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Gauge-invariant semidiscrete Wigner theory
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A gauge-invariant Wigner quantum mechanical theory is obtained by applying the Weyl-Stratonovich trans-
form to the von Neumann equation for the density matrix. The transform reduces to the Weyl transform in
the electrostatic limit, when the vector potential and thus the magnetic field are zero. Both cases involve a
center-of-mass transform followed by a Fourier integral on the relative coordinate introducing the momentum
variable. The latter is continuous if the limits of the integral are infinite or, equivalently, the coherence length
is infinite. However, the quantum theory involves Fourier transforms of the electromagnetic field components,
which imposes conditions on their behavior at infinity. Conversely, quantum systems are bounded and often very
small, as is, for instance, the case in modern nanoelectronics. This implies a finite coherence length, which avoids
the need to regularize nonconverging Fourier integrals. Accordingly, the momentum space becomes discrete,
giving rise to momentum quantization and to a semidiscrete gauge-invariant Wigner equation. To gain insights
into the peculiarities of this theory one needs to analyze the equation for specific electromagnetic conditions.
We derive the evolution equation for the linear electromagnetic case and show that it significantly simplifies for
a limit dictated by the long coherence length behavior, which involves momentum derivatives. In the discrete
momentum picture these derivatives are presented by finite difference quantities which, together with further
approximations, allow to develop a computationally feasible model that offers physical insights into the involved
quantum processes. In particular, a Fredholm integral equation of the second kind is obtained, where the “power”
of the kernel components, measuring their rate of modification of the quantum evolution, can be evaluated.

DOI: 10.1103/PhysRevA.106.052213

I. INTRODUCTION

The description of the quantum evolution of charged par-
ticles in an electromagnetic (EM) medium is a fundamental
problem in many areas, particularly in nanoelectronics [1–13].
Several approaches with different properties are available
and actively developed to describe the quantum processes
(for a recent review of relevant computational methods see
Ref. [14]). In particular, the Schrödinger equation and the
nonequilibrium Green’s functions formalism rely on the
boundary conditions to enable analysis in terms of eigenstates
and eigenvalues, while the density matrix and the Wigner
function approach need the initial condition of the considered
system to describe the future evolution [12].

The Wigner formalism provides a very intuitive formu-
lation of quantum mechanics, maintaining many classical
concepts and notions such as the phase space and physical
observables represented by the same functions of position and
momentum as the classical counterparts [15–17]. The Wigner
function is a real quantity and is used to calculate physical
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averages in the same manner as with the classical distribution
function. Furthermore, coherence breaking processes can be
included in a straightforward manner by using scattering func-
tions in the governing Wigner equation in the same way as in
the classical counterpart—the Boltzmann equation. Here, we
focus on the purely coherent Wigner equation [18].

In the electrostatic limit and considering a zero vector
potential gauge, the transport problem can be conveniently
formulated with the help of the electric potential φ. The Weyl
transform of the von Neumann equation for the density matrix
ρ(r1, r2, t ) defines two central quantities, the Wigner function

fw(p, x, t ) = C
∫

dsρ

(
x + s

2
, x − s

2
, t

)
e− i

h̄ sp (1)

and the Wigner potential

Vw(p, x) = C

ih̄

∫
ds

[
V

(
x − s

2

)
− V

(
x + s

2

)]
e− i

h̄ sp. (2)

Here, the two positions r1 and r2 are expressed through the
center-of-mass coordinates x, s, and V = eφ is the energy
of the electron due to the electric potential. C is a normal-
ization constant which depends on the limits of integration
and the dimensionality of the task. For a one-dimensional
(1D) s and integration spanned over the whole space (in-
finite coherence length L), C = 1

(2π h̄) . Then x and p form
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a continuous phase space. In this picture the canonical and
the kinetic momenta coincide, i.e., the integrals

∫
fwdx =

|ψ (p)|2,
∫

fwd p = |ψ (x)|2 (where ψ is the wave function)
give the distributions of the eigenvalues of the conjugate mo-
mentum and position operators p̂ = −ih̄∇ and x̂, while the
phase space integral of p fw divided by the mass m gives
the mean velocity. The physical quantities are represented
by the same dynamical functions inherent to classical me-
chanics, which are often devised in terms of position and
velocity.

The presence of a magnetic field enormously complicates
the standard Wigner equation (see Sec. 5.22 in Ref. [19]): the
description becomes multidimensional, and the canonical p
and kinetic P momenta differ by the vector potential A via
p = P + eA(x). One can still use the Weyl transform (1) to
derive a quantum theory in phase space. However, this intro-
duces a dependence on the gauge via p, which depends on the
vector potential. Then the equation for the Wigner distribution
function describing the electron state changes with any choice
of a new gauge. The same holds for dynamical functions,
which are defined in terms of the kinetic momentum. The
other option is to modify the Weyl transform; in principle, al-
ternative formulations for quantum mechanics in phase space
have already been introduced.

For instance, in a comprehensive relativistic (quantum
electrodynamics) study the evolution equations were derived
for fermion and photon many-body Wigner operators and
analyzed with respect to the interplay between the space-
time Lorentz and the electromagnetic gauge transforms within
the context of a Lorentz-covariant and gauge-invariant quan-
tum transport theory [20]. The nonrelativistic limit which
is appropriate for condensed matter physics was developed
in Ref. [21] (also cited in Ref. [20]). In this work, a
single-particle gauge-invariant Wigner operator and a gauge-
independent Wigner function together with the corresponding
operator equation of motion was developed. The latter de-
pends only on the EM forces and is thus independent of
the choice of gauge. The meaning of “gauge invariance”
used in this work follows the broadly accepted view [21,22].
A peculiarity of the derived evolution equation (see also
Ref. [23]) is that the spatial arguments of the EM fields
are replaced by operators. This enables an elegant formu-
lation of the gauge-invariant evolution equation, but makes
the numerical treatment enormously difficult. In our previous
work [6], we present an effort to reformulate the equation
in terms of continuous phase space mathematical operations
which are independent of the shape of the EM fields. This,
however, imposes some special conditions on the behavior
of the EM fields at infinity, which motivates the semidis-
crete formulations presented in this work. It is interesting
to note that Refs. [6,20–23] provide self-contained deriva-
tions of the transport theory. Furthermore, they are unified
around the heuristic idea of replacing the adjoint momentum
with the kinetic momentum; they are “uniquely determined
by requiring that the momentum variable corresponds to the
kinetic momentum” [20]. This idea can be traced back to the
work of Stratonovich [24], who derived the generalization
of the Weyl transform giving rise to the kinetic momen-
tum. Besides, the dynamical functions preserve their classical
form independent of the chosen gauge. The derivation of the

Weyl-Stratonovich transform (WST) [6],

fw(P, x)

=
∫

ds
(2π h̄)3

e− i
h̄ s·Pe− i

h̄
e
2 s·∫ 1

−1 dτA(x+ sτ
2 )ρ

(
x + s

2
, x − s

2

)
,

(3)

is based on an analysis of the way the mean values of products
of the components of the canonical momentum change after
a canonical transform [24]. It is interesting to note that the
evolution equation for Eq. (3) was not presented in the original
manuscript of Stratonovich. However, alternative versions of
this equation have been presented in several subsequent works
[21,23,25–28]. In general, these works use pseudodifferential
operators comprised of physical functions, such as EM fields,
where the arguments contain not only the regular phase space
variables but also differential operations with these variables.
This means that equations of this type are implicit with respect
to the mathematical appearance; in particular, the order of the
differential part depends on the way these functions change
with the physical environment. As hinted above, in previous
work we derived a version of the Wigner equation from the
evolution equation for the density matrix formulated with the
help of scalar and vector potentials, corresponding to general
EM conditions [6]. The WST is then applied to introduce the
kinetic momentum and thus a gauge invariance; indeed, the
obtained equation depends only on the EM forces.

For homogeneous magnetic fields, inhomogeneous terms
vanish and the equation reduces to its electrostatic limit form,
with an additional term accounting for the acceleration due
to the magnetic field [29]. When considering inhomogeneous
magnetic terms, the first problem is that they pose serious
mathematical challenges because of multidimensional inte-
grals. A further problem comes from the infinite limits of
the Fourier integral in Eq. (1). The Wigner function is well-
defined in these limits, because ρ ∈ L2 [30]. However, this
does not hold for Eq. (2), e.g., in the case of an electrostatic
potential step. The problem can be resolved by introducing the
heresy of generalized functions [31] into the Wigner picture
[32]. However, generalized functions involve special limits
[31] which require analytical approaches and can turn into
operators, as discussed in Appendix D. The usual numerical
procedure of discretization by presenting integrals by Rie-
mann sums fails. On the contrary, the parent equation for
the density matrix, or the σ equation, is suitable for such
a treatment [33,34]. This shows that the problem is intro-
duced by the properties of the mathematical transforms at
infinity and not by the involved physics. Indeed, a physi-
cally admissible Schrödinger state lies in the domain of the
self-adjoint momentum operator and thus vanishes at infin-
ity, lim|x|→∞ψ (x) = 0. This property implies an alternative
“bounded domain” approach to the formalism. For conve-
nience, we consider states ψ which evolve in a bounded
domain �. The condition ψ = 0 outside � characterizes the
physical settings in a broad class of problems such as systems
initially restricted by potentials. If such a system opens at
a given time, the domain can extend, but remains bounded
for finite evolution intervals [35]. A continuous state which
evolves in � has a well-defined discrete Fourier image fn in
a discrete momentum space [36]. This suggests to develop a
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discrete momentum EM Wigner theory which will be partic-
ularly suitable for numerical treatment of the inhomogeneous
magnetic terms.

In this work, we formulate the general form of the discrete
momentum EM Wigner formalism (Sec. II). It is formulated
with the help of quantities defined by the FT of the EM field
components, which remain well defined for a finite coherence
length. Within the established formalism we focus on the spe-
cial case of linear EM fields (corresponding to the first-order
terms of their Taylor expansion) and derive the corresponding
Wigner evolution equation (Sec. III). Finally, we use it to
develop an approximate integral form suitable for numerical
solution approaches.

II. THE SEMIDISCRETE WIGNER FORMALISM

A. Discrete momentum Wigner function

We consider a system described by a density matrix
ρ(r1, r2), which becomes zero outside a given domain � with
dimensions (0, L/2), where the components of L/2 along the
coordinate axes define the extent of our system, 0 < r1, r2 <

L/2. For the center-of-mass variables x = r1+r2
2 , s = r1 −

r2, this condition becomes

0 < x <
L
2

, −L
2

< s <
L
2

. (4)

The FT of a continuous function f (s) is defined as

fn = 1

L

∫ L/2

−L/2
dse−in	ks f (s), f (s) =

∞∑
n=−∞

ein	ks fn, (5)

where n	k denotes the vector with components ni	ki along
the coordinate axes i = 1, 2, 3. The uniqueness of the decom-
position follows from the condition for orthonormality. The
completeness relation follows from Eq. (5) as

	k = 2π/L,
1

L

∞∑
m=−∞

eim	k(s−s′ ) = δ(s − s′), (6)

where L determines the momentum discretization. We con-
tinue by using the the momentum variable P = h̄k. The
definition of our Wigner function is then

fw(Pm, x) =
∫ L/2

−L/2

ds
L

e− i
h̄ s·Pm e− i

h̄
e
2 s·∫ 1

−1 dτA(x+ sτ
2 )

× ρ

(
x + s

2
, x − s

2

)
, (7)

where Pm = mP is a vector with components
(mx	px, my	py, mz	pz ). In this way fw(Pm, x, t ) is
continuous with respect to x and discrete with respect to
three integer numbers m. The time variable remains implicit.
For a better transparency we will interchangeably use both
notations Pm and mP, which puts the focus on the physical or
mathematical aspects, respectively.

B. Discrete momentum evolution equation

We begin to reformulate the von Neumann equation for the
density matrix in center-of-mass coordinates [6]:

1

2mih̄

{∑
l

2

[
ih̄

∂

∂xl
+ eAl

(
x + s

2

)
− eAl

(
x − s

2

)][
ih̄

∂

∂sl
+ e

2
Al

(
x − s

2

)
+ e

2
Al

(
x + s

2

)]}

= − 1

ih̄

[
V

(
x + s

2

)
− V

(
x − s

2

)]
ρ

(
x + s

2
, x − s

2

)
+ ∂ρ

(
x + s

2 , x − s
2

)
∂t

. (8)

We multiply Eq. (8) by the exponent factor in Eq. (7) and integrate over s. Then the exponent factor must be shifted to the
right, next to the density matrix. We first consider the product of the two brackets: In the electrostatic limit, A = 0, this shift
is straightforward, but for general EM fields the differential operators in the brackets do not commute with A. Fortunately, all
related transforms from the continuous derivation in Ref. [6] apply also in the discrete case:

D =
∫ L/2

−L/2

ds
L

{
−PM

m
· ∂

∂x
− 1

m

e

2

∫ 1

−1
dτ

τ

2

[
s × B

(
x + sτ

2

)]
· ∂

∂x
+ e

2ih̄

∫ 1

−1
dτ

[
s × B

(
x + sτ

2

)]
· PM

m

+ e2

4mih̄

∫ 1

−1

∫ 1

−1
dτdη

τ

2

[(
s × B

(
x + sη

2

))
·
(

s × B
(

x + sτ
2

))]}
e− i

h̄ s·(PM+ e
2

∫ 1
−1 dτA(x+ sτ

2 ))ρ

(
x + s

2
, x − s

2

)
. (9)

The term after the curly brackets gives the Wigner function (7) when integrated on s. Thus, we need to decouple it from the
expression in the curly brackets, which is done with the help of the completeness relation (6). The term with the exponent is
introduced into Eq. (9), and as it results in a delta function we can change s to s′ in the curly brackets and then integrate over s′
to recover the value of D. This leads to a separate FT of the consecutive terms in the curly brackets. The square brackets show
that we actually need the function

HF (x, m, τ ) =
∫ L/2

−L/2

ds′

L
e− i

h̄ m	ps′
[

s′ × B
(

x + s′τ
2

)]
. (10)

Indeed, the integral

IF (x, m, τ ) =
∫ L/2

−L/2

ds′

L
e− i

h̄ m	ps′
[

sv′ × B
(

x + s′η
2

)]
·
[

s′ × B
(

x + s′τ
2

)]
(11)

can be expressed via the convolution IF (x, m, η, τ ) = HF (x, m, η) ∗ HF (x, m, τ ).
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Finally, we obtain for D

D =
∞∑

m=−∞

{
−δm,0

PM

m
· ∂

∂x
− e

2m

∫ 1

−1
dτ

τ

2
HF (x, m, τ ) · ∂

∂x
+ e

2ih̄

∫ 1

−1
dτHF (x, m, τ ) · PM

m

+ e2

4mih̄

∫ 1

−1

∫ 1

−1
dτdη

τ

2
IF (x, m, τ, η)

}
fw(PM−m, x). (12)

The right-hand side T of Eq. (8) is handled in the same
way; the first term can be directly processed:∫ L/2

−L/2
e− i

h̄ s·[PM+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

[
V

(
x − s

2

)
− V

(
x + s

2

)]

× ρ

(
x + s

2
, x − s

2

)
ds

ih̄L
=

∞∑
m=−∞

Vw(m, x) fw(PM−m, x).

(13)

We recognize the Wigner potential in Eq. (2) in the first line
of Eq. (13), now formulated in the discrete momentum space.
The second term on the right-hand side of Eq. (8) can be
evaluated by using the time derivative of Eq. (7):∫ L/2

−L/2

ds
L

e− i
h̄ s·[PM+ e

2

∫ 1
−1 dτA(x+ sτ

2 )] ∂ρ
(
x + s

2 , x − s
2

)
∂t

= ∂

∂t
fw(PM, x) − e

i2h̄L

∫ 1

−1
dτ

∫ L/2

−L/2
ds s · ∂A

(
x + sτ

2

)
∂t

× e− i
h̄ s·[PM	p+ e

2

∫ 1
−1 dτA(x+ sτ

2 )]ρ

(
x + s

2
, x − s

2

)
. (14)

The identity − ∂A
∂t = ∇φ + E can be used to eliminate ∂A/∂t

from Eq. (14). The contribution from the scalar potential can

be directly integrated over τ :

e

2

∫ 1

−1
dτ s · ∂

∂x
φ

(
x + sτ

2

)
= V

(
x + s

2

)
− V

(
x − s

2

)
.

Consequently, the contribution from φ cancels the Wigner
potential term (13).

Therefore, only the electric field E contributes, so that

T = ∂

∂t
fw(PM, x)

− e

2ih̄

∞∑
m=−∞

∫ 1

−1
dτDF (x, m, τ ) fw(PM−m, x) (15)

with

DF (x, m, τ ) = −
∫ L/2

−L/2

ds′

L
e− i

h̄ m	ps′
[

s′ · E
(

x + s′τ
2

)]
.

(16)
The evolution equation for fw, given by the equality

D = T , (17)

is finally obtained:

(
∂

∂t
+ PM

m
· ∂

∂x

)
fw(PM, x) =

∞∑
m=−∞

{
e

2ih̄

∫ 1

−1
dτDF (x, m, τ ) − e

2m

∫ 1

−1
dτ

τ

2
HF (x, m, τ ) · ∂

∂x

+ e

2ih̄

∫ 1

−1
dτHF (x, m, τ ) · PM

m
+ e2

4mih̄

∫ 1

−1

∫ 1

−1
dτdη

τ

2
IF (x, m, τ, η)

}
fw

(
PM−m, x

)
(18)

C. Properties of the equation

The obtained integrodifferential Eq. (18) has three kernels,
DF , HF , and IF , which depend on E and B. Therein lies
the gauge invariance of the equation, as these quantities are
independent of the choice of the gauge.

Equations (10), (11), and (16) are obtained by well-defined
mathematical operations due to the finite domain of the inte-
gration. However, the derivation of Eq. (18) doesn’t guarantee
that the L → ∞/continuous momentum limit of the equa-
tion exists. Indeed, already a constant electric field in Eq. (16)
gives rise to terms

D(m) ∝ (−1)m/(m	p), (19)

which diverge at this limit. The continuous FT raises the
need to restrict the behavior of the EM fields when s → ∞
in order to ensure convergence, e.g., sE and sB must be

absolutely integrable, or alternatively employ the formalism
of generalized functions. The latter is based on the following:
The alternating harmonic series [Eq. (19)] already challenges
the discrete momentum case, because the reordering of the
terms of the series can make it to converge to any number.
Fortunately, these terms are multiplied by the “good” function
fw, and this is what regularizes the sum in Eq. (18). Similarly
to the discrete case, the good behavior of fw at infinity allows
to introduce a factor e−α|s| in the corresponding integrals and
then to consider the limit α → 0 [32]. However, as discussed,
the application of this formalism is not convenient from a
practical point of view [37].

Another feature of Eq. (18) is that the second and forth term
in the curly brackets vanish for homogeneous magnetic fields.
This greatly simplifies the equation, which in the continuous
version can be reformulated in terms of the Lorentz force. The
equation is convenient for numerical implementation; a model
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has been developed and applied to study magnetoresistance
[6]. However, the vanishing terms have not been investigated
with respect to inhomogeneous magnetic fields (i.e., spatial
variations of B). In this case and considering “small” dimen-
sions (e.g., nanometer scales), the linear term in the Taylor
expansion becomes physically relevant.

Equation (18) can be further reformulated: The idea is to
use the Fourier images of E and B in Eqs. (10), (11), and (16)
and to solve the explicit integrals involving the exponents.
This will be done in the next section, where we explore the
equation for the case of a linear magnetic field. The electric
field is also assumed linear, which corresponds to the case of
an applied bias.

III. LINEAR ELECTROMAGNETIC FIELDS

In this case most of the mathematical operation can be
carried out analytically, which greatly simplifies the equation.
The latter is further approximated to reduce the complexity
towards a numerically feasible model. We first neglect one of
the magnetic terms in D and then analyze the continuous limit
of the equation. These steps, including further simplifications,
provide a convenient starting point to derive the corresponding
integral form.

For simplicity, a two-dimensional (2D) evolution is con-
sidered, and an arrow is used to denote vectors—for example,
∂
∂x = −−−−→

( ∂
∂x ,

∂
∂y ). The problem corresponds to an electron state

evolving in the x, y plane under the action of a a magnetic

field B = −−−−−−−→
[0, 0, B(y)] normal to the plane. The field is inho-

mogeneous in the y direction, B(y) = B0 + B1y. The electric
field is E(x, y) = (Exx, Eyy) and is determined by an applied
bias on the boundaries.

A. Finite coherence length

Here, we derive the evolution equation corresponding to
Eq. (17). We first consider the particular expression for T :

T = ∂

∂t
fw(PM, x) − e

2ih̄

∫ L/2

−L/2

ds
L

∞∑
m=−∞

×
∫ 1

−1
dτe− i

h̄ m	ps
[

s · E
(

x + sτ
2

)]
fw(PM−m, x).

(20)

The τ and s integrals can be carried out analytically. The
terms which are linear in τ give zero contribution due to
the symmetric bounds, so that the second term in Eq. (20) is
proportional to∫ L/2

−L/2

ds
L

∞∑
m=−∞

e− i
h̄ m	ps(Exxsx + Eyysy) fw(PM−m, x). (21)

The evaluation of the integrals on sx and sy can be carried out
using integration by parts. The obtained expression for T is
given in Appendix A.

Similarly, the τ integral in the expression for D can be
directly evaluated. This gives rise to terms containing higher-
order powers of the components of s:

D =
∫ L/2

−L/2

ds
L

∞∑
m=−∞

e− i
h̄ m	ps

[
−PM

m
· ∂

∂x
+ eB(y)

ih̄

PM

m
· −−−−−→

(sy,−sx )

− B1

m

e

12

−−−−−−→(
s2

y ,−sysx
) · ∂

∂x
+e2B1B(y)

12mih̄

(
s3

y + s2
xsy

)]
fw(PM−m, x). (22)

This makes the evaluation of the s integral a cumbersome
but straightforward process, based on applying the integra-
tion by parts rule several times. At this stage we neglect
the quadratic magnetic field term in D. For a broad class
of evolution problems on the nanometer scale, the last term
in the square brackets in Eq. (22) is one or more orders
of magnitude less than the rest of the terms (an example is

given in Appendix B) and is thus neglected in the following.
The resulting expression for D, combined with the result in
Eq. (A1), gives rise to the componentlike form of Eq. (17)
given in Appendix C. In what follows, we present a vector
form of the equation, showing how the action of the Lorentz
force, enclosed in the square brackets, is generalized in the
quantum case:

(
∂

∂t
+ PM

m
· ∂

∂x

)
fw(PM, m) =

∞∑
m=−∞

{
− e

[
E(x) + PM

m
× B(y)

]
x

δmy,0
(−1)mx

mx	px

− e

[
E(x) + PM

m
× B(y)

]
y

δmx,0
(−1)my

my	py

− (1 − δm,0)
B1h̄2e

12m

(
(−1)mx

mx	px

(−1)my

my	py

∂

∂x
+ 2(−1)my

(my	py)2

∂

∂y

)

− (1 − δmy,0)
B1h̄2e

6m

(−1)my

(my	py)2

∂

∂y
− δm,0

B1

m

e

12

L2
y

12

∂

∂y
} fw(PM−m, x) (23)
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Equation (18) determined by the Fourier images of the EM
fields reduces to Eq. (23) with concrete kernel terms, depend-
ing directly on the linear EM field components. The numerical
challenges are significantly reduced despite the appearance of
the terms of the alternating harmonic series.

In both the Boltzmann and the standard Wigner equa-
tion the integral kernel multiplies the solution, which allows
to present it as a resolvent (Neumann) series [38] determined
by the consecutive operations of the kernel on the initial
condition. The analysis of the corresponding resolvent series
provides physical insights into the processes governing the
evolution. In contrast, the right-hand side of Eq. (23) contains
spatial derivatives of fw, which complicate such analysis.
Nevertheless, this can be done at the expense of further ap-
proximations of the equation. The idea for how to proceed
comes from the long coherence limit of the equation, which
will be discussed next.

B. Long coherence length limit

As discussed, the choice of a large but finite L does not
affect the behavior of the physical system inside �. We will
see that in this limit the alternating harmonic series terms in
Eq. (23) give rise to further derivatives on the components of
the momentum variable. In the next step, we approximate the
derivatives under the integral operator of the continuous equa-
tion by their finite difference representation. This step allows
to derive a Fredholm integral equation of the second kind,
which provides a resolvent series expansion of the discrete
momentum Wigner function.

The derivation of Eq. (23) involves mathematical opera-
tions which rely on the finite domain of integration. Thus, the
derivation of the long coherence limit must begin from the
main equation D = T , represented by expressions (22), (21),
and (20), as discussed in the following.

1. First magnetic term

We begin with the analysis of the first magnetic term in
Eq. (22). This term converges to the following expression in
the limit L → ∞:

B(y)e

ih̄m

∫ L/2

−L/2

ds
L

∞∑
m=−∞

(PMx sy − PMy sy)e− i
h̄ m	Ps

× fw(PM−m, x) −→ B(y)e

m

(
Px

∂

∂Py
− Py

∂

∂Px

)
fw(P, x).

(24)

Indeed, by recalling that 	P = 2π/L and that Pm = m	P,
the integrand function resembles the Riemann sum of the
good continuous and integrable function fw multiplied by a
bounded function—the exponent. The limit of the sum thus
represents the corresponding regular integral, where PMx =
Mx	Px → Px, PMx = Mx	Px → Px. It is straightforward to
evaluate Eq. (24) using integration by parts. Details are given
in Appendix D.

2. Second magnetic term

The second magnetic term involves more cumbersome cal-
culations, because it contains both higher-order derivatives

and higher-order products of the components of s. This re-
quires consecutive steps of integration by parts together with
the assumption that fw vanishes at infinity along with its
derivatives. Nevertheless, the calculations are straightforward,
giving rise to the following limit:

− B1

m

e

12

∫ Ly/2

−Ly/2

dsy

Ly

×
∞∑

my=−∞
e− i

h̄ my	Pysy s2
y

∂

∂x
fw[Mx	Px, (My − my)	Py, x]

+ B1

m

e

12

∫ L/2

−L/2

ds
L

∞∑
m=−∞

e− i
h̄ m	Pssysx

∂

∂y
fw(PM−m, x)

× −→ B1h̄2

m

e

12

(
∂2

∂P2
y

∂

∂x
− ∂

∂Px

∂

∂Py

∂

∂y

)
fw(Px, Py, x)

3. Electric field term

The electric term in T is evaluated in the same way:

− eExx

ih̄

∫ Lx/2

−Lx/2

dsx

Lx

∞∑
mx=−∞

e− i
h̄ mx	Pxsx sx fw(PM−m, x)

− eEyy

ih̄

∫ Ly/2

−Ly/2

dsy

Ly

∞∑
my=−∞

e− i
h̄ my	Pysy sy fw(PM−m, x)

−→ −eExx
∂ fw(Px, Py, x)

∂Px
− eEyy

∂ fw(Px, Py, x)

∂Py
.

By combining these results we obtain the continuous formu-
lation of the evolution equation for the Wigner function, see
Appendix E. The equation can be reformulated in a physically
very informative way,[

∂

∂t
+ P

m
· ∂

∂x
+ F(P, x) · ∂

∂P

]
fw(P, x)

= B1h̄2

m

e

12

(
∂2

∂P2
y

∂

∂x
− ∂

∂Px

∂

∂Py

∂

∂y

)
fw(P, x), (25)

with the help of the Lorentz force F,

F(P, x) = e

[
Ev(x) + P × B(y)

m

]
.

The left-hand side of Eq. (25) is the Liouville operator of
the Boltzmann equation, which determines the classical elec-
tron evolution. However, on the right-hand side the collision
operator acting on fw is now replaced by an operator depend-
ing on the magnetic field gradient. If the latter becomes zero,
the equation consistently recovers the collisionless Boltz-
mann equation. The right-hand side of the equation is thus
responsible for all quantum effects in the evolution. This
analogy allows to interpret the quantum effects in the evo-
lution as a kind of scattering process. In contrast to the
decoherence-causing stochastic scattering processes unified in
the Boltzmann collision operator, the effect of the quantum-
magnetic operator is not yet explored. Indeed, an alternative
analogy holds and is related to the Wigner potential operator,
which, however, preserves the coherence. Furthermore, the
quadratic magnetic-field-term has been neglected in Eq. (25).
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The above considerations underline the importance of devel-
oping a numerical approach to solve the equation, which is
discussed in the next section.

C. Discrete integral representation

1. Evolution models

The quantum-magnetic operator in Eq. (25) involves third-
order mixed position-momentum derivatives. In contrast,
Eq. (23) contains only position derivatives. Nevertheless, both
model equations originate from the main equation D = T .
The link becomes clear if one applies a finite difference
scheme to the momentum derivatives of the continuous equa-
tion ∂/∂P → 	/	P. With this step we return to the finite
coherence length description. The link with Eq. (23) is estab-
lished by four straightforward steps: (i) P is replaced back
with the discrete momentum PM = M	P. (ii) The force term
in Eq. (25) is transferred to the right. (iii) A finite differ-
ence scheme is adopted to represent the derivatives of the
momentum components as linear combinations of terms of
type fw(PM − Q, x), where Q is a vector with components
(Qx	Px, Qy	Py), Qx,y = ±0, 1, 2. (iv) fw is represented as
a sum fw(PM+Q, x) = ∑

m δm,Q f (PM−m, x). The particular
expression depends on the used difference scheme; however,
in general, in the long coherence length limit the terms of
the harmonic series are replaced by Kronecker delta func-
tions. This simplifies the equation governing the Wigner
function and ensures an intuitive understanding of the evo-
lution, see Sec. III C 2. The numerical properties of the two
models, Eqs. (23) and (25), have yet to be investigated. Equa-
tion (23) is valid for any (finite) coherence length, while

the counterpart obtained from Eq. (25) needs sufficiently
long L to ensure a good approximation of the derivatives
∂/∂P → 	/	P.

2. Integral transform

Here, we further apply a finite difference scheme also to
the spatial derivatives. We use the characteristics of the zero
force Liouville operator

x(t ′) = x −
∫ t

t ′

p(τ )

m
dτ p(t ′) = PM, (26)

which represents a free-streaming Newtonian trajectory. The
trajectory is initialized by the point PM, x, t , while t ′ < t is the
running time. We consider the family of equations obtained
from Eq. (25) (parameterized by t ′) by replacing P, x by
p(t ′), x(t ′) and write explicitly the time dependence of fw.
With the help of Eq. (26), the left-hand side can be written
as a full time derivative:

d

dt ′
{

e− ∫ t
t ′ γ (τ )dτ fw[p(t ′), x(t ′), t ′]

}

= B1h̄2e

12m
e− ∫ t

t ′ γ (τ )dτ

(
	3 fw

	P2
y 	x

− 	3 fw
	Px	Py	y

)

× [p(t ′), x(t ′), t ′]

×
(

−F · 	 fw
	P

+ γ fw

)
[p(t ′), x(t ′), t ′]e− ∫ t

t ′ γ (τ )dτ .

Here, we included the exponent of an auxiliary function γ

[39]. Next, we consider the evolution of an initial condition
f0 specified at time t ′ = 0, and integrate on t ′ in the interval
(0, t ):

fw(PM, x, t ) = e− ∫ t
0 γ (τ )dτ f0[p(0), x(0)] +

∫ t

0
dt ′e− ∫ t

t ′ γ (τ )dτ

(
B1h̄2e

12m

{
	3 fw

	P2
y 	x

[p(t ′), x(t ′), t ′] − 	3 fw
	Px	Py	y

[p(t ′), x(t ′), t ′]
}

−F · 	 fw
	P

[p(t ′), x(t ′), t ′] + γ (t ′) fw[p(t ′), x(t ′), t ′]
)

. (27)

The right-hand side contains linear combinations of the so-
lution fw so that we obtain a Fredholm integral equation of
a second kind. The phase space point PM, x and the time t
initialize the trajectory on the right. Furthermore, the vari-
able t gives the upper limit of the t ′ integral on the right,
so that Eq. (27) can be further specified as a Volterra type
equation. It follows that the solution exist for any evolution
time t . It is represented by the resolvent series having terms
determined by the consecutive applications of the kernel on
the free term e− ∫

γ dτ f0. The initial condition f0 must thus
be an admissible quantum state which contains the whole
information about the physical system and the involved spatial
and momentum/energy characteristics. The terms in Eq. (27)
are real quantities, and so is fw. The function γ provides a
convenient way to analyze the role of the terms in Eq. (27).
Indeed, if γ is taken out of the square brackets, the product
γ e− ∫

γ dτ has the meaning of a probability distribution for
any positive function γ . Then the t ′ integral in Eq. (27) be-
comes the expectation value of the random variable comprised

by the terms enclosed in the square brackets. Equation (27)
has the same formal structure as the integral form of the
classical Boltzmann equation [8]. The analysis of the re-
solvent expansion of the latter associates to the evolution
consecutive processes of free flight and scattering events.
The former proceeds over Newtonian trajectories and is in-
terrupted by scattering events with a probability given by
γ e− ∫

γ dτ , where the classical γ , being the sum of all scattering
rates, is called the outscattering rate. The latter are obtained
with the help of the Fermi golden rule (FGR), giving rise
to scattering events which are local in space, instantaneous,
and only change the electron momentum. The afterscattering
state, which in classical mechanics is a phase-space and time
point, initializes the trajectory for the next free flight and
so on. This picture entirely emulates the physical model of
evolution of the classical electron. These considerations offer
a heuristic understanding of Eq. (27). The trajectories are de-
termined by Eq. (26); γ plays the role of the outscattering rate,
while the terms in the square brackets can be interpreted as
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afterscattering states. For example, fw(PM − Q, x) can be
considered as being obtained by the conservation relations
inherent for the FGR, giving rise to a change in the momen-
tum by Q due to a scattering event with another particle,
e.g., a phonon. Without the spatially nonlocal terms (ac-
counting for the position derivatives) and with all signs
switched to positive, Eq. (27) becomes an ordinary Boltzmann
equation with fictitious but physically admissible scattering
mechanisms. The negative signs and the spatial nonlocality
is a manifest of the quantum character of Eq. (27). Further-
more, the quantum state is a function in phase space and
not a point as in the classical case. However, the function
can be represented by an ensemble of points, where the
evolution is dictated by Eq. (26) and the resolvent series
of Eq. (27). This heuristic picture of the quantum trans-
port process can be used as a base for developing stochastic
particle methods for finding the solution of the quantum
Eq. (27).

IV. DISCUSSION AND CONCLUSIONS

We use the WST of the von Neumann equation to develop
a gauge-invariant quantum mechanics theory in phase space.
The approach relies on the FT of the EM field components.
This imposes conditions about their behavior at infinity or
alternatively invokes the theory of generalized functions. This
elegant division of the mathematical analysis is based on
concepts and limits, which leave little space for a standard
numerical treatment. This can be avoided on the expense of
introducing a discrete momentum phase space. The approach
is motivated by the fact that quantum systems are bounded
and often very small, nanoscale objects. This allows to apply
a FT based on discrete momentum coordinates with spacing
determined by the coherence length. The derived Eq. (18)
describes the evolution in terms of a discrete momentum and,
in principle, can be considered from a numerical point of view.
However, for general EM fields, it contains multidimensional
mathematical operations of summation and integration, being
detrimental for practical application in numerical solution
methods. To continue the analysis and to gain insights about
this gauge-invariant equation, we need to assume a concrete
shape of the EM fields. It is suggested by the fact that for
homogeneous (constant) EM conditions the equation reduces
to its classical counterpart. It is thus relevant to consider the
next term in their Taylor expansion, namely, to consider a
linear spatial dependence. This allows to reduce the numerical
complexity by analytically performing the τ integration. The
derived Eq. (23) can be further simplified to provide a heuris-
tic information about the peculiarities of the gauge-invariant
model. We restrict to physical conditions which ignore the
nonlinear magnetic field dependence term in the kernel. A
further approximation is suggested by the long coherence
length limit of the equation. In this limit the summation
turns into integration; however, the obtained expressions lose
their meaning without a regularization procedure, based on
an exponential damping function. This procedure, formally
used in the theory of distributions, is physically justified by
the fact that � is bounded. The result is the appearance of
momentum derivatives of the Wigner function, Eq. (25). It

can be reformulated as a Fredholm integral equation of a
second kind if the derivatives are approximated by using a
finite difference scheme. Actually, there are two ways for
doing this. The one presented here first approximates the
derivatives and then uses the forceless trajectories in Eq. (26).
In this way, all operators appear on the right-hand side in
Eq. (27) and their power can be compared, as has been done
in Appendix B for the particular physical setup. Alternatively,
the last line terms with the classical force in the continuous
Eq. (E1) can be transferred to the left and one can use ac-
celerated Newtonian trajectories to obtain the integral form.
The approximation of the derivatives results in a Fredholm
integral equation, where the kernel contains only quantum-
related operators. This equation offers numerical convenience
because the action of the classical force operator is accounted
for by the trajectory, being well-suited for numerical solution
methods.

The assumption of a bounded domain � for the evolution
of a Schrödinger state ψ is a sufficient condition for the
limiting procedure shown in Appendix D. It can be weak-
ened by considering infinite domains where the state tends to
zero at infinity. However, this imposes an infinite coherence
length which turns integrals into differential operators. Our
experience with the linear case already shows that the order
of the derivatives rises with the power of s. Consequently,
if further terms of the Taylor expansion of the EM fields
are considered, higher-order derivatives are introduced in the
equation. The order of the differential part of the so-derived
continuous evolution equation depends on the shape of the
EM fields, which precludes a development of a general ap-
proach for finding the solution. The counterpart Eq. (18) has a
well-defined differential part, but now the involved integrals
depend on the EM fields. However, their replacement with
the corresponding Taylor expansion gives rise to well-defined
integrals of polynomials of s and τ . Alternatively, one can use
the corresponding Fourier representation of the EM fields and
apply conventional analytical methods.

We suggested a discrete momentum space formulation of
the gauge-invariant Wigner theory and derived the general
form of the evolution equation. The established link between
the discrete and the continuous momentum equations for the
important case of linear EM fields reveals different aspects
of the gauge-invariant theory. The numerical properties of the
two formulations have yet to be investigated.
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APPENDIX A: ESTIMATION OF THE TERMS IN T

The s integration leads to the appearance of the alternating
harmonic series terms in the expression for T . By using the
components (Mx	px, My	py) of PM, we can rewrite T as
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follows:

T = ∂

∂t
fw(Mx	px, My	py, x)

− eExx
∞∑

mx=−∞
mx 	=0

(−1)mx

mx	px
fw[(Mx − mx )	px, My	py, x]

− eEyy
∞∑

my=−∞
my 	=0

(−1)my

my	py
fw[Mx	px, (My − my)	py, x].

(A1)

APPENDIX B: ESTIMATION OF THE TERMS IN D

We consider the physical conditions in systems such as
found in modern nanoelectronic structures, which represent
a broad class of evolution problems of practical relevance.
They are featured by a direction of electron flow which
crosses region(s) where the transport is dominated by quan-
tum phenomena. For example, let’s consider a typical length
of 20 nm and spatial variations in the order of 	x ≈ 1 nm,
which imposes the spacing between the points of the mesh
discretization. The actual structure dimensions motivate the
choice of a coherence length Lc ≈ 100 nm, which corresponds
to 100 points sufficient to describe the spatial characteris-
tics of the transport process. This automatically determines
the number of linked FT momentum points, as, in this
case, there are 50 momentum values per positive/negative

direction. The typical momentum value PM = M	P is then
represented by the middle point M = 25. The coherence
length then dictates 	P = h̄ · 2π/Lc � 7 × 10−27 kg m/s.
With these values the kinetic term P

m · ∂
∂x in Eq. (22) be-

comes 1014 ÷ 1015 s−1, with m chosen to be the mass of
the free electron. Actually, m−1 factors all of the evalu-
ated terms and thus does not affect their relative magnitude;
however, the units of s−1 provide a heuristic measure about
the time scale of action and the rate with which the cor-
responding operator modifies the solution of the evolution
equation.

The next three terms in Eq. (22) depend on the magnetic
field. We assume that B(y) is defined by B0 � B1Lc � 1T . The
value of s can be considered comparable to the size of the
typical length of 20 nm considered here.

The first magnetic term of Eq. (22) differs from the kinetic
term by the factor I = eB(y)

h̄ · s · 	x and is thus about two
orders of magnitude smaller, having a magnitude of 1011 s−1.
The third magnetic term is related to the second term by the
same factor I . It has a magnitude of 109 s−1 and is therefore
neglected. In this way, only the linear terms with respect to B0

and B1 remain.

APPENDIX C: LINEAR ELECTROMAGNETIC FIELDS
EQUATION

We present the linear field variant of the finite coherence
length Eq. (17). The components of the vectors are given
explicitly:

(
∂

∂t
+ M	P

m
· ∂

∂x

)
fw(PM, m) = −e

[
Exx + B(y)My	Py

m

] ∞∑
mx=−∞

mx 	=0

(−1)mx

mx	Px
fw((Mx − mx )	Px, My	Py, x)

− e

[
Eyy − B(y)Mx	Px

m

] ∞∑
my=−∞

my 	=0

(−1)my

my	Py
fw(Mx	Px, (My − my)	Px, x)

−
∞∑

mx,my=−∞
mx ,my 	=0

B1h̄2e

12m

(
(−1)mx

mx	Px

(−1)my

my	Py

∂

∂x
+ 2(−1)my

(my	Py)2

∂

∂y

)
fw(PM−m, x)

−
∞∑

my=−∞
my 	=0

B1h̄2e

6m

(−1)my

(my	Py)2

∂

∂y
fw(Mx	Px, (My − my)	Py, x) − B1

m

e

12

L2
y

12

∂

∂y
fw(PM, x).

We can reformulate the equation in a vector form by observing
that the vector product of the terms in the square brackets
are the components of the vector e(E(x) + PM

m × B(y)), giving
rise to Eq. (23).

APPENDIX D: LONG COHERENCE LENGTH LIMIT

We consider the first term in the bracket of Eq. (24), which
can be reformulated with the help of Eq. (6). After performing
the sx integration and introducing the constant C = B(y)e

ih̄m , we

obtain

C
∫ Ly/2

−Ly/2

dsy

2π h̄

∞∑
my=−∞

Pxsye− i
h̄ my	Pysy fw

(
Py − my	Py, ·

)2π h̄

Ly
,

where Px = Mx	Px, Py = My	Py, and the dot (·) denotes vari-
ables which are irrelevant for the derivations considered here.
By denoting ξy = my	Py, we observe that the last factor in the
above expression is 	Py, so that in the limit Ly → ∞ the sum
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tends to the integral

I = CPx

∫ ∞

−∞

dsy

2π h̄

∫ ∞

−∞
dξysye− i

h̄ ξysy fw(Py − ξy, ·). (D1)

This is devoid of meaning without a proof of the convergence of the sy integral. However, there is a mighty approach for
regularization of such expressions. It redefines the integral by assigning the function e−α|sy| in the limit I = limα→0 Iα to the
integrand [40]

Iα = CPx

∫ ∞

−∞

dsy

2π h̄
e−α|sy|

∫ ∞

−∞
dξy

h̄

−i

(
∂

∂ξy
e− i

h̄ ξysy

)
fw(Py − ξy, ·)

= h̄CPx

−i

∫ ∞

−∞

dsy

2π h̄
e−α|sy|e− i

h̄ ξysy fw(Py − ξy, ·)
∣∣∣∣
∞

−∞
− h̄CPx

−i2π h̄

∫ ∞

−∞
dξy

∫ ∞

0
dsy

(
e− i

h̄ (ξy−ih̄α)sy + e
i
h̄ (ξy+ih̄α)sy

)∂ fw(Py − ξy, ·)
∂ξy

= − h̄CPx

2π

∫ ∞

−∞
dξy

(
1

ξy + ih̄α
− 1

ξy − ih̄α

)
∂ fw(Py − ξy, ·)

∂ξy
. (D2)

Here, we can apply the Sokhotski formula

lim
α→0

∫ ∞

−∞

φ(x)

x ± iε
= ∓iπφ(0) + lim

α→0

(∫ −α

−∞
+

∫ ∞

α

)
φ(x)

x
,

(D3)
which can be symbolically written in terms of a delta function
δ and a Cauchy principal value V P as

lim
α→0

1

x ± iε
= ∓iπδ(x) + V P

(
1

x

)
. (D4)

In the formal theory of distributions φ is assumed to belong
to the class D of infinitely differentiable functions with a
compact support. For our case it is sufficient that the first mo-
mentum derivative of fw is continuous with a compact support
function. Therefore, the limit of the bracket in Eq. (D2) gives
−i2πδ(ξy), and thus

I = B(y)e

m
Px

∂ fw(Py, ·)
∂Py

,

and finally

B(y)e

ih̄m

∫ Ly/2

−Ly/2

dsy

2π h̄

∞∑
my=−∞

Pxsye− i
h̄ my	Pysy fw

× (Py − my	Py, ·)2π h̄

Ly
−→ B(y)e

m
Px

∂ fw(Py, ·)
∂Py

. (D5)

In the same way, we evaluate the second term:

− B(y)e

ih̄m

∫ Lx/2

−Lx/2

dsx

2π h̄

∞∑
mx=−∞

Pysxe− i
h̄ mx	Pxsx fw(Px − mx	Px, ·)

× 2π h̄

Lx
−→ −B(y)e

m
Py

∂ fw(Px, ·)
∂Px

. (D6)

APPENDIX E: CONTINUOUS LIMIT OF THE EVOLUTION
EQUATION

By combining the evaluated terms, we conclude that the
long coherence length limit of the approximated equation T =
D gives rise to the following continuous formulation of the
evolution equation for the linear EM Wigner function:(

∂

∂t
+ P

m
· ∂

∂x

)
fw(P, x)

=
[

B(y)e

m

(
Px

∂

∂Py
− Py

∂

∂Px

)

+ B1h̄2

m

e

12

(
∂2

∂P2
y

∂

∂x
− ∂

∂Px

∂

∂Py

∂

∂y

)

− eExx
∂

∂Px
− eEyy

∂

∂Py

]
fw(P, x). (E1)

This result can be further processed to obtain a form which
enlightens the involved physics: The terms in the second
and forth row can be unified to give the Lorentz force
F(P, x) = e[E(x) + P×B(y)

m ], where we recall that the vectors
in the product are defined as P = (Px, Py, 0), B = [0, 0, B(y)].
Then the term with F can be transferred to the left to give
Eq. (25).

[1] B. Novakovic, R. Akis, and I. Knezevic, Phys. Rev. B 84,
195419 (2011).

[2] F. Duque-Gomez and J. E. Sipe, Phys. Rev. A 85, 053412
(2012).

[3] M. Nedjalkov, J. Weinbub, P. Ellinghaus, and S. Selberherr, J.
Comput. Electron. 14, 888 (2015).

[4] G. J. Iafrate, V. N. Sokolov, and J. B. Krieger, Phys. Rev. B 96,
144303 (2017).

052213-10

https://doi.org/10.1103/PhysRevB.84.195419
https://doi.org/10.1103/PhysRevA.85.053412
https://doi.org/10.1007/s10825-015-0732-y
https://doi.org/10.1103/PhysRevB.96.144303


GAUGE-INVARIANT SEMIDISCRETE WIGNER THEORY PHYSICAL REVIEW A 106, 052213 (2022)

[5] L. Bellentani, P. Bordone, X. Oriols, and A. Bertoni, Phys. Rev.
B 99, 245415 (2019).

[6] M. Nedjalkov, J. Weinbub, M. Ballicchia, S. Selberherr, I.
Dimov, and D. K. Ferry, Phys. Rev. B 99, 014423 (2019).

[7] D. K. Ferry, Transport in Semiconductor Mesoscopic Devices,
2nd ed. (IOP Publishing, Bristol, UK, 2020).

[8] M. Nedjalkov, I. Dimov, and S. Selberherr, Stochastic Ap-
proaches to Electron Transport in Micro- and Nanostructures
(Birkhäuser, Cham, Switzerland, 2021).

[9] G. J. Iafrate and V. N. Sokolov, Phys. Rev. A 104, 063113
(2021).

[10] Fatima, T. Inerbaev, W. Xia, and D. S. Kilin, J. Phys. Chem.
Lett. 12, 4749 (2021).

[11] A. Cepellotti and B. Kozinsky, Mater. Today Phys. 19, 100412
(2021).

[12] D. K. Ferry, J. Weinbub, M. Nedjalkov, and S. Selberherr,
Semicond. Sci. Technol. 37, 043001 (2022).

[13] G. J. Iafrate and V. N. Sokolov, Phys. Rev. B 105, 224308
(2022).

[14] J. Weinbub and R. Kosik, J. Phys.: Condens. Matter 34, 163001
(2022).

[15] E. Wigner, Phys. Rev. 40, 749 (1932).
[16] D. K. Ferry and M. Nedjalkov, The Wigner Function in Science

and Technology (IOP Publishing, Bristol, UK, 2018).
[17] J. Weinbub and D. K. Ferry, Appl. Phys. Rev. 5, 041104 (2018).
[18] Historically the Wigner equation has been derived from the

Schrödinger equation or, for mixed states, from the von Neu-
mann equation for the density matrix. It is interesting to note
that the proof that the Wigner formalism is an autonomous
theory came two decades later: The works of Moyal and
Groenewold established the formalism as a self-contained for-
mulation of quantum mechanics [41,42]. In this way, the
Wigner formalism is fully equivalent to operator mechanics
which can be derived on top of the formalism [43]. The involved
Moyal bracket and star product, however, offer a high level
of abstraction, so that the intuitive historical approach, which
works in terms of center-of-mass and Fourier transforms (FTs),
called Weyl transform, remains widespread.

[19] M. Nedjalkov, D. Querlioz, P. Dollfus, and H. Kosina,
Wigner function approach, in Nano-Electronic Devices: Semi-
classical and Quantum Transport Modeling, edited by D.
Vasileska and S. M. Goodnick (Springer, New York, 2011),
pp. 289–358.

[20] D. Vasak, M. Gyulassy, and H.-T. Elze, Ann. Phys. 173, 462
(1987).

[21] O. T. Serimaa, J. Javanainen, and S. Varró, Phys. Rev. A 33,
2913 (1986).

[22] H. Haug and A.-P. Jauho, Gauge invariance, in Quantum Kinet-
ics in Transport and Optics of Semiconductors (Springer, Berlin,
2008) pp. 85–92.

[23] M. Levanda and V. Fleurov, Ann. Phys. 292, 199 (2001).
[24] R. Stratonovich, Dokl. Akad. Nauk SSSR 109, 72 (1956).
[25] R. Kubo, J. Phys. Soc. Jpn. 19, 2127 (1964).
[26] J. Javanainen, S. Varró, and O. T. Serimaa, Phys. Rev. A 35,

2791 (1987).
[27] T. B. Materdey and C. E. Seyler, Int. J. Mod. Phys. B 17, 4555

(2003).

[28] T. B. Materdey and C. E. Seyler, Int. J. Mod. Phys. B 17, 4683
(2003).

[29] This equation is already numerically feasible, e.g., the effect of
the magnetic field on typical quantum processes has been ana-
lyzed [44]. Furthermore, if a constant electric field is assumed,
the equation reduces to the well-known ballistic Boltzmann
equation with the Lorentz force driving the electron distribution
over Newtonian trajectories.

[30] This can be seen by a direct application of the Cauchy-Schwarz
inequality first to a pure state, ρ = ψψ∗, and then generalized
for mixed states.

[31] V. S. Vladimirov, Equations of Mathematical Physics (Mir Pub-
lishers, Moscow, 1984) p. 464.

[32] M. Nedjalkov, I. Dimov, P. Bordone, R. Brunetti, and C.
Jacoboni, Math. Comput. Modell. 25, 33 (1997).

[33] R. Kosik, J. Cervenka, and H. Kosina, J. Comput. Electron. 20,
2052 (2021).

[34] The sigma function is the inverse FT of the Wigner function in
the nonspatial coordinate. The resulting equation is mathemati-
cally close to the Liouville-von Neumann equation but inherits
a physical interpretation from the Wigner function formalism
[33,45].

[35] Indeed, the appearance of a finite density at infinity
indicates state components with infinite speed/kinetic
energies.

[36] The coherence length L of the FT must be greater than �

because the function (recovered by fn) becomes periodic with
L: Strictly speaking, if we wish to guarantee that the function
is zero everywhere outside �, then L should become infinity.
However, we are interested in the domain �, where the function
coincides with the state.

[37] The use of a bounded domain of integration has also a physical
motivation. It reflects the fact that the density matrix becomes
zero outside some bounds � � L. Namely, at a given evolution
time f (s) = 0 outside a given �, a choice of a larger L would
change the involved frequencies, but not the limits of integration
for the coefficients fm in Eq. (5).

[38] I. T. Dimov, Monte Carlo Methods for Applied Scientists (World
Scientific, Singapore, 2007).

[39] The quantity γ has to be determined based on numerical con-
siderations. It is introduced in analogy with the treatment of
the Boltzmann and standard Wigner equations. In the former,
γ refers to the total outscattering rate, and with respect to the
latter, it refers to the interaction rate with the Wigner potential.
These choices for γ provide a feasible and physically transpar-
ent numerical model.

[40] In our case this procedure inserts the information that the spatial
support of the physical system is finite.

[41] J. E. Moyal, Math. Proc. Camb. Phil. Soc. 45, 99 (1949).
[42] H. J. Groenewold, Physica 12, 405 (1946).
[43] N. C. Dias and J. N. Prata, Ann. Phys. 313, 110 (2004).
[44] M. Ballicchia, M. Nedjalkov, and J. Weinbub, in Proceedings

of IEEE 20th International Conference on Nanotechnology
(IEEE-NANO) (IEEE, 2020), pp. 73–76, https://doi.org/10.
1109/NANO47656.2020.9183565.

[45] L. Schulz and D. Schulz, IEEE Trans. Nanotechnol. 18, 830
(2019).

052213-11

https://doi.org/10.1103/PhysRevB.99.245415
https://doi.org/10.1103/PhysRevB.99.014423
https://doi.org/10.1103/PhysRevA.104.063113
https://doi.org/10.1021/acs.jpclett.1c01020
https://doi.org/10.1016/j.mtphys.2021.100412
https://doi.org/10.1088/1361-6641/ac4405
https://doi.org/10.1103/PhysRevB.105.224308
https://doi.org/10.1088/1361-648X/ac49c6
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1063/1.5046663
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1103/PhysRevA.33.2913
https://doi.org/10.1006/aphy.2001.6170
https://doi.org/10.1143/JPSJ.19.2127
https://doi.org/10.1103/PhysRevA.35.2791
https://doi.org/10.1142/S0217979203022957
https://doi.org/10.1142/S021797920302288X
https://doi.org/10.1016/S0895-7177(97)00093-9
https://doi.org/10.1007/s10825-021-01800-w
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1016/S0031-8914(46)80059-4
https://doi.org/10.1016/j.aop.2004.03.008
https://doi.org/10.1109/NANO47656.2020.9183565
https://doi.org/10.1109/TNANO.2019.2933307

