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Postselection and quantum energetics
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We investigate the anomalous energy change of the measurement apparatus when a qubit is measured in bases
that do not commute with energy. We model two possible measurement implementations: one is a quantum
clock model with a completely time-independent Hamiltonian, while the other is a Jaynes-Cummings model
that is time-dependent but conserves the total excitation number. We look at the mean energy change of the
measurement apparatus in both models, conditioned on the qubit postselection, and we find that this change
can be much greater than the level spacing of the qubit, like an anomalous weak value. In the clock model, the
expression for the apparatus energy shift explicitly contains the weak value of the qubit Hamiltonian. However,
in our case, no explicit weak measurements are carried out. Our two models give different results, which we
explain to be a consequence of the nondegenerate spectrum of the Jaynes-Cummings model. We compare our
calculations in the Jaynes-Cummings model with the experimental data of J. Stevens et al., [Phys. Rev. Lett. 129,
110601 (2022)], and we find good agreement when the conditions of our derivation are valid.
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I. INTRODUCTION

Global energy conservation is the principle that there is an
amount of something, called energy, that does not change with
time. According to this principle, although energy is divided
among the subsystems of the world, and distributed differently
among these subsystems at different points of time, at all times
the total amount of energy is the same. Energy is a shared
resource.

There are many complications that arise when attempting
to reconcile energy conservation and quantum mechanics.
Quantum mechanics introduces indeterminacy to physical
variables, the notion that these variables may not have a
well-defined value prior to being measured. Suppose a small
quantum system, a subsystem of the world, has an indetermi-
nate energy. When its energy is measured, and by chance the
highest possible value is obtained, does the remainder of the
world’s energy take its lowest possible value to compensate?
The answer turns out to depend on whether the total amount
of energy in the world is well-defined or indeterminate. If
the total amount of energy is well-defined, then when our
measured subsystem ends up with its highest possible energy,
the remainder of the world ends up with its lowest possible
energy, an example of quantum entanglement.

The connection between conservation laws, indeterminacy,
and entanglement has been noted by various researchers, and a
number of results have been found. Most notably, there is the
Wigner, Araki, and Yanase (WAY) theorem and its general-
izations, which say that perfect measurements (measurements
being understood to be related to entanglement in some, albeit
mysterious, way) of observables that do not commute with
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additive conserved quantities, like energy, are impossible (see
Refs. [1–7] and Appendix A). While perfect measurements of
such observables are impossible, very accurate measurements
can still be made. These are performed by including an ancil-
lary system with great indeterminacy in the additive conserved
quantity (this indeterminacy serves to reduce the undesirable
entanglement “demanded” by the conservation law). Similar
results hold when the goal is state transformation [8,9], as
opposed to measurement. Often, the conserved quantity under
consideration is energy. We call the emerging field of research
dealing with energy exchange, quantum transformations and
measurement, “quantum energetics.”

Accurate measurements of observables that do not com-
mute with energy are thus understood to be possible, despite
the limitations imposed by conservation of energy. Re-
cent works have focused on utilizing such measurements to
power quantum devices, i.e., quantum measurement engines
[10–16]. Such works have mostly focused on the energy
gained by the measured subsystem itself, as opposed to the
energy cost paid by the environment. Of course, if global en-
ergy conservation holds, these should balance one another in
some way, but the issue becomes quite subtle when we focus,
or postselect, on particular measurement outcomes. What is
the energy change of the remainder of the world, henceforth
referred to as the measurement apparatus or environment,
when our measured subsystem is found (postselected) in a
particular state? Previously, Aharanov, Popescu, and Rohrlich
considered this question in the particularly striking case of a
particle in a box, prepared so as to “superoscillate” in a small
region faster than any of the Fourier components of its wave
function [17]. When a slit in the box is temporarily opened at
the superoscillating region, and the particle happens to escape,
the particle’s energy is strictly higher than it was previously,
raising the question of where the particle got its energy from.
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The authors concluded that, amazingly, the energy of the box-
opener does not change in this case (although the opener’s
energy does play a role and should have an uncertainty larger
than the energy change of the particle). Due to the paradoxical
nature of the effect, Ref. [17] went unpublished for over 30
years and sparked numerous supporting and related papers in
the interim [18–24].

The escaping superoscillation example highlights much
about energy conservation with postselection, but it is just
one example, and one in which the apparatus seemingly does
not supply energy at that. Indeed, there are many alternative
cases in which the measurement apparatus genuinely supplies
energy to the measured system (e.g., the quantum measure-
ment engines previously mentioned). The question of how
the energy of the measurement apparatus changes when we
postselect thus warrants further consideration, and is the focus
of our article.

In this article, we take the measured subsystem to be
a qubit. This provides a simple regime while still offering
insight into surprising effects such as the escaping superoscil-
lation. There are various possible choices of the qubit state
preparation and measurement basis (see Fig. 1), and one may
expect the energetics of the measurement apparatus to vary
depending on the choice. We calculate the energy change of
the measurement apparatus in each case to see what effects
arise.

This article is structured as follows. In Sec. II, we describe
two distinct models for strongly measuring a qubit in arbitrary
bases. The first is a simple quantum clock model [17,25–
27] that utilizes a completely time-independent Hamiltonian,
which guarantees energy conservation at the level of unitary
evolution. This model was used in the original escaping super-
oscillation paper, Ref. [17]. It was also employed by Gisin and
Cruzeiro [25], who also studied energy transfer in quantum
measurement, but whose paper focused more on the topic of
signaling in spin chains.1 The second model we describe in
Sec. II is a more experimentally relevant Jaynes-Cummings
model [28]. The Hamiltonian here is time-dependent, but
it commutes with the total excitation number of qubit and
oscillator, which stands in for the total energy here. This com-
ponent of our paper is similar to Ref. [29], in which a qubit
is driven by radiation, and the photon number change of that
radiation, conditioned on the qubit’s final energy, is measured.
In both of our models, quantum clock and Jaynes-Cummings,
the measurement apparatus has its own energy term, whose
postmeasurement value we can analyze.

In Sec. III, we give results for the mean energy shift of
the measurement apparatus, with postselection on the state of
the qubit. There is a similarity here to the weak value shifts
of a noisy pointer in weak measurement, although no weak
measurement is explicitly carried out. Interestingly, we find in
both models that the mean energy shift of the measurement
apparatus may be much larger than the level spacing of the
qubit (similar to an anomalous weak value [30,31]), an effect

1In particular, they examined whether one party, Bob, could gain
information about another party, Alice’s, decision to measure her
spin “by merely looking at the energy change of his [apparatus].”

FIG. 1. Examples of different state preparations (single blue ar-
row) and measurement choices (red axis) are given for a qubit in the
Bloch-sphere representation. The excited and ground states are |↑z〉
and |↓z〉, respectively. (a) The prepared state is an energy eigenstate
(|↓z〉), and the measurement is of an observable that does not com-
mute with energy (σ̂x). (b) The prepared state (|↑x〉) has uncertain
energy while the measurement is of energy. (c) The qubit initial
state and measurement basis are chosen such that the weak value
of the qubit Hamiltonian is anomalous (much greater than the level
spacing) for one of the measurement outcomes (in particular, the
unlikely outcome). The example shown features the initial state |↑x〉
while the measurement axis lies in the XZ-plane and makes a small
angle (exaggerated here for visibility) with respect to the X -axis.
(d) The qubit initial state and measurement basis are chosen such
that the qubit energy distribution is unchanged, provided that the
measurement outcome is not read. The example shown features the
prepared state |↑x〉, and a measurement axis that lies in the Y Z-plane;
both measurement outcomes are equally likely. Cases (c) and (d) are
both cases in which the prepared state is not an eigenstate of energy
and the measurement does not commute with energy.

essentially witnessed experimentally in Ref. [29]. We also find
that, for the same targeted qubit preparation and postselection,
the two models give distinct results for the measurement ap-
paratus energy change; we discuss the reason for this more in
Sec. IV.

In Sec. IV, we explain why the results of the Jaynes-
Cummings model differ from that of the clock model, and
we discuss the resemblance of the clock model in particular
to a deliberate weak measurement of energy. We suggest a
possible interpretation of our finding that the weak value of
the qubit Hamiltonian occurs in the expression for the clock
energy shift. Section V contains our concluding remarks.
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II. MEASUREMENT MODELS

In this paper, we study two models of qubit measurement.
In both models, the measurement apparatus has its own energy
term, whose postmeasurement value we can evaluate.

A. Quantum clock model

The quantum clock model [17,25] is the first measurement
model we consider. In this three-body model, the total sys-
tem consists of the measured qubit, a pointer qubit (which
stores the measurement outcome), and a quantum clock. The
quantum clock is a continuous, one-dimensional system with
canonically conjugate variables q̂ and p̂, and local Hamil-
tonian Ĥclock = v p̂. The clock Hamiltonian causes the clock
q-coordinate to translate with velocity v, as can be seen
from the commutator i[Ĥclock, q̂] = v. The pointer and clock
together constitute the measurement apparatus. The clock
Hamiltonian is the measurement apparatus’s energy.

The measured qubit has a Hamiltonian Ĥ0 = ω0
2 σ̂z (h̄ = 1

in this paper), while the pointer qubit has no Hamiltonian of its
own, and participates in the dynamics only through the three-
body interaction: Ĥint = −πv

2 | f 〉〈 f | ⊗ σ̂
pointer
y ⊗ δ(q̂), where

| f 〉 is a normalized state in the measurement basis of the qubit,
the other being | f⊥〉. The delta function, δ(q̂), defines a narrow
region in q-space where the interaction happens, which we
call the interaction region.

The total Hamiltonian is

Ĥ = Ĥ0 + Ĥclock + Ĥint

= ω0

2
σ̂z + v p̂ − πv

2
| f 〉〈 f | ⊗ σ̂ pointer

y ⊗ δ(q̂). (1)

The effect of this Hamiltonian is best seen by applying the
associated evolution operator to basis kets. Let |ψ〉 be a state
of the qubit. Let q < 0 so that |q〉 describes a clock position
eigenstate left of the interaction region. For a global state
|ψ〉|↓pointer

z 〉|q〉, evolution then happens in three stages: evolu-
tion left of (before) the interaction region [Eq. (2)], evolution
across the interaction region [Eq. (3)], and evolution right of
(after) the interaction region [Eq. (4)].

Evolution before the interaction region lasts from time t =
0 to t = −q/v and is described by

|ψ〉|↓pointer
z 〉|q〉 → e+iĤ0q/v|ψ〉|↓pointer

z 〉|−ε〉, (2)

where ε denotes an infinitesimal distance to the origin. The
qubit precesses according to its local Hamiltonian Ĥ0 for a
time −q/v, while the clock translates to the left edge of the
interaction region.

Evolution across the interaction region occurs at time t =
−q/v and is infinitesimally short; it is given by

e+iĤ0q/v|ψ〉|↓pointer
z 〉|−ε〉

→ (| f 〉〈 f |e+iĤ0q/v|ψ〉|↑pointer
z 〉

+ | f⊥〉〈 f⊥|e+iĤ0q/v|ψ〉|↓pointer
z 〉)|+ε〉. (3)

The global state on the left side of the arrow contains a com-
ponent in which the qubit is in state | f 〉, and a component in
which the qubit is in | f⊥〉. In the | f 〉 component, the pointer
state is flipped from |↓pointer

z 〉 to |↑pointer
z 〉. By contrast, in the

| f⊥〉 component, the pointer remains in the state |↓z〉. Overall,
this is a controlled-NOT operation, and the result is an entan-
gled superposition of qubit and pointer, characteristic of the
standard von Neumann measurement procedure [32]. In fact,
Eq. (3) is characteristic of the entanglement step of a perfect
strong measurement of | f 〉〈 f |, regardless of whether | f 〉〈 f |
commutes with Ĥ0. Note, though, that the clock, being in a
position eigenstate, has infinite energy uncertainty here, which
allows for perfect von Neumann measurement of observables
that do not commute with the qubit Hamiltonian (this does not
contradict the WAY theorem mentioned in Sec. I, since energy
is infinitely uncertain and thus not meaningfully conserved).
Later we will take the clock energy uncertainty to be finite but
large, as it would more realistically be.

Evolution right of the interaction region occurs from time
t = −q/v to ∞. On the right side of the arrow below, we give
the state at time τ > −q/v:

(| f 〉〈 f |e+iĤ0q/v|ψ〉|↑pointer
z 〉

+ | f⊥〉〈 f⊥|e+iĤ0q/v|ψ〉|↓pointer
z 〉)|+ε〉

→ e−iĤ0(τ+q/v)(| f 〉〈 f |e+iĤ0q/v|ψ〉|↑pointer
z 〉

+ | f⊥〉〈 f⊥|e+iĤ0q/v|ψ〉|↓pointer
z 〉)|q + vτ 〉. (4)

The time elapsed since the clock passed the interaction region
is τ + q/v. During this time, the qubit precesses under the
action of Ĥ0, while the clock translates at a rate v. There is no
further interaction between the bodies.

Equations (2)–(4) give the evolution of basis kets of the
three-body system. In these equations, the clock is assumed
to be in an eigenstate of q̂. In light of the WAY theorem,
this is ideal as far as measurement accuracy is concerned (see
Appendix A 1 for more on the WAY theorem as applied to
the quantum clock model). However, our aim is to assess the
energy of the clock (which is the energy of the measurement
apparatus, EM), which is impossible in the case of a q̂ eigen-
state, since energy is infinitely uncertain. To maintain high
measurement accuracy while allowing for a meaningful value
to be assigned to the shift of the mean energy of the clock, we
take the clock to be described at t = 0 by a narrow2 wave
function 〈q|φ〉 in q-space, localized left of the interaction
region. For simplicity, we take this wave function to be a
single-peaked (at a position q0 < 0) and symmetric Gaus-
sian 〈q|φ〉 = (2πσ 2

q )−1/4e−(q−q0 )2/(4σ 2
q ), but similar results will

hold for similar shapes. At t = 0, the qubit and pointer are
in the state |ψ〉|↓pointer

z 〉, as before. The complete evolution
can then be derived from Eqs. (2)–(4) by linearity. The results
resemble Eqs. (2)–(4) to some degree, due to the qualitative
similarity between a q̂-eigenstate and the narrow |φ〉. Unlike
in Eqs. (2)–(4), the clock is no longer perfectly separable from
the qubit-pointer subsystem, but weakly entangled, so that its
energy depends on the qubit-pointer state. Evolution of the

2For a Gaussian of width σq, the energy uncertainty is v

2σq
. The nec-

essary energy uncertainty for accurate measurement is determined by
the qubit preparation and measurement basis, and should be much
larger than the quantity in Eq. (8) for both outcomes.
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global system from t = 0 to τ 
 −q0/v is given, approxi-
mately, by

|ψ〉|↓pointer
z 〉|φ〉 →

≈ e−iĤ0(τ+q0/v)| f 〉〈 f |i〉|↑pointer
z 〉|φ f 〉

+ e−iĤ0 (τ+q0/v)| f⊥〉〈 f⊥|i〉|↓pointer
z 〉|φ⊥〉. (5)

Here we have defined the qubit preselection, |i〉 ≡
e+iĤ0q0/v|ψ〉, which is the expected state of the qubit just
before the measurement interaction (on account of the qubit
and clock states at t = 0). We have also defined the (nor-
malized) conditioned clock states {|φ f 〉, |φ⊥〉}; more explicit
expressions for these, and derivations of the state evolutions,
Eqs. (2)–(5), may be found in Appendix B and C.

The way we think of the postselection is that the pointer
is projectively measured in the {|↑pointer

z 〉, |↓pointer
z 〉} basis after

it has had the chance to flip, with the |↑pointer
z 〉 (|↓pointer

z 〉) out-
come corresponding to postselecting on | f 〉 (| f⊥〉). This could
in principle be done in isolation from the qubit and clock.
Importantly, such a measurement would not be able to transfer
energy (“transferring energy” meaning taking energy from
somewhere and putting it somewhere else) to the qubit-clock
subsystem, since there would be no physical interaction with
the qubit-clock subsystem; a related and important fact is that
such measurement satisfies the Yanase condition [3], in that
the pointer observable commutes with the apparatus energy.
If the pointer is found in the state |↑pointer

z 〉, the final joint
qubit-clock state will be the state ≈ e−iĤ0(τ+q0/v)| f 〉〈 f |i〉|φ f 〉,
up to a normalization factor. The clock has a final mean
energy 〈φ f |Ĥclock|φ f 〉, which can be compared against the
initial mean energy 〈φ|Ĥclock|φ〉. Results are given in Sec. III.
Note that, although energy conservation is built into the model
via the time-independent Hamiltonian, there is nothing in
the model that requires the conditioned clock mean energy
change to balance the conditioned qubit mean energy change,
i.e., we can have 
〈EM〉 f = 〈φ f |Ĥclock|φ f 〉 − 〈φ|Ĥclock|φ〉 =
−(〈 f |Ĥ0| f 〉 − 〈i|Ĥ0|i〉) = −
〈E0〉 f . We will see in Sec. III
that, in some cases, the disparity between the two is quite
large; the postselection of certain qubit states biases the clock
energy change.

Note that the value of the interaction Hamiltonian is es-
sentially zero for the vast majority of time, since the clock
has negligible support at q = 0 for the vast majority of
time. Thus the total energy can really be thought of as
a sum of the qubit energy and the clock energy. Impor-
tantly, energy can be exchanged between these subsystems
during the brief moment that the clock passes over q =
0, so the clock may act as a source of energy for the
qubit. More concretely, under unitary evolution alone (i.e.,
if the pointer is not projectively measured), the qubit en-
ergy changes in general. The reduced qubit state becomes
a mixed state: ρ̂qb ≈ |〈 f |i〉|2e−iĤ0(τ+q0/v)| f 〉〈 f |e+iĤ0(τ+q0/v) +
|〈 f⊥|i〉|2e−iĤ0(τ+q0/v)| f⊥〉〈 f⊥|e+iĤ0(τ+q0/v), which has the same
exact energy as |〈 f |i〉|2| f 〉〈 f | + |〈 f⊥|i〉|2| f⊥〉〈 f⊥| and a dif-
ferent energy from the initial qubit state in general. Global
energy conservation is guaranteed at the level of this unitary
evolution, so we must have mean energy balance between the

qubit and apparatus, 
〈E0〉 = −
〈EM〉, or

|〈 f |i〉|2(〈 f |Ĥ0| f 〉 − 〈i|Ĥ0|i〉)︸ ︷︷ ︸
P( f )
〈E0〉 f

+ |〈 f⊥|i〉|2(〈 f⊥|Ĥ0| f⊥〉 − 〈i|Ĥ0|i〉)︸ ︷︷ ︸
P( f⊥ )
〈E0〉⊥

= −
[

|〈 f |i〉|2(〈φ f |Ĥclock|φ f 〉 − 〈φ|Ĥclock|φ〉)︸ ︷︷ ︸
P( f )
〈EM 〉 f

+ |〈 f⊥|i〉|2(〈φ⊥|Ĥclock|φ⊥〉 − 〈φ|Ĥclock|φ〉)︸ ︷︷ ︸
P( f⊥ )
〈EM 〉⊥

]
. (6)

We emphasize again that the pointer could in principle be
measured in isolation from the qubit and clock, a process
that would involve zero transfer of energy to the qubit-clock
system from outside sources. The clock suffices as the qubit’s
sole energy source [Eq. (6)].

B. Jaynes-Cummings model

The second model we study is a Jaynes-Cummings model.
Given access to dispersive measurements of energy and uni-
tary qubit control, qubit properties in addition to energy can
be measured [10]. We include the Jaynes-Cummings mea-
surement model for two primary reasons. First, it is more
experimentally realistic than the quantum clock model, so
the results may be tested on modern platforms. Indeed, the
authors of Ref. [29] essentially performed this test already,
albeit in a reduced sense. Second, there is the question of the
quantum clock result’s [Eq. (8)] generality, i.e., of whether the
conditioned mean energy shift of the measurement apparatus
is independent of apparatus details, depending solely on the
qubit preparation and measurement choice. Ultimately, we
find that the conditioned mean energy shift of the measure-
ment apparatus differs in the two models, which shows that
details regarding the measurement implementation affect this
quantity. We discuss the factors responsible for this difference
more in Sec. IV.

In the Jaynes-Cummings model, there is a qubit and a
bosonic degree of freedom, which we refer to as the os-
cillator. The two may interact by exchanging excitations.
The full Hamiltonian is ω0

2 σ̂z + ωoscâ†â − i �(t )
2 (âσ̂+ − â†σ̂−),

where we allow the last, coupling term to depend explicitly
on time; such time-dependence entails an external controller.
If the qubit and oscillator are perfectly on resonance, ω0 =
ωosc (which is something we assume in this paper), then, in
the interaction picture with respect to the bare Hamiltonian
ω0( σ̂z

2 + â†â), the Jaynes-Cummings Hamiltonian is just the
interaction term

ĤJC(t ) = −i
�(t )

2
(âσ̂+ − â†σ̂−), (7)

which, importantly, conserves the total excitation number
n̂T = |↑z〉〈↑z| + â†â. Readers may recognize this interaction
term as being responsible for Rabi drive, and wonder why we
do not focus on dispersive coupling (the off-resonant case),
which is more commonly associated with qubit measurement,
instead. The reason is that dispersive coupling allows mea-
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surements of the qubit’s energy (σ̂z), whereas we want a model
in which observables that do not commute with energy can be
measured.

We do not ignore dispersive measurement altogether,
though. Rather, we assume that we have access to projective
measurements of σ̂z, which in practice may be implemented
via dispersive coupling to a fresh, off-resonant, probe oscilla-
tor without exchanging excitations. Given access to projective
measurements of σ̂z and a way of performing rotations about
the Y axis of the Bloch sphere, we can effectively measure any
�̂σ · �n, where �n lies in the XZ plane. For example, to measure
if the qubit is in the state | f 〉 (assume this is an eigenstate of
�̂σ · �n), we would perform the Y rotation |↑z〉〈 f | + |↓z〉〈 f⊥|,3
measure σ̂z, and then perform the reverse Y rotation | f 〉〈↑z| +
| f⊥〉〈↓z|. This is equivalent to measuring �̂σ · �n, since if the
measurement result is |↑z〉 (|↓z〉), the quantum operation is
| f 〉〈 f | (| f⊥〉〈 f⊥|). The Jaynes-Cummings interaction, Eq. (7),
can approximately generate these Y rotations of the qubit
(the rotations are not completely pure; given initial separa-
ble states of qubit and oscillator, some entanglement will be
generated), and one might notice that it would be proportional
to σ̂y if â and â† were replaced by a real scalar α (a model
that employs no bosonic mode, and simply uses σ̂y instead,
might describe interaction with a classical electromagnetic
field). By increasing the uncertainty in n̂T , Y rotations can
be performed to arbitrary fidelity (the qubit-oscillator entan-
glement decreases). This amounts to initializing the oscillator
in a coherent state |α〉 (α real and positive) of sufficiently
high photon number α2, and hence photon number uncer-
tainty α (again, the need for such an ancilla is related to the
WAY theorem, see Appendix A 2). Then causing the desired
Y rotations is a matter of engineering �(t ) given |α〉. For
simplicity, we assume �(t ) to be piecewise constant in our
calculations (see Appendix D for these): a constant −�0 over
the first drive (from 0 � t < tM) and the opposite constant �0

over the second (from tM < t � 2tM), but other shapes with
the same integrations,

∫ tM
0 �(t )dt and

∫ 2tM
tM

�(t )dt , give the
same results. The σ̂z measurement occurs between the two
drives, instantaneously at time tM . It is worth noting that, if
we increase α, we also decrease �0tM as 1/α so as to maintain
the same rotation angle with more photons.

Let us summarize how this measurement model works
(for an illustration, see Fig. 2). The qubit is prepared in a
state |i〉, while the oscillator is prepared in a coherent state
|α〉 of sufficient energy uncertainty. We measure if the qubit
is in the state | f 〉, where | f 〉 lies in the XZ plane of the
Bloch sphere, by simulating the rotation |↑z〉〈 f | + |↓z〉〈 f⊥|
using the Jaynes-Cummings interaction [Eq. (7)], then mea-
suring σ̂z directly, and lastly simulating the reverse rotation
| f 〉〈↑z| + | f⊥〉〈↓z| using the Jaynes-Cummings interaction.
The Jaynes-Cummings interaction does not change the total
excitation number n̂T , and the σ̂z measurement may be per-
formed without exchanging excitations; in this sense, global

3That this is a pure Y rotation is validated by the assumption that
| f 〉 and | f⊥〉 lie in the XZ plane of the Bloch sphere (on opposite
poles). Furthermore, we are free to define the phase of | f⊥〉 so that
this is a pure rotation (as opposed to a pure rotation plus a relative
phase shift).

FIG. 2. Energy-conserving measurement protocol using Jaynes-
Cummings interaction. We want to measure the observable | f 〉〈 f | of
the qubit, where | f 〉 = cos θ

2 |↑z〉 + sin θ

2 |↓z〉 (|↑z〉 and |↓z〉 are the
excited and ground states of the qubit), and it is assumed that we
have access to projective measurements of the qubit’s energy. First
(pink, clockwise) the qubit is coupled to an oscillator (in a coherent
state with large photon number uncertainty) so as to rotate the qubit
by an angle −θ on the Bloch sphere. This takes | f 〉 to |↑z〉 and
| f⊥〉 to |↓z〉. Next, the qubit’s energy is measured, at time tM . Lastly
(green, counterclockwise), the qubit-oscillator coupling is reversed,
resulting in a qubit rotation of θ . This takes |↑z〉 to | f 〉 and |↓z〉 to
| f⊥〉. The qubit-oscillator coupling strength as a function of time,
�(t ), is plotted and assumed to be piecewise constant over two equal
intervals of length tM to achieve the two rotations. A sample initial
qubit state |i〉 lying in the same Bloch-sphere plane as |↑z〉 and | f 〉 is
shown in order to demonstrate that the process will in general change
the qubit’s energy: in the figure, the possible final states (red axis) | f 〉
and | f⊥〉 both possess a higher mean value for the qubit Hamiltonian
than that of |i〉, since they are higher on the Bloch sphere. This does
not contradict conservation of energy, since the qubit was allowed to
exchange energy with the oscillator. U |i〉 refers to the approximate
qubit state just before the measurement at time tM , assuming the
initial qubit state was |i〉.

energy is conserved. Moreover, the qubit and oscillator are
allowed to exchange excitations during the Jaynes-Cummings
interaction steps, so the oscillator acts as a source of energy
for the qubit, which explains how the measurement is capable
of changing the qubit’s energy in the first place. We can
calculate the final mean photon number conditioned on the
measurement outcome (postselection), 〈â†â〉 f , and compare
to the initial mean photon number, 〈â†â〉i = α2. The results of
this analysis are given in the next section.

III. RESULTS

We now give our results for how the energy of the mea-
surement apparatus changes, depending on the measurement
outcome, in each of the two models.

A. Quantum clock model

In the quantum clock model, the mean energy change of
the measurement apparatus, in the pre- and postselected (PPS)
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FIG. 3. Dice-inspired visualization of qubit and measurement apparatus (M) energy changes in the clock model: positive changes are shown
as shaded green areas (with a bar underneath) and negative changes are shown as shaded red areas (with a bar above). The qubit preselection
(dotted arrow on Bloch spheres) is the state of maximal energy uncertainty |i〉 = 1√

2
(|e〉 + |g〉), and we strongly measure the qubit’s orientation

along an axis that is chosen so as to collapse the qubit onto (solid arrows on Bloch spheres) | f 〉 = cos θ

2 |e〉 + sin θ

2 |g〉 with probability 5/6

( ), and | f⊥〉 = sin θ

2 |e〉 − cos θ

2 |g〉 with probability 1/6 ( ). Here, θ = sin−1( 2
3 ) and ω0 is the energy difference between the |e〉 and

|g〉 states. The qubit’s mean energy increases with the | f 〉 outcome, 
〈E0〉 f = ω0

√
5

6 , and decreases with the | f⊥〉 outcome, 
〈E0〉⊥ = −ω0

√
5

6 .

Per six iterations of the measurement, the expected energy gain of the qubit is 
〈E0〉 = ω0
2
√

5
3 . Global mean energy conservation over all

outcomes demands that the measurement apparatus pays for this: 
〈EM〉 = −ω0
2
√

5
3 . This figure gives an outcome by outcome breakdown

of how the apparatus energy changes: 
〈EM〉 f = −ω0
1

3
√

5
and 
〈EM〉⊥ = −ω0

√
5

3 . Notably, in outcome , both the qubit and measurement
apparatus lose energy. It is similarly possible to choose a measurement basis so that, for some outcome, both qubit and measurement apparatus
gain energy.

ensemble defined by |i〉 and | f 〉, takes the simple form


〈EM〉 f ≈ 〈φ f |Ĥclock|φ f 〉 − 〈φ|Ĥclock|φ〉

= Re

( 〈 f |Ĥ0|i〉
〈 f |i〉

)
− 〈 f |Ĥ0| f 〉. (8)

The approximation warrants further explanation. 
〈EM〉 f

asymptotically approaches the value in Eq. (8) as the initial
clock energy variance, 〈φ|Ĥ2

clock|φ〉 − 〈φ|Ĥclock|φ〉2, goes to
infinity [so that Eq. (5) is valid]. This corresponds to making
the clock q-wave function more narrow, and the measure-
ment more accurate. The initial clock energy uncertainty
should be large compared to this asymptotic value (over both
measurement outcomes) in order for the approximation (and
measurement) to be accurate. Interestingly, Eq. (8) contains
the weak value [30,31] of the qubit Hamiltonian, 〈 f |Ĥ0|i〉

〈 f |i〉 , de-
spite a lack of deliberate weak measurements. Reasons for this
are given in Sec. IV. For a visual example that makes use
of Eq. (8), see Fig. 3. Notably, in some cases the qubit and
measurement apparatus both lose (or both gain) energy.

One can check that Eq. (8) is consistent with energy con-
servation over the complete ensemble of outcomes [Eq. (6)].
Equation (6) is not particularly restrictive, and in fact allows
the conditioned clock mean energy change to exceed the level
spacing of the qubit; indeed, by tuning |i〉 and | f 〉, the weak
value term in Eq. (8) may be made arbitrarily large. The
energy uncertainty of the clock should also be increased in
such extreme cases, to maintain the validity of Eq. (8).

Our result, Eq. (8), has many nice properties, best seen by
considering special choices of the qubit preparation and mea-
surement basis. See Fig. 1 for Bloch-sphere representations.

Qubit prepared in the energy eigenstate: If the qubit is
prepared in an energy eigenstate, then the conditioned clock
mean energy change is equal and opposite to the conditioned
qubit mean energy change: 
〈EM〉 f = 〈i|Ĥ0|i〉 − 〈 f |Ĥ0| f 〉 =
−
〈E0〉 f .

Qubit is measured in the energy eigenbasis: If the qubit’s
energy is measured, then the conditioned clock mean energy
change is 
〈EM〉 f = 0.

Anomalous weak value: The conditioned clock mean en-
ergy change diverges as | f 〉 and |i〉 approach orthogonality,
provided that |i〉 has some energy uncertainty. An example
is |i〉 = |↑x〉, whereas the postselection is the unlikely mea-
surement outcome | f 〉 = √

(1 − ε)/2|↑z〉 − √
(1 + ε)/2|↓z〉

(ε � 1). The conditioned clock mean energy change is

〈EM〉 f ≈ −ω0/ε, which may be many times larger than
the level spacing of the qubit. What saves energy conser-
vation here is that this outcome is rare [probability P( f ) ≈
ε2/4], and there is a second measurement outcome, | f⊥〉,
that happens with probability P( f⊥) ≈ 1 − ε2/4. With post-
selection on | f⊥〉, the total mean energy change is 
〈E0〉⊥ +

〈EM〉⊥ ≈ εω0/4.

Global mean energy is conserved over the com-
plete ensemble of outcomes: P( f )(
〈E0〉 f + 
〈EM〉 f ) +
P( f⊥)(
〈E0〉⊥ + 
〈EM〉⊥) = 0. Since the | f⊥〉 contribution
scales like ε, P( f ) scales like ε2, and 
〈E0〉 f is bounded by
the qubit level spacing, 
〈EM〉 f must scale like 1/ε.

Energy nontransferring measurements: |i〉 = |↑y〉 and the
measurement basis lies in the XZ plane of the Bloch sphere. If
perfectly executed, such measurements have no effect on the
energy probability distribution of the qubit, provided that the
measurement outcome is not read (no postselection). It turns
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FIG. 4. Experimental data from Fig. 3 of Ref. [29]. A qubit is
resonantly driven from the ground state |↓z〉 by an angle θ around the
Bloch sphere, and then measured in the energy basis. The outgoing
drive pulse has a photon number shift 
n relative to the photon
number of the initial, incoming pulse. This is measured with postse-
lection on the ground (blue circles) and excited (red triangles) states.
Dashed-blue and dotted-red curves show theoretical predictions from
Eq. (9). The data agree with the theory very well where the theory
falls within the linear envelope (solid gray). The envelope scales
linearly with the photon number uncertainty

√
nin of the drive pulse;

the way the experiment is performed, θ ∝ √
nin. Thus the theoretical

simplification, Eq. (9), holds when the pulse’s photon number uncer-
tainty is sufficiently large.

out that the clock mean energy shift, conditioned on either
outcome, is 
〈EM〉 f = 0.

One might expect, given the elegance of Eq. (8) when
applied to these cases, that Eq. (8) describes the conditioned
mean energy change of any measurement apparatus imple-
menting these qubit measurements. A single counterexample
would show that this is not the case, and so now we look at
the Jaynes-Cummings model.

B. Jaynes-Cummings model

In the Jaynes-Cummings model, the photon number
change of the oscillator plays the role of the measurement
apparatus energy change. It turns out that the resulting ex-
pressions for the Jaynes-Cummings model appear somewhat
complicated. The clock result [Eq. (8)] and the Jaynes-
Cummings result do, however, share a common form.

Before giving this form, we introduce the quantities

〈ẼM〉↑�↑, 
〈ẼM〉↓�↑, 
〈ẼM〉↑�↓, and 
〈ẼM〉↓�↓. For the
Jaynes-Cummings model, 
〈ẼM〉↑�↑ corresponds to the
change in the mean photon number of the oscillator when the
qubit is prepared in |↑z〉, and the first drive4 and σ̂z measure-
ment are performed and yield the final state |↑z〉. Experiments
to measure such quantities have been specifically performed
(see Ref. [29] and Fig. 4) and agree with the (independently

4This first drive is tuned so as to approximate the unitary rotation of
| f 〉 = cos θ

2 |↑z〉 + sin θ

2 |↓z〉 to |↑z〉 and hence would approximately
take |↑z〉 to the “reflection” | f↔〉 = cos θ

2 |↑z〉 − sin θ

2 |↓z〉.

derived) theoretical prediction of the Jaynes-Cummings model
that


〈ẼM〉↑�↑(θ ) = −θ

2
tan

θ

2
, (9a)


〈ẼM〉↓�↑(θ ) = −1 + θ

2
cot

θ

2
, (9b)


〈ẼM〉↑�↓(θ ) = 1 + θ

2
cot

θ

2
, (9c)


〈ẼM〉↓�↓(θ ) = −θ

2
tan

θ

2
. (9d)

These results are justified in Appendix D. Here, −θ is
the rotation angle of the first drive (it is worth noting,
however, that these functions are even in θ ). The purpose
of this drive is, ultimately, to help measure the qubit in
the basis defined by | f 〉 = cos θ

2 |↑z〉 + sin θ
2 |↓z〉 and | f⊥〉 =

− sin θ
2 |↑z〉 + cos θ

2 |↓z〉, as one of these two states will be the
final state after the second drive (which is by an angle +θ ).
Whether | f 〉 or | f⊥〉 is the final state depends on whether the
σ̂z measurement yields |↑z〉 or |↓z〉, respectively. Keep in mind
that there is an underlying approximation: the mean photon
number shifts approach the values in Eq. (9) as the photon
number uncertainty tends to infinity, and larger uncertainties
are required to see larger shifts. Interestingly, these photon
number shifts are not equal and opposite to the qubit excita-
tion number shifts for the same processes:


〈Ẽ0〉↑�↑ = 0, (10a)


〈Ẽ0〉↓�↑ = +1, (10b)


〈Ẽ0〉↑�↓ = −1, (10c)


〈Ẽ0〉↓�↓ = 0. (10d)

The photon number shifts, Eq. (9), may even far exceed the
maximum qubit excitation number shift (1).

Nevertheless, the qubit and oscillator energy shifts satisfy
the conservation relations

P↑�↑
〈ẼM〉↑�↑ + P↑�↓
〈ẼM〉↑�↓
= −(P↑�↑
〈Ẽ0〉↑�↑ + P↑�↓
〈Ẽ0〉↑�↓), (11a)

P↓�↑
〈ẼM〉↓�↑ + P↓�↓
〈ẼM〉↓�↓
= −(P↓�↑
〈Ẽ0〉↓�↑ + P↓�↓
〈Ẽ0〉↓�↓). (11b)

These relate the energy changes of the qubit and oscillator
when the qubit is prepared in an energy eigenstate [|↑z〉 in
Eq. (11a) and |↓z〉 in Eq. (11b)], the first drive (by angle
−θ about the Y axis) is applied, and the σ̂z measurement
is performed but the outcome is not read. Such processes
conserve the total excitation number of qubit and oscillator.
The P↑↓�↑↓’s are probabilities of the various outcomes, given
by

P↑�↑ = cos2 θ

2
, (12a)

P↑�↓ = sin2 θ

2
, (12b)

P↓�↑ = sin2 θ

2
, (12c)

P↓�↓ = cos2 θ

2
. (12d)
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After the initial drive and σ̂z measurement, the second drive
occurs. This drive takes the state |↑z〉 to | f 〉 and the state
|↓z〉 to | f⊥〉. Correspondingly, the mean excitation number
change of the qubit (which, due to the σ̂z measurement, is in
either the state |↑z〉 or |↓z〉 when the second drive begins) is
either 〈 f |↑z〉〈↑z| f 〉 − 1 or 〈 f⊥|↑z〉 〈↑z| f⊥〉. The mean photon
number change of the oscillator from this subprocess is simply
equal and opposite to that of the qubit, because during this
subprocess there is only the unitary evolution generated by the
interaction Hamiltonian ĤJC [Eq. (7)], which conserves the to-
tal excitation number. Combining this result with Eq. (9) gives
the total mean photon number change of the oscillator over the
entire measurement procedure, provided that the initial qubit
state is one of the energy eigenstates, |↑z〉 or |↓z〉. In general,
though, the initial qubit state |i〉 will be a superposition of
the energy eigenstates. Then the total photon number change
takes the form

1

ω0

〈EM〉 f = 1

|〈 f |i〉|2

[
|〈 f |↑z〉〈↑z|i〉|2
〈ẼM〉↑�↑

+ |〈 f |↓z〉 〈↓z|i〉|2
〈ẼM〉↓�↑

+ 2 Re(〈 f |↑z〉 〈↑z|i〉 〈 f |↓z〉〈↓z|i〉)

×
(


〈ẼM〉↑�↑ + 
〈ẼM〉↓�↑
2

)]

−(〈 f |↑z〉 〈↑z| f 〉 − 1)︸ ︷︷ ︸
2nd drive

(13)

for postselection on | f 〉, and

1

ω0

〈EM〉⊥ = 1

|〈 f⊥|i〉|2

[
|〈 f⊥|↑z〉〈↑z|i〉|2
〈ẼM〉↑�↓

+ |〈 f⊥|↓z〉〈↓z|i〉|2
〈ẼM〉↓�↓

+ 2 Re(〈 f⊥|↑z〉〈↑z|i〉〈 f⊥|↓z〉〈↓z|i〉)

×
(


〈ẼM〉↑�↓ + 
〈ẼM〉↓�↓
2

)]

−〈 f⊥|↑z〉〈↑z| f⊥〉︸ ︷︷ ︸
2nd drive

(14)

for postselection on | f⊥〉. The first term in Eq. (13) [Eq. (14)]
takes the form of a weighted average of 
〈ẼM〉↑�↑ and

〈ẼM〉↓�↑ (
〈ẼM〉↑�↓ and 
〈ẼM〉↓�↓), and it contains an
interference term that contributes the average of the two.
The second terms of Eqs. (13) and (14) correspond to the
photon number change due to the second drive alone (see
the “counter-clockwise” process in Fig. 2); these terms are
emphasized by an underbrace. Again, there is an underlying
approximation to these equations: the mean photon number
shifts approach the values claimed here as the photon number
uncertainty tends to infinity, and larger uncertainties are re-
quired to see larger shifts (for a numerical example, see Fig. 6
of the Appendix).

The clock mean energy shift with postselection, Eq. (8),
also follows the form of Eqs. (13) and (14). However, different
values of the parameters 
〈ẼM〉↑�↑, 
〈ẼM〉↓�↑, 
〈ẼM〉↑�↓,

and 
〈ẼM〉↓�↓ are needed to fit the equations. For the clock
model,


〈ẼM〉↑�↑ = 0, (15a)


〈ẼM〉↓�↑ = −1, (15b)


〈ẼM〉↑�↓ = +1, (15c)


〈ẼM〉↓�↓ = 0. (15d)

There is no drive or intermediate σ̂z measurement in the quan-
tum clock model, so it is not immediately obvious how to
interpret the values in Eq. (15). First, they are the parameters
that fit the clock energy shift to the “curves” of Eqs. (13) and
(14); see Appendix F for proof. Notably, they also satisfy the
conservation relations, Eq. (11). Secondly, it is possible to
substitute, in place of ĤJC, an alternate qubit-oscillator inter-
action Hamiltonian, ĤD, which also commutes with the total
excitation number but yields the clock energy shift instead
when applied to the same general protocol (rotate the qubit by
−θ , measure σ̂z, rotate the qubit by θ ). 
〈ẼM〉↑�↑ then takes
the same meaning as it did for the Jaynes-Cummings model:
it corresponds to the change in the mean photon number of
the oscillator when the qubit is prepared in |↑z〉, and the
first drive and σ̂z measurement are performed and yield the
final state |↑z〉. The other values in Eq. (15) are analogous.
Notice that these values are rather intuitive: they are equal
and opposite to the qubit shifts in Eq. (10). For example,

〈ẼM〉↓�↑ = −1 essentially means that when the qubit is
prepared in the ground state, driven, and then found in the
excited state (thus gaining one quantum of energy overall),
the driving source loses one quantum of energy. The values in
Eq. (9) are rather unintuitive, by contrast. ĤD is detailed more
in Sec. IV.

The fact that Eqs. (9) and (15) are different is itself ample
evidence that the apparatus energy shifts (with postselection)
are not solely determined by the qubit preparation and targeted
measurement basis. The particular measurement implementa-
tion is important in determining these conditional shifts. This
is further accentuated by the fact that Eq. (9) is not purely a
function of the targeted measurement basis, {| f 〉, | f⊥〉}, de-
pending also on the complete drive angle θ (as opposed to θ

mod π ) used to measure in that basis [Fig. 5(e) showcases this
behavior particularly well].

Given that the clock and Jaynes-Cummings models give
different results, we do not expect the oscillator energy
changes (with postselection) to have the same set of nice
properties that the clock energy changes had. We consider
again special cases of the qubit preparation and measurement
basis.

Qubit prepared in an energy eigenstate: The con-
ditioned oscillator photon number changes are the val-
ues in Eq. (9) plus the term corresponding to the
second drive [e.g., 
〈ẼM〉↑�↑(θ ) − (〈 f | ↑z〉〈↑z| f 〉 − 1) =
− θ

2 tan θ
2 − cos2 θ

2 + 1 for initial state |↑z〉 and postselection
| f 〉]. 
〈EM〉 f = −
〈E0〉 f , in general, unlike the clock result.
See the dashed-red curve, Figs. 5(a) and 5(b).

Qubit is measured in the energy eigenbasis: One obvious
implementation is to skip the rotations altogether; then there
is only the (unmodeled) σ̂z measurement, and obviously the
oscillator’s energy does not change. However, the energy of
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FIG. 5. Plots of the conditioned mean energy shift of the
measurement apparatus in the clock [solid blue, Eq. (8)] and Jaynes-
Cummings [dashed red, Eq. (13) with substitutions from Eq. (9)]
models. The negative qubit mean energy change (dotted-green),
〈i|Ĥ0|i〉 − 〈 f |Ĥ0| f 〉, is plotted as well, for reference. In each plot,
the initial state |i〉 of the qubit is fixed, and we sweep through θ ,
where θ is the rotation angle used in the Jaynes-Cummings model,
and parametrizes the final state (postselection) according to | f 〉 =
cos θ

2 |↑z〉 + sin θ

2 |↓z〉. In (a) and (b), the initial state is an energy
eigenstate, and the clock curve matches the negative qubit mean
energy change. In (c), the initial state is |↑x〉, and both apparatus
shifts diverge at 3π

2 + 2nπ (which corresponds to | f 〉 = |↓x〉). In
(d), the initial state is |↑y〉, and all possible measurements lie in the
XZ plane. Both apparatus shifts are zero. Panel (e) shows a sample
state in the Y Z plane in order to showcase how the amplitude of the
oscillator curve grows with θ , instead of being periodic.

the oscillator can change if one performs unnecessary rota-
tions (as by nonzero multiples of π ); see Fig. 5(c), in which
the dashed-red curve is nonzero at nonzero multiples of π .

Anomalous weak value: As was the case with the clock, the
conditioned oscillator mean energy change tends to diverge

as the qubit pre- and postselection approach orthogonality.
Unlike with the clock, this divergence can even be obtained
when |i〉 is an energy eigenstate [see the dashed-red curve in
Fig. 5(a), which diverges at 2π and 4π , and the dashed-red
curve in 5(b), which diverges at π and 3π ].

Energy nontransferring measurements: |i〉 = |↑y〉 and the
measurement basis lies in the XZ-plane of the Bloch sphere
(actually this latter point is assumed throughout this section,
without loss of generality since |i〉 is arbitrary). These mea-
surements have no effect on the energy probability distribution
of the qubit, provided that the measurement is accurate and the
outcome is not read. Like the clock, the oscillator mean energy
change, conditioned on either outcome, is 
〈EM〉 f = 0 [see
Fig. 5(d)].5

IV. DISCUSSION

A. Reconciling the two models

We now explain why the Jaynes-Cummings model gives
different results from the quantum clock model. The answer
turns out to have nothing to do with the fact that the Jaynes-
Cummings model uses a time-dependent Hamiltonian; rather,
the reason has to do with the Jaynes-Cummings interaction’s
eigenvalues. The eigenvectors of ĤJC = −i �

2 (âσ̂+ − â†σ̂−)
are 1√

2
(|↑z, n〉 ± i|↓z, n + 1〉), with eigenvalues ±�

2

√
n + 1.6

The resultant qubit oscillation rate thus scales like
√

n; higher
photon numbers produce faster rates. We essentially tune |α〉
and the interaction time tM such that θ ≈ �0tM

√
〈α|â†â|α〉,

but |α〉 has a photon number uncertainty
√

〈α|â†â|α〉, and
these different photon numbers are out of sync with one
another. Put more accurately, ĤJC commutes with the total
excitation number |↑z〉〈↑z| + â†â, and eigenspaces of differ-
ent total excitation number are out of sync with one another
(they have different qubit oscillation rates). The probabilities
for the σ̂z measurement to yield |↑z〉 or |↓z〉 depend, weakly,
on the eigenspace. This causes the photon number distribution
to be modified (in a kind of Bayesian way) depending on
the outcome, an example of weak measurement (the present
authors do not take credit for this insight; see Ref. [29] for the
same topic). This explains the surprising photon number shifts
[Eq. (9)]. This effect on the mean photon number does not
vanish as we increase the energy uncertainty of |α〉 (although
the qubit rotations may be performed with higher fidelity this
way).

An alternative qubit-oscillator interaction, ĤD =
−i �

2 (L̂σ̂+ − L̂†σ̂−), where L̂† = ∑∞
n=1 |n〉〈n − 1| =∑∞

n=0 |n + 1〉〈n|, has the same eigenvectors as ĤJC, but
degenerate eigenvalues ±�

2 . In theory, we could implement
the same protocol (rotate about Y , measure σ̂z, then perform
the opposite rotation) using a coherent state and this

5This statement is true at the level of approximation we have been
considering. There may be higher-order effects due to nonideality of
the rotation, but these may be made arbitrarily small by considering
higher initial photon numbers.

6There is also the ground-state eigenvector |↓z, 0〉, with eigenvalue
0, but that is unimportant here.
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Hamiltonian instead of the Jaynes-Cummings one. Due
to the degeneracy of ĤD, the different subspaces of total
excitation number would be in sync with one another. The
probabilities for the σ̂z measurement to yield |↑z〉 or |↓z〉
would thus not carry any extra dependence on the subspace.
When we perform the same calculation for the conditioned
mean energy change of the oscillator using this interaction, we
get back the clock results [Eqs. (8) and (15)]. See Appendix E
for details.

It is important to keep in mind that the WAY theorem
forbids perfect measurements of observables that do not
commute with energy. The clock and Jaynes-Cummings mea-
surement models discussed in this paper only approximate
perfect measurement in the targeted basis {| f 〉, | f⊥〉}. These
measurement protocols asymptotically approach the targeted
measurement as the energy uncertainty of the apparatus in-
creases (the initial state |i〉 also matters), but the approach
is different in the two cases, resulting in different limiting
behaviors for the conditioned mean energy shift of the mea-
surement apparatus. From our results, it seems apparent that
the particular measurement protocol used to approximate the
targeted measurement is relevant for the determination of
the apparatus energy change (with postselection). However,
one might argue that the clock measurement protocol is, in
some way, a more faithful representation of the targeted mea-
surement, and that the Jaynes-Cummings model ultimately
describes a slightly different measurement (due to the afore-
mentioned asynchrony between different energy eigenspaces).
One must be very clear about what is meant by a “faithful
representation of the targeted measurement,” though. If all one
requires is fidelity approaching 1, then the Jaynes-Cummings
measurement model is faithful, since the drive rotations may
be performed to arbitrary fidelity by increasing the photon
number uncertainty

√〈n〉 = α of the initial coherent state
(the product of the vacuum Rabi frequency and interaction
time �0tM should simultaneously decrease as 1/

√〈n〉 for best
results).

B. Presence of the weak value

We now discuss why we see the weak value appearing in
our expression for the conditioned clock mean energy change
[Eq. (8)], despite a lack of deliberate weak measurements.
Note that there are many similarities between the clock mea-
surement model and deliberate weak measurement.

In deliberate weak measurement, the pointer has large
quantum uncertainty in some variable (the “readout” vari-
able, e.g., Q̂). In our case, the apparatus (be it the clock or
the oscillator) has a large quantum uncertainty in energy. It
must have this for accurate measurement of qubit variables
that do not commute with energy, as dictated by the WAY
theorem. In deliberate weak measurement, an interaction [e.g.,
g(t )ÂP̂] causes the noisy pointer variable to translate accord-
ing to the value of the observable Â of the measured system.
The interaction serves as an “impetus” for the pointer to
shift based on the state of the measured system. If there is
no postselection, the pointer Q̂-shift is proportional to the
expectation value, 〈Â〉. The weak value 〈Â〉w is observed
as the pointer shift conditioned on the result (postselection)
of some later strong measurement. In the clock case, the

“impetus” is the three-body interaction Ĥint (which is tuned for
strong measurement) combined with the law of conservation
of global energy.7 An unread strong measurement of a qubit
variable that does not commute with energy generally causes
the qubit energy to change, forcing the clock to make up the
difference and thus changing the clock’s energy. The clock
energy shift is, by necessity, equal and opposite to the qubit
energy shift (without postselection); in other words, the clock
energy shift weakly measures the qubit energy shift caused
by an unread strong measurement of some other observable.
The weak value-containing expression [Eq. (8)] arises when
we further condition the clock energy change on the strong
measurement outcome.

Note that we could expand our clock model to include a
weak energy measurement prior to the strong measurement.
This would involve introducing another pointer (this one also
with no local Hamiltonian but with a continuous, noisy read-
out Q̂) and another three-body interaction (this one weak,
designed to measure Ĥ0, and between the qubit, clock, and
new pointer) positioned so as to happen just before the strong
measurement of | f 〉〈 f |. If we were to condition on the strong
measurement outcome | f 〉 and take appropriate limits, the
shift of the new pointer would be as though the qubit Hamil-
tonian took on the (real part of the) weak value, Re( 〈 f |Ĥ0|i〉

〈 f |i〉 ),
just before the strong measurement interaction.

There is a school of thought that the real part of the weak
value, Re( 〈 f |Ĥ0|i〉

〈 f |i〉 ), is the best description of the qubit energy
prior to the strong measurement, given that the qubit is pres-
elected in |i〉 and postselected in | f 〉 (such talk often pertains
to interferometers, where a deeper meaning is sometimes
attributed to the weak values of path projectors) [33–38].
If we follow this line of thought, then the change in the
qubit’s energy (due to the strong measurement) is 〈 f |Ĥ0| f 〉 −
Re( 〈 f |Ĥ0|i〉

〈 f |i〉 ), and interestingly, the conditioned clock energy
shift [Eq. (8)] exactly compensates this. It “evidences” that
the qubit energy takes on the weak value prior to the strong
measurement in essentially the same way that deliberate weak
measurements of energy would.

We make no conclusive statement at this time as to whether
the Jaynes-Cummings result refutes the reasoning in the pre-
vious paragraph. It is apparent that, while a protocol utilizing
the Jaynes-Cummings interaction can in some sense measure
arbitrary qubit observables to arbitrary accuracy, such a pro-
tocol involves the production of seemingly unnecessary (and,
arguably, undesirable) correlations between qubit and oscilla-
tor (see the previous subsection), which may complicate its
status as a faithful projective measurement.

V. CONCLUDING REMARKS

Using two distinct measurement models, namely the quan-
tum clock model and the Jaynes-Cummings model, we

7As further proof that the law of conservation of global energy also
provides this “impetus,” consider that if the qubit Hamiltonian were
zero, the clock energy shift would vanish. The clock energy shift is
linear in the level spacing of the qubit, even though this does not
appear in the three-body interaction Hamiltonian, Ĥint, itself.
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computed the mean energy shift of the measurement apparatus
when a measured qubit is found (postselected) in a particular
state. In general, this value is not equal and opposite to the
mean energy shift of the qubit. Like the weak value shift of
a noisy pointer in weak measurement, the apparatus energy
shift may, in both models, be much larger than the level
spacing of the qubit. We also identify cases in which system
and apparatus can both lose (or gain) energy in the postse-
lected case. This is consistent with global energy conservation
because such events can be traced to energy uncertainty in
the initial state of the joint system. While our two models
share these similarities, they give different specific results in
general, which we explained to be a consequence of the non-
degenerate spectrum of the Jaynes-Cummings model, which
causes the apparatus’s energy change to contain a Bayesian
component [29]. Replacing the Jaynes-Cummings interaction
with a similar, degenerate interaction removes this Bayesian
component, and returns the clock result. Our work clarifies the
principle of energy conservation as applied to measurement
in quantum mechanics, and it makes a number of interesting
experimental predictions, some of which have not been tested
yet but are within the grasp of current superconducting qubit
technologies [to our knowledge, at the time of writing, the
experimentalists behind Ref. [29] have looked at the quantities
in Eq. (9), but they have not tied them into the broader scheme
of Eqs. (13) and (14)].
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APPENDIX A: WAY THEOREM

Our article frequently refers to the Wigner-Arakai-Yanase
(WAY) theorem [1–7]. This result limits the accuracy of
measurements that do not commute with additive conserved
quantities, such as energy. Perfect measurements of such ob-
servables are impossible, but (otherwise) arbitrary accuracy
may be achieved by including an ancillary system that exhibits
sufficient quantum uncertainty in the additive conserved quan-
tities. We illustrate here how the WAY theorem relates to the
two measurement models in our paper. Readers interested in
more rigorous discussions should refer to Refs. [1–7].

1. Clock model

In the quantum clock model, the clock plays the role of
the ancillary system with large energy uncertainty, while the
qubit observable | f 〉〈 f | is measured. Since | f 〉 need not be an
energy eigenstate of the qubit, | f 〉〈 f | does not commute with
energy in general, and WAY theorem limitations apply.

We may consider, at one extreme, that the initial clock state
is a position eigenket |q0〉, where q0 < 0. Such a clock state
has infinite energy uncertainty, since the clock Hamiltonian is
v p̂. Concatenating the evolutions in Eqs. (2)–(4), and defining

the qubit state |i〉 = e+iĤ0q0/v|ψ〉 at the instant the measure-
ment interaction occurs, gives

|ψ〉|↓pointer
z 〉|q0〉 → e−iĤ0(τ+q0/v)(| f 〉〈 f |i〉|↑pointer

z 〉
+ | f⊥〉〈 f⊥|i〉|↓pointer

z 〉)|q0 + vτ 〉. (A1)

The prefactor e−iĤ0(τ+q0/v) simply indicates spin-precession
under Ĥ0 in the time, τ + q0/v, elapsed after the measurement
interaction. Directly measuring if the pointer is in |↑pointer

z 〉
or |↓pointer

z 〉 (note that the WAY theorem has no bearing on
this, since the pointer has no Hamiltonian) projects the qubit
onto the pure state e−iĤ0(τ+q0/v)| f 〉 with probability |〈 f |i〉|2

and e−iĤ0(τ+q0/v)| f⊥〉 with probability |〈 f⊥|i〉|2. The clock is
separable from the qubit, and the measurement of | f 〉〈 f | is
ideal, regardless of what pure qubit state | f 〉 is. The mea-
surement is perfect, but energy uncertainty is infinite, which
is impractical. Also, with infinite energy uncertainty, there is
no meaningful clock energy shift, which is what our article
calculates. Instead, in our paper, we consider a clock with
large, but finite, energy uncertainty. This maintains qualitative
similarity to the ideal case in that the measurement is accurate,
while at the same time being more realistic and allowing a
meaningful assignment of the clock mean energy shift. Unlike
in the ideal case, Eq. (A1), the clock is weakly entangled to the
qubit-pointer subsystem prior to the pointer measurement, and
hence the clock energy depends on the particular postselection
obtained, as our paper illustrates.

At the other extreme, we may consider the clock to have
a well-defined energy. If the clock is initialized in an energy
eigenstate, |p〉, then there is no meaningful sense in which the
clock passes the interaction region (the clock’s q-distribution
is constant in time and not normalizable) and the measurement
“happens.” This in itself illustrates the WAY theorem, but it is
better to consider the clock to have finite but small energy
uncertainty. As an example, we consider the initial clock state
to be 〈q|φ〉 = (2πσ 2

q )−1/4e−(q−q0 )2/(4σ 2
q ), where q0 < 0, and

σq 
 v
ω0

is large so that the clock energy uncertainty v
2σq

is
small compared to the qubit level spacing, ω0. The initial
mean clock position |q0| 
 σq should be larger still so that
the clock is meaningfully “left” of the interaction region at
the start. We take the initial qubit state to be the energy
eigenstate, |↑z〉, since the mathematics is simplified, while
still being illustrative. If we project on the |↑z〉 pointer state
after the three-body measurement interaction, the evolution is
described, for large τ , by

|↑z〉|↓pointer
z 〉

∫
|q〉〈q|φ〉dq

→
∫

e−iĤ0(τ+q/v)| f 〉〈 f |e+iĤ0q/v|↑z〉|q + vτ 〉〈q|φ〉dq.

(A2)

The above is essentially exact; the only approximation made
was to ignore the minimal contributions from position eigen-
kets that did not cross the interaction region (thus it applies for
small σq as well). The pointer state, being |↑pointer

z 〉, is dropped
in the second line. Tracing out the clock gives the reduced
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qubit density matrix:

ρ̂0 =
∫

e−iĤ0q/v| f 〉〈 f |e+iĤ0q/v|〈q − vτ |φ〉|2dq. (A3)

In the above integral, each q/v may be interpreted as a time
elapsed. The reduced qubit state is equivalent to that if the
qubit evolved from | f 〉 for a statistically uncertain time q/v,
with probability density |〈q − vτ |φ〉|2 for the different possi-
ble times. Since the qubit nontrivially precesses under Ĥ0 (if
| f 〉 is not an energy eigenstate) for this statistically uncertain
time, the final qubit state is statistically uncertain, i.e., the
qubit state is a mixed state (more so the higher the energy
uncertainty of | f 〉), as opposed to a pure state that would occur
in an ideal measurement. This is better seen by expressing ρ̂0

in terms of energy eigenkets: ρ̂0 = ρ↑↑|↑〉〈↑| + ρ↑↓|↑〉〈↓| +
ρ↑↓|↓〉〈↑| + ρ↓↓|↓〉〈↓|. In particular, the off-diagonal element
ρ↑↓ is

ρ↑↓ = 〈↑z| f 〉〈 f |↓z〉
(
2πσ 2

q

)−1/2

×
∫ ∞

−∞
e−iω0q/ve−(q−q0−vτ )2/(2σ 2

q )dq

= 〈↑z| f 〉〈 f |↓z〉e−iω0(q0+vτ )/ve− ω2
0σ2

q
2v2 . (A4)

In the case of well-defined energy, in particular σq 
 v
ω0

,
the off-diagonal element vanishes, so that the qubit state is
a statistical mixture of |↑z〉 and |↓z〉. As σq → 0, on the other
hand, the qubit state approaches a pure superposition of |↑z〉
and |↓z〉, i.e., the measurement is more ideal.

2. Jaynes-Cummings model

In the Jaynes-Cummings model, the oscillator plays the
role of the ancillary system with large energy (photon number)
uncertainty. In this case, the energy uncertainty is necessary
in order for the qubit-oscillator coupling ĤJC = −i �0

2 (âσ̂+ −
â†σ̂−) to generate (approximately) pure qubit rotations. As
stated in the Introduction, results similar to the WAY theorem
apply when the goal is state transformation, as opposed to
measurement [8,9].

At one extreme, we may consider that the initial oscillator
state is a Fock state |n〉, where n > 0. If the initial qubit state
is |↑z〉, then the total number of quanta is well-defined, with
value n + 1. Under the action of the evolution operator Û =
e−iĤJCt , the qubit-oscillator state becomes

Û |↑z〉|n〉 = cos
�0t

√
n + 1

2
|↑z〉|n〉

+ sin
�0t

√
n + 1

2
|↓z〉|n + 1〉. (A5)

This is clearly not a pure qubit rotation. The qubit and oscil-
lator are entangled for most t (for example, at t = π

2�0
√

n+1
,

there is maximal entanglement); their energies are correlated
so as to ensure that the number of quanta remains the initial
value, n + 1.

At the other extreme, we may consider, as we do in our
paper, that the initial oscillator state is a coherent state |α〉
(where α is real) with a large photon number (and hence large
photon number uncertainty) n0 = α2. Then, under the action

of the evolution operator Û = e−iĤJCt , the qubit-oscillator state
satisfies

〈n|Û |↑z〉|α〉 = 〈n|α〉 cos
�0t

√
n + 1

2
|↑z〉

+ 〈n − 1|α〉 sin
�0t

√
n

2
|↓z〉 (A6)

for n � 1. Suppose there is a targeted rotation angle, θ . We
take �0t

√
n0 ≈ θ , i.e., as we consider higher initial mean

photon numbers n0 we also take �0t to fall as 1/
√

n0

〈n|Û |↑z〉|α〉 = 〈n|α〉 cos

(
θ

2

√
1 + n − n0 + 1

n0

)
|↑z〉

+ 〈n − 1|α〉 sin

(
θ

2

√
1 + n − n0

n0

)
|↓z〉. (A7)

Since 〈n|α〉 is small for n not within
√

n0 of n0, n − n0 is of or-
der

√
n0 for photon numbers worthy of consideration. n−n0+1

n0

thus scales like 1/
√

n0 for these n, and, as we take the limit as
n0 → ∞, 〈n|Û |↑z〉|α〉 ∼ 〈n|α〉(cos θ

2 |↑z〉 + sin θ
2 |↓z〉) (here,

we have also used 〈n|α〉 ∼ 〈n − 1|α〉). The qubit state loses
its dependence on n, and it approaches the result of a pure
rotation: cos θ

2 |↑z〉 + sin θ
2 |↓z〉 = e−i θ

2 σ̂y |↑z〉.

APPENDIX B: QUANTUM CLOCK MODEL (EVOLUTION)

Here we provide details that should be helpful for under-
standing the derivation of the global system evolution in the
quantum clock model [Eqs. (2)–(4)]. We provide a similar
model whose state evolution is asymptotic to that of the clock
model in the appropriate limit. We derive global state evolu-
tion in this model and then explain why the results apply to
the quantum clock model as well. We give two methods of
solving the problem. Readers not satisfied with the rigor of
the first method may prefer the second, scattering method.

1. First method

The quantum clock model Hamiltonian [Eq. (1)] is much
like the following Hamiltonian:

Ĥ =
(

ω0

2
σ̂z + v p̂

)
�̂out +

(
− πv

2L
| f 〉〈 f |σ̂ pointer

y + v p̂

)
�̂in

≡ Ĥout�̂out + Ĥin�̂in, (B1)

where we have implicitly defined Ĥout and Ĥin, and

�̂in =
∫ +L/2

−L/2
dq|q〉〈q|, (B2a)

�̂out = 1 − �̂in. (B2b)

Let |�〉 be an arbitrary quantum state of the qubit-pointer
subsystem. Clearly, we have Ĥ |�〉|q〉 = Ĥin|�〉|q〉 for |q| <

L/2 and Ĥ |�〉|q〉 = Ĥout|�〉|q〉 for |q| > L/2. It is helpful to
see what evolutions Ĥin and Ĥout would separately generate.
Let |ψ〉 be a quantum state of the qubit, and let |χ〉 be a state
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of the pointer,

e−it Ĥin |ψ〉|χ〉|q〉
= (| f 〉〈 f |ψ〉e+i πvt

2L σ̂
pointer
y |χ〉 + | f⊥〉〈 f⊥|ψ〉|χ〉)e−ivt p̂|q〉

= (| f 〉〈 f |ψ〉R̂pointer
y

(
−πvt

L

)
|χ〉+| f⊥〉〈 f⊥|ψ〉|χ〉)|q+vt〉.

(B3)

Here we have used the fact that e−i θ
2 σ̂y = R̂y(θ ) is a rotation

operator and e−i p̂
 = T̂ (
) is a translation operator. The ef-
fect of Ĥin is to rotate the pointer conditional on the state of
the target qubit, while translating the clock at a rate v.

For Ĥout, we have

e−it Ĥout |ψ〉|χ〉|q〉 = e−i ω0t
2 σ̂z |ψ〉|χ〉e−ivt p̂|q〉

= e−i ω0t
2 σ̂z |ψ〉|χ〉|q + vt〉. (B4)

The effect of Ĥout is to rotate the target qubit, unconditional
on the state of the pointer, while translating the clock at a
rate v.

Now suppose we initialize the clock in |q〉, where q <

−L/2, and the qubit and pointer are in states |ψ〉 and |χ〉,
respectively. Note that, although |q| > L/2 and Ĥ |ψ〉|χ〉|q〉 =
Ĥout|ψ〉|χ〉|q〉, we do not necessarily have e−it Ĥ |ψ〉|χ〉|q〉 =
e−it Ĥout |ψ〉|χ〉|q〉. However, we do have e−it Ĥ |ψ〉|χ〉|q〉 =
e−it Ĥout |ψ〉|χ〉|q〉 to first order in t , so the evolutions
are the same for short times. Consider what happens
over a short time δt . e−iδt Ĥ |ψ〉|χ〉|q〉 = e−iδt Ĥout |ψ〉|χ〉|q〉 =
e−i ω0δt

2 σ̂z |ψ〉|χ〉|q + vδt〉. Provided that δt is very small, q +
vδt < −L/2 and we know that another short evolution will
also be governed by the effective Hamiltonian Ĥout. By
induction, we have that e−it Ĥ |ψ〉|χ〉|q〉 = e−it Ĥout |ψ〉|χ〉|q〉,
provided that t is not so large as to cause the clock to arrive at
−L/2, i.e., t < (−L/2 − q)/v. By similar logic, we have, for
large enough t , that

e−it Ĥ |ψ〉|χ〉|q〉 = e−it3Ĥout e−it2Ĥin e−it1Ĥout |ψ〉|χ〉|q〉, (B5)

where t1 = (−L/2 − q)/v, t2 = L/v, and t3 = t − t1 − t2.
First, the system acts as if under the effective Hamiltonian
Ĥout, which causes the clock to arrive at the interaction region.
Then, the system acts as if under the effective Hamiltonian
Ĥin, until this causes the clock to exit the interaction region.
Lastly, the system acts as if under the effective Hamiltonian
Ĥout again, since the clock has exited the interaction region,
and future evolution will only cause it to move farther away.

There are a few details left to fill in. Since t2 = L/v, the
pointer’s Y rotation is by an angle −π . Thus, if the pointer
is prepared in a state of maximal σ̂y uncertainty (such as
|↓pointer

z 〉), this rotation causes it to evolve to an orthogonal
state (|↑pointer

z 〉). Any angle π mod 2π would work, but the
−π rotation happens to give a nice +1 phase in going from
|↓pointer

z 〉 to |↑pointer
z 〉, a transition present in Eq. (3) of the main

text.

More important are the differences (and similarities) be-
tween the Hamiltonians in Eqs. (1) and (B1). One difference
is that Ĥin [which occurs in Eq. (B1)] does not include a local
qubit Hamiltonian, as is present in the clock model Hamil-
tonian [Eq. (1)]; since we aim to study the qubit energy, the
qubit Hamiltonian should always be included. In this section,
though, we concerned ourselves only with the evolution of
the global system state. We note that in the clock model, the
interaction region is very narrow (represented by a δ function).
Since the local qubit Hamiltonian in the clock model is finite,
its contribution to the evolution during the infinitesimal transit
time is negligible. The system state evolution in the two mod-
els is asymptotic as the interaction region’s width goes to zero
(L → 0). This gives the results of Eqs. (2)–(4).

2. Scattering method

Alternatively, to solve for the global system evolution due
to the modified Hamilton [Eq. (B1)], we could solve for the
energy eigenstates and eigenvalues. To understand how the
math works out, it is best to start with just understanding the
pointer flip, so first we consider the simpler Hamiltonian:

Ĥflip = v p̂ − πv

2L
σ̂y�̂in, (B6)

where p̂ = −i ∂
∂q . As an Ansatz, we assume the eigenvectors

take the form |E±〉 = ∫
dqφ±

E (q)|q〉|±y〉. These eigenvectors
are degenerate: Ĥflip|E±〉 = E |E±〉. By solving the eigenvalue
equation in each region and demanding continuity of wave
functions at the boundaries ±L/2, we find

φ±
E (q)|±y〉

=

⎧⎪⎨
⎪⎩

1√
2πv

eiqE/v|±y〉, q < −L/2,
1√
2πv

eiq(E+ πv
2L σ̂y )/vei π

4 σ̂y |±y〉, |q| � L/2,
1√
2πv

eiqE/vei π
2 σ̂y |±y〉, q > L/2.

(B7)

We see that there is a phase shift across the interaction region,
conditional on the y-spin.

Since the Hamiltonian is degenerate, we can take super-
positions of degenerate eigenvectors to produce eigenvectors
with the same eigenvalue. For example, |Eχ 〉 = |E+〉〈+y|χ〉 +
|E−〉〈−y|χ〉, where |χ〉 is an arbitrary spinor, satisfies
Ĥflip|Eχ 〉 = E |Eχ 〉. Further, we have

〈q|Eχ 〉

=

⎧⎪⎨
⎪⎩

1√
2πv

eiqE/v|χ〉, q < −L/2,

1√
2πv

eiqE/v (ei( q+L/2
L ) π

2 σ̂y |χ〉), |q| � L/2,
1√
2πv

eiqE/v (ei π
2 σ̂y |χ〉), q > L/2.

(B8)

For |χ〉 = |±y〉, the spin of |Eχ 〉 correlates with position.
Left of the interaction region, the spin is fixed at |χ〉. In the
interaction region, the spin continuously varies (linearly) from
|χ〉 to ei π

2 σ̂y |χ〉. And right of the interaction region, the spin is
fixed at ei π

2 σ̂y |χ〉. For |χ〉 = |−z〉, ei π
2 σ̂y |χ〉 = |+z〉. The “left”

and “right” spinors are orthogonal.
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Now we evolve an initial state |q〉|χ〉, where q < −L/2, using linearity of the Schrödinger equation. Note that, for all E ,
|q〉|χ〉 has no projection onto |Eχ⊥〉 = |E+〉〈+y|χ⊥〉 + |E−〉〈−y|χ⊥〉 (where 〈χ⊥|χ〉 = 0). Thus,

e−it Ĥflip |q〉|χ〉 =
∫

dE e−itE |Eχ 〉〈Eχ | |q〉|χ〉 = 1√
2πv

∫
dE e−i( q+vt

v )E |Eχ 〉

= 1

2πv

∫
dE e−i( q+vt

v )E

[∫ −L/2

−∞
dq′eiq′E/v|q′〉|χ〉 +

∫ L/2

−L/2
dq′eiq′E/v|q′〉(ei q′+L/2

L
π
2 σ̂y |χ〉)

+
∫ ∞

L/2
dq′eiq′E/v|q′〉(ei π

2 σ̂y |χ〉)

]

=
∫ −L/2

−∞
dq′δ(q′ − q − vt )|q′〉|χ〉 +

∫ L/2

−L/2
dq′δ(q′ − q − vt )|q′〉(ei q′+L/2

L
π
2 σ̂y |χ〉)

+
∫ ∞

L/2
dq′δ(q′ − q − vt )|q′〉(ei π

2 σ̂y |χ〉). (B9)

Above, we have changed the order of integration and used the identity 1
2π

∫
dEei q′−q0

v
E = vδ(q′ − q0). From this equation, it

is clear what the state is at each point in time. The clock state is |q + vt〉, while the qubit state is the corresponding spinor at the
clock position [see Eq. (B8)].

With this simple example in hand, we move on to solving for the state evolution caused by the Hamiltonian in Eq. (B1). We
make Ansätzes for the energy eigenstates based on Eq. (B8). Outside of the interaction region, the qubit should rotate, while
inside the interaction region, the pointer should rotate. We label our Ansätzes as |E f ,χ 〉 and |E⊥,χ 〉, where the first index labels
the qubit state at the left boundary −L/2 and the second index χ labels the pointer state at the left boundary. We are able to
satisfy the boundary conditions and eigenvalue equation Ĥ = E |E f ,χ 〉 with

〈q|E f ,χ 〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2πv

eiqE/v (ei ω0
2 σ̂z ( −L/2−q

v
)| f 〉)|χ〉, q < −L/2,

1√
2πv

eiqE/v| f 〉(ei( q+L/2
L ) π

2 σ̂y |χ〉), |q| � L/2,

1√
2πv

eiqE/v (e−i ω0
2 σ̂z ( q−L/2

v
)| f 〉)(ei π

2 σ̂y |χ〉), q > L/2.

(B10)

The eigenvalue equation is also satisfied by |E⊥, χ〉, where

〈q|E⊥,χ 〉 =

⎧⎪⎪⎨
⎪⎪⎩

1√
2πv

eiqE/v (ei ω0
2 σ̂z ( −L/2−q

v
)| f⊥〉)|χ〉, q < −L/2,

1√
2πv

eiqE/v| f⊥〉|χ〉, |q| � L/2,

1√
2πv

eiqE/v (e−i ω0
2 σ̂z ( q−L/2

v
)| f⊥〉)|χ〉, q > L/2.

(B11)

By an analogous derivation to that of Eq. (B9), we have, for q < −L/2,

e−it Ĥ |q〉(ei ω0
2 σ̂z ( −L/2−q

v
)| f 〉)|χ〉 =

∫ −L/2

−∞
dq′δ(q′ − q − vt )|q′〉(ei ω0

2 σ̂z ( −L/2−q′
v

)| f 〉)|χ〉

+
∫ L/2

−L/2
dq′δ(q′ − q − vt )|q′〉| f 〉(ei( q′+L/2

L ) π
2 σ̂y |χ〉)

+
∫ ∞

L/2
dq′δ(q′ − q − vt )|q′〉(e−i ω0

2 σ̂z ( q′−L/2
v

)| f 〉)(ei π
2 σ̂y |χ〉), (B12)

and

e−it Ĥ |q〉(ei ω0
2 σ̂z ( −L/2−q

v
)| f⊥〉)|χ〉 =

∫ −L/2

−∞
dq′δ(q′ − q − vt )|q′〉(ei ω0

2 σ̂z ( −L/2−q′
v

)| f⊥〉)|χ〉

+
∫ L/2

−L/2
dq′δ(q′ − q − vt )|q′〉| f⊥〉|χ〉 +

∫ ∞

L/2
dq′δ(q′ − q − vt )|q′〉(e−i ω0

2 σ̂z ( q′−L/2
v

)| f⊥〉)|χ〉.
(B13)

Taking linear combinations of Eqs. (B12) and (B13) gives the evolution for other pure qubit states. Evolution according to the
Hamiltonian in the actual quantum clock model [Eq. (1)] is obtained in the limit as L → 0. This gives the results of Eqs. (2)–(4).
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APPENDIX C: QUANTUM CLOCK MODEL (ENERGY SHIFT)

Here we provide details on the derivation of the quantum clock energy shift with postselection, 
〈EM〉 f [Eq. (8)]. We take
the basis state evolutions in the clock model [Eqs. (2)–(4)], which were justified in Appendix B, as our starting point.

Concatenating Eqs. (2)–(4) gives

|ψ〉|↓pointer
z 〉|q〉 → e−iĤ0(τ+q/v)(| f 〉〈 f |e+iĤ0q/v|ψ〉|↑pointer

z 〉 + | f⊥〉〈 f⊥|e+iĤ0q/v|ψ〉|↓pointer
z 〉)|q + vτ 〉, (C1)

where q < 0 and τ > −q/v. This describes a qubit-pointer-clock state starting left of the interaction region and ending past
it. The clock state above is a position eigenstate (with infinite energy uncertainty). As mentioned in the main text, we now
take the initial clock state to instead be describe by a narrow wave function localized left of the interaction region: 〈q|φ〉 =
(2πσ 2

q )−1/4e−(q−q0 )2/(4σ 2
q ), where q0 < 0 and σq � |q0|. Similar results will hold for similar distributions. Given this, the qubit

state when the clock arrives at the interaction region is approximately |i〉 ≡ e+iĤ0q0/v|ψ〉, since the arrival time is −q0/v with
small uncertainty (due to the narrowness of the clock wave function). By linearity of the Schrödinger equation,∫

dq|ψ〉|↓pointer
z 〉|q〉〈q|φ〉 →

≈
∫

dq e−iĤ0(τ+q/v)(| f 〉〈 f |e+iĤ0q/v|ψ〉|↑pointer
z 〉 + | f⊥〉〈 f⊥|e+iĤ0q/v|ψ〉|↓pointer

z 〉)|q + vτ 〉〈q|φ〉

=
∫

dq̃ e−iĤ0 q̃/v (| f τ 〉〈 f |e+iĤ0 q̃/v|i〉|↑pointer
z 〉 + | f τ

⊥〉〈 f⊥|e+iĤ0 q̃/v|i〉|↓pointer
z 〉)|q0 + q̃ + vτ 〉〈q0 + q̃|φ〉. (C2)

Here we have made a change of variables to q̃ = q − q0 and introduced the “evolved” final states | f τ 〉 = e−iĤ0(τ+q0/v)| f 〉 and
| f τ

⊥〉 = e−iĤ0 (τ+q0/v)| f⊥〉. The approximation that has been made above is to neglect contributions to the integral from q � 0.
This is justified by the fact that q0 < 0 and 〈q|φ〉 is narrow (we can always consider smaller σq). The narrowness of 〈q|φ〉 will
justify future approximations as well; for each approximation we make in what follows, there is a σq that is small enough for the
approximation to be valid.

Now we look at postselection. Postselecting on the | f 〉 outcome corresponds to taking the projection onto |↑pointer
z 〉. Then the

qubit is approximately in state | f τ 〉 at the end. The resulting clock state is thus, approximately,

〈↑pointer
z |〈 f τ |

∫
dq̃ e−iĤ0 q̃/v (| f τ 〉〈 f |e+iĤ0 q̃/v|i〉|↑pointer

z 〉 + | f τ
⊥〉〈 f⊥|e+iĤ0 q̃/v|i〉|↓pointer

z 〉)|q0 + q̃ + vτ 〉〈q0 + q̃|φ〉

=
∫

dq̃ 〈 f τ |e−iĤ0 q̃/v| f τ 〉︸ ︷︷ ︸
〈 f |e−iĤ0 q̃/v | f 〉

〈 f |e+iĤ0 q̃/v|i〉|q0 + q̃ + vτ 〉〈q0 + q̃|φ〉

=
∫

dq̃
(

1 − iq̃

v
〈 f |Ĥ0| f 〉 + O(q̃2)

)(
〈 f |i〉 + iq̃

v
〈 f |Ĥ0|i〉 + O(q̃2)

)
|q0 + q̃ + vτ 〉〈q0 + q̃|φ〉

=
∫

dq̃

(
〈 f |i〉 + iq̃

v
[〈 f |Ĥ0|i〉 − 〈 f |i〉〈 f |Ĥ0| f 〉] + O(q̃2)

)
|q0 + q̃ + vτ 〉〈q0 + q̃|φ〉

≈
∫

dq̃〈 f |i〉 exp

[
iq̃

v

(
−〈 f |Ĥ0| f 〉 + 〈 f |Ĥ0|i〉

〈 f |i〉
)]

|q0 + q̃ + vτ 〉〈q0 + q̃|φ〉

= 〈 f |i〉T̂ (q0 + vτ )
∫

dq̃ exp

[
iq̃

v

(
−〈 f |Ĥ0| f 〉 + 〈 f |Ĥ0|i〉

〈 f |i〉
)

︸ ︷︷ ︸

〈EM 〉 f +iIm 〈 f |Ĥ0 |i〉

〈 f |i〉

]
|q̃〉〈q0 + q̃|φ〉 ≡ 〈 f |i〉|φ f 〉. (C3)

Here, T̂ is the translation operator for q̂. The approxima-
tion made above was to ignore terms in the integrand from
〈 f |e−iĤ0 q̃/v| f 〉〈 f |e+iĤ0 q̃/v|i〉 that are of order qn with n � 2,
but keep the terms of order 1 and q̃. This is justified by the fac-
tor 〈q0 + q̃|φ〉 = (2πσ 2

q )−1/4e−q̃2/(4σ 2
q ) in the integrand, which

sets the scale, σq, for q̃ values that contribute significantly to
the integral. Lower values of σq may always be chosen so as
to justify keeping the terms of order 1 and q̃ while dropping
the O(q̃2) terms, and some choices of |i〉 and | f 〉, such as
those causing anomalous weak values, will require smaller σq

than others (for more on these types of approximations, see
Ref. [31]).

In the last line of Eq. (C3),
∫

dq̃|q̃〉〈q0 + q̃|φ〉 represents
the initial clock wave function in coordinates q̃ such that
the center/peak is at q̃ = 0.

∫
dq̃eiq̃
〈EM 〉 f /v|q̃〉〈q0 + q̃|φ〉 then

represents a clock wave function with momentum shifted from
the initial by 
p = 
〈EM〉 f /v. The presence of the imaginary
part of the weak value (last line) does not affect this energy
shift (see Refs. [30] and [39] for more on the imaginary part).
The translation operator outside the integral has no influence
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on the clock energy. Since the clock Hamiltonian is Ĥclock =
v p̂, we have our result, Eq. (8).

APPENDIX D: JAYNES-CUMMINGS MODEL
(ENERGY SHIFT)

Here we justify the results for the mean energy shift of the
oscillator in the Jaynes-Cummings measurement model. As
discussed in the main text, this shift is composed of two terms
[see Eqs. (13) and (14) and their surrounding text].

The second term is equal and opposite to the mean ex-
citation number change of the qubit when it is driven from
an energy eigenstate (the result of the σ̂z measurement) to
its final state. This requires little justification. The oscillator
and qubit are coupled during this period via the Jaynes-
Cummings Hamiltonian [Eq. (7)], which preserves the total
excitation number of qubit and oscillator, and there is only
unitary evolution under this Hamiltonian during this period.
Thus, any energy change by the qubit during this period is
compensated exactly by the oscillator (the qubit and oscillator
are assumed to be perfectly on resonance). The mean energy
change of the qubit is calculated under the assumption that
the final state (| f 〉 if starting in |e〉 ≡ |↑z〉 or | f⊥〉 if starting
in |g〉 ≡ |↓z〉) targeted by the rotation is accurately achieved;

this means going to the semiclassical limit whereby the oscil-
lator satisfies n0 = 〈α|â†â|α〉 = α2 → ∞ while the product
of the vacuum Rabi frequency and interaction time �0t → 0
as 1/

√
n0 [28] (the need for such a limit is in keeping with the

WAY theorem). Thus the mean photon number change of the
oscillator during this period is either −(〈 f |↑z〉〈↑z| f 〉 − 1) or
−〈 f⊥|↑z〉〈↑z| f⊥〉, depending on the result (↑, ↓, respectively)
of the σ̂z measurement.

The rest of the oscillator energy change is due to the
first drive plus the σ̂z measurement being performed and
yielding a particular outcome (e.g., |↑z〉). This is more com-
plicated to calculate because of the postselection involved.
We will assume that, during the first drive, the coupling
strength �(t ) is constant at some vacuum Rabi frequency
�0 for a period t . This gives the evolution operator ÛJC =
e− �0t

2 (âσ̂+−â†σ̂− ) for the qubit-oscillator system (recall that
we work in the interaction picture of the resonant Jaynes-
Cummings model). Given initial qubit state |i〉 and initial
oscillator state |α〉 (α real and positive), the resulting state of
the oscillator when we run the interaction and postselect on
|↑z〉 is 〈↑z|ÛJC|i〉|α〉, up to a normalization factor. Similarly,
if we postselect instead on |↓z〉, the resulting oscillator state
is 〈↓z|ÛJC|i〉|α〉, up to a normalization factor. These states are
given by

〈↑z|ÛJC|i〉|α〉 =
∑

n

(
cos

�0t
√

n + 1

2
〈↑z|i〉〈n|α〉 − sin

�0t
√

n + 1

2
〈↓z|i〉〈n + 1|α〉

)
|n〉, (D1a)

〈↓z|ÛJC|i〉|α〉 = 〈↓z|i〉〈0|α〉|0〉 +
∞∑

n=1

(
sin

�0t
√

n

2
〈↑z|i〉〈n − 1|α〉 + cos

�0t
√

n

2
〈↓z|i〉〈n|α〉

)
|n〉. (D1b)

Since the aim is to approximate the Y rotation of the qubit by an angle −θ , we assume �0t
√

n0 ≈ −θ . More concretely, we
will take �0t to satisfy �0t

√
n0 + m = −θ , where m � √

n0. We leave m as a variable because the best possible value of m
is not immediately obvious, and we want to show that the leading-order photon number shift is essentially independent of the
choice. Rewriting Eq. (D1), we obtain

〈↑z|ÛJC|i〉|α〉 =
∑

n

[
cos

(
θ

2

√
1 + n − n0 + 1 − m

n0 + m

)
〈↑z|i〉〈n|α〉 + sin

(
θ

2

√
1 + n − n0 + 1 − m

n0 + m

)
〈↓z|i〉〈n + 1|α〉

]
|n〉,

(D2a)

〈↓z|ÛJC|i〉|α〉 =
∞∑

n=1

[
− sin

(
θ

2

√
1 + n − n0 − m

n0 + m

)
〈↑z|i〉〈n − 1|α〉 + cos

(
θ

2

√
1 + n − n0 − m

n0 + m

)
〈↓z|i〉〈n|α〉

]
|n〉

+ 〈↓z|i〉〈0|α〉|0〉. (D2b)

Equation (D2) is exact. The unnormalized Born rule probabilities for a given photon number (conditioned on the σ̂z

measurement outcome) are P(n | ↑z ) = |〈↑z|〈n|ÛJC|i〉|α〉|2 and P(n | ↓z ) = |〈↓z|〈n|ÛJC|i〉|α〉|2. The resulting mean photon
numbers are then given exactly by 〈n〉i�↑ =

∑
n nP(n | ↑z )∑
n P(n | ↑z ) = n0 +

∑
n(n−n0 )P(n | ↑z )∑

n P(n | ↑z ) and 〈n〉i�↓ =
∑

n nP(n | ↓z )∑
P(n | ↓z ) = n0 +

∑
n(n−n0 )P(n | ↓z )∑

P(n | ↓z ) .
These summations, while discrete, are well approximated by integrals in the large-n0 limit, wherein 〈n|α〉 passes to (the square

root of) a continuous Gaussian 〈n|α〉 ≈ (2πn0)−1/4e− 1
4n0

(n−n0 )2

, which suppresses contributions to the integrals from n not within√
n0 of n0. This allows us to replace the trigonometric functions of n with their first-order Taylor expansions, and expand the

integration region to ±∞ while negligibly changing the value (in the n0 → ∞ limit) of the integrals.
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For example,

〈n〉↑�↑ − n0 ≈
(2πn0)−1/2

∫ ∞
−∞ dn cos2

(
θ
2

√
1 + n−n0+1−m

n0+m

)
(n − n0)e− 1

2n0
(n−n0 )2

(2πn0)−1/2
∫ ∞
−∞ dn cos2

(
θ
2

√
1 + n−n0+1−m

n0+m

)
e− 1

2n0
(n−n0 )2

≈
cos2 θ

2 (2πn0)−1/2
∫ ∞
−∞ dn

[
1 − [(n−n0 )+1−m]

n0+m
θ
2 tan θ

2 + O
(

(n−n0 )2

n2
0

)]
(n − n0)e− 1

2n0
(n−n0 )2

cos2 θ
2 (2πn0)−1/2

∫ ∞
−∞ dn

[
1 − [(n−n0 )+1−m]

n0+m
θ
2 tan θ

2 + O
(

(n−n0 )2

n2
0

)]
e− 1

2n0
(n−n0 )2

=
cos2 θ

2

[
− n0

n0+m
θ
2 tan θ

2 + O
(

1√
n0

)]
cos2 θ

2

[
1 + O

(
1√
n0

)] ∼ −θ

2
tan

θ

2
as n0 → ∞

≡ 
〈ẼM〉↑�↑(θ ). (D3)

In the third line above, we have allowed for corrections
of order 1√

n0
or higher (e.g., 1

n0
), our point being that while

such corrections may exist (especially when replacing the
trigonometric functions with higher-order Taylor expansions),
these corrections vanish as n0 → ∞.

As discussed in the main text, 
〈ẼM〉↑�↑(θ ) is the photon
number shift when we prepare the qubit in |↑z〉, couple to
the oscillator via the Jaynes-Cummings interaction so as to
(albeit, imperfectly) execute the qubit Y rotation by −θ , mea-
sure σ̂z, and get the outcome |↑z〉. This should be evident from
the derivation now. Following the same approximation meth-
ods as before, we can calculate the values of 
〈ẼM〉↓�↑(θ ),

〈ẼM〉↑�↓(θ ), and 
〈ẼM〉↓�↓(θ ) [see Eq. (9) of the main

text]. In these calculations, it is notable that |〈n + 1|α〉|2 may
be substituted by a Gaussian centered at n0 − 1 with variance
n0, and |〈n − 1|α〉|2 may be substituted by a Gaussian cen-
tered at n0 + 1 with variance n0.

Lastly, we calculate the full form [see the “first term”
of Eq. (13)], where |i〉 may be a superposition of |↑z〉 and
|↓z〉. In these calculations, it is notable that 〈n|α〉〈α|n + 1〉 =
〈n|α〉〈α|n + 1〉 (since α is assumed real) may be substi-
tuted by a Gaussian centered at n0 − 1

2 with variance n0 [up

to a negligible normalization factor e− 1
8n0 = 1 + O( 1

n0
)]. We

find, following the same approximation methods as before,
that

〈n〉i�↑ − n0

∼ cos2 θ
2 |〈↑z|i〉|2

(− θ
2 tan θ

2

) + sin2 θ
2 |〈↓z|i〉|2

(−1 + θ
2 cot θ

2

) + sin θ
2 cos θ

2 Re(〈↑z|i〉〈↓z|i〉)
(− θ

2 tan θ
2 − 1 + θ

2 cot θ
2

)
cos2 θ

2 |〈↑z|i〉|2 + sin2 θ
2 |〈↓z|i〉|2 + 2 sin θ

2 cos θ
2 Re(〈↑z|i〉〈↓z|i〉)

= |〈 f |↑z〉〈↑z|i〉|2
〈ẼM〉↑�↑(θ ) + |〈 f |↓z〉〈↓z|i〉|2
〈ẼM〉↓�↑(θ ) + 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)
〈ẼM 〉↑�↑(θ )+
〈ẼM 〉↓�↑(θ )
2

|〈 f |i〉|2 ,

(D4)

as n0 → ∞. Here, we have made use of the fact that | f 〉 =
cos θ

2 |↑z〉 + sin θ
2 |↓z〉. This justifies (the first term of) Eq. (13).

The justification of Eq. (14) is analogous and makes use of the
equality | f⊥〉 = − sin θ

2 |↑z〉 + cos θ
2 |↓z〉.

The magnitude of n0 required for these analytical results
(obtained in the n0 → ∞ limit) to be accurate depends on the
specific measurement context (in particular, the initial state
|i〉 and rotation angle −θ ). Generally speaking, larger shifts
require larger n0 (larger photon number variance n0). Figure 6
demonstrates convergence to the analytical value as n0 → ∞.

APPENDIX E: DEGENERATE QUBIT-OSCILLATOR
INTERACTION

An alternative qubit-oscillator interaction, ĤD =
−i �

2 (L̂σ̂+ − L̂†σ̂−), where L̂† = ∑∞
n=1 |n〉〈n − 1| =

∑∞
n=0 |n + 1〉〈n|, has the same eigenvectors as ĤJC =

−i �
2 (âσ̂+ − â†σ̂−), but degenerate eigenvalues ±�

2 . In
theory, we could implement the same measurement protocol
(rotate about Y , measure σ̂z, then perform the opposite
rotation) using a coherent state and this Hamiltonian instead
of the Jaynes-Cummings one. Doing so returns the clock
result, as we will now show.

We will assume that, during the first drive, the coupling
strength � is constant at some vacuum Rabi frequency �0

for a period t such that �0t = −θ . This gives the evolution
operator ÛD = e− θ

2 (L̂σ̂+−L̂†σ̂− ). Given initial qubit state |i〉
and initial oscillator state |α〉, the resulting state of the
oscillator when we run the interaction and postselect on |↑z〉
is 〈↑z|ÛD|i〉|α〉, up to a normalization factor. Similarly, if
we postselect instead on |↓z〉, the resulting oscillator state is
〈↓z|ÛD|i〉|α〉, up to a normalization factor. These states are
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FIG. 6. Photon number shift (denoted 
n in the figure) in the Jaynes-Cummings model corresponding to the first drive followed by the σ̂z

measurement yielding |↑z〉. A log10 scale is used for the x-axis. An extreme case is considered: |i〉 = 1√
2
(|↑z〉 + |↓z〉) while θ = π ( 3

2 − 1
400 );

the first drive is by −θ , and the qubit state after the second drive would be | f 〉 = cos θ

2 |↑z〉 + sin θ

2 |↓z〉, which is almost orthogonal to |i〉. Thus
the measurement outcome is very unlikely, and we can expect a large shift in the mean energy of the measurement apparatus, similar to an
anomalous weak value. Likewise, a large value of the photon number variance n0 is needed to approach the analytical value presented in the
main text. Note that n0 is also the initial mean photon number, because a coherent state is used. Numerical values of the photon number shift
are calculated using the unnormalized photon number probabilities P(n | ↑z ) from mod-squaring the amplitudes in Eq. (D2a) with m = 1; the
full form of the trigonometric functions is used (as opposed to a first-order Taylor expansion), and a continuous Gaussian is substituted for
〈n|α〉. Numerical integrals from n0 − 10

√
n0 to n0 + 10

√
n0 are performed, giving an approximation of

∑
n (n−n0 )P(n | ↑z )∑

n P(n | ↑z ) . Comparison with the
asymptotic value as n0 → ∞ (the “analytical” value) is given in the plot to show how convergence is achieved as n0 → ∞.

given by

〈↑z|ÛD|i〉|α〉 =
∑

n

(
cos

θ

2
〈↑z|i〉〈n|α〉 + sin

θ

2
〈↓z|i〉〈n + 1|α〉

)
|n〉

=
∑

n

(〈 f |↑z〉〈↑z|i〉〈n|α〉 + 〈 f |↓z〉〈↓z|i〉〈n + 1|α〉)|n〉, (E1a)

〈↓z|ÛD|i〉|α〉 = 〈↓z|i〉〈0|α〉0〉 +
∞∑

n=1

(
− sin

θ

2
〈↑z|i〉〈n − 1|α〉 + cos

θ

2
〈↓z|i〉〈n|α〉

)
|n〉

= 〈↓z|i〉〈0|α〉|0〉 +
∞∑

n=1

(〈 f⊥|↑z〉〈↑z|i〉〈n − 1|α〉 + 〈 f⊥|↓z〉〈↓z|i〉〈n|α〉)|n〉. (E1b)

The unnormalized Born rule probabilities for a given photon number (conditioned on the σ̂z measurement outcome) are
P(n | ↑z ) = |〈↑z|〈n|ÛD|i〉|α〉|2 and P(n | ↓z ) = |〈↓z|〈n|ÛD|i〉|α〉|2. The resulting mean photon numbers are then given exactly
by 〈n〉i�↑ =

∑
n nP(n | ↑z )∑
n P(n | ↑z ) = n0 +

∑
n(n−n0 )P(n | ↑z )∑

n P(n | ↑z ) and 〈n〉i�↓ =
∑

n nP(n | ↓z )∑
P(n | ↓z ) = n0 +

∑
n(n−n0 )P(n | ↓z )∑

P(n | ↓z ) . These summations, while dis-
crete, are well approximated by integrals in the large n0 limit, wherein 〈n|α〉 passes to (the square root of) a continuous Gaussian

|〈n|α〉|2 ≈ (2πn0)−1/2e− 1
2n0

(n−n0 )2

, and the integration region can be expanded to ±∞ while negligibly changing the value. We
find

〈n〉i�↑

≈
∫

dn
(|〈 f |↑z〉〈↑z|i〉|2e− 1

2n0
(n−n0 )2 + |〈 f |↓z〉〈↓z|i〉|2e− 1

2n0
(n−n0+1)2 + e− 1

8n0 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)e− 1
2n0

(n−n0+ 1
2 )2)

n∫
dn

(|〈 f |↑z〉〈↑z|i〉|2e− 1
2n0

(n−n0 )2 + |〈 f |↓z〉〈↓z|i〉|2e− 1
2n0

(n−n0+1)2 + e− 1
8n0 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)e− 1

2n0
(n−n0+ 1

2 )2)
= n0 + |〈 f |↑z〉〈↑z|i〉|2(0) + |〈 f |↓z〉〈↓z|i〉|2(−1) + e− 1

8n0 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)
(− 1

2

)
|〈 f |↑z〉〈↑z|i〉|2 + |〈 f |↓z〉〈↓z|i〉|2 + e− 1

8n0 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)

≈ n0 + |〈 f |↑z〉〈↑z|i〉|2(0) + | f 〉|↓z〉〈↓z|i〉|2(−1) + 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)
(− 1

2

)
|〈 f |↑z〉〈↑z|i〉|2 + |〈 f |↓z〉〈↓z|i〉|2 + 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)

= n0 + |〈 f |↑z〉〈↑z|i〉|2
〈ẼM〉↑�↑ + |〈 f |↓z〉〈↓z|i〉|2
〈ẼM〉↓�↑ + 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)
〈ẼM 〉↑�↑+
〈ẼM 〉↓�↑
2

|〈 f |i〉|2 (E2)
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in the limit as n0 → ∞. This gives the photon number change
due to the first drive and σ̂z measurement (conditioned on the
outcome |↑z〉). Next, there is another photon number change
due to the second drive. This shift in the mean photon number
is simply equal and opposite to the change in the qubit excita-
tion number in going from |↑z〉 to | f 〉 = cos θ

2 |↑z〉 + sin θ
2 |↓z〉

because the interaction preserves the total excitation num-
ber of qubit and oscillator. Thus this second shift term is
−(〈 f |↑z〉〈↑z| f 〉 − 1). This gives Eq. (13).


〈ẼM〉↑�↑ is the photon number shift when we prepare
the qubit in |↑z〉, couple to the oscillator via the degenerate
interaction so as to (albeit, imperfectly) execute the qubit Y
rotation by −θ , measure σ̂z, and get the outcome |↑z〉. This
should be evident from the derivation. Similarly, 
〈ẼM〉↓�↑
is the photon number shift when we prepare the qubit in |↓z〉,
couple to the oscillator via the degenerate interaction so as
to execute the qubit Y rotation by −θ , measure σ̂z, and get

the outcome |↑z〉. Notably, these are not functions of θ ; this
is unlike the result obtained using the nondegenerate Jaynes-
Cummings interaction.

The derivations of 
〈ẼM〉↑�↓, 
〈ẼM〉↓�↓, and Eq. (14) are
analogous. In the next Appendix, we show that (13), (14),
and (15) indeed match the clock energy shift as originally
presented [Eq. (8)].

APPENDIX F: REWRITING THE CLOCK ENERGY SHIFT

Here we show that the clock mean energy shift with posts-
election, 
〈EM〉 f , originally given as Eq. (8), indeed may be
written in the form of Eqs. (13) and (14) (thus falling into the
same general pattern as the Jaynes-Cummings result), with
values substituted from Eq. (15). Note that Eqs. (13) and (14)
are written in terms of energy quanta (dimensionless units).
Given that Ĥ0 = ω0

2 σ̂z, the dimensionless form of Eq. (8) is

1

ω0

〈EM〉 f ≈ 1

2
Re

( 〈 f |(|↑z〉〈↑z| − |↓z〉〈↓z|)|i〉
〈 f |i〉

)
− 1

2
〈 f |(|↑z〉〈↑z| − |↓z〉〈↓z|)| f 〉

= Re

( 〈 f |↑z〉〈↑z|i〉
〈 f |i〉

)
− 1 −(〈 f |↑z〉〈↑z| f 〉 − 1)︸ ︷︷ ︸

2nd drive term of Eq. (13)

= Re

( 〈 f |↑z〉〈↑z|i〉
〈 f |i〉

)
−〈 f |↑z〉〈↑z| f 〉︸ ︷︷ ︸

2nd drive term of Eq. (14)

. (F1)

Here we have used the completeness relation 1̂ = |↑z〉〈↑z| + |↓z〉〈↓z|, which implies that 1
2 (|↑z〉〈↑z| − |↓z〉〈↓z|) = |↑z〉〈↑z| − 1

2 .
We have explicitly included the second drive terms (indicated by an underbrace) found in Eqs. (13) and (14) to make for an easier
comparison. To check Eqs. (13) and (15), we expand out Re( 〈 f |↑z〉〈↑z |i〉

〈 f |i〉 ) − 1 and check that it matches the first term of Eq. (13).
This is just algebra, and we include the steps here for completeness:

Re

( 〈 f |↑z〉〈↑z|i〉
〈 f |i〉

)
− 1

= 1

2

( 〈 f |↑z〉〈↑z|i〉
〈 f |i〉 + 〈i|↑z〉〈↑z| f 〉

〈i| f 〉
)

− 1

= 1

2

( 〈i| f 〉〈 f |↑z〉〈↑z|i〉
|〈 f |i〉|2 + 〈i|↑z〉〈↑z| f 〉〈 f |i〉

|〈 f |i〉|2

)
− 〈i| f 〉〈 f |i〉

|〈 f |i〉|2

= 1

|〈 f |i〉|2

(
1

2
〈i|(|↑z〉〈↑z| + |↓z〉〈↓z|)| f 〉〈 f |↑z〉〈↑z|i〉 + 1

2
〈i|↑z〉〈↑z| f 〉〈 f |(|↑z〉〈↑z| + |↓z〉〈↓z|)|i〉

− 〈i|(|↑z〉〈↑z| + |↓z〉〈↓z|)| f 〉〈 f |(|↑z〉〈↑z| + |↓z〉〈↓z|)|i〉
)

= 1

|〈 f |i〉|2 ((−1)〈i|↓z〉〈↓z| f 〉〈 f |↓z〉〈↓z|i〉 + (−1/2)(〈i|↑z〉〈↑z| f 〉〈 f |↓z〉〈↓z|i〉 + 〈i|↑z〉〈↑z| f 〉〈 f |↓z〉〈↓z|i〉))

= 1

|〈 f |i〉|2 ((−1)|〈 f |↓z〉〈↓z|i〉|2 + (−1/2) × 2 Re(〈 f |↑z〉〈↑z|i〉〈 f |↓z〉〈↓z|i〉)). (F2)

This shows that the clock energy shift [Eq. (8)] in-
deed follows the form of Eq. (13) with values substi-
tuted from Eq. (15). Analogous reasoning shows that the
clock energy shift [Eq. (8)] also follows the form of
Eq. (14).

This also clarifies that the measurement model using the
degenerate qubit-oscillator interaction gives the same results
as the clock model. The photon number shift from the de-
generate qubit-oscillator interaction model was already shown
(in Appendix E) to follow Eqs. (13) and (14), with values
substituted from Eq. (15).
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