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We develop and test a method that integrates many-electron weak-field asymptotic theory (ME-WFAT)
[O. I. Tolstikhin, L. B. Madsen, and T. Morishita, Phys. Rev. A 89, 013421 (2014)] in the integral representation
(IR) into the density-functional-theory (DFT) framework. In particular, we present modifications of the integral
formula in the IR ME-WFAT to incorporate the potential terms unique to DFT. By solving an adiabatic
rate equation for the angle-resolved ionization yield in our DFT-based ME-WFAT method, we show that the
results are in excellent agreement with those of real-time time-dependent density-functional-theory (TDDFT)
simulations for NO, OCS, CH3Br, and CH3Cl interacting with one- and two-color laser fields with a fundamental
wavelength of 800 nm. This agreement is significant because the WFAT calculations take only a small fraction
of the time of full TDDFT calculations. These results suggest that in the wavelength region commonly used in
strong-field experiments (800 nm and longer), our DFT-based WFAT treatment can be used to rapidly screen for
the ionization properties of a large number of molecules as a function of alignment or orientation between the
molecule and the strong field.
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I. INTRODUCTION

Tunnel ionization, wherein an electron driven by an exter-
nal field moves through the barrier formed by the combination
of the molecular and external field potentials, is the ionization
process that forms the initial step in many strong-field pro-
cesses. The study of a range of important physical processes
in ultrafast science, such as orientation-dependent strong-field
ionization (SFI), high-harmonic generation [1,2], the mea-
surement of time delays in tunnel ionization via the attoclock
[3], light-induced electron diffraction [4,5], and ionization-
based probes of charge migration [6–10], is expected to
benefit from an efficient and accurate theoretical method of
calculating SFI in a variety of molecules. In light of this
overarching influence of tunnel ionization, it is therefore of
paramount importance to have theoretical models that can
reliably treat this ionization mechanism.

Highly accurate SFI yields can be obtained by propagat-
ing time-dependent wave functions or densities, e.g., using
time-dependent ab initio methods [11–15], and then recording
the amount of density that reaches a predetermined distance
far enough from the nuclei to be safely counted as ionized.
However, the necessity to employ a basis set that spans
distances far from the nuclei means that simulation times
for such calculations may be prohibitively long. There have
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been a number of works focusing on obtaining the ionization
probability analytically, i.e., without involving wave-function
evolution, such as the Ammosov-Delone-Krainov formula-
tion [16], its molecular version [17], the Keldysh-Faisal-Reiss
model [18,19], and the weak-field asymptotic theory (WFAT)
[20–22], which may be considered as one of the most success-
ful of this kind of approach (see Refs. [23–25] for comparison
with experiments).

Among a number of different types of WFAT developed
over the last decade [20–22,26], many-electron WFAT (ME-
WFAT) [26] presents several attractive features including
that it properly treats the dipole moment during tunneling
ionization, uses the actual ionization potential (IP, the dif-
ference between neutral and cation eigenvalues) instead of
an orbital energy, and is capable of simulating multielectron
effects. So far, the ME-WFAT method has been developed
in the so-called tail representation (TR) [26], where the wave
functions need to have accurate asymptotic behavior. This re-
quirement limits the applicability of ME-WFAT to atoms and
diatomic molecules because accurate methods of obtaining
orbitals having the correct asymptotic are only available for
the above types of molecule [27]. An equivalent formulation
in the so-called integral representation (IR) [28] removes the
above requirement on having the accurate asymptotic, which
has also been developed using the general Hartree-Fock (HF)
framework [29]. The reformulation of ME-WFAT within the
integral representation makes it capable of further treating
tunneling ionization in any molecular geometry. This is pre-
sented in Ref. [30] within the HF framework, which can
be useful for extending IR ME-WFAT to multiconfiguration
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wave functions. However, given that multielectron effects
are in general treated very efficiently for a wider class of
molecules using density-functional theory (DFT) than multi-
configuration methods, it would be highly desirable to also be
able to use DFT wave functions in ME-WFAT calculations.

In this paper, we extend IR ME-WFAT to the framework
of DFT wave functions and demonstrate its ability to repro-
duce angle-dependent ionization yields obtained by real-time
time-dependent density-functional theory (RT-TDDFT). The
ME-WFAT integral formulas derived using HF orbitals in
Ref. [30] are, however, not directly applicable in conjunction
with DFT Kohn-Sham orbitals. This is because the func-
tional parametrization in DFT cannot be obtained by starting
the analysis from the exact all-electron Hamiltonian without
some manual intervention during the derivation. Therefore, in
this paper, we will modify the ME-WFAT integral formulas
to accommodate the DFT functionals. We will present the
ionization yield calculated using the resulting integral for-
mulas for NO, OCS, CH3Br, and CH3Cl interacting with
two-color and one-color lasers with a fundamental wavelength
of 800 nm, and compare them with RT-TDDFT. Here, the
time dependence in our WFAT calculations is emulated by
adiabatically solving the exponential rate equation for the
yield.

We also compare our ME-WFAT results to the one-
electron WFAT (OE-WFAT) [20–22,28,31,32]. ME-WFAT
differs from OE-WFAT in three main ways: (i) the dipole
moment, (ii) the ionization potential, and (iii) the ionizing
orbital. While in ME-WFAT one uses the Dyson orbital, in
OE-WFAT, the ionizing orbital must be chosen manually
from among the occupied molecular orbitals. The ionization
potential and dipole moment in OE-WFAT are then taken
as orbital energy and dipole moment of the chosen ionizing
orbital. The ME-WFAT counterparts of these quantities are
taken as the difference between the corresponding neutral and
cation values (see Sec. II B). This shows that in OE-WFAT,
any information about the cation is absent. Not surprisingly,
we will show that ME-WFAT is more accurate than OE-
WFAT in many cases presented here. We note that the three
methods compared in this paper (ME-WFAT, OE-WFAT, and
RT-TDDFT) are only valid for calculations of up to single
electron ionization.

We have implemented IR OE-WFAT and ME-WFAT in
a development version of the NWCHEM quantum chemistry
package [33], which allows for the use of a wide range
of basis sets and DFT exchange-correlation (XC) functions.
The code is parallelized to handle the computation of some
three-dimensional integrals via numerical quadrature, making
the simulations scalable to large molecules. Our WFAT im-
plementation requires few additional specifications beyond a
standard DFT input, namely, the orbitals of the neutral and
cation (for ME-WFAT), the field parameters, and the range of
orientation angles. We plan to make our WFAT code publicly
accessible by checking into the main branch of the NWCHEM

online repository.
The organization of this paper is the following. In Sec. II A,

we will provide a brief overview of the ionization calculation
using RT-TDDFT. In Sec. II B, the formulation of ME-WFAT
using HF orbitals described in Ref. [30] is summarized. The
method proposed here, namely, the ME-WFAT using Kohn-

Sham orbitals, is outlined in Sec. II C, where the modifications
needed to make the HF integral formula in Sec. II B applica-
ble to Kohn-Sham orbitals are presented. Section II D briefly
summarizes OE-WFAT by contrasting it with ME-WFAT in
several important aspects. The results are presented in Sec. III
where we compare the angle-dependent yields obtained by
OE-WFAT, ME-WFAT, and full RT-TDDFT simulations. Fi-
nally, future potential improvements of the present method are
suggested in Sec. IV.

II. OVERVIEW OF THE METHODS

A. RT-TDDFT with CAP

Computationally, SFI is a challenging task because one
needs to accurately describe many-electron correlation effects
while providing a sufficient representation of the continuum
electrons [34]. In this regard, RT-TDDFT provides a bal-
ance between the accuracy and speed of the simulation when
the system size increases. In a time-dependent Kohn-Sham
(TDKS) framework, RT-TDDFT describes electron dynamics
in molecular systems by integrating the TDKS equations:

i
∂ψ (r, t )

∂t
=

(
−1

2
∇2 + V0(r, t ) + VH (ρ(r, t ))

+ VXC(ρ(r, t )) − D · E(t )

)
ψ (r, t ) (1)

where − 1
2∇2 is the kinetic-energy operator for the electrons,

V0 contains the nuclear-electron attraction and the internuclear
repulsion, and D · E(t ) is the interaction of the transition
dipole matrix with the applied external field. Unless otherwise
mentioned, we use atomic units throughout this paper. In the
adiabatic approximation, the exchange-correlation potential
VXC and the electron mean-field repulsion VH depend only on
the instantaneous density denoted by ρ(r, t ) [35]. Typically,
RT-TDDFT simulations start from a ground-state density ma-
trix converged with DFT, but a superposition of nonstationary
density matrices can also be used to emulate a sudden excita-
tion [9,10,36,37].

In this paper, we use range-separated hybrid functionals
to reduce the self-interaction (SI) error and to get the correct
long-range Coulomb potential, which is crucial for ionization
calculations [38,39]. Additionally, these functionals can be
tuned by varying both the global HF admixture constant αRS

and the range-separation parameter γRS to fulfill Koopman’s
theorem, i.e., the energy of the highest occupied molecular
orbital (HOMO) is equal to the ionization potential of the
molecule [38]. For all calculations presented here, we tuned
both LC-PBE* and LC-PBE0* functionals [40], which con-
tain pure PBE or PBE0 in the short range and pure HF in
the long range. Such a range-based separation of function-
als produces the correct long-range behavior of the effective
potential, since the HF potential is asymptotically the correct
−1/r.

The way ionization is treated in our implementation of
RT-TDDFT involves two main components: (i) a complex
absorbing potential (CAP) placed at some distance from
the molecule and (ii) an auxiliary absorbing basis that aug-
ments the standard Gaussian one. The CAP distance from
the molecule is system dependent and is chosen such that
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TABLE I. A summary of some relevant parameters for the simulations presented in this paper. For the functional, hybrid parameters αRS

and βRS (βRS = 1 − αRS) are dimensionless whereas γRS, the range separation parameter, is in units of a.u.−1.

Molecule Functional (αRS, γRS) Basis seta CAP (Å)b Simulation timec

NO LC-PBE* (0.14, 0.55) N,O : aug-cc-pVTZ + medium 6.5 9.9 h/0.3 m/1.1 m, 192 cores
OCS LC-PBE0* (0.0, 0.409) O,C,S : aug-cc-pVTZ + medium 6.0 28.3 h/3.4 m/4.5 m, 144 cores

(N.A./3.4 m/3.1 m, 144 cores)
CH3Br LC-PBE0* (0.7,0.3) H,Br : aug-cc-pVTZ 7.0 23.0 h/41.7 m/1.4 h, 144 cores

C : aug-cc-pVTZ + large (N.A./21.1 m/41.3 m, 288 cores)
CH3Cl LC-PBE0* (0.6, 0.15) H,Cl : aug-cc-pVTZ 7.0 (N.A./6.5 m/11.5 m, 144 cores)

C : aug-cc-pVTZ + large

a“Medium” and “large” refer to the medium and large Schlegel absorbing basis, respectively. The corresponding basis set used by WFAT
simulations would be the one where the Schlegel absorbing basis is not included.
bThe distance of the absorbing boundary from the origin.
cThe times are presented in tD/tO/tM format denoting the simulation times for RT-TDDFT, OE-WFAT, and ME-WFAT, respectively. “The
suffixes “h” and “m” mean hours and minutes, respectively.” The entries enclosed in parentheses are for simulations with a one-color laser
(Sec. III E). The ones not inside parentheses are for two-color laser simulations. All simulation times are for one Euler angle pair.

the ionization rate or yield is insensitive to the CAP po-
sition (see Ref. [38] for more details). As for the basis,
we use the “medium” and “large” absorbing bases proposed
in Ref. [41] augmented to the standard aug-cc-pVTZ basis.
This auxiliary basis [41] is what allows the density to reach
the CAP as a result of ionization. Although these absorb-
ing bases contain highly diffuse Gaussians, the local nature
of Gaussian functions demands the CAP to be placed not
too far from the molecule. This causes spurious charge re-
moval even when there is no external field. In all TDDFT
simulations performed in this paper, this error has been cor-
rected for following the procedure outlined in Ref. [38].
Unfortunately, these large basis sets have many high angular
momentum and diffuse functions. Even for moderately sized
molecules, this results in both linear dependencies and sig-
nificant increases in computational time when evaluating the
two-electron integrals. These drawbacks are a strong motiva-
tion for finding an efficient alternative approach to TDDFT
when possible. The details of tuned functional parameters,
CAP positions, and basis sets used in this paper are given in
Table I.

B. ME-WFAT using HF orbitals

A full derivation of the angle-dependent ionization yield
within the framework of IR ME-WFAT when the wave func-
tions are obtained through the HF method has been given
in Ref. [30]. Before presenting the modification required to
use these IR ME-WFAT formulas in conjunction with DFT
wave functions, we will present a brief overview of WFAT
with HF wave functions. Since the HF method has a similar
structure to DFT, knowledge of the form of the IR ME-WFAT
integral formula for the HF case can help elucidate the reasons
why the corresponding formula for DFT requires additional
treatment.

The derivation of ME-WFAT in either picture starts from
the exact N-electron Schrödinger equation in the presence of
a static electric field F = Fẑ, that is,

H (N )�n(XN ) = E (N )
n �n(XN ) (2)

where

H (N ) = − 1

2

N∑
i=1

∇2
i −

N∑
i=1

NA∑
I=1

ZI

|ri − CI |

+
N−1∑
i=1

N∑
j=i+1

1

|ri − r j | +
N∑

i=1

Fzi,

C1, C2, . . . , CNA are the nuclear coordinates and
Z1, Z2, . . . , ZNA are their charges, and we have used the
following notation for the coordinates:

XN ≡ {x1, . . . , xN−1, x},
RN ≡ {r1, . . . , rN−1, r},

xi ≡ (ri, si ),

x ≡ xN .

Here, ri ≡ (ri, θi, ϕi ) in spherical coordinates and si is the
spin coordinate of the ith electron. From this point on, we
will assume that the ionized electron has a σ spin projection
(σ = a, b with a = 1/2 and b = −1/2), and there are Nσ oc-
cupied orbitals (Kohn-Sham orbitals in the case of DFT) in the
neutral. We will also denote {ψa

1 , . . . , ψa
Na

, ψb
1 , . . . , ψb

Nb
} and

{υa
1 , . . . , υa

N ′
a
, υb

1 , . . . , υ
b
N ′

b
} to be the occupied spin orbitals in

the neutral and cation, respectively.
The underlying idea of ME-WFAT is that in the asymptotic

region of one of the electrons, the solution of Eq. (2) takes the
following ansatz:

�n(XN )|η→∞=
∑

n′
�+

n′ (XN−1)
1√
η

∑
νσ

f n′n
νσ Ln′n

ν (η, ξ, ϕ)χσ (s),

(3)

where |�+
n′ 〉 is the solution of the Schrödinger equation anal-

ogous to Eq. (2) but defined in the (N − 1)-electron Hilbert
space. |χσ 〉 is the spin state having z projection σ , and
lastly Ln′n

ν is the one-electron state corresponding to the
parabolic channel of ν ≡ (nξ , m) with nξ = 0, 1, . . . and m =
0,±1, . . .. The functional form of Ln′n

ν [η = r + z, ξ = r −
z, ϕ = arctan(y/x)] may be deduced from Ref. [30].

The expansion coefficient f n′n
νσ in Eq. (3) describes the

amplitude of the channel connecting a neutral eigenstate |�n〉
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and another state describing the situation where the N − 1
electrons around the nuclei occupy a cation eigenstate |�+

n′ 〉,
whereas the remaining electron is in a spin-parabolic quantum
state |Ln′n

ν χσ 〉, and is given by

f n′n
νσ ≈ f (0)

νσ (IP, F, β, γ )

=
√

κ

2

(
4κ

2

F

)β (0)
ν /κ

gνσ (β, γ )

× exp

(
i
π

4
+ i

πβ (0)
ν

κ
− μzκ − κ

3

3F

)
, (4)

where (β, γ ) are the two Euler angles characterizing the
orientation of the molecule relative to the field (a more de-
tailed definition of the orientation angles will be given later
in Sec. III). Here, the angle β is not to be confused with the
spin-down projection defined earlier. Throughout this paper,
we will make the distinction explicit when the context is am-
biguous. Also, in Eq. (4), IP = E (N ) − E (N−1) is the ionization
potential, κ = √

2|IP|, μz is the z component in the laboratory

frame of the vector μ(N ) − μ(N−1), μ(N ) = −〈�| ∑N
i=1 r̂i|�〉

is the electronic dipole moments of the neutral, μ(N−1) =
−〈�+| ∑N−1

i=1 r̂i|�+〉 is the electronic dipole moment of the
cation, β (0)

ν = Zc − κ(nξ + |m|+1
2 ) is the adiabatic eigenvalue

[20], and Zc = ∑NA
I=1 ZI − N + 1 is the cation total charge

[30]. The approximation in the first line of Eq. (4) corresponds
to using the leading-order approximation (LOA) of WFAT.
Because of this approximation, all ground-state properties
such as wave functions, energies, and dipole moments in the
following are associated to the unperturbed systems (F = 0).

From this point on, we will omit the eigenstate indices n
and n′ since HF and DFT produce just one wave function.
Here, we follow the authors of Ref. [29] who formulate the
asymptotic coefficient, gνσ , as

gνσ (β, γ ) =
∞∑

l=|m|

l∑
m′=−l

Iνlm′σ dl
mm′ (β ) e−im′γ , (5)

where dl
mm′ (β ) is the Wigner function and

Iνlm′σ = 〈
�+; �ν

lm′χσ |V̂1e + V̂2e|�
〉
, (6)

V2e(RN ) = −
N−1∑
i=1

1

|r − ri| , (7)

V1e(r) =
NA∑

I=1

ZI

|r − CI | − Zc

r
. (8)

Iνlm′σ is what we will refer to as the ME-WFAT integral.
The function �ν

lm′ (r) is the solution of the hydrogenlike
Schrödinger equation when the energy is not any of the hy-
drogenlike eigenvalues [29], and is explicitly given by

�ν
lm′ (r) = ωνl (κr)l e−κrM(l + 1 − Z/κ, 2l + 2, 2κr)

× Ylm′ (θ, ϕ),

where Ylm(θ, ϕ) is the spherical harmonics, M(a, b, x) is the
confluent hypergeometric function [42], and ωνl is a normal-
ization factor which may be found in Ref. [29].

The one- and two-electron parts of the ME-WFAT integral
of Eq. (6) have been derived in Ref. [30] and are given by〈

�+; �ν
lm′χσ |V̂1e|�

〉 = δM ′
s+mσ ,Ms

〈
�ν

lm′ |V̂1e|ψσ
D

〉
, (9a)

〈
�+; �ν

lm′χσ |V̂2e|�
〉 = δM ′

s+mσ ,Ms√
N

(−1)N+δσbNa

×
{

Nσ −1∑
k′=1

Nσ∑
j=2

j−1∑
k=1

(〈
�ν

lm′
∣∣Ĵσ

k′k

∣∣ψσ
j

〉

−〈
�ν

lm′
∣∣K̂σ

k′k

∣∣ψσ
j

〉) + 〈
�ν

lm′ |V̂σ |ψ̃σ
〉}

(9b)

where

Jσ
k′k (r) = (−1) j+k+k′RQ(k, j, k′)V σ

k′k (r), (10)〈
r
∣∣K̂σ

k′k

∣∣ψσ
j

〉 = (−1) j+k+k′RQ(k, j, k′)V σ
k′ j (r)ψσ

k (r), (11)

Vσ (r) =
Np(σ )∑
k′=1

Np(σ )∑
k=1

(−1)k′+kS (k′, k)V p(σ )
k′k (r), (12)

V σ
k′i(r) =

∫
d3r′(υσ

k′ (r′)
)∗ 1

|r − r′| ψσ
i (r′), (13)

p(σ ) =
{

a , σ = b
b , σ = a

. (14)

|ψσ
D〉 is the Dyson orbital corresponding to the removal of

an electron from the spin-σ channel of the neutral, |ψ̃σ 〉 is
a vector related to |ψσ

D〉, Q(k, j, k′) is the determinant of the
overlap matrix in the ionized spin channel between the neutral
after removing {ψσ

k , ψσ
j } and the cation after removing {υσ

k′ },
and R is the determinant of the overlap matrix in the unionized
spin channel between the neutral and cation. For more details,
we refer the readers to Appendix B. Note that, with Eq. (14),
one has Nσ + Np(σ ) = N .

As has been shown in Ref. [30], Eq. (9) will reduce to
the corresponding equations for OE-WFAT when the cation
wave function is formed out of N − 1 orbitals occupied in
the neutral, which is a required property for the formulation
so obtained to be mathematically correct. The total angle-
dependent ionization rate connecting single-determinantal
neutral and cation wave functions is then given by

�(F, β, γ ) ≈
∑
σν

N
∣∣ f (0)

νσ (IP, F, β, γ )
∣∣2

(15)

accounting for all probabilities for the ionized electron to
reside in all possible parabolic states [26].

C. ME-WFAT using Kohn-Sham orbitals

The reason we need a separate formulation of IR ME-
WFAT when the orbitals are of the Kohn-Sham DFT type
lies in Eq. (6), which only applies to ME-WFAT used in con-
junction with Hartree-Fock wave functions. In what follows,
we will outline the reason for this and propose some choices
that address the freedom that necessarily occurs when using a
parametrized method such as DFT.
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First, note that the operator part of the bracket in Eq. (6)
lacks the local XC potential term. Second, upon inspection of
the two-electron term in Eq. (9b), it can be seen that it also
does not have the SI term that makes it possible for the exact
exchange in ground-state hybrid DFT calculations to depend
on the electronic density. Lastly, in hybrid DFT, one needs to
multiply the exact exchange with a positive scalar less than
unity. This necessitates a suitable identification of the exact
exchange part in the right-hand side of Eq. (9b). With these
three observations in mind, one may see that a brute force
application of Eq. (6) with DFT orbitals will result in a scheme
that has little correspondence with TDDFT. Along with the
fact that Koopman’s theorem for the ionization potential is not
satisfied by approximate DFT functionals (except for tuned
range-separated functionals), the resulting scheme also does
not reproduce OE-WFAT under the unrelaxed cation orbital
situation mentioned shortly after Eq. (9b).

We would like to note that none of the above modifications
are needed in OE-WFAT because the derivation of this method
can be initiated from the one-electron Kohn-Sham mean-field
equation; hence, any DFT-native terms such as the XC po-
tential and the SI term, which are by definition one-particle
functions, will automatically be carried over to the OE-
WFAT integral formula. This does not apply to ME-WFAT
since this method strictly starts off from the exact N-electron
Hamiltonian.

To begin the analysis, we impose that the ME-WFAT inte-
gral formula for use with DFT orbitals should read

IM-DFT
νlm′σ = 〈

�+; �ν
lm′χσ

∣∣V̂1e + V̂ M-DFT
2e + V̂SI + V̂XC

∣∣�〉
, (16)

where � and �+ are the ground-state DFT wave functions of
the neutral and cation, respectively. Given the freedom related
to the explicit expressions of these missing parts, we choose to
use the unrelaxed cation situation mentioned above as a guide
for the construction of the following formulas related to the
V̂ M-DFT

2e , V̂SI, and V̂XC contributions.

1. Local exchange-correlation term

The local exchange-correlation potential lies at the heart
of practically every DFT calculation, and is a function of
electronic density. Here, within the framework of IR ME-
WFAT, we treat this potential as a one-electron potential like
the nuclear attraction potential and choose the neutral density
(over, for instance, the equally plausible cation density) as the
argument of the potential, thus〈

�+; �ν
lm′χσ |V̂XC|�〉 = δM ′

s+mσ ,Ms

〈
�ν

lm′ |V̂XC(ρN )|ψσ
D

〉
. (17)

This ensures that this term reduces to the corresponding term
in OE-WFAT.

2. Self-interaction term

SI is a feature of approximate DFT functionals and
describes a situation where the electrons are repelling them-
selves. The inclusion of SI, which is largely an unphysical
mathematical byproduct of the DFT formalism, in our DFT-
based ME-WFAT integral is just to facilitate a comparison
with TDDFT in which the SI from the exact exchange term is
present. In our implementation of the method in the NWCHEM

package, the inclusion of the SI term is optional, and may be

omitted if desired. To see why SI is missing from Eq. (6),
we need to look at Eq. (9b). Inside the triple sum, had the SI
terms existed, we should have terms with k = j. Introducing
such terms into this sum is, however, not straightforward
because Ĵσ

k′k and K̂σ
k′k depend on Q(k, j, k′) [see Eq. (10) and

(11)], whereas Q(k, j, k′) is undefined when j = k because in
this case, the modified overlap matrix [see Eq. (B1c)] is not
square. We therefore propose to use the following expression
for the SI term:〈
�+; �ν

lm′χσ

∣∣V̂ type I
SI

∣∣�〉 = δM ′
s+mσ ,Ms

∫
d3r′[�ν

lm′ (r′)
]∗

ψσ
D (r′)

×
∫

d3r |ψ̃σ (r)|2 1 − w(|r − r′|)
|r − r′|

(18)

where a general weight function

w(y) =
⎧⎨
⎩

CX global exchange

αRS + βRS erf(γRS y) RS exchange
(19)

has also been inserted to provide applicability of the re-
sulting method to both global and range-separated exchange
potentials. The physical motivation behind Eq. (18) is that an
electron occupying the Dyson orbital representing the ioniza-
tion channel of interest feels a repulsion field caused by an
electron density due to ψ̃σ , which is proportional to the Dyson
orbital [see Eqs. (A3) and (A2)].

We note that there is not a single way to artificially incor-
porate SI; for instance, the following expression,〈

�+; �ν
lm′χσ

∣∣V̂ type II
SI

∣∣�〉
= δM ′

s+mσ ,Ms

(−1)N+δσbNa

√
N

R

×
∫

d3r′ 〈�ν
lm′ (r′)

〉∗ Nσ∑
i=1

(−1)i P (i) ψσ
i (r′)

×
∫

d3r
∣∣ψσ

i (r)
∣∣2 1 − w(|r − r′|)

|r − r′| , (20)

is equally plausible since, like Eq. (18), Eq. (20) also re-
duces to the corresponding SI term in OE-WFAT under the
unrelaxed cation wave-function condition. In all simulations
presented in this paper, we use the first type of SI term, i.e.,
Eq. (18).

3. Exact exchange term

Next, we examine the exact exchange term. To do this
requires an inspection of the algebraic structure of Eq. (9b),
thus we move the analysis to Appendix C and will simply
quote the result here. We require that, first, the occupied
molecular orbital in the ionized channel corresponding to the
largest absolute value of the coefficient P is moved to the last
index, so that after this reordering one has

Nσ = argmaxi∈[1,Nσ ] |P (i)|. (21)

Then, the sought expression for the exact exchange is given
by〈
�+; �ν

lm′χσ

∣∣V̂ M-DFT
2e

∣∣�〉
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= δM ′
s+mσ ,Ms√

N
(−1)N+δσbNa

{
Nσ −1∑
k′=1

Nσ∑
j=2

j−1∑
k=1

(〈
�ν

lm′
∣∣Ĵσ

k′k

∣∣ψσ
j

〉

− 〈
�ν

lm′
∣∣K̂σ

k′k

∣∣ψσ
j

〉) + 〈
�ν

lm′
∣∣V̂σ

∣∣ψ̃σ
〉}

(22)

with〈
r
∣∣K̂σ

k′k

∣∣ψσ
j

〉 = (−1) j+k+k′RQ(k, j, k′)

×
( ∫

d3r′[υσ
k′ (r′)

]∗ w(|r − r′|)
|r − r′| ψσ

j (r′)

)

× ψσ
k (r). (23)

In addition to the attainment of the OE-WFAT formula in
the case of the unrelaxed cation, the aforementioned re-
ordering that leads to Eq. (21) also ensures that the total
angle-dependent yield correctly exhibits the symmetry of the
molecule when there are multiple channels having the identi-
cal ionization potential, i.e., the case of degenerate ionization
channels (see Sec. III D).

D. OE-WFAT using Kohn-Sham orbitals

The application of OE-WFAT with DFT Kohn-Sham or-
bitals is more straightforward than ME-WFAT because the
former is constructed starting from a one-electron eigenvalue
problem where DFT terms such as the XC functional and the
exact exchange are well defined. In this case, assuming that
we choose ψσ

i′ as the ionizing orbital, the OE-WFAT integral
formula reads

IO-DFT
νlm′σ = 〈

�ν
lm′

∣∣V̂1e + V̂ O-DFT
2e + V̂XC

∣∣ψσ
i′
〉

(24)

where VXC(r) = VXC[ρN (r)] and

V̂ O-DFT
2e

∣∣ψσ
i′
〉 =

Nσ∑
k=1

(
V̂ σ

kk

∣∣ψσ
i′
〉 − K̂σ

kk

∣∣ψσ
i′
〉)
. (25)

The explicit form of the exchange term (the second term
inside the right-hand-side parentheses) in Eq. (25) is obtained
from Eq. (23) using j = i′, k′ = k [hence υσ

k′ (r) = ψσ
k (r)],

and R = Q(k, i′, k) = 1 [see Eqs. (C1)]. In Eq. (24), there
is no need to construct a separate SI term because this effect
is already contained in V̂ O-DFT

2e [the sum over k in Eq. (25)
includes k = i′, which is the source of the SI]. The other
important differences of OE-WFAT from ME-WFAT are the
ionization potential and dipole moment, where in the former,
the IP is taken as the orbital energy of the ψσ

i′ orbital and μz

is the laboratory-frame z component of the dipole moment
of this orbital. The formulation of OE-WFAT, including the
definitions of the IP and the dipole moment, makes it clear that
OE-WFAT, unlike ME-WFAT, is oblivious to the final state
after ionization.

As a reminder, in arriving at Eq. (15) used to calcu-
late the total rate, the channel index [the (n′, n) pair] has
been dropped due to the use of single determinants in the
DFT-based ME-WFAT [see the discussion around Eq. (4)].
In OE-WFAT where the ionizing orbital is chosen manually
(hence, the coefficient f i′(0)

νσ depends on i′), it is possible to ap-
proximate a given ionization channel starting from the neutral

ground state with the ionization from a particular occupied
orbital. Therefore, the total rate formula for the DFT-based
OE-WFAT is slightly different from Eq. (15) only in the pres-
ence of an additional sum over i′ and in the absence of the
prefactor N .

III. RESULTS AND DISCUSSIONS

We pick four molecules, NO, OCS, CH3Br, and CH3Cl,
as test beds to gauge how well the WFAT angle-dependent
yield reproduces its TDDFT counterpart. But before present-
ing the ionization yield of these molecules, in Sec. III A, we
investigate the intensity dependence of the ionization rates of
various channels close to the lowest one in energy (which can
be approximated as the ionization from HOMO) to gauge our
assumption regarding the importance of the channels other
than the lowest one.

We use the same laser field for the WFAT and TDDFT
simulations for each molecule. In Secs. III B–III D, this laser
is a (ω, 2ω) two-color pulse with a sine squared envelope,
here ω = 0.057 a.u., which corresponds to a wavelength of
800 nm. The applied external electric field is polarized in
the z direction and the relative phase is chosen such that its
amplitudes are maximized towards the positive z direction.
The advantage of using an asymmetric two-color laser is that
the directional dependence of the ionization is probed without
ambiguity, since the ionization signal for a given orientation
is mostly due to the field in one direction. In Sec. III E, we
use a ω one-color laser. The maximum field strength for each
molecule is adjusted to be close to the saturation intensity,
and the WFAT and TDDFT yields for a given molecule are
normalized so that they have identical maximum yield. We
adjust the laser peak intensity and duration for each molecular
system to make the TDDFT computational times tractable
and at the same time to have sufficient number of peaks
in the field. Figure 1 shows how the two orientation angles
0◦ � β � 180◦ and 0◦ � γ � 360◦ determine the orienta-
tion of the body-fixed axes relative to the laboratory-fixed
axes.

WFAT is, by construction, not a time-dependent method.
We can, however, include time dependence quasiadiabatically
by solving the exponential decay rate equation

∂

∂t
y(β, γ , t ) = �(F (t ), β, γ )[1 − y(β, γ , t )]. (26)

Here, �(F (t ), β, γ ) is the instantaneous total WFAT rate due
to a time-varying field F (t ) obtained from Eq. (15) by taking
F = F (t ) and y(β, γ , t ) is the quasiadiabatic yield we are
interested in. The actual ionization yield y(β, γ , t ′) is then
calculated at a time t ′ when the laser pulse has subsided.
Equation (26) may be expected to be a good approximation
to the actual time-dependent propagation because the field
strengths (as confirmed by the amount of ionization) and laser
photon energy (≈1.5 eV) are insufficient to cause significant
photoexcitation of the system, hence the ionization can be
assumed to proceed adiabatically from the ground state. All
WFAT results use the same functional type and parameters as
TDDFT as shown in Table I. The same basis is also used for
each molecule except that the Schlegel absorbing basis is re-
moved for WFAT (see Table I). The Schlegel absorbing basis,
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FIG. 1. An illustration of CH3Br oriented at (β, γ ). β and γ are
the angles of rotation around the laboratory-fixed y axis and body-
fixed z axis, respectively. In this example, the body-fixed z axis (not
shown) is along the C–Br bond. The arrows associated with each
angle denote the rotation direction corresponding to positive values
of the respective angles. The two-color laser pulse is also illustrated
where its larger oscillations are always in the positive z direction.

which contains very diffuse functions, is not used for WFAT
calculations because we find that the presence of too diffuse
functions can make the structure factor incorrectly large. This
effect is due to the multiplication of the wave functions with
�ν

lm′ which increases exponentially with distance [31]. For all
simulations here, we use ν = {(0, 0), (0,±1), (0,±2), (1, 0)}
for the summation in Eq. (15). The angle-dependent yields
presented in the following sections were obtained using the
OE-WFAT and ME-WFAT modules implemented in the de-
veloper version of NWCHEM [33].

A. Field strength dependence of the ionization rates

All of the simulations presented in this paper assume that
the dominant ionization corresponds to the ionization channel
connecting the ground states of the neutral and of the cation,

which is represented by ionization from HOMO in the OE-
WFAT framework. It is therefore instructive to ensure that the
intensity of the lasers still falls in the region where higher
ionization channels (having higher ionization potentials) are
still negligible. For this purpose, we run several static field
ionization calculations on OCS with varying field strengths
using OE-WFAT. The resulting γ -averaged rates are presented
in Fig. 2. The range of field strength used in this result covers
the peak field value of the laser used in the subsequent sec-
tions. As can be seen from Fig. 2, up to F = 0.05 a.u., the rate
of ionization from HOMO approximately still predominates
the higher ionization channels (note that the vertical axis is
in logarithmic scale). At F = 0.02 a.u., the rate from HOMO
is more than four orders of magnitude larger than HOMO-1.
The difference between these channels becomes smaller as
the field increases, as expected. In particular, the HOMO rate
stays separated from the higher channels while they exhibit
some crossings at certain angles even when the field is low.
This is because HOMO-1, HOMO-2, and HOMO-3 are rela-
tively close in energy (less than ≈1.9 eV apart) while HOMO
is 4.9 eV above HOMO-1. This observation serves as the
justification of our earlier assumption that for the range of
intensity used throughout the subsequent sections, only the
lowest (HOMO) ionization channel is important.

B. NO molecule

We start by calculating the angle-dependent ionization
yield in the NO molecule. The ionization potential as well
as the dipole moment components obtained using the tuned
LC-PBE* and aug-cc-pvtz basis are given in Table II, where
the internuclear distance is 1.140 Å. Since NO is a radical,
an unrestricted Kohn-Sham self-consistent field (SCF) calcu-
lation puts the unpaired electron in a particular 2π orbital,
which results in an axially asymmetric charge density. This
would cause the ionization yield to vary with γ at a given
β. A more physical symmetric density may be obtained by
smearing the unpaired electron over the two degenerate π

orbitals. Instead of doing that, we use the axially asymmetric
ground state but average over γ when computing the yield.
This averaging of WFAT yields is performed formally, that is,

FIG. 2. The average rates, �̄i′ (F, β ), of some of the high-lying occupied molecular orbitals of OCS as a function of field strength. Here
�̄i′ (F, β ) is calculated as the average of

∑
νσ | f i′ (0)

νσ (εi′ , F, β, γ )|2 over γ , where i′ refers to an occupied molecular orbital and εi′ refers to its
orbital energy. The field is static and has a magnitude of (a) 0.02 a.u., (b) 0.03 a.u., (c) 0.04 a.u., and (d) 0.05 a.u. calculated using OE-WFAT.
The vertical axis is in logarithmic scale.
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TABLE II. Ionization potential (in hartree) and the components
of μ(N ) − μ(N−1) (in a.u.) in body-fixed axes, μ̃x , μ̃y, and μ̃z, used in
ME-WFAT for NO, OCS, and CH3Br.

Properties NO OCS CH3Br

IP −0.387291 −0.420468 −0.393985
μ̃x 0.0 0.0 0.0
μ̃y 0.0 0.0 0.0
μ̃z −0.016190 −0.248725 0.811680

for each β we sum the yields over γ and divide the result by
2π . Performing the same averaging for TDDFT yields will,
however, be very time consuming due to the large number of
(β, γ ) pairs. Therefore, for TDDFT yields, the γ averaging is
performed in the following manner. We first take an arbitrary
fixed β, which is 50◦ for this simulation, and then average
the yields over γ for this β. Having obtained this average
value, we look for a γav still with β = 50◦ that gives the same
ionization yield as the average, and we find that γav = 324◦.
We then fix γ at this value and use it for the scan over β.

The ME-WFAT angle-resolved single ionization yield, av-
eraged over γ , from the NO molecule interacting with a
two-color laser having a maximum field of 0.06 a.u. (1.26 ×
1014 W/cm2 in intensity) and a full width at half maximum
(FWHM) duration of 22.71 fs is shown in Fig. 3(a). It can
be seen to exhibit a butterflylike shape, a characteristic of
the dominant orbital contributing to the ionization having π

symmetry. In ME-WFAT, the Dyson orbital determines the
symmetry of the ionization yield, and indeed, in this calcula-
tion it has π symmetry [see inset in Fig. 3(a)]. The relatively
low ion yields at β = 0◦, 105◦, 180◦, 255◦ can be explained
by the nodes of the Dyson orbital. It has a nodal plane con-
taining the molecular backbone and a nodal cone with an apex
located between the nuclei. The yield at these nodal angles
is, however, nonzero due to the higher parabolic quantum
numbers.

Figure 3(a) also shows the result of TDDFT simula-
tions using identical laser parameters, which are in excellent
agreement with the ME-WFAT result. The butterfly-shaped
distributions agree with previous experiments [23,43], with
the global maxima at β = 50◦ and 310◦ and secondary max-
ima at 142◦ and 218◦, measured with respect to the laser
polarization direction. Two asymmetric peaks can clearly be
distinguished due to the directional asymmetry of the two-
color field. It is also worth noting that these angles correspond
to the shape of the 2π HOMO as the ionization is preferen-
tially enhanced when the field is directly along a lobe [23].

The angle-dependent yields for ionization from the NO
HOMO orbital, computed using OE-WFAT with the same
two-color laser, are shown in Fig. 3(b). Here, we see that
for NO, ME- and OE-WFAT both yield good agreement with
the TDDFT result. In fact, the shape of the HOMO [inset in
Fig. 3(b)] is very similar to that of the Dyson orbital in panel
(a). The most pronounced disagreement between TDDFT and
the two WFAT results is the yield at β = 0◦. As is suggested
by our analysis of the HOMO-1 contribution and the effect of
the various parabolic channels, we expect that the inclusion
of the first-order correction will bring the shape of the yield

FIG. 3. NO angle-dependent ion yield resulting from an inter-
action with a laser pulse having 88-TW/cm2 maximum intensity
(0.05-a.u. maximum field) and 22.71-fs FWHM (for this dura-
tion, the saturation intensity calculated following Ref. [39] is
Isat = 220 TW/cm2). The ME-WFAT and OE-WFAT results are
shown in panel (a) and (b), respectively. The Dyson orbital and
HOMO are also shown in panel (a) and (b), respectively. The di-
rection of the largest oscillation of the two-color field is indicated
by the purple arrows near the orbitals, which is fixed in the positive
z direction as the molecule rotates (the color of the coordinate axes
shown below each orbital has the same meaning as that in Fig. 1). The
relative orientation between the purple arrow and the orbital indicates
its orientation when β = γ = 0◦. In this schematic, the left atom is
N and the right one is O.

around β = 0◦ closer to the TDDFT. We note that the WFAT
and TDDFT results presented in this section for NO agree
with experimental data, also obtained using two-color laser
fields [23].

The last column of Table I compares the simulation times
for the TDDFT, OE-WFAT, and ME-WFAT calculations for
each molecule. We see that for NO, WFAT simulations are
more than 100 times faster than TDDFT. We emphasize that
the most expensive part of our WFAT algorithm is the calcula-
tion of the integrals of Eq. (16), but for a given set of molecule
and laser parameters these calculations need be performed
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only once, while the calculation of ionization rate through
the use of Eqs. (4), (5), and (15) for all (β, γ ) of interest
generally proceeds in just a fraction of the time needed for the
preceding integral calculations. So, the times needed to scan
all (β, γ ) used in the ionization yield plots are just slightly
longer than the WFAT times shown in Table I. To perform
the same (β, γ ) scan in TDDFT would require restarting the
TDDFT propagation algorithm for each angle the total cost
of which is given by the TDDFT timings shown in Table I
times the number of (β, γ ) pairs. There are two reasons why
WFAT is much faster than TDDFT. First, there is no need to
have very diffuse functions in the basis set since the method
is not based on propagating the wave function or density
to a predetermined, large distance. Second, there is no time
evolution algorithm involved. This means that there is no
need to repeatedly calculate two-electron integrals needed to
construct the Hamiltonian at each time step as in TDDFT.

C. OCS molecule

OCS is a triatomic molecule the equilibrium geometry of
which is linear. Like NO, its HOMO, which is doubly de-
generate, has π symmetry. There have been some previous
attempts at comparing theoretical angle-dependent yields of
OCS with experiments with a varying degree of agreement,
some of which used single-color linearly polarized laser fields
[34,44,45] while another used a circularly polarized laser [46].

The choice of basis and functional mentioned in the begin-
ning of Sec. III produces an ionization potential and dipole
moment for OCS given in Table II. The equilibrium geometry
for the chosen method and basis occurs at an O-C distance
of 1.153 Å and C-S distance of 1.562 Å. For this simulation,
a maximum field of 0.045 a.u. (7.1 × 1013 W/cm2) is used
with a FWHM duration of 8.85 fs. The TDDFT yield obtained
using these laser parameters is shown with line and markers
in Fig. 4, with the maximum found at β = 120◦. At this angle,
the laser force component on the electrons along the molecular
axis points from O to S. This is consistent with previous exper-
imental and theoretical studies that found a higher ionization
rate when the force points from O to S [47], and that the hole
ultimately ends up predominantly on the S atom [34].

For the ME-WFAT calculation, it is important to note that
the single-determinant ground-state wave functions of OCS+

are doubly degenerate, which can be associated with the π -
symmetry HOMO of OCS that is also doubly degenerate.
This means one may obtain two different Dyson orbitals (also
having π symmetry with lobe directions perpendicular to each
other) each corresponding to one of the doubly degenerate
cation ground states. By symmetry, the full, unaveraged angle-
dependent yields corresponding to these two “degenerate”
Dyson orbitals are trivially connected by a 90◦ shift of γ .
Since the ionization potentials for these two degenerate chan-
nels are identical, one should sum the ME-WFAT rates of
these two channels to obtain the total rate, which results in
a corresponding total yield that is independent of γ . Before
moving on, we would like to emphasize that the neglect of
the reordering procedure described in Sec. II C 3 will result
in the absence of this axial symmetry in the full OCS angle-
dependent ionization yield.

FIG. 4. OCS angle-dependent ion yield comparing (a) ME-
WFAT and (b) OE-WFAT with TDDFT results. The laser pulse has
65-TW/cm2 maximum intensity (0.043-a.u. maximum field) and
8.85-fs FWHM (Isat = 176 TW/cm2). The meanings of the purple
arrow, the orbital image, and the coordinate axes are the same as
those in Fig. 3. In the ball-and-stick representation of the molecule,
the left atom is O and the right one is S.

The ME-WFAT ionization yield [solid line in Fig. 4(a)] is
seen to have a reasonably good agreement with the TDDFT
yield (line with marker), with a small difference in the location
of the global maxima and in the more pronounced secondary
maxima at around β = 30◦ and 330◦. A possible reason for
the latter is the effect of induced core polarization, which has
recently been studied in Refs. [48,49]. In this mechanism, the
external field polarizes the core electron density so that the
charge imbalance of the latter creates a counteracting internal
field that can substantially decrease the net field for a given
orientation, leading to a very low yield around that orientation.
This dynamical effect is not captured by the LOA employed
in our ME-WFAT formulation, but can be treated by including
the first-order correction to ME-WFAT [50].

The OE-WFAT ionization yield is shown in Fig. 4(b). In
contrast to the NO case, the OE-WFAT ionization yield does
not agree qualitatively with the TDDFT result due to the
peak at 30◦ and 330◦ now becoming the global maximum, al-
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though the Dyson orbital and HOMO are still very similar (see
the orbital images in Fig. 4). Such a disagreement is caused
by the incorrect dipole moment used by the OE-WFAT to
describe the ionization probability connecting the initial neu-
tral state to the final cation state. For comparison, the reader
is referred to the respective explanations for dipole moment
in the paragraphs after Eq. (4) and after Eq. (25). Reference
[30] presents some examples where the main factor dictating
the difference of the ME-WFAT and OE-WFAT yields also
comes from the shape of the ionizing orbital, i.e., where the
Dyson orbital is notably different from the HOMO. It is worth
mentioning that the solid line in Fig. 4(b) is very similar to the
OCS structure factor shown in Fig. 11 of Ref. [31]. Finally, we
note that the computational times for OCS in Table I show that
WFAT is, as expected, much faster (about 150 times faster)
than full TDDFT simulations.

D. CH3Br molecule

Bromomethane has C3v symmetry and possesses a three-
fold rotational symmetry around the C–Br bond. The prop-
erties of this molecule relevant to ME-WFAT are given in
Table II. The atomic coordinates can be deduced from Table
IV of Ref. [39] since the same basis and functional are used
here.

Similar to the case of OCS above, the single-determinant
ground-state wave functions of CH3Br+ and the HOMO of
CH3Br are both doubly degenerate (see the two orbital pairs
in Fig. 5). This means the Dyson orbital is also doubly de-
generate. We obtain the doubly degenerate CH3Br+ ground
states by using N − 1 neutral orbitals, removing one of its
two degenerate HOMOs as the starting guess for the cation’s
SCF iteration. We identify the two states in these degenerate
manifolds (the HOMO and the Dyson orbital) using their
reflection symmetry with respect to any of the Br–C–H planes.
The one that is even (odd) under this reflection is denoted with
the + (–) sign (see the orbital images in Fig. 5).

The full, unaveraged ME-WFAT ionization yields starting
from CH3Br in the ground state and ending up in the two de-
generate ground states of CH3Br+ are shown in Figs. 6(a) and
6(b). Here, the ionizing field is a two-color laser with a field
maximum of 0.05 a.u. (8.8 × 1013 W/cm2) and an intensity
FWHM of 13.18 fs. The total yield, shown in Fig. 6(c), is
the sum of the yields corresponding to the degenerate cation
final states in Figs. 6(a) and 6(b). Here, we observe a 120◦
periodicity along the γ axis of the yield, which is a reflection
of the threefold rotational symmetry of CH3Br around the
C-Br bond. Again, the neglect of the reordering procedure de-
scribed in Sec. II C 3 will result in the absence of the threefold
rotational symmetry seen in Fig. 6(c).

The γ average of the yield in Fig. 6(c) is shown in Fig. 5(a)
as a solid line. For the TDDFT yield, the same averaging
method as in Sec. III B for NO is also employed here, where
we set β = 120◦, perform an average over γ , and find γav that
gives identical ionization yield as this average. This procedure
yields γav = 36◦ as the value to be used for the subsequent
scan over β. A comparison of ME-WFAT (solid line) and
the TDDFT yields (dashed line) in Fig. 5(a) tells us that
ME-WFAT is again a reliable alternative to TDDFT for cal-
culating angle-resolved ionization. The ME-WFAT yield in

FIG. 5. CH3Br angle-dependent ion yield comparing (a) ME-
WFAT and (b) OE-WFAT with TDDFT results. The laser pulse has
43-TW/cm2 maximum intensity (0.035-a.u. maximum field) and
13.18-fs FWHM (Isat = 150 TW/cm2). The meanings of the purple
arrow, the orbital image, and the coordinate axes are the same as
those in Fig. 3. In the ball-and-stick representation of the molecule,
the right atom is Br and the middle one is C.

Fig. 5(a) also looks similar to the result of a previous work
on CH3Br interacting with a static field simulated using the
time-dependent configuration interaction [51].

The angle-dependent yield obtained using OE-WFAT is
shown in Fig. 5(b) as a thick solid line. The shapes of the max-
ima peaking at 111◦ and 249◦ have a better agreement with
those of TDDFT, but the strength of the secondary maxima
at 26◦ and 334◦ is almost twice as large as the corresponding
TDDFT values.

Figure 5(a) reveals that the biggest discrepancy between
TDDFT and ME-WFAT yields lies around β = 0◦. We iden-
tify two possible reasons to this: (1) the contribution of the
ionization channel connecting the neutral ground state to the
cation first excited state (or in the OE-WFAT framework, the
contribution of HOMO-1) and (2) the orbital distortion effect.
The first possibility, however, cannot be investigated using
ME-WFAT with DFT orbitals since the excited-state wave
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FIG. 6. The full two-dimensional CH3Br angle-dependent ion-
ization yield. The yields due to each of the doubly degenerate Dyson
orbitals are shown in panel (a) and (b). Panel (c) shows the total yield.

function requires a multideterminant description. Instead, we
use OE-WFAT using the HOMO-1 orbital as the ionizing
orbital to shed some light, albeit less accurately. We identify
that HOMO-1 has a σ -like character. The resulting ionization
yield is shown in Fig. 5(b) denoted as HOMO-1 in which we
see that the yield at β = 0◦ is nonzero for this contribution.
Note that the relative magnitude between the yields at β = 0◦
and 180◦ in the HOMO-1 contribution is the opposite of that
in the TDDFT yield which is greater at β = 0◦. Also, the
difference in the magnitude between HOMO and HOMO-1
(compare the scaling factors) looks to be too big to warrant
noticeable effect of the latter around β = 0◦. We attribute
these seemingly contradicting behaviors to the inaccuracy of
OE-WFAT.

The second possibility, the orbital distortion due to the
laser, is not possible to simulate using the current version of
DFT-based ME-WFAT as it requires extending the current for-
malism to include the first-order correction. Aside from this
small difference at β = 0◦, the overall shape of the ME-WFAT
angle-dependent yield agrees qualitatively with TDDFT.

FIG. 7. OCS angle-dependent ionization yields due to a one-
color laser. The peak (saturation) intensity is 70 TW/cm2

(80 TW/cm2), with a FWHM duration of 37 fs. The relative orienta-
tion between the molecule, the laser field polarization (purple arrow),
and the coordinate axes as shown indicates the orientation when
β = γ = 0◦. Additionally, TDDFT calculations and experimental
measurement extracted from Ref. [34] are also plotted. The WFAT
values are scaled so that their maxima coincide with the maximum
of the TDDFT yield.

E. One-color ionization from OCS, CH3Cl, and CH3Br

In this section, we provide further results demonstrating the
capability of ME-WFAT to efficiently reproduce the more ac-
curate TDDFT calculations and available experimental data.
Figure 7 shows the ionization yield for OCS interacting with
a one-color sine-squared pulse having a wavelength of 800 nm
and an intensity FWHM of 37 fs obtained by ME-WFAT,
OE-WFAT, and TDDFT, and from experimental data extracted
from Ref. [34]. The peak intensity is 70 TW/cm2. For this
case, we observe a notable discrepancy between WFAT and
TDDFT or experiment. We attribute this to the difference in
the loci of the global maxima in Fig. 4(a) for ME-WFAT and
to the difference of the yield values around β = 30◦ and 330◦
in Figs. 4(a) and 4(b) for both WFAT results. We expect that
this disagreement in the case of OCS will be remedied by the
inclusion of the first-order correction to WFAT.

Figure 8 shows the angle-dependent ionization of (a)
CH3Cl and (b) CH3Br interacting with a one-color laser
having the same parameters as those used to obtain Fig. 7
except that the peak intensity for panel (a) is 64 TW/cm2

and for panel (b) it is 60 TW/cm2. The experimental data
are extracted from Ref. [39]. The range-separated functional
parameters and basis used in Fig. 8(a) are given in Table I.

As shown in Fig. 8, ME-WFAT yields produce a much bet-
ter agreement with TDDFT as well as experiment compared to
OE-WFAT results. In particular, for CH3Cl, the peaks in both
TDDFT and ME-WFAT within the range of 0 � β � 180◦
are located at 45◦ and 135◦, whereas in the same β interval,
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FIG. 8. (a) CH3Cl and (b) CH3Br angle-dependent ionization
yields due to a one-color laser. The peak (saturation) intensity for
panel (a) is 64 TW/cm2 (80 TW/cm2), whereas for panel (b) it is
60 TW/cm2 (50 TW/cm2), with a FWHM duration of 37 fs for
both. In the ball-and-stick representation of the molecule, the right
atom is the halogen. The relative orientation between the molecule,
the laser field polarization (purple arrow), and the coordinate axes
as shown indicates the orientation when β = γ = 0◦. Additionally,
TDDFT calculations and experimental measurement extracted from
Ref. [39] are also plotted. The WFAT values are scaled so that their
maxima coincide with the maximum of the TDDFT yield. The Dyson
orbitals (used in ME-WFAT) and HOMO (used in OE-WFAT) are
also shown.

OE-WFAT produces peaks at 35◦ and 145◦. In the case of
CH3Br, both TDDFT and ME-WFAT yields have a smooth
shape in the range of 0 � β � 180◦ while OE-WFAT features
three separated peaks. The peaks at 33◦ and 147◦ are mainly
contributed by the secondary maxima around the same angle
seen in the OE-WFAT(HOMO) yield in Fig. 5(b).

The qualitative difference in the shape of the yields be-
tween CH3Cl and CH3Br, especially the fact that at 90◦ and
270◦ CH3Br features maxima while CH3Cl features minima,
can be related to the shape of the orbitals. In particular, we see
from both the HOMO and Dyson orbitals of the two molecules
that the relative electron density in the region around the halo-
gen to that around the hydrogens is higher when the halogen
is Br rather than Cl.

IV. CONCLUSION AND OUTLOOK

In this paper, we have demonstrated that ME-WFAT in the
LOA is a promising alternative which, when combined with a
quasiadiabatic treatment of the electric field using Eq. (26),
produces an efficient and accurate method for calculating
tunnel ionization in the adiabatic regime. We emphasize that
the application of ME-WFAT for the general molecular case
as presented here is made possible by reformulating the TR
[26] in the IR [30]. In the IR, one can bypass the need for
having the accurate exponentially decaying tail of the or-
bitals, which is only reliably possible for atoms and diatomic
molecules [27].

We have applied the LOA of IR ME-WFAT that has been
derived in Ref. [30] for Hartree-Fock orbitals to the case of
DFT Kohn-Sham orbitals. The use of Kohn-Sham orbitals in
ME-WFAT requires modification of the ME-WFAT formula
to include missing terms such as the XC potential and the
self-interaction terms, as well as identifying a suitable exact
exchange term. Several reformulations are possible in the
expression of each of the aforementioned terms, which can
be attributed to the parametrization of DFT. By comparing
the ME-WFAT against TDDFT angle-dependent yields, we
showed that the particular choice of these expressions pro-
posed in this paper is indeed suitable.

We have chosen to study the molecules NO, OCS, CH3Br,
and CH3Cl interacting with either one-color or two-color laser
pulses to test the reliability of ME-WFAT as an alternative
method for the calculation of tunnel ionization. In all these
cases, we showed that ME-WFAT is able to reproduce TDDFT
angle-dependent ionization yields, whereas OE-WFAT is only
able to do so for NO. While for NO, ME-WFAT and TDDFT
are in excellent agreement, the most noticeable difference
between ME-WFAT and TDDFT in the case of OCS and
CH3Br lies in the region around β = 0◦. For OCS, the most
likely reason is the induced polarization of the core orbitals,
which is not captured by ME-WFAT, whereas for CH3Br, we
attribute this difference to the significant contribution of the
ionization channel connecting a neutral ground state and a
certain cation excited state around β = 0◦. The overall qual-
itatively good agreement between the quasistatic WFAT and
RT-TDDFT simulations indicates that the ionized electron can
be treated using an adiabatic description for wavelengths as
short as 800 nm. On the other hand, one may expect that
WFAT is insufficient to treat nonadiabatic processes, such as
interchannel coupling during ionization and carrier-envelope
phase effects. The very efficient nature of WFAT simulations
(see the timings in Table I) also makes it a fitting candidate as
a tool to perform a quick scan of the ionization properties of
large molecules before more elaborate calculations or actual
experiments are conducted on them.

One direction for improvement of our results would be the
inclusion of the first-order correction to ME-WFAT. This cor-
rection accounts for the distortion of orbitals due to the field,
which may be needed to correct for the OCS disagreement
discussed above. Such an effort for ME-WFAT in the tail
representation has been outlined in Ref. [50]. An appealing
application for ME-WFAT may be to the study of particlelike
charge migration [9,10,36] where it is shown that an initial
localized hole can sustain its locality throughout the periodic
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dynamics. Given the coupled time-space sensitivity of such a
dynamic, IR ME-WFAT opens up a promising avenue in the
modeling of tunnel ionization as a probe of charge migration.
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APPENDIX A: DYSON ORBITAL
FOR SINGLE-DETERMINANT WAVE FUNCTIONS

When both of the neutral and cation wave functions are a
single determinant, that is,

�(XN ) = 1√
N!

det
(
ψa

1 · · · ψa
Na

ψb
1 · · · ψb

Nb

)
, (A1a)

�+(XN−1) = 1√
(N − 1)!

det
(
υa

1 · · · υa
N ′

a
υb

1 · · · υb
N ′

b

)
, (A1b)

then the Dyson orbital may be shown to have the form

ψσ
D (r) =

∫
dXN−1dσ ′ [�+(XN−1)]∗�(XN−1, rσ ′)

= (−1)N+δσbNa

√
N

R ψ̃σ (r), (A2)

where

ψ̃σ (r) =
Nσ∑
i=1

(−1)iP (i)ψσ
i (r). (A3)

σ is the ionized spin channel, that is, the spin channel of the
neutral from which an electron has been removed, and P (i)
and R are defined in Appendix B. Equation (A2) assumes that
the following conditions constraining the number of electrons
in each spin channel of both the neutral and cation,

N ′
σ = Nσ − 1,

N ′
p(σ ) = Np(σ ),

are satisfied. These relations are the consequence of single-
determinant wave functions being an eigenstate of the z
component of spin angular momentum. If not, the Dyson
orbital uniformly vanishes.

APPENDIX B: VARIOUS OVERLAP INTEGRALS
BETWEEN NEUTRAL AND CATION WAVE FUNCTIONS

Letting S�+�
σ [a′, b′, . . . |a, b, . . .] be the spin-σ block of the

overlap matrix formed between the orbitals occupied in |�+〉

removing spin orbitals a′, b′, . . . and the orbitals occupied in
|�〉 removing spin orbitals a, b, . . ., then

P (i) = det
(
S�+�

σ

[
∅

∣∣ψσ
i

])
, (B1a)

R = det
(
S�+�

p(σ )

[
∅

∣∣ψσ
i

])
, (B1b)

Q(k, i, k′) = det
(
S�+�

σ

[
υσ

k′
∣∣ψσ

i , ψσ
k

])
(1 − δik ), (B1c)

S (k, k′) = det
(
S�+�

p(σ )

[
υ

p(σ )
k′

∣∣ψσ
i , ψ

p(σ )
k

])
, (B1d)

where the notation ∅ means that no orbitals are removed from
the corresponding charge state. A full derivation on how these
determinants arise within the formulation of IR ME-WFAT
will be presented in Ref. [30].

APPENDIX C: EXCHANGE TERM IN THE ME-WFAT
INTEGRAL

At first glance, it might be tempting to identify the K̂σ
k′k

term in Eq. (9b) as the exchange term. In this section we will
first show that this is not the case, and then analyze Eq. (9b) to
identify the most suitable term to be regarded as the exchange
term in the context of IR ME-WFAT using DFT Kohn Sham
orbitals. As a guide, we use ME-WFAT with HF and in the
case of unrelaxed cation orbitals, which are just taken from
N − 1 occupied orbitals of the neutral. We also assume the
only neutral orbital unoccupied in the cation to be ψσ

i′ . In this
case,

P (i) = δii′ , (C1a)

R = 1, (C1b)

Q(k, i, k′) = (1 − δik )(δii′δk′ k̄ + δki′δk′ ī ), (C1c)

S (k, k′) = δk′k. (C1d)

Using Eq. (C1) in the triple sum of Eq. (9b), one obtains

Nσ −1∑
k′=1

Nσ∑
j=2

j−1∑
k=1

(
Ĵσ

k′k

∣∣ψσ
j

〉 − K̂σ
k′k

∣∣ψσ
j

〉)

=
Nσ −1∑
k′=1

i′−1∑
k=1

(−1)k+k′
δk′k

(
V̂ σ

k′k

∣∣ψσ
i′
〉 − V̂ σ

k′i′
∣∣ψσ

k

〉)

+
Nσ −1∑
k′=1

Nσ∑
k=i′+1

(−1)k+k′
δk′,k−1

(
V̂ σ

k′i′
∣∣ψσ

k

〉 − V̂ σ
k′k

∣∣ψσ
i′
〉)

=
Nσ∑

k �=i′

(
V̂ σ

kk

∣∣ψσ
i′
〉 − V̂ σ

ki′
∣∣ψσ

k

〉)
, (C2)

where we note that the last expression is just the classical
repulsion and exchange terms among electrons with the same
spin in the OE-WFAT integral formula.

A closer look at the first and second lines of the right-hand
side reveals that there are certain pairs of ( j, k) from both
the Ĵσ

k′k and K̂σ
k′k terms on the left-hand side that lead to the

exchange (second) term in the third line. In particular, on the
right-hand side, the second term inside the parentheses of the
first line plus the first term inside the parentheses of the second
line together constitute the exchange term in the third line.
This is why in general one cannot assign K̂σ

k′k alone as the
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exchange in the ME-WFAT integral. We can, however, iden-
tify an occupied orbital of the neutral that is “most similar”
to the Dyson orbital. The most straightforward method of this
identification is by finding the largest absolute value of the
elements of P (i), which, in most cases, corresponds to ψσ

i′ .

Then by reordering the neutral orbitals such that this largest
element is at Nσ (that is, i′ = Nσ ), we can eliminate the second
term on the right-hand side of Eq. (C2) (the third line). After
this reordering, one can identify the K̂σ

k′k term in the left-hand
side of this equation as the exchange contribution.
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