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The distribution of typical bipartite pure states is studied within the framework of state transformation via
local operations and classical communication (LOCC). We report the statistics of comparable and incomparable
states in different dimensions for single- and multicopy regimes, and we establish a connection between state
transformation and the difference between the entanglement contents of the initial and the target states. From
the analysis of catalyst resources, required to further otherwise impossible LOCC transformations between
pairs, we demonstrate a universal pattern in the average and minimum entanglement of the randomly generated
catalysts. Furthermore, we introduce a concept of hierarchy between different kinds of catalysts, and we show
how they can not only aid in the conversion of incomparable states, but they can also act as a less costly resource
toward this goal. We confirm the existence of catalysts, referred to as strong catalysts, which can activate LOCC
transformation between pairs at the single-copy level, when it is initially impossible even with multiple copies.
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I. INTRODUCTION

Quantum entanglement is one of the most functional re-
sources in quantum information tasks, ranging from quantum
communication [1–3], genuine randomness certification [4],
to one-way quantum computing [5,6]. Therefore, it is im-
portant to develop a procedure to manipulate entanglement
in quantum states so that they may be brought into a useful
form to fulfill a particular task. Entanglement transformation
plays a crucial role in the manipulation process, by which a
potentially less applicable state is turned into a more useful
one, by some non-resource-generating operations, say, local
operations and classical communication (LOCC).

In the LOCC state conversion domain, three types of
state transformation are typically studied—deterministic [7],
probabilistic [8], and approximate [9]. Deterministic transfor-
mation, in which a pure state is mapped to another one with
unit probability under LOCC, is dictated by the celebrated
necessary and sufficient criterion by Nielsen based on ma-
jorization [10] (for the multipartite regime, see [11]). Further,
Jonathan and Plenio [8] introduced probabilistic entanglement
transformation, and the corresponding maximum probability
for bipartite pairs can also be obtained [12] (cf. [13]). By
using majorization criteria, several conditions are derived for
nonasymptotic state transformation involving multiple copies
of the initial and final states [14], while asymptotic state
conversion has also been extensively studied in the state trans-
formation protocol of quantum resource theory [15–17]. On
the other hand, approximate transformation [9,18] identifies
the best possible final state that is nearest in terms of the
fidelity to the desired target state.

When transformation between a given pair of states is not
possible via LOCC, an additional entangled state known as the

catalyst is introduced to assist the protocol, which remains un-
altered after the transformation just like in a chemical process
[19]. Catalysts are also shown to develop correlations with the
states and enhance the transformation probability and power
[20]. The role of catalysts has also been investigated in the
context of quantum thermodynamics [21,22], quantum coher-
ence [23–25], purity [26], and state symmetries [27]. A few
attempts have been made to characterize the general properties
of catalysts, which include a lower bound for the dimension
of the catalysts [28] as well as the maximum and minimum
bounds on entanglement of the catalysts [29]. Another kind
of catalysis in which the catalysts are not returned in their
original form, is called inexact catalysis. A set of such optimal
inexact catalysts with minimal trace distance error that can be
used in a state transformation process is provided [30].

On the other hand, random states play an important role in
quantum information science, which can arise naturally when
the system interacts with the environment. It was shown that
instead of random behavior, features such as entanglement
entropy, purity, multipartite entanglement, and classical cor-
relations of random states [31–39] can follow a pattern [40].
In particular, it was demonstrated that most of the typical
states become highly multiparty-entangled with an increase
of the number of parties. Moreover, these states have also
been used to disprove the additivity of minimal output entropy
[41], to obtain the maximal purity in k-uniform states with N
parties [37], to show constructive feedback in the presence of
a non-Markovian noisy environment [42], to put restrictions
on classical correlation [43], and to analyze the power of
teleportation and densecodability of bipartite channels [44].
For our purposes, we are interested in bipartite pure states
of arbitrary dimensions chosen at random with respect to the
uniform measure, called the Haar measure, on the unit sphere
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in a finite-dimensional Hilbert space that is invariant under all
unitary transformations.

In this work, we characterize the pattern in entanglement
transformation obtained from typical pairs of states and cata-
lysts. Specifically, we study the distributions of comparable as
well as incomparable bipartite pure states simulated randomly
in different dimensions, and the corresponding behavior with
the increasing number of copies. We prove that the LOCC
transformability is related to the entanglement difference be-
tween the source and the target states, which can be thought
of as the resource consumed in the transformation protocol.
For a given incomparable pair, we introduce three quantities
to analyze the entanglement properties of the catalyst states
found from the generated random states—the mean and the
minimum entanglement of the catalyst, as well as the distri-
bution in the average number of catalyst states. We observe
that the average entanglement required to catalyze a pair of in-
comparable states decreases with the increase in the difference
of the entanglement content for the input-output pair while
it increases with the dimension. Moreover, when a higher
number of copies of the input-output pairs are available, the
incomparable pair with the higher number of copies requires
a catalyst with low entanglement content compared to that of
the single-copy incomparable ones.

Comparing multiple-copy state transformation and the role
of catalysts in the transformation via LOCC, we introduce
the concept of hierarchy between various kinds of catalyst
states. Specifically, we try to understand the characteristics
of catalysts that can assist state transformations with different
levels of difficulty. We introduce the notion of strong catalysts,
which can promote certain transformations at the single-copy
level, even when it is originally impossible in the presence of
multiple pairs of the source and target states. Such states are
especially resourceful in the sense that they can assist trans-
formations of pairs that remain incomparable even when large
amounts of entanglement is available in the form of multiple
copies. We aim to determine the entanglement properties of
such strong catalysts and investigate the distribution of the
average number of such catalysts obtained from randomly
generated states with respect to the entanglement of the pairs
to be transformed. The entire investigation sheds light on the
transformation capabilities of states when they are sampled
at random from the state space, and it establishes a uniform
pattern on the resource available that can dictate the LOCC
transformability.

The rest of the paper is organised in the following way.
In Sec. II, we lay down the basic ideas required to explain
our results, which include the Haar-uniform generation of
random states and the theory of state transformation followed
by the catalyst-assisted state transformation protocol. We then
analyze the behavior of entanglement for randomly generated
pure states by varying the dimension in Sec. III. The following
section, Sec. IV, deals with the transformation properties of
random bipartite states through LOCC in different dimen-
sions, and it elucidates the relationship with the entanglement
required to facilitate such transformations. Section V shows
how random states can act as catalysts for state transforma-
tions in different dimensions. We analyze the entanglement
properties of such catalyst states in the single- and multicopy
regimes in Secs. V A and V B, respectively. We compare

catalysts for various types of state transformation routines,
thereby establishing a hierarchy between such states in terms
of their catalytic abilities, in Sec. VI. We end our paper with
conclusions in Sec. VII.

II. PREREQUISITES

In this section, we first discuss the Haar uniform generation
of pure two-qudit states, and we briefly describe the criteria
for deterministic state transformation under local operations
and classical communication. We then shift our attention to
the paradigm of transformation between the initial and final
states with the help of catalysts, recounting the necessary
conditions to implement such protocols.

A. Generation of random states

Given a basis, quantum states are specified by com-
plex coefficients. To generate states Haar uniformly in the
state space [40], we randomly simulate real numbers from
a Gaussian distribution with vanishing mean and unit stan-
dard deviation, denoted as G(0, 1). In particular, a two-qudit
pure state in Cd ⊗ Cd (denoted in short as d ⊗ d) can be
represented as

|ψ〉AB =
d∑

i, j=1

(ai j + ibi j )|i〉A ⊗ | j〉B, (1)

where ai j and bi j are real numbers sampled from G(0, 1)
[40,45], and d denotes the dimension of the system. {|i〉}
({| j〉}) denotes the computational basis for the first (second)
party. The parameters ai j and bi j thus belong to the dis-

tributions, given by �(ai j ) = 1√
2π

exp(− a2
i j

2 ) and �(bi j ) =
1√
2π

exp(− b2
i j

2 ). Such a generation ensures that the states
selected are not confined to a particular region of the
state space. The coefficients form a 2d2 variable tuple,
which we can depict as r = {ai j, bi j}, r ∈ Rd2

, the d2-
dimensional real space. The joint probability distribution for
r thus reads f (r) = ( 1

2π
)d2/2 exp[−∑d

i, j=1(a2
i j + b2

i j )/2] =
( 1

2π
)d2/2 exp[−|r|2/2], which implies that f (r) depends only

on the length of r and not its direction. This means that r̂ =
r/|r| is distributed uniformly over the (d2 − 1)-dimensional
spherical surface in Rd2

. This further implies that f (r̂) re-
mains constant in all directions over this subspace, i.e., the
states are generated Haar uniformly (see [46] and [47]).

B. Deterministic transformation between pure states via LOCC

The aim of deterministic state transformation is to convert
an entangled state shared between two spatially separated
parties to another entangled state by using local operations
and classical communication. When a state |ψ〉AB transforms
to another state |φ〉AB with certainty, E (|ψ〉AB) � E (|φ〉AB),
where E is an appropriate measure of entanglement for pure
states [15] since entanglement cannot be increased by LOCC.
In a seminal paper by Nielsen [7], it was shown that such
deterministic state transformation can occur according to the
majorization condition for bipartite pure states.

If i and j are two vectors in R⊗d , i is majorized
by j, denoted by i ≺ j, if they satisfy the condition,
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∑n
l=1 i↓l � ∑n

l=1 j↓l ∀n ∈ 1, 2, 3, . . . , d , where i↓l and j↓l indi-
cate that the elements are ordered in a nonincreasing manner
[10]. We can write any two pure bipartite states in their
Schmidt form as |ψ〉AB = ∑d

l=1
√

αl |γ 〉A |γ 〉B and |φ〉AB =∑d
k=1

√
βk |η〉A |η〉B, where the Schmidt coefficients αl and

βk satisfy the properties αl , βk � 0 and
∑d

l=1 αl = 1 and∑d
k=1 βk = 1. We can now define two sets of ordered Schmidt

coefficients (OSCs) as α = {α↓
i } and β = {β↓

i }. According to
Nielsen’s theorem, the initial state |ψ〉AB can be transformed
to the final state |φ〉AB via LOCC, i.e., |ψ〉AB −−−→

LOCC
|φ〉AB if

and only if α ≺ β, thereby providing a necessary and suffi-
cient condition for |ψ〉AB to be converted into |φ〉AB with unit
probability. Depending on whether a pair of states can be con-
verted to one another by LOCC, they are called comparable
(|ψ〉AB −−−→

LOCC
|φ〉AB) or incomparable (|ψ〉AB �LOCC |φ〉AB)

states, respectively.
Instead of deterministic transformation, one can consider

probabilistic state transformations, i.e., although the initial
and the final states are incomparable deterministically, their
conversion is possible by LOCC with a nonzero finite prob-
ability [8,12]. On the other hand, if a pair of states are not
convertible at the single-copy level, they can be compara-
ble when multiple copies are considered [14], i.e., although
|ψ〉AB 
→LOCC |φ〉AB, |ψ〉⊗k

AB −−−→
LOCC

|φ〉⊗k
AB , where k denotes the

number of copies considered for each state. The additional
copies of the states make sure that the eventual OSCs α⊗k and
β⊗k satisfy the majorization condition. In our work, we mainly
conduct our analysis within the regime of deterministic trans-
formations governed by Nielsen’s majorization criterion for
single as well as multiple copies of the initial and final
states.

C. Catalytic entanglement transformation

The concept of catalysis was introduced by Jonathan
and Plenio [19] in entanglement state transformation. If
|ψ〉AB 
→LOCC |φ〉AB, i.e., α ⊀ β, an additional entangled state
|χ〉AB = ∑d

i=1
√

ci|ζ 〉A|ζ 〉B having OSCs χ = {c↓
i } can be in-

troduced so that |ψ〉AB ⊗ |χ〉AB can be mapped to |φ〉AB ⊗
|χ〉AB by LOCC ⇒ α ⊗ χ ≺ β ⊗ χ. Here |χ〉AB is called the
catalyst. Notice that the catalyst state remains unchanged at
the end of the protocol, thereby highlighting the use of en-
tanglement as a resource without consuming it in any way. It
can be shown that maximally entangled states in d ⊗ d having
the form |χ〉AB = 1√

d

∑d
i=1 |i〉A|i〉B can never act as successful

catalysts. Furthermore, two bipartite states in d-dimensions,
characterized by OSCs {α↓

i } and {β↓
i } (i = 1, 2, . . . , d), are

convertible through catalyst assistance if and only if α1 � β1

and αd � βd [19]. From this condition, it immediately implies
that for a pair of incomparable two-qutrit states, catalysts
do not exist. It was also demonstrated that catalytic assis-
tance can be helpful to increase the maximum probability
of transformation between the initial and the final states,
even if the conversion protocol cannot be deterministically
implemented.

TABLE I. Mean and standard deviation of the entanglement con-
tent of pure bipartite states with single and multiple copies in d ⊗ d .

d One-copy Two-copy Three-copy

〈Sd 〉 〈E〉 Eσ 〈E〉 Eσ 〈E〉 Eσ

3 1.09 0.9930 0.1309 1.9850 0.3321 2.9770 0.4932
4 1.5 1.3816 0.1149 2.7618 0.1811 4.1420 0.3412
5 1.82 1.6821 0.0975 3.3625 0.1109 5.0429 0.3946
6 2.08 1.9319 0.0845 3.8607 0.1697 5.7927 0.2537
7 2.3 2.1437 0.0740 4.2863 0.1483 6.4289 0.2243
8 2.5 2.3296 0.0657 4.6569 0.1325 6.9834 0.1981

III. ENTANGLEMENT DISTRIBUTION
FOR RANDOM QUDITS

Let us analyze the patterns of the frequency distribution
in the entanglement content of pure Haar uniformly generated
bipartite states in different dimensions. It is known that the av-
erage multipartite entanglement of pure states increases with
the increase of the number of parties [34,35,38], and hence it
will be interesting to see whether such a tradeoff is also true
with the increase of dimension [31].

In d ⊗ d , entanglement content of a pure state |ψ〉AB can
be quantified by the von Neumann entropy of the local density
matrices [15], i.e., E (|ψ〉AB) = S(ρA), where ρA is the reduced
density matrix of the subsystem A and S(σ ) = −Tr(σ log2 σ ).
Since we will be dealing with two parties in this work, for
notational simplicity, we will denote E (|ψ〉AB) as E (ψ ) from
now on.

For a single copy, the mean entanglement of an M ⊗ K
bipartite system is predicted to be [31]

〈SM〉 ≈ log2 M − M

2K
, (2)

where SM denotes the von Neumann entropy of ρ of dimen-
sion M. In our case, using M = K = d , we can easily estimate
the average entanglement for a single copy of arbitrary two-
qudit states as demonstrated in Table I. The normalized
frequency distribution of entanglement, f N

E , defined as

Number of random states with a fixed entanglement, E

Total number of simulated states with a given E
,

(3)
is depicted in Fig. 1. Numerical simulations show that with
the increase of the dimension, the state becomes more and
more entangled on average, which is in good agreement with
the analytical estimates. Further, we analyze the entanglement
when more than one copy of the state is taken into account. As
expected, the average entanglement increases with the number
of copies considered, which can also be approximated via
Eq. (2).

Let us now investigate the second moment of the distribu-
tion about mean, i.e., the standard deviation. Interestingly, we
observe that for a low number of copies, the states are concen-
trated around the mean entanglement, while as we consider
k � 2, the distribution becomes broader, which leads to the
increase in standard deviation with the number of copies as
elucidated in Table I. We will show that the above analysis on
entanglement patterns can help to examine the transformation
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FIG. 1. Entanglement patterns of random pure bipartite states
in d ⊗ d . The normalized frequency distribution of entanglement
(quantified by entanglement entropy), f N

E (ordinate), is shown against
E (ψ ) (abscissa) for (a) one copy, (b) two copies, and (c) three copies.
(d) Mean entanglement 〈E〉 (ordinate) with respect to the dimension
d (abscissa) for one copy (bottom line with squares), two copies
(middle line with circles), and three copies (top line with triangles).
We Haar uniformly simulate 106 states in each dimension. All the
axes are dimensionless.

properties between pairs of states as discussed in the succeed-
ing sections.

IV. TYPICAL PROPERTY OF BIPARTITE
ENTANGLEMENT TRANSFORMATION

We search for a universal pattern in LOCC convertability
among typical pure states. In particular, we generate 106 pairs
of bipartite states, |ψ〉AB and |φ〉AB, with E (ψ ) � E (φ), and
we calculate the distribution as well as the percentage of
comparable and incomparable pairs in d ⊗ d (d = 3, 4, 5)
(which will be denoted as 3d , 4d , 5d) for k = 1, 2, 3 number
of copies, i.e., for the transformation of |ψ〉⊗k

AB → |φ〉⊗k
AB under

LOCC.
First of all, we observe that irrespective of the number of

copies, the fraction of comparable pairs remains unaltered for
two-qutrit states, i.e., once a pair of states is incomparable
in 3 ⊗ 3, it remains so no matter how many copies of each
state we consider, as shown in the literature [14]. However,
in higher dimensions, the number of incomparable pairs be-
comes more comparable with increasing number of copies,
although the percentage of multicopy LOCC transformable
pairs decreases with the increase in the dimension for a fixed
number of copies, as shown in Fig. 2(d).

For random source-target pairs, let us try to find whether
there exists a connection between the incomparability (com-
parability) of the pairs and the difference in their entanglement
content. The difference between the entanglement of the ini-
tial and the target states can be represented as

�
ψ→φ
E = E (ψ ) − E (φ) (4)

for a given entanglement measure, E , when a single copy of
|ψ〉AB and |φ〉AB is available. When k copies of them are given,

FIG. 2. Incomparable vs comparable states. Normalized fre-
quency distributions of incomparable, f N

incomp (solids), and compa-

rable states, f N
comp (stripes) (vertical axis), vs �

ψ→φ

E (horizontal axis)
when 106 states are generated Haar uniformly with E (ψ ) � E (φ) in
(a) 3 ⊗ 3, (b) 4 ⊗ 4, and (c) 5 ⊗ 5. (d) The percentage of incompa-
rable bipartite states (ordinate) with respect to the number of copies
k (abscissa) in 4d (red stars), 5d (blue squares), 6d (black circles),
7d (brown triangles), and 8d (yellow diamonds). (In short, d ⊗ d is
referred to as dd systems.) All the axes are dimensionless.

the above definition can be modified as

�
k(ψ→φ)
E = E (ψ⊗k ) − E (φ⊗k ). (5)

To establish such a connection between entanglement trans-
formation and entanglement difference, we first numerically
compute the normalized frequency distribution of incompara-
ble (comparable) states for a given �

ψ→φ
E in d ⊗ d , which is

defined as

f N
incomp

= Number of incomparable states with a fixed �
ψ→φ
E

Total number of states simulated with a given �
ψ→φ
E

.

(6)

Similarly, one can compute f N
comp for comparable states found

from the Haar uniformly generated states. Again for k copies,
the frequency distribution can be redefined accordingly by
using �

k(ψ→φ)
E . As shown in Figs. 2(a)–2(c), we observe that

when the difference in entanglement between the two states
is very low, they tend to be incomparable, which implies that
the transformation between states with the same entanglement
content is rarely possible. However, as the two states differ
more and more in their entanglement content, the number
of comparable states increases. This feature becomes more
prominent in higher dimensions. From the behavior of f N

incomp

in the figure, we can safely claim that when �
k(ψ→φ)
E � 0,

i.e., when E (ψ⊗k ) � E (φ⊗k ), the percentage of comparable
states increases drastically. Let us prove the above observation
for qutrit pairs in the following theorem.

Theorem 1. An increase in the difference in entangle-
ment content between a pair of two-qutrit states indicates an
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increase in their comparability under LOCC in a single-copy
level and vice versa.

Proof. Let us consider a pair of 3 ⊗ 3 states, |ψ〉AB

and |φ〉AB, such that E (ψ ) � E (φ), represented by or-
dered Schmidt coefficients as ψ ≡ {√a1,

√
a2,

√
a3} and φ =

{√b1,
√

b2,
√

b3} with ai � ai+1 and similarly for bi, and
hence we consider the transformation |ψ〉AB →LOCC |φ〉AB.
We quantify the entanglement of the states by their squared
concurrence, which is given by C2

ψ = 4a1a2a3 and C2
φ =

4b1b2b3 [48]. We can drop the factor of 4, since it does not
affect the end results. Let a1 − b1 = α1 and (a1 + a2) − (b1 +
b2) = α2. By Nielsen’s theorem [7], the two aforementioned
states, |ψ〉AB and |φ〉AB, are incomparable if either α1 > 0 or
α2 > 0 or both are positive-definite. The entanglement differ-
ence in this case can be represented as

�
ψ→φ
E = b1b2b3 − a1a2a3

= b1b2b3 − (α1 + b1)(α2 − α1 + b2)(b3 − α2). (7)

By assumption, �
ψ→φ
E � 0. Solving for ∂�

ψ→φ
E

∂α1
= 0 and

∂�
ψ→φ
E

∂α2
= 0, we obtain the following values of α1 and α2, at

which �
ψ→φ
E has an extremum, given by

α1 = 1
3 (1 − 3b1) and α2 = 1

3 (3b3 − 1). (8)

We note that α1 > 0 implies that b1 < 1/3, which is a con-
tradiction since it is the highest Schmidt coefficient of |φ〉AB.
Similarly, for α2 to be positive-definite, we need b3 > 1/3,
which again gives a contradiction since b3 is the lowest
Schmidt coefficient. Thus both α1, α2 � 0, which implies
that the states are comparable. Finally, we find that for such
choices of α1 and α2, we have

∂2�
ψ→φ
E

∂α2
1

.
∂2�

ψ→φ
E

∂α2
2

−
(∂2�

ψ→φ
E

∂α1∂α2

)2
= 1

3
> 0 (9)

and
∂2�

ψ→φ
E

∂α2
1

= ∂2�
ψ→φ
E

∂α2
2

= −2

3
< 0, (10)

which indicate a maximum in the entanglement difference.
This is the only possible maximum in the entanglement dif-
ference, because the values of α1 and α2 in Eq. (8) are the
only possible ones that correspond to an extremum in Eq. (7).
The other solutions for α1 and α2 corresponding to Eq. (8)
represent inflection points. Thus �

ψ→φ
E can have only one

maximum, and Eqs. (8), (9), and (10) demonstrate that if the
entanglement difference between the two states is maximized,
they are comparable. This completes the first part of the proof.

Following a similar approach and writing Eq. (7) in terms
of α1, α2, a1, a2, and a3, we can show that �

ψ→φ
E attains a

minimum for

α1 = 1
3 (3a1 − 1) and α2 = 1

3 (1 − 3a3). (11)

These values of α1 and α2 can only be positive-definite, since
otherwise we would have a1 < 1/3 and a3 > 1/3, which are
contradictions since they are the maximum and minimum
Schmidt coefficients characterizing |ψ〉AB. Thus, when the en-
tanglement difference attains a minimum value (which again
is unique, since these are the only values that represent an
extremum of the entanglement difference), the states become
incomparable. Since �

ψ→φ
E is a smooth function, we can

conclude that as the difference in entanglement between a pair
of states increases (decreases), the states are more likely to be
comparable (incomparable), i.e., their conversion probability
increases (decreases). Hence the proof. �

V. CONNECTING ENTANGLEMENT OF CATALYST
AND INCOMPARABLE STATES

Having known the statistics of incomparable states in dif-
ferent dimensions, it is now important to study how other
entangled states can facilitate their transformation and to find
out whether there exists any relation between entanglement
content of the catalysts and the difference in the entanglement
of the pair of incomparable states. Towards that aim, for a
given pair of incomparable states, |ψ〉AB and |φ〉AB, which are
also found from a random generation of 5 × 104 states, we
Haar uniformly simulate 105 pure states and check whether
they can act as catalysts or not.

To make the analysis systematic, we introduce two
quantifiers—the mean and minimum entanglement of
catalysts—which will help us to establish the connection be-
tween entanglements of incomparable states and catalysts. Let
us consider a catalyst state |χ〉AB in d ⊗ d , specified by its
ordered Schmidt coefficients χ = {c1, c2, . . . cd} in decreasing
order, which allows the transformation |ψ〉AB → |φ〉AB to be
executed via LOCC. The entanglement of the catalyst in terms
of von Neumann entropy, E (χ ) = ∑

i ci log2 ci, is used in all
the figures discussed in this paper. The mean and minimum
entanglement of catalysts are necessary to characterize the
entanglement transformation since for a given incomparable
pair there exist several catalyst states. The mean entanglement
gives an idea about how much entanglement, on average, is
required to facilitate a transformation otherwise impossible by
LOCC, while the minimum entanglement of catalyst indicates
the least additional resource required to mediate the transition.

Let the number of catalyst states found for a given incom-
parable pair be N . For a fixed value of �

ψ→φ
E of a given

incomparable state with a single copy, we define the mean and
minimum entanglement of catalysts as

〈E (χ )〉 =
∑N

i=1 E (χi )

N , and (12)

Emin(χ ) = min
i

E (χi ), (13)

where the minimization is over the entanglement content of
the set of catalyst states. Numerically, we estimate the afore-
mentioned equations as follows. Suppose we have a single
pair of incomparable states, |ψ〉AB and |φ〉AB, defined by
the ordered Schmidt coefficients α = {a1, a2, ..., ad} and β =
{b1, b2, . . . , bd} such that α is not majorized by β (i.e., α ⊀ β).
For this particular pair, we Haar uniformly generate 105 ran-
dom states. Out of these random states, let there be N states
that can be used as catalysts, {|χi〉}, each specified by an or-
dered set of Schmidt coefficients χi = {c1, c2, . . . , cd}, which
can facilitate LOCC transformability between the original
incomparable states (⇒ α ⊗ χ ≺ β ⊗ χ). Each such catalyst
state |χi〉 has a certain value of entanglement E (χi ), and for
the given incomparable pair, we find the average entanglement
of all the N catalyst states, which leads to Eq. (12), and
the minimum entanglement among the N number of E (χi )’s
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gives Eq. (13) for a given pair of incomparable states. The
entire analysis is carried out for 5 × 104 incomparable pairs
for a fixed value of �

(ψ→φ)
E . We can similarly define 〈E (χ )〉

and Emin(χ ) for a fixed value of �
k(ψ→φ)
E with k copies be-

ing available. Notice that these two quantifiers can extract
two kinds of information about catalysts from the resource
theoretic perspective—average entanglement of the catalysts
quantifies their difficulty in transformation, while the mini-
mum entanglement manifests the lowest amount of assistance
needed to make the transformation possible.

Moreover, we wish to identify a set of incomparable states
that are easier to catalyze, based on the entanglement con-
tent of incomparable pairs, and hence we define the average
number of catalyst states available within a given range of
entanglement difference, �

ψ→φ
E , as

〈nχ 〉 = Number of catalysts found when �
ψ→φ
E ∈ (a, b)

Number of incomparable pairs having �
ψ→φ
E ∈ (a, b)

.

(14)

Our main motivation for defining 〈nχ 〉 above is to estimate
the number of catalysts that exist for incomparable pairs
within a particular entanglement difference. This gives us an
idea about which entanglement range is more suitable for
catalysts to exist. However, merely the number of catalysts
within �

ψ→φ
E ∈ (a, b) gives a wrong interpretation of the fre-

quency distribution of catalysts. We have already seen from
Theorem 1 that a lower entanglement difference leads to a
larger number of incomparable pairs and vice versa. Hence
a higher number of catalysts for a small value of �

ψ→φ
E has

its origin in the existence of a large number of incomparable
pairs, i.e., since we only look for catalysts when states in a
given pair are incomparable. Since the number of incompa-
rable pairs is smaller for large entanglement differences, the
number of catalysts found in that range of �

ψ→φ
E ∈ (a, b) is

also smaller than that at �
ψ→φ
E ∈ (a, b) → 0. Hence defining

〈nχ 〉 by considering only catalysts states when �
ψ→φ
E ∈ (a, b)

is not proper.
To understand the distribution of catalysts within a given

entanglement range, we must also consider the number of
available incomparable pairs within that range of �

ψ→φ
E ∈

(a, b). Taking the number of incomparable pairs within �
ψ→φ
E

into account, we define Eq. (14) such that it indicates the
proper distribution of the number of catalysts available given
a particular entanglement difference. A higher value of 〈nχ 〉
implies that the number of catalyst states found with �

ψ→φ
E ∈

(a, b) is more than the number of incomparable pairs with a
single copy in that range. This, in turn, indicates that such in-
comparable states are easily catalyzed, and the relation of 〈nχ 〉
with �

ψ→φ
E ∈ (a, b) depicts the entanglement range where

such states are prevalent. In a similar fashion, we can define
〈nk

χ 〉 with �
k(ψ→φ)
E . Equipped with Eqs. (4), (12), (13), and

(14), let us proceed to the results in the single- and multiple-
copy regimes.

FIG. 3. (a) Mean entanglement, 〈E (χ )〉 (square), and minimum
entanglement, Emin(χ ) (circle), of catalyst states (ordinate) vs �

ψ→φ

E

(abscissa) when random states with E (ψ ) � E (φ) are used to check
incomparability as well as for catalysts in 4 ⊗ 4. (c) Triangles and di-
amonds represent 〈E (χ )〉 and Emin(χ ), respectively, in 5 ⊗ 5. (b) and
(d) The average number of catalyst states, 〈nχ 〉 (ordinate), against
�

ψ→φ

E (abscissa), for random states in 4d (striped columns) [in (b)]
and 5d (solid columns) [in (d)]. In all the plots, states are incom-
parable when a single copy of the input-target pair is available. The
data are computed by generating 5 × 104 pairs to find incomparable
states, while for a given incomparable pair, 105 catalysts are simu-
lated. All the axes are dimensionless.

A. Catalysis for single-copy incomparable states

At the single-copy level, let us first investigate the trends
of mean and minimum entanglement content of the catalyst
required to facilitate the LOCC transformation between a pair
of incomparable states having a fixed value of �

ψ→φ
E (see

Fig. 3). For numerical simulation, we consider the catalyst
dimension to be the same as that for the incomparable states.
We observe that both the average and minimum entangle-
ment of the catalyst states decrease with an increase in the
entanglement difference of the incomparable states, �

ψ→φ
E .

This implies that less entanglement is required as resource to
expedite the transformation when the difference between the
entanglement contents of incomparable pairs increases. On
the one hand, when E (ψ ) � E (φ), we are trying to convert
a highly entangled state to one with much less entanglement
by LOCC. Since LOCC can reduce the entanglement content
of the states on average, the decreasing trends of 〈E (χ )〉 or
Emin(χ ) are seen due to the fact that the transformations are
readily implemented with only a little help from the catalyst
state. On the other hand, as we argued in the previous section,
the number of incomparable states decreases with the increase
of �

ψ→φ
E , and even for a lower number of incomparable

states, a smaller amount of entanglement content is enough to
make the transformation feasible. Furthermore, we notice that
when the entanglement difference between an incomparable
pair reaches its maximum value, the minimum entanglement
that the catalyst should possess falls to almost half of the
mean entanglement it can possess, thereby illustrating that
even states with meager entanglement content can augment
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transformation between pairs of incomparable states. Note
also that these results do not depend on whether the individual
states have very high or low entanglement content, but only
the difference in their entanglement values matters. Therefore,
our findings reveal that a catalyst required to transfer states
with slightly different entanglement content may possess low
entanglement as compared to the one that transforms two
states having equivalent entanglement using LOCC.

Let us now focus on the average number of catalyst
states that exist for a given pair of incomparable states with
�

ψ→φ
E . As depicted in Figs. 3(b) and 3(d) for states in 4 ⊗ 4

and 5 ⊗ 5, respectively, we notice that the average num-
ber of catalysts increases with the increase of �

ψ→φ
E . For

example, in 4 ⊗ 4, when incomparable pairs are simulated
with �

ψ→φ
E ∈ (0.05, 0.1), 102 catalysts on average are found,

while when �
ψ→φ
E ∈ (0.7, 0.75), the number of available cat-

alysts shoots up drastically, which is ≈3.14 × 103. A similar
picture emerges for five-dimensional bipartite states. It shows
that even though very few incomparable states exist when
�

ψ→φ
E is large, several catalysts states are present that can

help to make the pairs comparable. This result further points
out how states having almost equal entanglement content are
difficult to catalyze, even if their entanglement content is low.

B. Catalysis of multicopy incomparable states

We now focus our attention on states that act as
catalysts for two-copy and three-copy incomparable
pairs, i.e., |ψ〉⊗k

AB 
→LOCC |φ〉⊗k
AB with k = 2, 3 although

|ψ〉⊗k
AB |χ〉 →LOCC |φ〉⊗k

AB |χ〉. To investigate the patterns of
such transformation, we first identify incomparable pairs at
the two-copy and three-copy level from randomly generated
5 × 104 pairs having E (ψ ) � E (φ), and then for a particular
pair, among 105 randomly generated states, we find out the
states that are suitable as catalysts. The observations can be
listed as follows.

(i) Like a single-copy scenario, we observe that both the
mean and the minimum entanglement of the catalyst decrease
with the increase of �

k(φ→φ)
E , as illustrated in Fig. 4.

(ii) The average number of available catalysts for a given
incomparable pair also increases with an increase in �

k(φ→φ)
E

(k = 2, 3).
(iii) Both 〈E (χ )〉 and Emin(χ ), required to catalyze an

incomparable pair, increase with an increase in dimension.
(iv) The states that are incomparable at a higher number

of copies need catalysts with a lower entanglement content
to facilitate the transformation. This is because the additional
copies of the states can also act as resources that can facilitate
the transformation.

To understand the dependence of the entanglement in cat-
alysts on the number of copies, we study the distribution of
〈E (χ )〉 and Emin(χ ). Specifically, we calculate the average of
the mean and the minimum entanglement of the catalyst, i.e.,

〈E (χ )〉av =
∑M

k=1〈E (χ )〉k

M
,

E av
min =

∑M
k=1 Ek

min(χ )

M
, (15)

FIG. 4. (a) Emin(χ ) of catalysts for two-copy incomparable states
(ordinate) in 4d (circles) and 5d (diamonds) with respect to �

2(ψ→φ)
E

(abscissa). (c) The same as in (a) except the ordinate is for 〈E (χ )〉
(squares and triangles are used for states in 4d and 5d , respectively).
(b) The average number of catalysts, 〈n3

χ 〉, for three-copy incompa-
rable states, and (d) 〈n2

χ 〉 for two-copy incomparable states with 4d

(stripes) and 5d (solid) (ordinate) against �
k(ψ→φ)
E . All the axes are

dimensionless.

where M is the total number of incomparable states obtained
from random state generation. In a similar fashion, we can
compute the standard deviation of the distribution for the
mean and the minimum entanglement of the catalyst states,
denoted by 〈E (χ )〉σ and Eσ

min. The first moment and the
second moment about the mean of the distribution for the
entanglement content in the catalysts are calculated in Ta-
ble II, which reveals that the average as well as the standard
deviation of the distribution for both quantifiers decrease with
the number of copies, although both of them increase with
the increase of dimension. The reduction in standard deviation
can be interpreted as follows: in entanglement transformation
via LOCC, when two copies of source and target states are
provided, it can be thought of as an additional resource given
to the transformation, and hence a set containing pairs that are
two- or more-copy incomparable are harder to transform via
LOCC compared to a set of pairs that are single-copy incom-
parable and two- or more copy comparable. It also provides
a classification among incomparable states. In that sense, the
reduction of the standard deviation of 〈E (χ )〉 and Emin implies
that these pairs of two- or more-copy incomparable states
require much more stringent bounds on entanglement to cat-
alyze. Furthermore, comparing Figs. 4(b) and 4(d) with Fig. 3,
we realize that for incomparable pairs with a given entan-
glement difference, the average number of catalysts available
decreases with an increase in the number of copies. This can
again be explained by noticing that such catalysts exist within
a smaller region of the state space (as indicated by the lower
standard deviation), and hence they are harder to encounter.

VI. HIERARCHY OF CATALYST

Up to now, we have studied the characteristics of the
catalyst states with respect to the entanglement contents of

052402-7



GUPTA, MAITY, MAL, AND SEN(DE) PHYSICAL REVIEW A 106, 052402 (2022)

TABLE II. Average and standard deviation of the mean and minimum entanglement of catalysts for single- and multicopy incomparable
state transformation.

4 ⊗ 4 5 ⊗ 5

k 〈E (χ )〉av 〈E (χ )〉σ E av
min Eσ

min 〈E (χ )〉av 〈E (χ )〉σ E av
min Eσ

min

1 1.3613 0.2689 0.9918 0.3536 1.5943 0.1793 1.1137 0.2687
2 1.2498 0.1846 0.6271 0.3021 1.5682 0.1343 0.9520 0.2187
3 1.2334 0.1827 0.8221 0.2842 1.5626 0.1357 0.6084 0.2177

the input and output states generated randomly for LOCC
transformation, thereby providing a classification among in-
comparable states. We now move on to characterize catalyst
states according to their transformation power, which facili-
tates transformations of different kinds of incomparable pairs,
thereby establishing a hierarchy among the catalysts. To estab-
lish the rankings among catalysts, we consider the following
three situations.

(i) One step-assisted catalysts. Let us consider a pair of
states, |ψ〉AB and |φ〉AB, such that |ψ〉AB � |φ〉AB, as well as
|ψ〉⊗2

AB � |φ〉⊗2
AB via LOCC. We investigate the entanglement

properties of catalysts that can make the transformation possi-
ble at the single-copy level. We denote such catalyst states
as |χ〉2(1), where 2 in the subscript represents the fact that
it can catalyze states that are two-copy incomparable, while
(1) shows that it can make pairs of states comparable in a
single-copy level. In general, if a pair is (n + 1)-copy incom-
parable and if a catalyst can make it comparable in the n-copy
level, the catalyst state can be denoted as |χ〉n+1(n), which can
be called a one-step-assisted catalyst. In our study, we also
investigate catalysts that can aid transformations at the two-
copy level for pairs that are three-copy incomparable. We then
compare such catalysts, deemed as |χ〉3(2), with |χ〉2(1) and
we compare their entanglement properties and distributions
with respect to each other. Notice that the set of catalysts
found here is different from the one considered in the pre-
ceding section, where if a pair is two-copy incomparable, we
find catalysts that make the pair comparable at the two-copy
level itself. In general, m step-assisted catalysts, |χ〉m(n) with
m � n, can be introduced, where a pair is incomparable with
m copies, while with the help of catalysts, a pair becomes
comparable with n copies.

(ii) Strong catalysts. We now identify catalysts that can
make a single-copy transformation possible between pairs,
although the pairs are incomparable at a higher number of
copies. Specifically, we generate 105 two-qudit states Haar
uniformly, and we find the set of pairs that are incompara-
ble at a high number of copies (n � 3). For these pairs, we
determine the catalysts that can make the pairs comparable
even at a single-copy level. We call these catalyst states strong
catalysts, and we denote them as |χ〉n(1), whose entanglement
features will be investigated.

(iii) Cost-efficient catalysts. Let us now categorize catalyst
states that not only facilitate LOCC impossible transforma-
tions, but also provide a lower resource cost in doing so. To
determine them, let us consider |ψ〉AB and |φ〉AB, which are
incomparable for a single-copy level although |ψ〉⊗2

AB →LOCC

|φ〉⊗2
AB . This implies that an extra copy of the initial state acts

as an additional resource, which can make the transformation
feasible. For these pairs of states, we find catalyst states,

denoted by |χ〉2, with E (χ2) � E (ψ ) and E (χ2) � E (φ),
which can make the single-copy transformation possible,
thereby illustrating the advantage of using catalysts from the
perspective of resource instead of two copies of the pairs.

Our aim is to characterize all such sets of catalyst states
generated Haar uniformly in 4 ⊗ 4 and 5 ⊗ 5 for a given
incomparable pair. It will be interesting to find whether such
sets possess certain entanglement patterns.

A. Strong catalysts versus one-step-assisted catalysts

To analyze the power of the catalysts, |χ〉n+1(n), we first
Haar uniformly generate 5 × 104 states in 4 ⊗ 4 and 5 ⊗
5, identify two- and three-copy incomparable pairs, and fi-
nally find states that can act as catalysts in a single- and
two-copy levels, respectively, from another Haar uniform set
of 105 states. We again use three quantifiers—〈E (χ )n+1(n)〉,
Emin(χ )n+1(n), and 〈nχn+1(n)〉—to manifest their overall patterns
with �

n(ψ→φ)
E . Notice that in Sec. V B, the behavior of cata-

lysts is shown with respect to �
n+1(ψ→φ)
E .

From Fig. 5, we find that the mean entanglement of
|χ〉2(1) is higher than that of |χ〉3(2) for LOCC incompara-
ble pairs in 4 ⊗ 4 and 5 ⊗ 5. This indicates that to catalyze

FIG. 5. Entanglement patterns of one-step-assisted catalysts.
(a) Emin(χ )2(1) (solid circles) and Emin(χ )3(2) (hollow circles)
(ordinate) with respect to �

k(ψ→φ)
E (abscissa) having k = 1, 2, re-

spectively, for randomly generated states in 4 ⊗ 4. (c) A similar plot
to (a) for 〈E (χ )2(1)〉 (solid squares) and 〈E (χ )3(2)〉 (hollow squares).
Parts (b) and (d) are for random states in 5 ⊗ 5. Part (b) is similar
to (a) with circles being replaced by diamonds, while (d) is similar
to (c) except squares are changed to triangles. All the axes are
dimensionless.
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TABLE III. Mean and standard deviation of the average and minimum entanglement of one step-assisted, |χ〉2(1), |χ〉3(2), and strong
catalysts, |χ〉3(1), |χ〉4(1).

d |χ〉2(1) |χ〉3(2) |χ〉3(1) |χ〉4(1)

〈E (χ )〉av 〈E (χ )〉σ E av
min Eσ

min 〈E (χ )〉av 〈E (χ )〉σ E av
min Eσ

min 〈E (χ )〉av 〈E (χ )〉σ E av
min Eσ

min 〈E (χ )〉av 〈E (χ )〉σ E av
min Eσ

min

4 1.3423 0.3329 1.0674 0.4118 1.2114 0.2124 0.6371 0.3365 1.4396 0.3117 1.3001 0.2301 1.5257 0.2896 1.4787 0.1759 0.1759
5 1.5523 0.2187 1.1800 0.3056 1.5256 0.1577 1.0012 0.2471 1.6747 0.2341 1.2635 0.3670 1.7875 0.2287 1.3449 0.3850 0.3850

incomparable pairs at the two-copy level, we require less
entanglement than to do so at the single-copy level, even
though in both the cases the pair is incomparable at a higher
number of copies. It also shows that the catalyst states are
more resourceful than the additional copies of the initial
states themselves. Again like the multiple-copy transforma-
tion seen in the previous section, Table III elucidates how
the standard deviation defined in Eq. (15) of the mean
and minimum entanglement distribution decreases with the
number of copies, thereby showing that a narrower entan-
glement range is available from which to choose the catalyst
states.

Comparing Figs. 4 and 6 for 〈nχ 〉, another feature of
the catalyst hierarchy emerges—the average number of cat-
alysts, 〈nχ3(2)〉, which make two-copy LOCC transformation
of three-copy incomparable states possible, increases when
the entanglement difference of the incomparable pair, i.e.,
�

2(ψ→φ)
E , also increases, thereby showing monotonic behavior

with �
2(ψ→φ)
E . On the other hand, such a monotonic behavior

is absent for 〈nχ2(1)〉 with �
ψ→φ
E (see Fig. 6). This may be

due to the fact that pairs that are three-copy incomparable are
harder to catalyze.

Remark. In Fig. 6, we plot 〈nχ2(1)〉 and 〈nχ3(2)〉 against the
entanglement difference of the corresponding k-copy incom-
parable pair. It is observed that 〈nχ2(1)〉 is significantly more
than 〈nχ3(2)〉 at low values of the entanglement difference.
Specifically, we find that for |χ〉3(2), the frequency distri-
bution 〈nχ3(2)〉 increases with the increase of difference in

FIG. 6. 〈nχ 〉 (ordinate) against �
k(ψ→φ)
E (abscissa) with k = 1, 2

for catalysts |χ〉2(1) (stripes) and |χ〉3(2) (solid), respectively. (a) Dis-
tribution of 〈nχ 〉 in 4 ⊗ 4 while (b) is for 5 ⊗ 5. All the axes are
dimensionless.

entanglement much more prominently than that for |χ〉2(1).
By “monotonic,” we thus mean that the distribution of |χ〉3(2)

increases with the increase in entanglement difference, which
is not the case for |χ〉2(1). The number of |χ〉3(2) is much
less at low values of the entanglement difference and grows
steadily with �

k(ψ→φ)
E , although with minor fluctuations. Thus

we can say that 〈nχ3(2)〉 is roughly monotonic with respect to

the �
k(ψ→φ)
E , as compared to 〈nχ2(1)〉.

In this respect, we can argue that |χ〉2(1) are stronger
catalysts than |χ〉3(2) because the former can facilitate trans-
formation between two highly entangled states while the latter
requires the final state to be much less entangled so that the
difference between entanglements in the source and the target
states is high. For example, from Fig. 6, we observe that for
an entanglement difference up to 0.75, 〈nχ2(1)〉 is greater than
〈nχ3(2)〉, which indicates that |χ〉2(1) can catalyze incomparable
states with a small difference in entanglement, i.e., they can
catalyze transformations between two highly entangled states,
too. On the other hand, 〈nχ3(2)〉 is more significant at higher

values of �
k(ψ→φ)
E , which means that |χ〉3(2) are successful

as catalysts for transformations between highly entangled
and low entangled states. For this reason, we term |χ〉2(1)

as “stronger” catalysts since they may be able to facilitate
transformations between two highly entangled incomparable
states. Moreover, as the dimension of the bipartite states in-
creases, the average number of catalysts goes down, as is
evident by comparing Figs. 6(a) and 6(b).

Strong catalysts. Let us now explore the properties of
catalyst states, |χ〉n(1), which can enable entanglement trans-
formation at the single-copy level even when multiple copies
of the initial and final states remain incomparable. To investi-
gate this, we randomly generate states that are incomparable
under LOCC even when three and four copies are provided,
although by using catalysis, we can make the pair comparable
with a single copy. First of all, we notice that 〈E〉av and E av

min
increase with n, thereby showing that such strong catalysts
should possess a higher amount of entanglement compared to
the one-step-assisted catalysis (see Table III). Secondly, as n
increases, the corresponding catalysts exist mainly when the
entanglement difference between the states, �

ψ→φ
E , is low, as

shown in Fig. 7. Furthermore, the average number of such
strong catalysts decreases with the increase of dimension.

B. Cost-efficient catalysis

To determine the set of cost-efficient catalysts, we look for
catalysts for which E (χ ) < E (ψ ) as well as E (χ ) < E (φ)
hold so that we can conclude that the catalyst state is a less
costly resource to furnish the desired transformation than the
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FIG. 7. Frequency distribution of average number of strong cat-
alysts, 〈nχn(1) 〉 (ordinate) with �

ψ→φ

E (abscissa) found in 4 ⊗ 4
(stripes) and 5 ⊗ 5 (solid). (a) Strong catalysts 〈nχ3(1) 〉 for three-
copy incomparable states. (b) Strong catalysts 〈nχ4(1) 〉 for four-copy
incomparable states. Unlike one-step-assisted catalysts, they can be
found in good numbers for low values of �

ψ→φ

E . All the axes are
dimensionless.

additional copy of the input states. As depicted in Fig. 8, we
plot the difference between the mean (minimum) entangle-
ment of catalysts and E (ψ ) as well as E (φ) involved in the
transformation. If the difference is negative, we can argue that
catalytic transformation is more beneficial than the transfor-
mation with two copies. For two-copy comparable states both
in 4 ⊗ 4 and 5 ⊗ 5, we find that a large fraction of the catalysts
has lower entanglement than the initial and final states, and
yet they can help in to convert a single copy of |ψ〉AB to |φ〉AB.
For a pair of states admitting multiple catalysts, the mean en-

FIG. 8. Quantifying cost-efficient catalysts. Emin(χ ) − E (ψ ) [in
(a)] and Emin(χ ) − E (φ) [in (b)] (ordinate) against the single-copy
entanglement difference, �

ψ→φ

E (abscissa). Circles and diamonds
represent the Haar uniformly generated states in 4 ⊗ 4 and 5 ⊗ 5,
respectively. (c) and (d) Similar plots to (a) and (b) where the ver-
tical axis is for 〈E (χ )〉 − E (ψ ) and 〈E (χ )〉 − E (φ) in (c) and (d),
respectively. Squares and triangles correspond to 4d and 5d catalyst
states. All the axes are dimensionless.

tanglement required to aid the transition becomes negative as
the entanglement difference between the states E (ψ ) − E (φ)
increases. The maximum amount of entanglement that can be
saved as a resource is quantified by Emin(χ ) − Emin(ψ ), and it
is shown that this quantity too becomes progressively negative
with the increase in �

ψ→φ
E . Thus catalyst states not only help

further an otherwise impossible LOCC transformation, but
they also act as a more efficient resource to do so, since they
consume less entanglement than a second copy of the states.
When compared with E (φ), we find that there still exist a large
number of less entangled catalysts, although they decrease
in number with growing �

ψ→φ
E . However, in our simulation,

|ψ〉AB is taken to be more entangled than |φ〉AB, and hence
catalysts having less entanglement than |ψ〉AB are enough to
highlight their efficiency as a resource. Furthermore, as we
increase the dimension, the catalysts become less and less
costly as compared to the initial states, and thereby certify
their beneficial role in the transformation protocol. Our data
suggest that instead of using multiple copies of the same
states, the search for a suitable catalyst can prove to be a more
effective routine when one considers the entanglement that is
ultimately consumed in the transformation protocol.

VII. CONCLUSION

Entanglement transformation by means of local operations
and classical communication (LOCC) is a fundamental tool-
box, which helps to prepare the desired form of entanglement
for different quantum information processing tasks. We char-
acterized entanglement transformation for bipartite random
pure states in various dimensions, and explored the typical
properties of catalytic transformation. We proved that a pair
of randomly generated two-qutrit states is more likely to be
incomparable when the difference between their entanglement
content is low, whereas they become increasingly suitable
for conversion as their entanglement difference grows. We
also demonstrated that such a connection holds for higher
dimensions as well. The fraction of incomparable states has
been shown to increase with the increasing dimension of the
subsystems, while it decreases with the increase in the number
of copies of the pair of states, thereby indicating how the ad-
ditional copies of the source and target states act as resources
facilitating the transformation.

For incomparable states, we resorted to the use of certain
other entangled states, which act as catalysts to help further
the transformation via LOCC. For a given pair of incompa-
rable states, we Haar uniformly generated catalytic resources,
and studied the entanglement properties between their entan-
glement contents and the entanglement of the input-output
pair, thereby establishing a universal pattern for entanglement
transformation via typical states. We found that the average
as well as minimum entanglement required to aid the trans-
formation of an initially incomparable pair decreases with
the increase in entanglement difference between the states
constituting such a pair. This result is intriguing, since the
increase in entanglement difference indicates a heavier cost
for the transformation to take place. Although this was not
possible originally, it can be effected by a catalyst with lower
entanglement content. Our results remain valid in all dimen-
sions considered and also for multiple copies of the states.
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Further, we reported that the entanglement content of catalysts
required for multicopy transformations with LOCC is neces-
sarily lower than that for the single-copy routine. However,
within the state space, such catalysts in the multicopy domain
occupy a smaller volume, which implies that resources re-
quired to further multicopy incomparable transformations are
harder to generate, since they can overcome shortcomings of
several copies of the original states.

We proposed a possible classification scheme among cata-
lyst states according to their power in the state transformation
under LOCC, thereby providing a hierarchy among catalysts.
Specifically, we found that there are catalysts that can make
(n + 1)-copy incomparable states comparable at the n-copy
level. Moreover, we introduced a concept called strong cata-
lyst which can aid in single-copy transformations of multicopy
incomparable states. Such states prove to be most resourceful
since they can make transformations possible at a single-
copy level, even when multiple copies of the initial states
cannot be successful in doing so. We demonstrated the en-
tanglement properties and distribution of such states, and we
concluded that they exist in all dimensions. Another important
feature that catalysts exhibit is the ability to effect transfor-
mations at a lower entanglement cost, which we referred to
as cost-efficient catalytic transformation. States that catalyze

single-copy transformations of two-copy comparable states
are found to possess less entanglement than the original pair
of states, which indicates that even though an additional copy
of the states themselves can furnish the transformation, the
catalyst states can actually accomplish the same task at a lower
resource cost.

Notice that state transformation has been used to quantify
entanglement on a unique footing (cf. [9,12]). We believe that
our work contributes to such analysis in the context of typical
states with regard to how entanglement behaves in different
dimensions and also how it can be manipulated.
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