary MERA into that of a
ternary MERA in generating the state shares without affecting
the number of other layers, and only two participants’ shares
are changed in that layer. The root cause is the change of
the isometric matrices, that is,

∑
α,γ (w)μαγ (w†)αγ

μ′ = Iμμ′ is

replaced with
∑

α,β,γ (w)μαβγ (w†)αβγ

μ′ = Iμμ′ . Moreover, it is
easy to generalize the action or termination of a certain num-
ber of old participants from the same layer.

Updating the many-body state. A shared many-body state
is usually dynamically generated in a streaming manner. As-
sume that we need to append a new many-body state to
the original one. We want to avoid the decomposition of
the original tensor. This improves efficiency and reduces the
cost of preparing and measuring a many-body state. We use
the idea of the authors of [53]. Given two many-body states
A ∈ RI1×I2×···×IN and B ∈ RI1×I2×···×IN , the addition of the two
states C = A + B is performed as

Cn(in) =

⎧⎪⎪⎨
⎪⎪⎩

(A1(i1)B1(i1)), n = 1[An(in ) 0
0 Bn(in )

]
, n = 2, 3, . . . , N − 1[AN (iN )

BN (iN )

]
, n = N,

where C(i1, i2, . . . , iN ) = C1(i1), C2(i2), . . . , CN (iN ). The sub-
traction of B from A (i.e., C = A − B) is shown by

Cn(in) =

⎧⎪⎪⎨
⎪⎪⎩

( − A1(i1)B1(i1)), n = 1[An(in ) 0
0 Bn(in )

]
, n = 2, 3, . . . , N − 1[AN (iN )

BN (iN )

]
, n = N.

It is assumed that the original many-body state is A and the
new state is the many-body state B. Note that if A and B are
not of the same order or dimension (requiring zero filling to
make them of the same order and dimension), then the above-
mentioned addition and subtraction of many-body states can
be performed. Therefore, the update of the many-body state in
our scheme is feasible.

H. Participant promotion from the different layers

In practice, a participant from the different layers who is
assigned to the ith layer should have an option to be promoted
to the (i + 1)th, (i + 2)th, . . . , nth layers. This is possible
due to the scheme’s flexibility in using binary and ternary
MERA modules. If a participant needs to be promoted, the
number of ternary MERA modules can be easily reduced
at the ith layer. This feature allows producing a new share
for the participant at the (i + 1)th layer. However, the pro-
motion number of participants at the ith layer to the (i +
1)th, (i + 2)th, . . . , nth layers is limited. On the one hand,
this is because our hierarchical structure does not allow us to
have too many participants at the (i + 1)th, (i + 2)th, . . . , nth
layers. On the other hand, if too many participants at layer
i are promoted to the (i + 1)th, (i + 2)th, . . . , nth layers, the
remaining participants at the ith layer may not be able to
compute their secret state. Therefore, our scheme provides
limited competitive places for top performers who are at the
ith layer to the (i + 1)th, (i + 2)th, . . . , nth layers.

I. Scheme hierarchy

The hierarchy of our QSS is inherited from a tree structure
of MERA modules. It implies that a participant at the ith layer
is less powerful than a participant at the (i + 1)th layer. Note
that any participant at the ith layer has a unique superior from
the (i + 1)th layer.

J. Secret recovery control

In many practical secret sharing applications, the secret
recovery needs to be controlled by the dealer. For instance,
heads of an army can launch nuclear weapons only if the state
president gives a “go ahead.” A bank transfer of a large lump
sum transaction is allowed only if two clerks put their shares
together along with the branch manager’s approval. Such con-
trol of secret recovery is possible in our scheme. Recall that
the secret in our scheme is a many-body state such as an
MPS, which is determined by both |ψ [1]〉, |ψ [2]〉, . . . , |ψ [n]〉
and W and U . The dealer can easily control the timing of
secret recovery by withholding the classical parts W and U
from participants. The dealer gives her “OK” by publishing
the classical part W and U . Table I compares our work with
other similar schemes from [7–9,12–14,17,18].

TABLE I. Comparison of our scheme with the schemes in [7–9,12–14,17,18].

Work Secret Way to realize hierarchy Features

Ref. [8] classical blockchain fair, hierarchical
Ref. [9] classical linear homogeneous recurrence relations hierarchical
Ref. [12] quantum specify participant level hierarchical
Ref. [13] quantum specify participant level hierarchical
Ref. [17] quantum special high-dimensional entangled state hierarchical
Ref. [7] quantum linear algebraic techniques hierarchical
Ref. [14] quantum specify participant level hierarchical
Ref. [18] quantum tree dynamic, hierarchical, promotability, controllable
present paper quantum MERA dynamic, hierarchical, promotability, controllable
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VI. CONCLUSION

We have proposed a DHQSS scheme based on a hierar-
chical structure built from MERA modules. Depending on
an authorization or trust of a participant, the participant is
assigned to an appropriate layer in our scheme hierarchy. As
there is a binary MERA as well as a ternary MERA, the
scheme hierarchy can be easily adapted to a current need
for secret recovery. The dynamic nature of the secret sharing
hierarchy permits participants from the same layer to join (en-
rollment) and resign (disenrollment). Also, the scheme allows
a certain number of participants from the different layers to be
promoted or demoted.

Our scheme fills a research gap in the design of HQSS
schemes, whose hierarchy can grow and shrink depending on
demands. This characteristic is very useful in many practi-
cal applications. Also, we have only considered binary and
ternary as in the paper in terms of the method proposed by

Evenbly and Vidal. Moreover, the special high-dimensional
entangled states, i.e., the MERA, suggested in this work may
be applicable to other quantum cryptography protocols and
inspire more study in this direction in future work.
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