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Driven Markovian master equation based on the Lewis-Riesenfeld-invariant theory
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We derive a Markovian master equation for driven open quantum systems based on the Lewis-Riesenfeld-
invariants theory, which is available for arbitrary driving protocols. The role of the Lewis-Riesenfeld invariants
is to help us bypass the time-ordering obstacle in expanding the propagator of the free dynamics, such that the
Lindblad operators in our driven Markovian master equation can be determined easily. We also illustrate that,
for the driven open quantum systems, the spontaneous emission and the thermal excitation induce the transitions
between eigenstates of the Lewis-Riesenfeld invariant, but not the system Hamiltonian’s. As an example, we
present the driven Markovian master equation for a driven two-level system coupled to a heat reservoir. By
comparing to the exactly solvable models, the availability of the driven Markovian master equation is verified.
Meanwhile, the adiabatic limit and inertial limit of the driven Markovian master equation are also discussed,
which result in the same Markovian master equations as those presented before in the corresponding limits.
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I. INTRODUCTION

Any physical system in nature, no matter classical or
quantum, couples to its surroundings exchanging energy
and matter to make it as an open system. The theory of
open quantum systems aims at providing a concise manner
to describe the dynamics of the primary system [1]. For
open quantum systems satisfying the Born-Markov approx-
imation [2], the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) Markovian master equation gives a general com-
pletely positive and trace-preserving map of the reduced
dynamics [3,4]. In the original derivation, it is assumed that
the system Hamiltonian is time independent. The coupling
to the environment induces transitions between the static
eigenstates of the system Hamiltonian. For the open systems
with time-dependent external drives, the GKLS master equa-
tions have been derived in and beyond the adiabatic limit,
which leads to the adiabatic [5–9] and nonadiabatic [10–12]
Markovian master equation.

For the driven open quantum systems without memory of
the driving protocol, a nonadiabatic Markovian master equa-
tion (NAME) has been derived [11]. The Lindblad operators
in this nonadiabatic master equation are eigenoperators of
the propagator of the free dynamics, which associates with
the system Hamiltonian. Generally speaking, these eigenop-
erators can be determined by representing the dynamics in
the operator space, which is also known as the Liouvillian
space [13,14]. However, it is difficult to give these eigenoper-
ators explicitly, and these eigenoperators absent clear physical
meanings. For second best thing, a method based on the iner-
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tial theorem is proposed [15]. The inertial theorem relies on
a priori decomposition of the Liouvillian superoperator into a
rapid-changing scalar parameter and a slow-changing super-
operator, which is equivalent to additional restrictions on the
driving protocol [16]. In this way, the Lindblad operators can
be obtained explicitly if the inertial limit is reached [15–17].
At the same time, effective numerical methods to simulate
the driven open quantum system dynamics are also pro-
posed [18,19], but may provide less structural insight into the
dynamics.

For the open quantum systems with a static Hamil-
tonian, the population transitions caused by decoherence
occur between the eigenstates of the static Hamiltonian [1].
Hence, even if the Markovian equation can not be given
explicitly, we may formulate a phenomenological master
equation due to the clearly physical meanings of the transi-
tions [20,21]. However, it is totally different for the driven
open quantum systems with a nonadiabatic driving protocol,
since there is no such a physical meaning for the decoherence-
induced transitions. Thus, it is natural to ask if there is a
simple method to formulate a Markovian master equation for
a driven open quantum system with arbitrary driving protocols
as we used in formulating the Markovian master equation with
the static Hamiltonian.

In this paper, we derive a driven Markovian master equa-
tion (DMME) for arbitrary driving protocols by using the
Lewis-Riesenfeld invariants (LRIs) [22], which is easy to
formulate and has a clear meaning of the decoherence-
induced transitions. Since the solution of the Schrödinger
equation with a time-dependent Hamiltonian can be expressed
as a superposition of the eigenstates of the Lewis-Riesenfeld
invariant with constant amplitudes [23], the unitary oper-
ator corresponding to the free propagator can be written
down explicitly. On the other hand, if the timescale for the
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driving protocol, also known as the nonadiabatic timescale,
approaches to or is larger than the reservoir correlation time,
the memory effect of the driving protocol can not be ne-
glected. By using the Fourier transformation and its inverse
transformation, we collect the frequency contribution caused
by the driving memory effect into the one-sided Fourier
transformation of the reservoir correlation function. Thus, the
driving memory effect can be included in the DMME with
a concise manner. As we will see, the transitions induced
by the coupling to the environment only occur between the
invariant’s eigenstates. Therefore, it is quiet straightforward
to formulate a DMME for a general driven open system, if its
LRIs are known.

This paper is organized as follows. In Sec. II, we
present the general formula of the DMME based on the
Lewis-Riesenfeld-invariant theory. The memory of the driven
protocol is encoded in the decoherence rates and the Lamb
shifts of the DMME. Then, we apply this DMME to the two-
level system with time-dependent driving fields in Sec. III, and
the corresponding adiabatic and inertial limits are discussed.
We also derived exact dynamics for the driven two-level sys-
tem, which will help to illustrate validity and availability of
the DMME. Finally, the conclusions are given in Sec. IV.

II. GENERAL FORMALISM

In this section, we apply the LRIs theory to present the
DMME with explicit mathematical and physical meaning.
Consider the dynamics of the total system, which is governed
by the Hamiltonian

H (t ) = Hs(t ) + HB + HI.

Hs(t ) stands for the system Hamiltonian; the reservoir is rep-
resented by the Hamiltonian

HB =
∑

k

ωkb†
kbk,

where bk and ωk are, respectively, the annihilation operator
and the eigenfrequency of the kth mode of the reservoir. In the
following, the natural units h̄ = c = 1 are used throughout.
We assume that the system-reservoir interaction Hamiltonian
is given by

HI =
∑

k

gkAk ⊗ Bk .

Ak and Bk are the Hermitian operators of the system and
reservoir, respectively. gk stands for the coupling strength.

The von Neumann equation for the density operator of the
total system in the interaction picture reads

∂t ρ̃(t ) = −i[H̃I(t ), ρ̃(t )],

where ρ̃(t ) denotes the density operator of the total system
in the interaction picture, and a similar notation is applied
for the other system and reservoir operators. By assuming the
weak system-reservoir coupling (the Born approximation), we
obtain the Born equation for the system density operator ρ̃s(t ),

∂t ρ̃s(t ) =−
∫ t

0
dτTrB{[H̃I(t ), [H̃I(t − τ ), ρ̃s(t − τ ) ⊗ ρ̃B]]}.

Here, we have assumed that TrB{H̃I(t )ρ̃(0)} = 0, and the
initial state of the total system can be written as ρ̃(0) =

ρ̃s(0) ⊗ ρ̃B. The Born approximation assumes that the cou-
pling between the system and the reservoir is weak, such
that the influence of the system on the reservoir is small. If
the system evolution time is much larger than the reservoir
correlation time τB, we can replace ρ̃s(t − τ ) by ρ̃s(t ) and
the integral limits can be extended to ∞, which is known as
the Markovian approximation. In such a case, the dynamics
governed by the following Redfield master equation within
the Born-Markovian approximation [24],

∂t ρ̃s(t ) =−
∫ ∞

0
dτTrB{[H̃I(t ), [H̃I(t − τ ), ρ̃s(t ) ⊗ ρ̃B]]}.

(1)

For an operator A of the system, the corresponding operator
in the interaction picture can be connected by an unitary
transformation, i.e.,

Ãk (t ) = Ûs(t )Ak = U †
s (t )AkUs(t ). (2)

Us(t ) describing the free propagator of the system satis-
fies a Schrödinger equation for the time-dependent system
Hamiltonian

i∂tUs(t ) = Hs(t )Us(t ), Us(0) = I, (3)

which results in Us(t ) = T exp(−i
∫ t

0 dτ Hs(τ )) with the time-
ordering operator T .

To reduce Eq. (1), a set of eigenoperators of the super-
operator Ûs(t ) are needed, where the eigenoperators satisfy
F̃j (t ) = Ûs(t )F̃j (0) = λ j (t )F̃j (0) [11]. However, it is diffi-
cult to solve the eigenequation of the superoperator Ûs(t )
directly. To overcome this difficulty, the inertial theorem
has been used to obtain an approximative solution of
Ûs(t ) [15,16]. However, the solution is accurate only under
that the inertial parameter is small, which requires a slow
acceleration of the drive.

In fact, the free propagator of the system can be obtained
directly, if the Lewis-Riesenfeld invariants for the system
Hamiltonian Hs(t ) are known. A LRI Is(t ) for the systems with
the Hamiltonian Hs(t ) is a Hermitian operator which obeys an
equation in the Schrödinger picture [23]

i∂t Is(t ) − [Hs(t ), Is(t )] = 0. (4)

For the closed dynamics of the systems, a general solution of
the Schrödinger equation can be written as

|�(t )〉 =
N∑

n=1

cneiαn (t )|ψn(t )〉. (5)

Here, |ψn(t )〉 is the nth eigenstate of the LRI with a real
constant eigenvalue λn, i.e., Is(t )|ψn(t )〉 = λn|ψn(t )〉, {cn}
are time-independent amplitudes, and the Lewis-Riesenfeld
phases are defined as [23]

αn(t ) =
∫ t

0
〈ψn(τ )|(i∂τ − Hs(τ ))|ψn(τ )〉 dτ. (6)

Therefore, the solution of Eq. (3) can be expressed by means
of the eigenstates of the LRIs,

Us(t ) =
∑

n

eiαn (t )|ψn(t )〉〈ψn(0)|. (7)

The LRIs theory was designed to investigate the time evo-
lution of dynamical systems with an explicitly time-dependent
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Hamiltonian [23]. The invariants comply with the following
properties: (i) The expectation values of the LRIs are constant.
(ii) The eigenvalues of a LRI are constant, while the eigen-
states are time dependent. (iii) Any time-dependent Hermitian
operator that satisfies Eq. (4) is a LRI for closed quantum
systems. Each LRI corresponds to a symmetry of the closed
quantum system. Thereafter, the LRIs are successfully applied
to investigate time-dependent problems in quantum mechan-
ics [25] such as the Berry phase [26], the connection between
quantum theory and classical theory [27], and the quantum
control [28]. At the same time, the method to construct the
LRIs for various quantum systems has been explored, for
instance, the harmonic oscillator system [23], the few-level
systems [29,30], the pseudo-Hermitian system [31], and the
open fermionic systems [32]. Also a general method for con-
structing LRIs has been proposed [33].

By means of the explicit formula of the free evolution
operator Us(t ) [Eq. (7)], the system operator Eq. (2) in the
interaction picture can be rewritten as

Ãk (t ) = U †
s (t )AkUs(t ) =

∑
n,m

eiθ k
mn(t )ξ k

mn(t )F̃mn (8)

with

θ k
mn(t ) = αn(t ) − αm(t ) + Arg(〈ψm(t )|Ak|ψn(t )〉) (9)

and ξ k
mn(t ) = |〈ψm(t )|Ak|ψn(t )〉|, which satisfy θ k

mn(t ) ∈ R
and ξ k

mn(t ) > 0. The time-independent operators F̃mn =
|ψm(0)〉〈ψn(0)| denotes one of Lindblad operators in the in-
teraction picture. Since Ãk (t ) are Hermitian operators, it yields

Ãk (t ) =
∑
n′,m′

e−iθ k
m′n′ (t )ξ k

m′n′ (t )F̃ †
m′n′ . (10)

Any F̃ †
m′n′ contains in the operator set {F̃mn}, which can be

used to expand the corresponding Liouvillian space [34]. Sub-
stituting Eqs. (8) and (10) into Eq. (1), we can express the
Markovian master equation as

∂t ρ̃s(t ) =
∑

m,m′,n,,n′
�mn,m′n′ (t )(F̃mnρ̃s(t )F̃ †

m′n′

−F̃ †
m′n′ F̃mnρ̃s(t )) + H.c. (11)

with

�mn,m′n′ (t ) =
∑
k,k′

gkgk′

×
∫ ∞

0
dsξ k′

m′n′ (t )ξ k
mn(t − s)ei(θ k

mn(t−s)−θ k′
m′n′ (t ))

× TrB{B̃k′ (t )B̃k (t − s)ρB}, (12)

where H.c. denotes the Hermitian conjugated expression and
B̃k′ (t ) is the bath operator in the interaction picture.

As shown in Eq. (11), there is memory effect of the driving
protocol, which contains in ξ k

mn(t − s) and θ k
mn(t − s). At first,

by means of the Taylor expansion, the phase θ k
mn(t − s) can be

written as

θ k
mn(t − s) = θ k

mn(t ) + ∂sθ
k
mn(t − s)|s=0s

+
∞∑

l=2

1

l!
∂ l

sθ
k
mn(t − s)sl

≡ θ k
mn(t ) + αk

mn(t )s + Θk
mn(t, t − s), (13)

where

Θk
mn(t, t − s) = θ k

mn(t − s) − θ k
mn(t ) − αk

mn(t )s

=
∫ t

t−s

(
αk

mn(τ ) − αk
mn(t )

)
dτ (14)

is a function of t and t − s with αk
mn(t ) = −∂tθ

k
mn(t ). With

the consideration of eiΘk
mn = cos Θk

mn + i sin Θk
mn, Eq. (12)

becomes

�mn,m′n′ (t ) =
∑
k,k′

gkgk′ξ
k′
m′n′ (t )ei(θ k

mn (t )−θ k′
m′n′ (t ))

×
∫ ∞

0
ds(�c,k

mn(t, t − s) + i�s,k
mn(t, t − s))

×TrB{B̃k′ (t )B̃k (t − s)ρB}eiαk
mn (t )s, (15)

where �c,k
mn(t, t − s) = ξ k

mn(t − s) cos Θk
mn(t, t − s)

and �s,k
mn(t, t − s) = ξ k

mn(t − s) sin Θk
mn(t, t − s). For

�c(s),k
mn (t, t − s), we take the Fourier expansion with respect

to t − s,

�c(s),k
mn (t, t − s) = 1√

2π

∫ +∞

−∞
dωξ�̄

c(s),k
mn (t, ωξ )eiωξ (t−s)

(16)

with �̄c(s),k
mn (t, ωξ ) = 1√

2π

∫ +∞
−∞ �c(s),k

mn (t, τ )e−iωξ τ dτ . By sub-
stituting Eq. (16) into Eq. (15), it yields

�mn,m′n′ (t ) = 1√
2π

∑
k,k′

gkgk′ξ
k′
m′n′ (t )ei(θ k

mn(t )−θ k′
m′n′ (t ))

×
∫ +∞

−∞
dωξ

(
�̄c,k

mn(t, ωξ ) + i�̄s,k
mn(t, ωξ )

)
eiωξ t

×Λ̄kk′ (αk
mn − ωξ ),

where Λ̄kk′ is the one-sided Fourier transform of the instanta-
neous reservoir correlation function

Λ̄kk′ (α) =
∫ ∞

0
dseiαsTrB{B̃k′ (t )B̃k (t − s)ρB} (17)

with α = αk
mn − ωξ . It is convenient to decompose Λ̄kk′ into a

real and imaginary part, i.e.,

Λ̄kk′ (α) = Λ̄R
kk′ (α) + i Λ̄I

kk′ (α),

where �̄I
kk′ (α) = − i

2 (�̄kk′ (α) − �̄∗
kk′ (α)) is a Hermitian ma-

trix and �̄R
kk′ (α) can be written as

Λ̄R
kk′ (α) = 1

2

∫ ∞

−∞
dseiαsTrB{B̃k (s)B̃k′ (0)ρB}.
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We divide �mn,m′n′ into the real and imaginary parts, i.e.,

�mn,m′n′ (t ) = 1√
2π

∑
k,k′

gkgk′ξ
k′
m′n′ (t )ei(θ k

mn(t )−θ k′
m′n′ (t ))

∫ +∞

−∞
dωξ eiωξ t

((
�̄c,k

mn(t, ωξ )Λ̄R
kk′
(
αk

mn − ωξ

)− �̄s,k
mn(t, ωξ )Λ̄I

kk′ (αk
mn − ωξ )

)
+ i
(
�̄c,k

mn(t, ωξ )Λ̄I
kk′
(
αk

mn − ωξ

)+ �̄s,k
mn(t, ωξ )Λ̄R

kk′
(
αk

mn − ωξ

)))
. (18)

According to the convolution theorem of the Fourier transformation, we can transform the integral in �mn,m′n′ with respect to ωξ

into a convolution of the time-domain integral, which leads to

�mn,m′n′ (t ) = 1

2π

∑
k,k′

gkgk′ξ
k′
m′n′ (t )ei(θ k

mn(t )−θ k′
m′n′ (t ))

∫ +∞

−∞
ds′((�c,k

mn(t, t − s′)�R
kk′
(
αk

mn, s′)− �s,k
mn(t, t − s′)�I

kk′
(
αk

mn, s′))
+ i
(
�c,k

mn(t, t − s′)�I
kk′
(
αk

mn, s′)+ �s,k
mn(t, t − s′)�R

kk′
(
αk

mn, s′)))
with �

R(I)
kk′ (αk

mn, s′) = 1√
2π

∫ +∞
−∞ dωξ eiωξ s′

Λ̄
R(I)
kk′ (αk

mn − ωξ ).
The system evolution time τs is the typical timescale of the intrinsic evolution of the system, which is defined by a typical

value for the inverse of the instantaneous frequency differences involved, i.e., τs ∝ |αk
mn(t ) − αk′

m′n′ (t )|−1 for αk
mn(t ) �= αk′

m′n′ (t ).
If τs is small compared to the relaxation time τR, the nonsecular terms in the DMME with αk

mn(t ) �= αk′
m′n′ (t ) may be neglected,

which is known as the secular approximation. Thus we have the DMME within the secular approximation in the interaction
picture,

∂t ρ̃s(t ) = −i[H̃LS(t ), ρ̃s(t )] +
∑

m,m′,n,,n′
�R

mn,m′n′ (t )

(
F̃mnρ̃s(t )F̃ †

m′n′ − 1

2
{F̃ †

m′n′ F̃mn, ρ̃s(t )}
)

, (19)

in which H̃LS(t ) =∑m,n,m′,n′ �I
mn,m′n′ (t )F̃ †

m′n′ F̃mn is the Lamb shift Hamiltonian and �
R(I)
mn,m′n′ (t ) denotes the real (imaginary) part

of �mn,m′n′ (t ),

� R
mn,m′n′ (t ) = 1

π

∑
k

g2
kξ

k
m′n′ (t )

∫ +∞

−∞
ds′(�c,k

mn(t − s′)�R
kk

(
αk

mn, s′)− �s,k
mn(t − s′)�I

kk

(
αk

mn, s′)), (20)

�I
mn,m′n′ (t ) = 1

2π

∑
k

g2
kξ

k
m′n′ (t )

∫ +∞

−∞
ds′(�c,k

mn(t − s′)�I
kk

(
αk

mn, s′)+ �s,k
mn(t − s′)�R

kk

(
αk

mn, s′)). (21)

In fact, although we admit nonadiabatic change of the
driving protocol, the DMME presented in Eq. (19) describes
a Markovian dynamics if �R

mn,m′n′ (t ) � 0 for ∀t . The mem-
ory effects of the driving protocol is explicitly encoded
into a convolution with the reservoir correlation function.
In order to connect to the previous results [11,17], we may
assume that the change of the phase θ k

mn(t ) is slow comparing
to the reservoir correlation decay rate. Thus, there is a typical
timescale τd , called the nonadiabatic phase timescale, defined
as [11]

τd ≡ Minm,n,k,t

{
∂tθ

k
mn(t )

∂2
t θ k

mn(t )

}
,

which is related to the change of the phase in the driving
protocol. Thus, the assumption of the slow-changing phase
is equivalent to require that the reservoir correlation time τB

has to be much smaller than the nonadiabatic phase timescale
τd , i.e., τB � τd . For s ∈ [0, τB] and s � t , the terms up to
second order in Eq. (13) can be ignored, i.e., Θk

mn = 0, so that
�c,k

mn(t, t − s) = ξ k
mn(t − s) and �s,k

mn(t, t − s) = 0. Therefore,
the real (imaginary) part of �mn,m′n′ (t ) becomes

�R
mn,m′n′ (t ) = 1

π

∑
k

g2
kξ

k
m′n′ (t )

∫ +∞

−∞
dωξ ξ̄

k
mn(ωξ )

×Λ̄R
kk (αk

mn − ωξ )eiωξ t .

�I
mn,m′n′ (t ) = 1

2π

∑
k

g2
kξ

k
m′n′ (t )

∫ +∞

−∞
dωξ ξ̄

k
mn(ωξ )

Λ̄I
kk

(
αk

mn − ωξ

)
eiωξ t .

If the change of ξ k
mn(t ) is much smaller than the instantaneous

frequency, i.e., ωξ � αk
mn, we immediately obtain

�R
mn,m′n′ (t ) = 2

∑
k

g2
kξ

k
m′n′ (t )ξ k

mn(t )Λ̄R
kk

(
αk

mn

)
,

�I
mn,m′n′ (t ) =

∑
k

g2
kξ

k
m′n′ (t )ξ k

mn(t )Λ̄I
kk

(
αk

mn

)
, (22)

which lead to the nonadiabatic Markovian master equa-
tion given in Ref. [11].

The DMME presented in Eq. (19) does not contain any
approximation on the driving protocol. It is interesting that
both the real and imaginary parts of the one-sided Fourier
transform of the instantaneous reservoir correlation function
Λ̄kk (α) are involved in both the Lamb shift and the deco-
herence [see Eqs. (20) and (21)]. For the Markovian master
equation with the static Hamiltonian and the time-dependent
Hamiltonian satisfying τB � τd , Λ̄R

kk (α) only contributes to
the decoherence process, while Λ̄I

kk (α) just appears in the
Lamb shift. As a result, the positive decoherence rates may not
be ensured and additional energy level shifts can be observed
in the driven open quantum systems for the timescale τB ∼ τd .

052217-4



DRIVEN MARKOVIAN MASTER EQUATION BASED ON THE … PHYSICAL REVIEW A 106, 052217 (2022)

In the DMME [Eq. (19)], the jump operator F̃mn de-
notes a transition from the state |ψn(0)〉 to another one
|ψm(0)〉. In other words, the transitions caused by the deco-
herence occur between eigenstates of the LRI. Based on the
Lewis-Riesenfeld phase [Eq. (6)], the instantaneous frequency
αk

mn can be divided into three parts, i.e.,

αk
mn = −(〈ψm(t )|Hs(t )|ψm(t )〉 − 〈ψn(t )|Hs(t )|ψn(t )〉)

+ i(〈ψm(t )|∂t |ψm(t )〉 − 〈ψn(t )|∂t |ψn(t )〉)

− ∂t Arg(〈ψm(t )|Ak|ψn(t )〉). (23)

The first term in Eq. (23) attributes to a difference between the
energy average values of the eigenstates |ψn(t )〉 and |ψm(t )〉.
The second term is a geometric contribution from the time-
dependent eigenstates, while the third term comes from the
phase changing rate in the transitions caused by the interaction
Hamiltonian. In the adiabatic limit, the eigenstates of the
LRI are the eigenstates of the system Hamiltonian, and the
adiabatic condition must be satisfied. Thus, the last two terms
are no contributions to the instantaneous frequency, while
the first term becomes the energy gap between the nth and
the mth energy levels, which leads to the adiabatic master
equation given in Refs. [6,8].

III. DRIVEN OPEN TWO-LEVEL SYSTEM

In this section, we apply the general formulism to a driven
two-level system, which couples with a heat reservoir. Here,
we consider that the driven two-level system Hamiltonian in a
laser adapted interaction picture takes the form [35]

Hs(t ) = �(t )σz + �(t )σx, (24)

where �(t ) = ω0(t ) − ωL is the time-dependent detuning
with the time-dependent Rabi frequency ω0(t ) and a constant
laser frequency ωL; �(t ) is time-dependent driven field. The
heat reservoir can be represented by the reservoir Hamiltonian

HB =
∑

k

�kb†
kbk

with �k = ωk − ωL, where bk and ωk are the annihilation
operator and the eigenfrequency of the kth mode of the
reservoir [36]. Without loss of generality, the interaction
Hamiltonian is selected as

HI =
∑
j=x,y

A j ⊗ B j, (25)

where the system and bath operators are

Ax = σx, Bx =
∑

k

gx
k (b†

k + bk ),

Ay = σy, By =
∑

k

igy
k (bk − b†

k ). (26)

For the two-level system governed by the Hamiltonian
Eq. (24), the LRIs have been explored before [28,37]. Here,
we write the LRIs of the two-level system in form of the
spectrum decomposition

Is(t ) =
∑

k=1,2

±�I|ψk (t )〉〈ψk (t )|, (27)

where ±�I are constant eigenvalues and

|ψ1(t )〉 = (cos η(t )eiζ (t ), sin η(t ))T,

|ψ2(t )〉 = (sin η(t )eiζ (t ),− cos η(t ))T, (28)

are the eigenstates of the LRI [Eq. (27)], correspondingly.
Inserting Eqs. (24) and (27) into Eq. (4), the parameters η(t )
and ζ (t ) needs to satisfy the following differential equation:

∂tη = � sin ζ ,

sin 2η (2� + ∂tζ ) = 2 � cos 2η cos ζ . (29)

In what follows, we identify the system operator Ãx(y)(t )
based on the Eq. (8). On the one hand, 〈ψm(t )|Ax|ψn(t )〉 can
be obtained by means of Eqs. (26) and (28)

Ax
11 = sin 2η cos ζ eiϕx

11 ,

Ax
12 =

√
1 − sin2 2η cos2 ζ eiϕx

12 ,

Ax
21 =

√
1 − sin2 2η cos2 ζ eiϕx

21 ,

Ax
22 = sin 2η cos ζ eiϕx

22 , (30)

so do 〈ψm(t )|Ay|ψn(t )〉, i.e.,

Ay
11 = sin 2η sin ζ eiϕy

11 ,

Ay
12 =

√
1 − sin2 2η sin2 ζ eiϕy

12 ,

Ay
21 =

√
1 − sin2 2η sin2 ζ eiϕy

21 ,

Ay
22 = sin 2η sin ζ eiϕy

22 , (31)

in which the phases are ϕx
11 = 0, ϕx

22 = π , ϕ
y
11 = π , ϕ

y
22 = 0,

tan ϕx
12 = − sin ζ

cos 2η cos ζ
, tan ϕx

21 = sin ζ

cos 2η cos ζ
,

tan ϕ
y
12 = cos ζ

cos 2η sin ζ
, tan ϕ

y
21 = − cos ζ

cos 2η sin ζ
,

correspondingly. After substituting Eq. (28) into Eq. (6), we
can obtain the Lewis-Riesenfeld phases,

α1 =
∫ t

0
dτ
(−∂τ ζ cos2 η − � cos 2η − � cos ζ sin 2η

)
,

α2 =
∫ t

0
dτ
(−∂τ ζ sin2 η + � cos 2η + � cos ζ sin 2η

)
.

Thus, the propagator of the free dynamics for the driven two-
level system with the system Hamiltonian Eq. (24) can be
written down explicitly according to Eq. (7). From Eqs. (30)
and (31), we have

ξ x
11 = ξ x

22 = sin 2η cos ζ ,

ξ x
12 = ξ x

21 =
√

1 − sin2 2η cos2 ζ ,

ξ
y
11 = ξ

y
22 = sin 2η sin ζ ,

ξ
y
12 = ξ

y
21 =

√
1 − sin2 2η sin2 ζ . (32)
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and

θ
j

12 = α2 − α1 + ϕ
j
12,

θ
j

21 = α1 − α2 + ϕ
j
21,

θ
j

11 = ϕ
j
11, θ

j
22 = ϕ

j
22,

for j = x, y, which result in the instantaneous frequencies as

αx
12 = −αx

21

= −∂τ ζ cos 2η − 2� cos 2η − 2� cos ζ sin 2η

+ ∂tη sin 2η sin 2ζ + ∂tζ cos 2η

1 − sin2 2 η cos2 ζ
,

α
y
12 = −α

y
21

= −∂τ ζ cos 2η − 2� cos 2η − 2� cos ζ sin 2η

− ∂tη sin 2η sin 2ζ − ∂tζ cos 2η

1 − sin2 2η sin2 ζ
,

α
x(y)
11 = α

x(y)
22 = 0. (33)

Therefore, the system operators Ãx(y)(t ) are determined by
taking ξ

j
mn, θ

j
mn, and α

j
mn into Eq. (8).

Based on the parameters provided above, we can obtain the
Lamb shifts and the decoherence rates via Eqs. (20) and (21).
First, according to Eq. (13), we have

Θx(y)
mn (t, t − s) = θ x(y)

mn (t − s) − θ x(y)
mn (t ) − αx(y)

mn (t )s,

which yields

Θ
x(y)
12 (t, t − s) =

∫ t

t−s
dτ
(
α

x(y)
12 (τ ) − α

x(y)
12 (t )

)
and Θ

x(y)
11 (t, t − s) = Θ

x(y)
22 (t, t − s) = 0. Second, let us take

the reservoir to be in an equilibrium state at temperature
TR. The correlation functions of the heat reservoir operators
satisfy

TrB
{
bk′b†

kρB
} = δk′k (1 + Nk ),

TrB
{
b†

k′bkρB
} = δk′kNk,

TrB{bk′bkρB} = 0,

TrB
{
b†

k′b
†
kρB
} = 0, (34)

where Nk = (exp(ωk/TR) − 1)−1 denotes the Planck distribu-
tion with the reservoir temperature TR. In continuum limit, the
sum over (gx(y)

k )2 can be replaced by an integral

∑
k

(
gx(y)

k

)2 →
∫ ∞

0
dωkJx(y)(ωk ) (35)

with the spectral density function Jx(y)(ωk ). Inserting Eq. (26)
into Eq. (17), it yields

�̄x(y)(α) ≡
∑
k,k′

gx(y)
k gx(y)

k′ �̄
x(y)
kk′ (α)

=
∫ ∞

0
d�kJx(y)(�k + ωL )

(
Nk

∫ ∞

0
dsei(α+�k )s

+(Nk + 1)
∫ ∞

0
dsei(α−�k )s

)
(36)

with α = α
x(y)
mn − ωξ . On making use of the formula∫ ∞

0
dse−iεs = πδ(ε) − iP

1

ε
(37)

with the Cauchy principal value P, we finally arrive at

�̄x(y)(α) = �̄R,x(y)(α) + i�̄I,x(y)(α),

where

�̄R,x(y)(α) = γ0(α)(N (α + ωL ) + 1)

and

�̄I,x(y)(α)

= P

[∫ ∞

0
dωkJx(y)(ωk )

[
N (ωk ) + 1

α + ωL − ωk
+ N (ωk )

α − ωL + ωk

]]
.

with γ0(α) = πJ (α). After inserting �̄
c(s),x(y)
mn (t, ωξ ) and

�̄R(I),x(y)(α) into Eq. (18) and taking the inverse Fourier trans-
formation respect to ωξ , the Lamb shifts and the decoherence
rates can be obtained.

Without any restriction on the driving protocol, the dynam-
ics of the driven two-level system is governed by the following
DMME in the interaction picture,

L̃ρ̃s(t ) = −i[H̃LS(t ), ρ̃s(t )] + DRρ̃s(t ) + DDρ̃s(t ), (38)

with the Lamb shifts H̃LS(t ) =∑ j,mn �
I, j
mn(t )F̃ †

mnF̃mn. Accord-
ing to Eq. (33), the instantaneous frequency is degenerate for
mn = {11, 22}, which indicates a dephasing process on |ϕ1〉
and |ϕ2〉. Therefore, we divide the Lindbladian into two parts
with the dissipators

DR ρ̃s =
∑

mn=12,21

∑
j=x,y

�R, j
mn,mn(t )

×
(

F̃mnρ̃sF̃
†

mn − 1

2

{
F̃ †

mnF̃mn, ρ̃s
})

, (39)

DDρ̃s =
m′n′=11,22∑
mn=11,22

∑
j=x,y

�
R, j
mn,m′n′ (t )ei(θ j

mn(t )−θ
j

m′n′ (t ))

×
(

F̃m′n′ ρ̃sF̃
†

mn − 1

2

{
F̃ †

m′n′ F̃mn, ρ̃s
})

, (40)

which correspond to the energy dissipation and the dephasing
processes, respectively. Here, we have used the fact α12(t ) =
−α21(t ), so that the terms with mn �= m′n′ in Eq. (39) vanish
because of the secular approximation. It is noteworthy that
the dephasing rates in Eq. (40) satisfy �

R,x(y)
11,11 = �

R,x(y)
22,22 =

−�
R,x(y)
11,22 = −�

R,x(y)
22,11 , due to θ x

11 = θ
y
22 = π , θ x

22 = θ
y
11 = 0.

By introducing a Hermitian operator of the interaction pic-
ture �̃z = F̃22 − F̃11, the dephasing term in Eq. (38) can be
rewritten as

DDρ̃s = �R
d (t )
(
�̃zρ̃s�̃

†
z − 1

2

{
�̃†

z �̃z, ρ̃s
})

,

with �R
d (t ) = �R,x

11,11 + �
R,y
11,11. We further define two operators

�̃+ ≡ F̃21 and �̃− ≡ F̃12, which fulfills

�̃+ = �̃
†
−,
[
�̃z, �̃+

] = 1
2 �̃+,

[
�̃z, �̃−

] = − 1
2 �̃−.
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Thus, the dissipative term as shown Eq. (39) can be repro-
duced as

DR ρ̃s = �R
+(t )
(
�̃+ρ̃s�̃− − 1

2 {�̃−�̃+, ρ̃s}
)

+ �R
−(t )
(
�̃−ρ̃s�̃+ − 1

2 {�̃+�̃−, ρ̃s}
)
,

with �R
+ ≡ �R,x

21 + �
R,y
21 and �R

− ≡ �R,x
12 + �

R,y
12 . Transform-

ing back to the Schrödinger picture, we finally arrive at the
DMME,

∂tρs = L(t )ρs

= −i[Hs(t ) + HLS(t ), ρs(t )]

+ �R
+(t )
(
�+ρs(t )�− − 1

2 {�−�+, ρs(t )})
+ �R

−(t )
(
�−ρs(t )�+ − 1

2 {�+�−, ρs(t )})
+�R

d (t )[�z, [ρs(t ), �z]]. (41)

with the time-dependent Lindblad operators �k =
Us(t )�̃kU †

s (t ) for k = +,−, z, and the Lamb shift
HLS(t ) = Us(t )H̃LS(t )U †

s (t ).

A. Adiabatic limit

In the adiabatic limit, the corresponding LRIs satisfy
[Hs(t ), Is(t )] = 0, and share the same eigenstates to the sys-
tem Hamiltonian. According to Eq. (29), if ∂tη(t ) = ∂tζ (t ) =
0, it yields sin ζ = 0 and tan 2η = �/�. Thus, we can write
down the eigenstates of the system Hamiltonian [Eq. (24)] in
form of Eq. (28) with

ζ = 0, η = arccos

⎛
⎝−

√
2

2

√√
�2 + �2 − �√

�2 + �2

⎞
⎠. (42)

It can be verified that

Hs(t )|ψi(t )〉 = εi(t )|ψi(t )〉
with the eigenvalues of the system Hamiltonian ε1,2(t ) =
∓√

�2 + �2/2. In such a case, the propagator can be repre-
sented in terms of the instantaneous eigenstates of the system
Hamiltonian as shown in Eq. (7). The phases in the propagator
come back to a sum of the geometric phases and the dynamical
phases.

Here, we consider the situation where gx
k = 0 in the in-

teraction Hamiltonian Eq. (25) for all k. Thus, the expansion
coefficients in Eq. (8) are

ξ
y
11 = ξ

y
22 = | sin 2η sin ζ | = 0,

ξ
y
12 = ξ

y
21 =

√
1 − sin2 2η sin2 ζ = 1,

with the phase ϕ
y
12 = −ϕ

y
21 = π/2. Due to ∂tζ → 0, the ge-

ometric phases in α1 and α2 are much smaller than the
coresponding dynamical phases, so that the phase in Eq. (8)
reads

θ
y
12 = α2 − α1

= −
∫ t

0
dτ
√

�(τ )2 + �(τ )2 + π,

and θ
y
21 = −θ

y
12, whose derivatives are

α
y
12 =

√
�(t )2 + �(t )2,

α
y
21 = −

√
�(t )2 + �(t )2,

respectively.
In the adiabatic limits, the reservoir correlation time τB is

much smaller than the nonadiabatic timescale of the driving
protocol τd , i.e., τB � τd [16]. Thus the Lamb shifts and the
decoherence rates can be obtained from Eq. (22). By consid-
ering Eq. (36), it yields

�R,y
mn (t ) = 2γ0(αmn)(N (αmn) + 1), (43)

with mn = 12, 21. Note that no matter �(t ) and �(t ) are
either positive or negative, α

y
12 (αy

21) is always positive
(negative), and the Planck distribution satisfies N (−αmn) =
−(N (αmn) + 1). Therefore, the adiabatic Markovian master
equation (AME) for the driven open two-level system can be
written as [6,8]

∂tρs = L(t )ρs

= −i [Hs(t ) + HLS(t ), ρs(t )]

+ 2γ0(N + 1)
(
�−ρs(t )�+ − 1

2 {�+�−, ρs(t )})
+ 2γ0N

(
�+ρs(t )�− − 1

2 {�−�+, ρs(t )}). (44)

B. Inertial limit

A NAME based on the inertial theorem has been pro-
posed [11,15,16], in which the free propagator of the closed
quantum system is determined by decomposing the dynamical
generator in the Hilbert-Schmidt space into a rapidly changed
scalar function and an adiabatically changed matrix. In this
section, we illustrate that the NAME based on the inertial
theorem is the DMME as shown in Eq. (41) in the inertial
limits.

Besides the system Hamiltonian given by Eq. (24), two
following additional operators are needed to determine the
free propagator, which are [16]

L(t ) = �(t )σz − �(t )σx, C(t ) = �̄(t )σz (45)

with �̄(t ) =
√

�2(t ) + �2(t ). We may construct the
Liouvillian vector as �v = {Hs(t ), L(t ),C(t )}. The inertial
theorem requires that the adiabatic parameters for Hs(t ) is
constant [16], i.e.,

μ = �(t )∂t�(t ) − �(t )∂t�(t )

2 �̄3(t )
≡ const.

Here, we call the dynamics, which satisfies the requirement
of the inertial theorem, as the dynamics in the inertial limit.
Under the inertial limit mentioned above, we have ∂t �w(t ) =
−i�̄(t )B(μ) �w(t ) with �w(t ) = �̄(0)

�̄(t ) �v(t ) and

B(μ) = i

⎛
⎝ 0 μ 0

−μ 0 1
0 −1 0

⎞
⎠.
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As a result, by calculating the eigenstates of B(μ), we have
the eigenoperators of the free propagator

�x = 1

2κ2�̄(t )
[−μHs(t ) − iκL(t ) + C(t )],

�y = 1

2κ2�̄(t )
[−μHs(t ) + iκL(t ) + C(t )],

�z = 1

κ�̄(t )
[Hs(t ) + μC(t )], (46)

with κ =
√

1 + μ2, which are the Lindblad operators in the
NAME based on the inertial theorem [15].

As discussed in Sec. II, the Lindblad operators can be
determined by the eigenstates of the LRIs according to
Eq. (8). For the driven open quantum systems with the system
Hamiltonian Eq. (24), the eigenstates of �z [Eq. (46)] must
be the eigenstates of the LRIs defined in Eq. (27), since
�z is Hermitian. In order to verify this correspondence, we
check whether the eigenstates of �z fulfill the differential
equation for the parameters of the LRIs as shown in Eq. (29).
Substituting Eqs. (24) and (45) into Eq. (46), the eigenstates
of �z are obtained straightforwardly,

|ϕ1〉 =
⎛
⎝ (i μ�̄−�)√

2 κ�̄(�+κ�̄)√
�+κ�̄√
2 κ�̄

⎞
⎠,

|ϕ2〉 =
⎛
⎝ (�−i μ�̄)√

2 κ�̄(κ�̄−�)√
κ�̄−�√
2 κ�̄

⎞
⎠, (47)

which can be parameterized as Eq. (28) with

ζ = − arctan

(
μ�̄

�

)
, η = arccos

⎛
⎝−

√
2

2

√
κ�̄ − �

κ�̄

⎞
⎠.

The time derivatives of η(t ) and ζ (t ) read

∂tζ = − 2μ2�̄2�

μ2�̄2 + �2
− ��̄

μ2�̄2 + �2
∂tμ,

∂tη = − μ��̄√
μ2�̄2 + �2

+ μ�

2κ2
√

μ2�̄2 + �2
∂tμ.

By taking ζ , η and their time derivatives into Eq. (29), it can
be verify that, the differential equations Eq. (29) hold in the
inertial limits, i.e., ∂tμ/

√
μ2�̄2 + �2 → 0. In other words,

|ϕ1〉 and |ϕ2〉 are the eigenstates of a inertial LRI, which
requires ∂tμ = 0.

In the following, we derive the inertial Markovian master
equation according to the inertial LRI. Here, we still consider
that gx

k = 0 for all k in the interaction Hamiltonian HI. By
inserting Eq. (47) into Eq. (10), it yields the expanding co-
efficients

ξ11 = ξ22 = μ

κ
, ξ12 = ξ21 = 1

κ
, (48)

and the phases

θ12 = −θ21

= −
∫ t

0
dτ

2κ�̄(τ )�2(τ )

μ2�̄2(τ ) + �2(τ )
+ ϕ12(t ),

with ϕ12 = arctan(κ�/μ�). After some simple algebra,
we obtain the instantaneous frequency with a concise
representation

α12 = −α21 = 2κ�̄(t ).

If we assume that the nonadiabatic timescale τd is great
shorter than the reservoir correlation time τB, we can deter-
mine the Lamb shifts and the decoherence rates according
to Eq. (22). By the same procedure in Sec. III A, we obtain
the inertial master equation, which has precisely the same
representation as shown in Ref. [15].

C. Comparison to the exactly solvable models I:
Dissipative model

In this section, we compare the driven two-level system dy-
namics of governed by the DMME Eq. (41) to the exact master
equation. We start by considering a two-level system with
Rabi frequency ω0 driven by an external laser of frequency
ωL.The two-level atom is embedded in a bosonic reservoir
at zero temperature modeled by a set of infinite harmonic
oscillators. In a rotating frame, the Hamiltonian of such a
system (system plus environment) takes the form

H = Hs + HB + HI .

The system Hamiltonian takes the same form as Eq. (24), i.e.,

Hs(t ) = �(t )σz + �(t )σx,

while the reservoir Hamiltonian is

HB =
∑

k

�kb†
kbk,

where � = ω0 − ωL, �k = ωk − ωL; �(t ) is the driving field
strength; σx = |1〉〈0| + |0〉〈1| and σz = |1〉〈1| − |0〉〈0| are the
x and z components of the Pauli matrix. |1〉 and |0〉 are
the eigenstates of σz with eigenvalues 1 and −1, respectively.
The interaction Hamiltonian HI reads

HI =
∑

k

gkσ+bk + H.c.,

where bk , ωk , and gk are the annihilation operator, eigenfre-
quency, and coupling strength for the kth reservoir mode,
respectively, and σ+ = (σx + iσy)/2 is a system operator. In
fact, the interaction Hamiltonian can written as Eq. (25),
if we set gx

k = gy
k ≡ gk/2 for all modes k. And the same

coupling strengths lead to similar spectral density functions,
i.e., Jx(ωk ) = Jy(ωk ) in Eq. (36). The exact master equa-
tion (EME) for the driven two-level system dynamics can be
obtained by means of the Feynman-Vernon influence func-
tional theory [36,38] (see Appendix A), which reads (in the
Schrödinger picture)

∂tρs(t ) = −i[Heff(t ), ρs(t )]

+γ (t )(2σ−ρs(t )σ+ − {σ+σ−, ρs(t )}). (49)

Here, we consider that the system couples to a vacuum reser-
voir with a Lorentzian spectral density

Jx(y)(ωk ) = �

2

λ2

(�k − �)2 + λ2
.
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λ denotes the spectral width of the reservoir, which is con-
nected to the reservoir correlation time τR = λ−1. In such a
case, the time-dependent decay rate reads

γ (t ) = − 1
2 (m(t ) + m∗(t ))

with m(t ) = ∂t u(t )/u(t ) and

u(t ) = k(t )

(
cosh

(
dt

2

)
+ λ

d
sinh

(
dt

2

))
,

where k(t ) = exp(−(λ + 2i�)t/2) and d = √
λ2 − 2�λ. The

time-dependent effective Hamiltonian Heff(t ) is

Heff(t ) = s(t )σ+σ− + �̃σ+ + �̃∗σ−

which contains the Lamb shift s(t ) and the renormalized driv-
ing field �̃(t )

�̃(t ) = i(∂t h(t ) − h(t )m(t )),

s(t ) = i

2
(m(t ) − m∗(t )).

with

h(τ ) = −i
∫ τ

t0

dτ ′�(τ ′)u(τ − τ ′).

The concrete derivation of the exact master equation Eq. (49)
can be found in Appendix A.

We consider a driving protocol with a constant detuning �

and a driving field with a time-dependent strength

� = �0 sin2(ωct )

with constant �0 and ωc. The LRIs for the Hamiltonian
Eq. (24) can be determined by solving Eq. (29). The initial
conditions are chosen as ζ (0) = 0 and η(0) = π/2, which
corresponds to the eigenstates of the system Hamiltonian at
the initial moment.

In Fig. 1, we present the evolution of the population on
the excited state Pe = (I − 〈σz〉)/2 given by the DMME (red
dashed lines), the EME (blue solid lines), and the AME (green
dotted lines), where 〈σz〉 = Trs{ρs(t )σz} is the main value of
σz. We set that the initial state is prepared on the excited state,
i.e., ρs(0) = |1〉〈1|. When the reservoir relaxation timescale
τR is sufficiently shorter than the system relaxation timescale
τS ≡ �−1, the EME [Eq. (49)] describes the Markovian dy-
namics, so that we set λ = 50�. For the slow change case, the
parameters in the driving field are chosen as �0 = � = 10�

and ωc = 0.1�. As shown in Fig. 1(a), both the DMME (the
red dashed line) and the AME (the green dotted line) give
similar dynamics of the driven two-level system, which are
very close to the result given by the EME (the blue solid line).
On the other hand, if the adiabatic condition is not satisfied,
the AME is fail to describe the dynamics of the system as
shown in Fig. 1(b). Meanwhile, the DMME is still a proper
dynamical equation for describing the open two-level system
under the driven field �(t ). It has to state that, in order to
ensure the secular approximation, we set �0 = � = 0.1�,
and ωc = 10� in Fig. 1(b).

0 2 4 6 8 10
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FIG. 1. The population on the excited state as a function of the
dimensionless time �t for the dynamics governed by the DMME (red
dashed lines), the EME (blue solid lines), and the AME (green dotted
lines). The parameters are chosen as (a) �0 = � = 10�, λ = 50�,
and ωc = 0.1�; (b) �0 = � = 0.1�, λ = 50�, and ωc = 10�. We
set � = 1 as an unity of the other parameters.

D. Comparison to the exactly solvable models II:
Dephasing model

Here, we further compare to another toy model, which is
exactly solved in the interaction picture. With the same system
Hamiltonian as shown in Eq. (24), i.e.,

Hs(t ) = �(t )σz + �(t )σx,

we consider a time-dependent interaction Hamiltonian

HI = A(t ) ⊗ B,

where the system and reservoir operators are

A(t ) = sin 2η cos ζσx + sin 2η sin ζσy + cos 2ησz,

B =
∑

k

gk (b†
k + bk ). (50)

η and ζ are time-dependent parameters in the eigenstates
of the LRI [Eq. (28)], which are governed by Eq. (29). In
this way, the Hamiltonian in the interaction picture can be
written as

H̃I = σz ⊗
∑

k

gk (b†
kei�kt + bke−i�kt ).

By using an unitary transformation

Ṽ = exp

[
1

2
σz

∑
k

(
γkb†

k − γ ∗
k bk
)]

(51)

with γk = 2gk (1 − ei�kt )/�k , the reservoir and two-level sys-
tem decouple to each other, which leads to an exactly solvable
dynamics of the open two-level system [1,39,40]. The detailed
derivation can be found in Appendix B.
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Putting aside the exact dynamics of this toy model, we
derive the DMME for the open two-level system. Taking
Eqs. (28) and (50) into Eq. (8), it follows that the amplitudes
are ξ11 = ξ22 = 1 and ξ12 = ξ21 = 0 while the phases and
instantaneous frequency read θ11 = π , θ22 = 0, and α11 =
α22 = 0. Thus we have �12,12 = �21,21 = 0 and �11,11 =
�22,22 = −�11,22 = −�22,11 ≡ �D according to Eq. (15). In
view of the reservoir correlation functions Eq. (34), �D may
be taken the following form:

�D = lim
t→∞

∫ ∞

0
d�kJ (�k )

×
∫ t

0
ds[(2Nk + 1) cos �ks − i sin �ks].

In case of the zero reservoir temperature, i.e., Nk = 0, it yields

�D = lim
t→∞

{
κ �2

ct

�2
ct2 + 1

+ i
κ �3

ct2

�2
ct2 + 1

}
= i κ�c,

in which the following spectral density has been used [1]:

J (�k ) = κ�k exp

(
−�k

�c

)
(52)

with the cutoff frequency �c and a dimensionless coupling
rate κ . As we see, under the Markovian approximation,
the real part of �D vanishes, which leads to a meaningless
DMME. Hence, we restrict the upper limit of the integration
over s to be t , but not ∞. The DMME in the interaction picture
can be written as

∂t ρ̃s(t ) = −i[H̃LS(t ), ρ̃s(t )] + DDρ̃s(t )

with the Lamb shift Hamiltonian H̃LS(t ) = �I
D(t )�̃†

z �̃z and
the dissipator

DDρ̃s = �R
D(t )
(
�̃zρ̃s�̃

†
z − 1

2 {�̃†
z �̃z, ρ̃s}

)
.

The Lamb shift strength and the dephasing rate are

�I
D(t ) = κ �3

ct2

�2
ct2 + 1

, �R
D(t ) = κ �2

ct

�2
ct2 + 1

,

while the Lindblad operator is �̃z = F̃22 − F̃11.
The numerical results of the main values of the Pauli op-

erators are plotted in Fig. 2. The initial state of the system is
prepared on ρs(0) = (|1〉 + |0〉)(〈1| + 〈0|)/2. The red dashed
lines are the results given by the exact solution, while the blue
solid lines are the results associated with the DMME. Here,
we chosen the same control protocol as used in Sec. III C. In
Fig. 2, we observe a strikingly good agreement between the
DMME (blue solid lines) and the exact solution (red dashed
lines). In fact, the high uniformity does not depend on the
choice of the driving rate and the driving protocol. It is easy
to verify

�e(t ) =
∫ t

0
dτ�R

D(τ ),

which results in the same deocherence process for both the
DMME and the exact solution. On the other hand, due to
�̃†

z �̃z = I (I is an identity operator), the Lamb shift does not
affect the evolution of the two-level system.

0 1 2 3 4 5

c
 t [units of ]

c
 t [units of ]

c
 t [units of ]

0

0.5

1

x

(a)DMME Exact Solution

0 1 2 3 4 5

0

0.1

0.2

y

(b)

0 1 2 3 4 5

0

0.05

0.1

z

(c)

FIG. 2. The main values of the Pauli operators as a function of
the dimensionless time �ct for the dynamics given by the exact
solution (red dashed lines), the DMME without the Lamb shift (blue
solid lines), and the DMME with the Lamb shift (green dotted lines).
The parameters are chosen as �0 = � = ωc, �c = 20ωc, and κ = 1.
We set ωc = 1 as an unity of the other parameters.

E. Dissipative Landau-Zener transition

In this section, we consider the dissipative Landau-Zener
problem, in which the two-level system couples to a reservoir
at zero temperature. The exact transition probabilities for such
a model have been presented [41,42]. Here, we simulate the
open system dynamics of the dissipative Landau-Zener prob-
lem by the DMME, and show that the transition probability
given by the DMME almost coincides with the exact one.
Meanwhile, a clear physical explanation is also presented.

The dissipative Landau-Zener problem is a scattering prob-
lem in the restricted sense that changes in the two-level
systems state will occur only during a finite time interval
around t = 0. The two-level system’s Hamiltonian has the
same form as Eq. (24), i.e.,

Hs(t ) = �(t )σz + �(t )σx, (53)

with �(t ) = vt/2 and � = �0/2, where v is the constant
sweep velocity and �0 denotes the real intrinsic interac-
tion amplitude between the diabatic states |1〉 and |0〉. σx =
|1〉〈0| + |0〉〈1| and σz = |1〉〈1| − |0〉〈0| stand for the x and
z components of the Pauli operators. The eigenstates of the
LRIs are still given by Eq. (28), in which η(t ) and ζ (t ) can
be obtained via solving the differential equations Eq. (29)
by the help of the system Hamiltonian Eq. (53). Further, we
assume that the interaction Hamiltonian takes the same form
as Eq. (25) with gy

k = 0 for all k, so that we obtain

HI = σx ⊗
∑

k

gx
k (b†

k + bk ), (54)
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where bk and gk are, respectively, the annihilation operator
and the coupling strength of the kth mode of the reservoir.

With the setting above, the DMME for the dissipative
Landau-Zener problem can be written as the same form as
Eq. (41) with �

R(I),y
mn = 0. For simplifying our discussion, we

neglect the Lamb shifts (HLS(t ) = 0), and consider that the
reservoir correlation time τB have to much smaller than the
non-adiabatic phase timescale τd , i.e., τB � τd . According to
Eq. (22) and by using the relations Eqs. (35) and (37), the
decoherence rates become

�R
−
(
t, αy

12

) = π
(
ξ

y
12(t )
)2

J
(
α

y
12

)
N
(
α

y
12

)
,

�R
+
(
t, αy

21

) = π
(
ξ

y
21(t )
)2

J
(
α

y
21

)
N
(
α

y
21

)
, (55)

where ξ
y
12(t ) and ξ

y
21(t ) are given by Eq. (32). J (α) stands

for the spectral density associated with the instantaneous fre-
quency α

y
mn, which can be selected as

J (αy
mn) = καy

mn exp

(
−
∣∣αy

mn

∣∣
�c

)
(56)

with the cutoff frequency �c and a dimensionless coupling
rate κ . N (αy

mn) = (exp(αy
mn/TR) − 1)−1 denotes the Planck

distribution with the reservoir temperature TR. Since the
Planck distribution satisfies N (−α

y
mn) = −(N (αy

mn) + 1) and
α

y
12 = −α

y
21 is always fulfilled, the instantaneous frequency

α
y
12 determines the transition direction caused by decoherence.

When the reservoir is at zero temperature, it is easy to illus-
trate that, if α

y
12 > 0, we have N (αy

12) = 1 and N (αy
21) = 0,

which implies a decay from |ψ2(t )〉 to |ψ1(t )〉; if α
y
12 < 0, i.e.,

α
y
21 > 0, we have N (αy

12) = 0 and N (αy
21) = 1, which leads

to a decay from |ψ1(t )〉 to |ψ2(t )〉. Since the instantaneous
frequency α

y
12 is time dependent, the DMME may take the

following form:

∂tρs(t ) = −i[Hs(t ), ρs(t )] + Dρs(t ) (57)

with

Dρs =
{

�
(
�−ρs�+ − 1

2 {�+�−, ρs}
)

for α
y
12 > 0

�
(
�+ρs�− − 1

2 {�−�+, ρ+}) for α
y
12 < 0,

where � = κπ (ξ y
12(t ))2|αy

12| exp(−|αy
12|/�c) is the decoher-

ence rate depending on t and |αy
12|.

For such a dissipative Landau-Zener problem, the exact
transition probability P11 reads [41,42]

P11 = exp

(
−πW 2

2v

)
(58)

with

W 2 = �2
0 +
∑

k

(
gx

k

2

)2

. (59)

P11 denotes the probability for a transition to the diabatic state
|1〉, if the initial state of the two-level system is prepared in
|ψ1(−∞)〉 = |1〉. More directly speaking, P11 = 〈1|ρs(∞)|1〉
is the population on the diabatic state |1〉 at t = ∞. Consider-
ing the relation Eq. (35), i.e.,∑

k

(gx
k )2 →

∫ ∞

0
dωkJ (ωk )
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FIG. 3. (a) The population on the diabatic state |1〉 given by the
DMME (the blue solid line) and the Schrödinger equation (the yellow
dashed line), the exact transition probability (the red dotted line) and
(b) the instantaneous frequency α

y
12 as a function of a dimensionless

time t/
√

v. Here we choose κ = 0.1 �0 = 2/
√

v and �c = 8/
√

v.
We set v = 1 as an unity of the other parameters.

with the spectral density given by Eq. (56), we have

W 2 = �2
0 + κ

4
�2

c . (60)

In case of the closed system, the exact transition probability
can be evaluated by means of |〈1|ψ1(∞)〉|2, since |ψ1(t )〉
denotes the quantum state evolution for the closed system
dynamics with the initial state |1〉.

In Fig. 3(a), we plot the evolution of the population
on the diabatic state |1〉 for both the dissipative case
ρ11 ≡ 〈1|ρs(t )|1〉 (the blue solid line) and the closed case
|〈1|ψ1(t )〉|2 (the yellow dashed line). Since we have selected
�2

0/v = 4, the adiabatic condition for the Landau-Zener tran-
sition is close to be satisfied. Therefore, both the dissipative
case and the closed case give an almost similar dynamical
evolution. On the one hand, the instantaneous frequency α

y
12 is

always positive at the most of time as shown Fig. 3(b). Hence,
the instantaneous eigenstate |ψ1(t )〉 must be the instantaneous
steady state of the DMME [Eq. (57)]. Therefore, in the adia-
batic limits, the quantum state ρs(t ) must follow with |ψ1(t )〉.
Also we find that α

y
12 < 0 at a small interval around t = 0.

At this time, the instantaneous steady state becomes |ψ2(t )〉,
so that the dissipative dynamical evolution divides from the
closed case. On the other hand, it can be observed that
the transition probability given by the DMME is very close
to the exact one P11 [Eq. (58)]. This can be understood as
follows: In the adiabatic limits, i.e., �2

0/v � 1, we have �2
0 �∑

k (gx
k )2, when the Born approximation (the weak coupling

approximation) is satisfied. Thus, the influence of the dissipa-
tion on the transition probability P11 is inapparent.

The nonadiabatic case is presented in Fig. 4, in which we
have selected �2

0/v = 0.04. For the closed system case, since
the adiabatic condition can not be fulfilled, the quantum state
can not follow the eigenstates of the Hamiltonian into the
diabatic state |0〉, which are illustrated by the yellow dashed
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FIG. 4. (a) The population on the diabatic state |1〉 given by the
DMME (the blue solid line) and the Schrödinger equation (the yellow
dashed line), the exact transition probability (the red dotted line) and
(b) the instantaneous frequency α

y
12 as a function of a dimensionless

time t/
√

v. Here we choose κ = 0.1 �0 = 0.2/
√

v and �c = 8/
√

v.
We set v = 1 as an unity of the other parameters.

line in Fig. 4(a). When the coupling to the reservoir is consid-
ered, the result is entirely different. We can observe that the
numerical result given by the DMME is in good agreement
with the exact transition probability (the red dotted line). For
the exact transition probability [Eq. (58)], due to �2/v � 1,
the effect of the dissipation on the Landau-Zener transition
is dominate, which reduces P11 evidently. The decrease of
P11 can be understood by means of the DMME [Eq. (57)].
As shown in Fig. 4(b), the instantaneous frequency α

y
12(t )

is positive at t < 0, so that the instantaneous steady state
of the DMME is the eigenstate of the LRI |ψ1(t )〉. When
t > 0, the instantaneous frequency α

y
12(t ) becomes negative.

Thus, the instantaneous steady state of the DMME is turned
over to the other eigenstate of the LRI, i.e., |ψ2(t )〉, for t >

0. Therefore, the population will decay into |ψ2(t )〉 gradu-
ally, and the final transition probability becomes ρ11(∞) =
|〈1|ψ2(∞)〉|.

IV. CONCLUSION

The driven Markovian master equation is derived by using
the LRI theory within the Born-Markovian approximation
in this paper. Since the unitary operator associated with the
free propagator of the quantum system can be decomposed
by the eigenstates of the LRI, our derivation overcomes the
time-ordering obstacle in writing down an exact formula of
the propagator for the free dynamics. Due to the rapid chang-
ing of the driving protocols, the nonadiabatic timescale may
approach to, or even be larger than, the reservoir correlation

time, which leads to the memory effect of the driving proto-
cols. The DMME presented here includes this memory effect,
which leads to additional Lamb shifts and decoherence terms.
Therefore, the DMME does not contain any constraint on the
driving protocols, such as the adiabatic or inertial approxima-
tion [6,16].

According to the DMME, the transitions of the driven open
quantum system occur on the eigenstates of the LRI, but not
on the instantaneous eigenstates of the system Hamiltonian.
This is very practical in determining the Lindblad operators in
the DMME, if the LRIs are known [11], which is illustrated
by the example of the driven two-level system. Similar to
the Makovian master equation with a static Hamiltonian, both
the energy relaxation and dephasing processes emerge in the
dynamics of the driven two-level system. But the decoherence
rates and the Lindblad operators are time dependent, which
implies a time-dependent steady state. Such a time-dependent
steady state is an important candidate in the quantum state
engineering of open quantum systems. What is more, if the
reservoir is at low, or ultralow, temperature, the steady state
is close to a pure state, which is one of the eigenstates of
the LRI. Therefore, the inverse engineering method based on
the LRIs [28,35,43,44] will be a more promising controlling
method than the others in the field of the shortcuts to adia-
baticity [45,46].

Here, we would like to emphasize that the dynamics of
the driven open quantum systems is closely connected to the
symmetry of the system, which is contained in the LRIs of the
corresponding system Hamiltonian. For instance, the DMME
given in Eq. (41) can describe the dynamics only for open two-
level systems with the system Hamiltonian like Eq. (24). For
different types of the system Hamiltonian, the open system
dynamics must be different due to distinct symmetries of the
driven system. Therefore, to present the LRIs of a particular
system with a certain driving protocol is an essential task in
applying the general formula of the DMME [33]. For driven
two-qubits system, a Lie-algebraic classification and detailed
construction of the LRIs has been exploited [30]. However, for
the many-body and multilevel system, this is a hard task [47].
Fortunately, there are many useful (semi)simple subalge-
bras in a complicated Lie algebra [48], which corresponds
to many available driving protocols. Therefore, the DMME
based on the LRI theory have broad potential applications
in the quantum information process [49,50] and the quantum
thermodynamics [51,52].
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APPENDIX A: EXACT MASTER EQUATION FOR THE DISSIPATIVE MODEL

1. Model Hamiltonian

We start by considering a two-level system with Rabi frequency ω0 driven by an external laser of frequency ωL. The two-level
atom is embedded in a bosonic reservoir at zero temperature modeled by a set of infinite harmonic oscillators. In a rotating
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frame, the Hamiltonian of such a system (system plus environment) takes the form

H = Hs + HB + HI ,

with

Hs = �σ+σ− + �xσx + �yσy, HB =
∑

k

�kb†
kbk, HI =

∑
k

gkσ+bk + H.c.,

where � = ω0 − ωL, �k = ωk − ωL, �x and �y are coherent field strength, σxand σy are the x and y components of the Pauli ma-
trix, bk and gk are the annihilation operator and coupling constant, respectively. Due to σ+ = (σx + iσy)/2, σ− = (σx − iσy)/2,

the interaction Hamiltonian can be rewritten as

HI = σx

∑
k

gk (b†
k + bk ) − σy

∑
k

i gk (b†
k − bk ).

2. Coherent-state representation

The starting point of analysis is to observe that the lowering and raising operators of the atomic transition operators σx =
σ+ + σ− and σy = −i(σ+ − σ−). σ+ and σ− satisfy anticommutation relation similar to those of fermions, i.e.,

{σ−, σ+} = 1, {σ+, σ+} = {σ−, σ−} = 0.

We introduce a couple of conjugate Grassmann variables ζ and ζ̄ imposing standard anticorrelation with the annihilation and
creation operators of the system, which satisfy [53]

σ−|ζ 〉 = ζ |ζ 〉, ∂ζ |ζ 〉 = −σ+|ζ 〉, 〈ζ |σ+ = ζ̄ 〈ζ |, ∂ζ̄ 〈ζ | = 〈ζ |σ−,

with |ζ 〉 = exp(σ+ζ )|g〉.
For the Bosonic reservoir, coherent states are defined as a tensor product of states generated by the exponentiated operation

of a creation operator and a suitable label on a chosen fiducial state [38],

|z〉 =
∏

k

|zk〉, |zk〉 = exp
(
b†

kzk
)|0k〉.

A state of the combined atom-field system can be expanded in a direct product of the coherent state

|z, ζ 〉 = |z〉 ⊗ |ζ 〉.
Atomic and bosonic coherent states possess well-known properties such as being nonorthogonal

〈z|z′〉 = exp

(∑
k

z̄kz′
k

)
, 〈ζ |ζ ′〉 = exp (ζ̄ ζ ′), ak|zk〉 = zk|zk〉, σ−|ζ 〉 = ζ |ζ 〉,

where z̄k and ζ̄ denote the conjugation of zk and ζ , respectively. Despite their nonorthogonality, both types of coherent states
form an overcomplete basis set ∫

dφ(z)|z〉〈z| =
∫

dφ(ζ )|ζ 〉〈ζ | = 1, (A1)

with dφ(z) =∏k exp(−z̄kzk )d2zk/π and dφ(ζ ) = exp(−ζ̄ ζ )d2ζ .
The application of the coherent-state representation makes the evaluation of path integrals extremely simple. In the

coherent-state representation, the Hamiltonians of the system, the environment, and the interaction between them are expressed,
respectively, as

Hs(ζ̄ , ζ ) = �ζ̄ζ + �∗ζ̄ + �ζ, HB(z̄, z) =
∑

k

�k z̄kzk, HI (ζ̄ , ζ , z̄, z) =
∑

k

(gk ζ̄ zk + ḡk z̄kζ ). (A2)

with � = �x + i�y.

3. Influence function in coherent-state representation

Explicitly, the density matrix of the whole system (the system plus the environment) obeys the quantum Liouville equa-
tion i∂tρT = [H (t ), ρT ], which given formal solution

ρT (t ) = exp

(
−i
∫

H (τ )dτ

)
ρT (0) exp

(
i
∫

H (τ )dτ

)
.
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In the coherent-state representation, by use of Eq. (A1), ρT (t ) can be written as

〈ζ f , z f |ρT (t )|ζ ′
f , z f 〉 =

∫
dφ(zi )dφ(ζi )dφ(z′

i )dφ(ζ ′
i )〈ζ f , z f ; t |ζ i, zi; 0〉〈ζi, zi|ρT (0)|ζ ′

i , z′
i〉〈ζ ′

i , z′
i, 0|ζ ′

f , z f ; t〉.

If we assumed that the initial density matrix is factorized into a direct product of the system and the environment state, i.e.,
ρT (0) = ρ(0) ⊗ ρB(0), the reduced density matrix of the system can be expressed formally as

ρ(ζ̄ f , ζ f ; t ) =
∫

dφ(z f )〈ζ f , z f |ρT (t )|ζ ′
f , z f 〉

=
∫

dφ(ζi )dφ(ζ ′
i )J (ζ̄ f , ζ

′
f ; t |ζ̄i, ζ

′
i ; 0)ρ(ζ̄i, ζ

′
i ; 0), (A3)

where J (ζ̄ f , ζ
′
f ; t |ζ̄i, ζ

′
i ; t ) is an effective propagating function, which is given by [38]

J (ζ̄ f , ζ
′
f ; t |ζ̄i, ζ

′
i ; t ) =

∫
D2ζD2ζ ′ exp (i(Ss(ζ̄ , ζ ) − S∗

s (ζ̄ ′, ζ ′)))F (ζ̄ , ζ , ζ̄ ′, ζ ′). (A4)

The Feynman-Vernon influence functional is defined by

F (ζ̄ , ζ , ζ̄ ′, ζ ′) =
∫

dφ(z f )dφ(zi )dφ(z′
i )D

2zD2z′ρB(z̄i, z′
i; 0) exp (i(SB(z̄, z)

− S∗
B(z̄′, z′) + SI (z̄, z, ζ̄ , ζ ) − S∗

I (z̄′, z′, ζ̄ ′, ζ ′))), (A5)

where Ss, SI , and SB are the actions corresponding to Hs, HB, and HI , respectively,

Ss(ζ̄ , ζ ) = −i
(ζ̄ f ζ (t ) + ζ̄ (t0)ζi )

2
+
∫ t

t0

dτ

[
i

(
ζ̄ (τ )ζ̇ (τ ) − ˙̄ζ (τ )ζ (τ )

)
2

− Hs(ζ̄ , ζ )

]
, (A6)

SB(z̄, z) = −i
∑

k

z̄kzk (t ) +
∫ t

t0

dτ [iz̄k żk (τ ) − HB(z̄, z)],

SI (z̄, z, ζ̄ , ζ ) = −
∫ t

t0

dτHI (z̄, z, ζ̄ , ζ ). (A7)

The boundary conditions are z̄(t ) = z̄ f , z(t0) = zi, ζ̄ (t ) = ζ f , and ζ (t0) = ζi.
Substituting Eq. (A2) into the actions of Eq. (A7), we obtain the explicit form of the propagator. The path integral of the

environmental part in the propagator can be exactly done by the stationary phase method [54]. This method needs the equations of
motion of the path

żk + i�kzk + ig∗
kζ = 0, ˙̄zk − i�k z̄k − igk ζ̄ = 0,

where ζ and ζ̄ are treated as external sources. The formal solution of above equation can be written as

zk (τ ) = zki exp(−i�kτ ) − ig∗
k

∫ τ

t0

dτ ′ exp (−i�k (τ − τ ′))ζ (τ ′),

z̄k (τ ) = z̄k f exp(−i�k (t − τ )) + igk

∫ t

τ

dτ ′ exp (i�k (τ − τ ′))ζ̄ (τ ′). (A8)

We assume that the reservoir is initially in the equilibrium state ρB(z̄i, z′
i; 0) = 1 at zero temperature. Substituting Eq. (A8) into

Eq. (A7), we have

SB(z̄, z) + SI (z̄, z, ζ̄ , ζ ) = −iz̄k f zki exp(−i�kt ) − g∗
k z̄k f

∫ t

t0

dτ exp (−i�k (t − τ ))ζ (τ )

− gkzki

∫ t

t0

dτ ζ̄ (τ ) exp(−i�kτ ) + i|gk|2
∫ t

t0

dτ

∫ τ

t0

dτ ′ exp (−i�k (τ − τ ′))ζ (τ ′)ζ̄ (τ ).

Writing down an obvious identification

exp (i(SB(z̄, z) + SI (z̄, z, ζ̄ , ζ ))) = exp (Az̄k f zki + iz̄k f β + iγ̄ zki + D),

we can use the identity ∫
dz̄dz

π
exp (−z̄z + f̄ z + f z̄) = exp ( f̄ f ),
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to obtain

F (ζ̄ , ζ , ζ̄ ′, ζ ′) = exp (β̄ ′β − D − D′),

with

β = igk

∫ t

t0

dτ exp (−i�k (t − τ ))ζ (τ ), D = −|gk|2
∫ t

t0

dτ

∫ τ

t0

dτ ′ exp (−i�k (τ − τ ′))ζ (τ ′)ζ̄ (τ ).

Finally, we have

F (ζ̄ , ζ , ζ̄ ′, ζ ′) = exp

{∫ t

t0

dτ

∫ τ

t0

dτ ′ f (τ − τ ′)ζ (τ ′)(ζ̄ ′(τ ) − ζ̄ (τ )) +
∫ t

t0

dτ

∫ t

τ

dτ ′ f ∗(τ − τ ′)ζ̄ ′(τ ′)(ζ (τ ) − ζ ′(τ ))

}
, (A9)

where the dissipation fluctuation kernel can be defined as

f (τ − τ ′) =
∑

k

|gk|2 exp (−i�k (τ − τ ′)) ≡
∫

dωJ (ω) exp (−i(ω − ωL )(τ − τ ′)).

4. Exact master equation

We now derive the master equation for the reduced density matrix of the system. Since the effective action after tracing
or integrating out the environmental degrees of freedom [i.e., combining Eqs. (A4) and (A9)] is in a quadratic form of the
dynamical variables, the path integral (A4) can be calculated exactly by making use of the stationary path method and Gaussian
integrals [55]. Substituting Eq. (A7) into Eq. (A4), we have

J (ζ̄ f , ζ
′
f ; t |ζ̄i, ζ

′
i ; t ) =

∫
D2ζD2ζ ′ exp

(
1

2
[ζ̄ f ζ (t ) + ζ̄ (t0)ζi + ζ̄ ′(t )ζ ′

f + ζ̄ ′
i ζ

′(t0)]

−
∫ t

t0

dτ
1

2
[ζ̄ ζ̇ − ˙̄ζ ζ + ζ̄ ′ζ̇ ′ − ˙̄

ζ ′ζ ′] + iHs(ζ̄ , ζ ) − iHs(ζ̄ ′, ζ ′)
)

× F (ζ̄ , ζ , ζ̄ ′, ζ ′).

We use the stationary phase method. The effective Lagrangian can be written as

L = 1

2
[ζ̄ ζ̇ − ˙̄ζ ζ + ζ̄ ′ζ̇ ′ − ˙̄

ζ ′ζ ′] + iHs(ζ̄ , ζ ) − iHs(ζ̄ ′, ζ ′)

−
∫ τ

t0

dτ ′ f (τ − τ ′)ζ (τ ′)(ζ̄ ′(τ ) − ζ̄ (τ )) −
∫ t

τ

dτ ′ f ∗(τ − τ ′)ζ̄ ′(τ ′)(ζ (τ ) − ζ ′(τ )).

According to the Euler–Lagrange equation

∂ζ̄L − d

dt
∂ ˙̄ζL = 0,

with

Hs(ζ̄ , ζ ) = �ζ̄ζ + �∗ζ̄ + �ζ,

we have

∂ζ̄L = 1

2
ζ̇ + i�ζ + i�∗ +

∫ τ

t0

dτ ′ f (τ − τ ′)ζ (τ ′), ∂ ˙̄ζL = −1

2
ζ ,

which leads to

ζ̇ + i�ζ + i�∗ +
∫ τ

t0

dτ ′ f (τ − τ ′)ζ (τ ′) = 0. (A10)

With the same procedure, we can obtain the motion equation about ζ ′,

ζ̇ ′ + i�ζ ′ + i�∗ +
∫ t

t0

dτ ′ f (τ − τ ′)ζ (τ ′) −
∫ t

τ

dτ ′ f (τ − τ ′)ζ ′(τ ′) = 0. (A11)

The equations of motion for ζ̄ and ζ̄ ′ follow by exchanging ζ and ζ ′ in the equations of motion for ζ and ζ ′ and then taking
conjugate. The corresponding boundary conditions are ζ̄ ′(t0) = ζ̄ ′

i and ζ̄ (t ) = ζ̄ f .
To express the master equation independent of the coherent state representation, we will further factorize the boundary values

of the stationary paths by means of the following transformation:

ζ ′(τ ) = ū(τ, t )(ζ ′
f − ζ (t )) + ζ (τ ),

ζ (τ ) = u(τ, t0)ζ0 + h(τ ),
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ζ̄ (τ ) = ū∗(τ, t )(ζ̄ f − ζ̄ ′(t )) + ζ̄ ′(τ ),

ζ̄ ′(τ ) = u∗(τ, t0)ζ̄ ′
0 + h∗(τ ), (A12)

where ζ (t0) = ζ i and ζ ′(t ) = ζ ′
f have been used.

Substituting above variants into the equations of motion, it yields

0 =
(

u̇(τ, t0) + i�u(τ, t0) +
∫ τ

t0

dτ ′ f (τ − τ ′)u(τ ′, t0)

)
ζ0 +

(
ḣ(τ ) + i�h(τ ) + i�∗ +

∫ τ

t0

dτ ′ f (τ − τ ′)h(τ ′)
)

,

and

0 =
(

˙̄u(τ, t ) + i�ū(τ, t ) −
∫ t

τ

dτ ′ f (τ − τ ′)ū(τ ′, t )

)
(ζ ′

f − ζ (t )) + ζ̇ (τ ) + i�ζ (τ ) + i�∗ +
∫ τ

t0

dτ ′ f (τ − τ ′)ζ (τ ′).

Thus, we finally obtain

u̇(τ, t0) + i�u(τ, t0) +
∫ τ

t0

dτ ′ f (τ − τ ′)u(τ ′, t0) = 0, (A13)

˙̄u(τ, t ) + i�ū(τ, t ) −
∫ t

τ

dτ ′ f (τ − τ ′)ū(τ ′, t ) = 0, (A14)

ḣ(τ ) + i�h(τ ) + i�∗ +
∫ τ

t0

dτ ′ f (τ − τ ′)h(τ ′) = 0, (A15)

with the boundary conditions ū(t, t ) = 1, u(t0, t0) = 1, and h(t0) = 0 with t0 � τ, τ ′ � t . It is not difficult to show ū(τ, t ) =
u∗(t, τ ). Since �(τ ) may be time dependent, we can introduce

u′(τ, t0) = u(τ, t0) exp(i
∫ τ

t0

dτ ′ �(τ ′)), h′(τ ) = h(τ ) exp(i
∫ τ

t0

dτ ′ �(τ ′)),

which satisfy the following differential equations:

u̇′(τ, t0) +
∫ τ

t0

dτ ′ f ′(τ − τ ′)u′(τ ′, t0) = 0, ḣ′(τ ) + i�′∗(τ ) +
∫ τ

t0

dτ ′ f ′(τ − τ ′)h′(τ ′) = 0

with f ′(τ − τ ′) = f (τ − τ ′) exp(i
∫ τ

τ ′ dt ′ �(t ′)) and �′∗(τ ) = �∗(τ ) exp(i
∫ τ

t0
dτ ′ �(τ ′)). By means of the Laplace transforma-

tion, we find

sũ′(s) − ū′(0) + f̃ ′(s)ũ′(s) = 0, sh̃′(s) − h̃′(0) + f̃ ′(s)h̃′(s) = −i�̃′∗(s).

The solution can be written as

ũ′(s) = 1

s + f̃ ′(s)
, h̃′(s) = −i�̃′∗(s)

s + f̃ ′(s)
,

which yields

h′(τ ) = −i
∫ τ

t0

dτ ′�′∗(τ ′)u′(τ ′, τ ).

Let τ = t0 in Eq. (A12) and τ = t in Eq. (A13), ζ (t ) and ζ ′(t0) can be expressed in terms of the boundary conditions
ζ0 and ζ ′

f ,

ζ ′(t0) = u∗(t0, t )(ζ ′
f − h(t )) + (1 − |u(t, t0)|2)ζ0, ζ (t ) = u(t, t0)ζ0 + h(t ).

Similarly, ζ̄ (t0) and ζ̄ ′(t ) can be obtained by exchanging ζ and ζ ′ in above equations and taking a conjugate transpose, i.e.,

ζ̄ (t0) = u(t, t0)(ζ̄ f − h∗(t )) + (1 − |u(t, t0)|2)ζ̄ ′
0, ζ̄ ′(t ) = u∗(t, t0)ζ̄ ′

0 + h∗(t ).

Substituting Eqs. (A13) and (A12) into Eq. (A10), the resulting propagating function is a function of the stationary paths

J (ζ̄ f , ζ
′
f ; t |ζ̄i, ζ

′
i ; t ) = exp

(
1

2
[ζ̄ f ζ (t )+ζ̄ (t0)ζi + ζ̄ ′(t )ζ ′

f + ζ̄ ′
i ζ

′(t0)]+ i

2

∫ t

t0

dτ [(ζ̄ ′(τ ) − ζ̄ (τ ))�∗(τ ) + (ζ ′(τ ) − ζ (τ ))�(τ )]

)
,

which results in

J (ζ̄ f , ζ
′
f ; t |ζ̄0, ζ

′
0; t ) = exp(u(t, t0)ζ0(ζ̄ f − h∗(t )) + u∗(t, t0)ζ̄ ′

0(ζ ′
f − h(t )) + h(t )ζ̄ f + h∗(t )ζ ′

f + n(t )ζ0ζ̄
′
0 − |h(τ )|2), (A16)

with n = 1 − |u(t, t0)|2. We take the time derivative on Eq. (A3)

∂tρ(ζ̄ f , ζ f ; t ) =
∫

dφ(ζ0)dφ(ζ ′
0)∂t J (ζ̄ f , ζ

′
f ; t |ζ̄0, ζ

′
0; 0)ρ(ζ̄0, ζ

′
0; 0),
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with

J−1∂t J (ζ̄ f , ζ
′
f ; t |ζ̄0, ζ

′
0; 0) = ∂t u(t, t0)ζ0(ζ̄ f − h∗(t )) − u(t, t0)ζ0∂t h

∗(t ) + ∂t u
∗(t, t0)ζ̄ ′

0(ζ ′
f − h(t )) − u∗(t, t0)ζ̄ ′

0∂t h(t )

+ ∂t h(t )ζ̄ f + ∂t h
∗(t )ζ ′

f + ∂t n(t )ζ0ζ̄
′
0 − ∂t |h(τ )|2.

From Eq. (A16), we have

∂ζ̄ f
J = (u(t, t0)ζ0 + h(t ))J, ∂ζ ′

f
J = (u∗(t, t0)ζ̄ ′

0 + h∗(t ))J,

which will be used to remove ζ0 and ζ̄ ′
0 from ∂t J (ζ̄ f , ζ

′
f ; t |ζ̄0, ζ

′
0; 0). It is easy to obtain the identities

ζ0J = u(t, t0)−1
(
∂ζ̄ f

J − h(t )J
)
,

ζ̄ ′
0J = u∗(t, t0)−1(∂ζ ′

f
J − h∗(t )J

)
,

ζ̄ ′
0ζ0J = |u(t, t0)|−2∂ζ̄ f

∂ζ ′
f
J − h∗(t )|u(t, t0)|−2∂ζ̄ f

J − u(t, t0)−1h(t )ζ̄ ′
0J,

so that we have

∂t J (ζ̄ f , ζ f ; t ) = m(t )ζ̄ f ∂ζ̄ f
J + m∗(t )ζ ′

f ∂ζ ′
f
J − (m(t ) + m∗(t ))∂ζ̄ f

∂ζ ′
f
J + (m∗(t )h∗(t ) − ∂t h

∗(t ))∂ζ̄ f
J + (m(t )h(t ) − ∂t h(t ))∂ζ ′

f
J

− (m(t )h(t ) − ∂t h(t ))ζ̄ f J − (m∗(t )h∗(t ) − ∂t h
∗(t ))ζ ′

f J,

with m(t ) = ∂t u(t, t0)/u(t, t0). A time-convolutionless but exact master equation is obtained for the driving resonator system
coupled to the reservoir,

∂tρ(ζ̄ f , ζ f ; t ) = m(t )ζ̄ f ∂ζ̄ f
ρ(ζ̄ f , ζ f ; t ) + m∗(t )ζ ′

f ∂ζ ′
f
ρ(ζ̄ f , ζ f ; t ) − (m(t ) + m∗(t ))∂ζ̄ f

∂ζ ′
f
ρ(ζ̄ f , ζ f ; t )

+ (m∗(t )h∗(t ) − ∂t h
∗(t ))∂ζ̄ f

ρ(ζ̄ f , ζ f ; t ) + (m(t )h(t ) − ∂t h(t ))∂ζ ′
f
ρ(ζ̄ f , ζ f ; t )

− (m(t )h(t ) − ∂t h(t ))ζ̄ f ρ(ζ̄ f , ζ f ; t ) − (m∗(t )h∗(t ) − ∂t h
∗(t ))ζ ′

f ρ(ζ̄ f , ζ f ; t ).

With the functional differential relations in the coherent-state representation [56],

ζ̄ f ∂ζ̄ f
↔ σ+σ−ρ(t ), ζ ′

f ∂ζ ′
f
↔ ρ(t )σ+σ−, ∂ζ̄ f

∂ζ ′
f
↔ σ−ρ(t )σ+,

we arrive at

∂tρ(t ) = −i[Heff(t ), ρ] + γ (t )(2σ−ρ(t )σ+ − {σ+σ−, ρ(t )}),

where the effective Hamiltonian reads

Heff(t ) = s(t )σ+σ− + �̃σ+ + �̃∗σ−,

with

�̃ = i(∂t h(t ) − h(t )m), s(t ) = i

2
(m(t ) − m∗(t )), γ (t ) = −1

2
(m(t ) + m∗(t )). (A17)

APPENDIX B: EXACT EVOLUTION OF THE DEPHASING MODEL

We start our derivation form taking an unitary transformation Us [Eq. (7)] on the total Hamiltonian, which leads to

h = U †
s HUs = σz ⊗

∑
k

gk (b†
k + bk ) +

∑
k

�kb†
kbk .

Here an interaction Hamiltonian as Eq. (50) has been considered. It follows that the above Hamiltonian can be exactly
diagonalized by means of the unitary operator defined as V = exp(σz ⊗ K ) with K =∑k

gk

�k
(b†

k − bk ) [1,39],

h̃ = V hV † =
∑

k

�kb†
kbk −

∑
k

g2
k

�k
,

in which the two-level system decouples to the heat reservoir. Meanwhile, it is easy to verify that V σx,yV = σx,y. In the rotating
frame given by Us, the evolution of the system quantum state can be written down formally

ρ̃(t ) = Ueff(t )ρ(0)U †
eff(t ),

where Ueff(t ) = exp(−i
∫ t

0 h(s)ds) is the evolution operator for the total system, and ρ(t ) = Usρ̃(t )U †
s . Thus, an useful relation

for V and Ueff(t ) reads

U †
eff(t )V nUeff(t ) = V †

(
VU †

eff(t )V †
)
V n
(
VUeff(t )V †

)
V = V † exp (nσz ⊗ K (t ))V, (B1)

with K (t ) = exp(iHBt )K exp(−iHBt ).

052217-17



S. L. WU, X. L. HUANG, AND X. X. YI PHYSICAL REVIEW A 106, 052217 (2022)

Let us consider an initial product state ρ(0) = ρs(0) ⊗ ρB with a heat equilibrium state at temperature TR and a system
strate as

ρs(0) = 1

2

(
I +
∑

n

rnσn

)
.

Here, σn are Pauli operators and rn is the corresponding component of Bloch vector satisfying rn = Trs{ρsσn}. Therefore, to
obtain exact evolution of the quantum state, we need to calculate the main values of the Pauli operators. For the x component in
the rotating frame given by Us, we find

r̃x(t ) = Tr{ρ̃(t )σx} = Tr{ρ(0)U †
eff(t )σxUeff(t )} = Tr{ρ(0)U †

eff(t )V σxVUeff(t )V †V },
where V σxV = σx has been used. Since VUeff(t )V † = exp(−i

∫ t
0 h̃(s)ds), it yields

r̃x(t ) = Tr{ρ(0)U †
eff(t )V 2Ueff(t )V †σxV } = Tr{ρ(0)U †

eff(t )V 2Ueff(t )V †2σx}.
By considering Eq. (B1), we arrive at

r̃x(t ) = Tr{ρ(0)V † exp (2σz ⊗ K (t ))V †σx} = Tr{(σxρs(0) ⊗ ρB) exp (2σz ⊗ (K (t ) − K (0)))}
= 〈1|σxρs(0)|1〉〈exp (2(K (t ) − K (0)))〉 + 〈0|σxρs(0)|0〉〈exp (−2(K (t ) − K (0)))〉,

where σz|1〉 = |1〉 and σx|0〉 = −|0〉 have been used, and 〈exp (±2[K (t ) − K (0)])〉 = TrB{ρB exp (±2[K (t ) − K (0)])} are the
Wigner characteristic function of the reservoir mode k. It can be easily determined by noting that it represents a Gaussian
function, which immediately leads to

〈exp(±2(K (t ) − K (0)))〉 = exp(2〈(K (t ) − K (0))2〉) = exp

(
−4
∑

k

g2
k

�2
k

〈2b†
kbk + 1〉(1 − cos �kt )

)
.

We now perform the continuum limit of the bath modes. Introducing the density f (�k )of the modes of frequency �k and defining
the spectral density as [1]

J (�k ) = 4 f (�k )g2
k,

we can write down the decoherence function

�e(t ) =
∫ ∞

0
d�k

J (�k )

�2
k

(2Nk + 1)(1 − cos �kt ) = 1

2
ln
(
1 + �2

ct2
)
,

where the spectral density Eq. (52) has been used. Therefore, we obtain

r̃x(t ) = rx(0) exp (−�e(t )),

with Nk = 〈b†
kbk〉. With the same procedure, we can determine the y component of the Bloch vector, which present a similar

expression as r̃x,

r̃y(t ) = ry(0) exp (−�e(t )).

Due to [σz,Ueff(t )] = 0, we have r̃z(t ) = rz(0). Thus, the exact quantum state evolution of the driven two-level system in the
Schrödinger picture can be obtained by using the unitary transformation Us(t ),

ρ(t ) = Us(t )ρ̃(t )U †
s (t ) = 1

2

(
I +
∑

n

r̃n(t )Us(t )σnU
†
s (t )

)
.
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