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Emergent quantum correlations and collective behavior in noninteracting
quantum systems subject to stochastic resetting
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We investigate the dynamics of a noninteracting spin system, undergoing coherent Rabi oscillations, in the
presence of stochastic resetting. We show that resetting generally induces long-range quantum and classical
correlations both in the emergent dissipative dynamics and in the nonequilibrium stationary state. Moreover, for
the case of conditional reset protocols—where the system is reinitialized to a state dependent on the outcome
of a preceding measurement—we show that in the thermodynamic limit, the spin system can feature collective
behavior which results in a phenomenology reminiscent of that occurring in nonequilibrium phase transitions.
The discussed reset protocols can be implemented on quantum simulators and quantum devices that permit fast
measurement and readout of macroscopic observables, such as the magnetization. Our approach does not require
the control of coherent interactions and may therefore highlight a route towards a simple and robust creation
of quantum correlations and collective nonequilibrium states, with potential applications in quantum enhanced
metrology and sensing.
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I. INTRODUCTION

Understanding and exploiting the interplay between coher-
ent unitary evolution and measurement in quantum systems
has been a central topic since the early days of quantum
mechanics [1,2]. Recent research in this direction is closely
linked to the physics of open quantum systems [3–6], where
interactions among quantum particles compete with the cou-
pling to the surrounding environment. Modern experiments
allow one to externally control and even artificially engineer
open system dynamics. This can, e.g., be achieved through
so-called feedback protocols [7–12], which rely on the con-
tinuous monitoring of a system followed by some action
conditioned on the output of a detector. This procedure can
generate nonequilibrium steady states (NESS) that feature
nontrivial quantum correlations [13–16]. Another approach
that relies on externally imposed interventions in order to
create effectively open system dynamics is stochastic resetting
[17]. In its simplest form, it amounts to resetting a system to
its initial state at random times. This procedure has been orig-
inally studied for classical diffusive systems [18–21], search
processes [18,19,22–25], and active systems [26–32], and also
here interesting NESS have been shown to emerge [33–44].
Similar observations have been made recently in the context
of quantum systems [45–55]. However, it remains an open
question whether resetting can induce nontrivial NESS, which
may display emergent quantum correlations or even nonequi-
librium phase transition behavior.

In this manuscript, we fill this gap by investigating the
interplay between stochastic resetting and many-body quan-
tum coherent evolution in the simplest—yet surprisingly

nontrivial—case of noninteracting spin systems; see Fig. 1(a).
We show that despite the absence of interactions in the co-
herent dynamics, resetting induces quantum correlations as
well as a critical (nonanalytic) behavior in the NESS. We
demonstrate this by envisaging three distinct protocols, named
henceforth Protocol I, II, and III, in increasing order of com-
plexity [see Figs. 1(b) and 1(c)]. Protocol I amounts to the
aforementioned simple stochastic resetting of the system to a
fixed state, while Protocols II and III include a measurement
step whose outcome determines to which state the system is
reset.

In all three cases, we find that resetting induces long-range
correlations, although the system’s reset-free dynamics is
noninteracting. These correlations, emerging from the global
operations associated with the reset events, are not exclu-
sively of a statistical nature, but also have a quantum origin.
Moreover, Protocols II and III induce stationary collective be-
havior, which manifests in nonanalyticities in an appropriate
order parameter. While reminiscent of a nonequilibrium phase
transition, the phenomenology we observe here is rather dif-
ferent in nature. Standard phase transitions take place between
phases with short-range correlations and finite susceptibility
parameter. Here, instead, due to the reset process, the sys-
tem features strong long-range correlations and a divergent
susceptibility throughout the whole phase diagram and not
only at the critical point. The collectively enhanced response
of the system to external parameter variations may be ex-
ploited for high-density quantum sensing, as discussed, e.g.,
in Refs. [56–58]. The fact that such property emerges even
within a simple noninteracting system readily realizable with
neutral atoms highlights a novel and simple way for creating
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FIG. 1. Noninteracting spins subject to resetting. (a) Noninter-
acting spin system subject to a (laser) field with Rabi frequency
� and detuning �. (b) The unitary time evolution according to
Hamiltonian (1) is interspersed by randomly distributed reset events,
which reinitialize the system to a specific state depending on the
adopted reset protocol. In the figure, t denotes the observation time
and tk the time when the kth reset event takes place. (c) Details of
the reset protocols. In Protocol I, the system is unconditionally reset
to the state |↑〉N . In Protocols II and III, the reset is preceded by
a measurement of the excitation density n, which selects a product
configuration state |n〉, with density n. In Protocol II, the value of n
determines the choice between two fixed reset states. In Protocol III,
when n < 1/2, the reset state is determined by a spin-flip operation
applied to the state obtained from the projective measurement.

and exploiting correlated many-body states on quantum sim-
ulators [59–63].

II. DYNAMICS AND RESET STATES

We consider a system of N spins with Hamiltonian

H = �

N∑
i=1

σ x
i + �

N∑
i=1

σ z
i , (1)

describing, for instance, noninteracting atoms subject to an
external laser field. Here, σ

x,y,z
i are the Pauli matrices of the

ith spin, � is the Rabi frequency, and � is the laser detuning.
The two basis states of each spin, |↑〉 and |↓〉, are chosen as
the eigenstates of σ z and represent the excited state and the
ground state, respectively [see Fig. 1(a)]. These can be, for
example, two hyperfine levels of an atom or of an ion.

Before turning to the discussion of the reset protocols,
it is useful to first characterize the dynamical properties of
the system during its coherent evolution. Since Hamiltonian
(1) is the sum of single-body terms, we can focus on the
time evolution of single-body operators. For example, the
local excitation density at site j, defined as n j = (1 + σ z

j )/2,
evolves as nF

j (t ) = eiHjt n je−iHjt , with Hj = �σ x
j + �σ z

j and
F indicating evolution under the Hamiltonian reset-free dy-
namics. Without loss of generality, we fix the initial state to
be |↑〉N = ⊗N

i=1 |↑〉i. With this choice, one finds 〈nF
j (t )〉↑ =

1 − (�2/�
2
) sin2(�t ), where � = √

�2 + �2 is the effective
Rabi frequency and the arrow in the subscript indicates the
initial state.

The reset protocols are depicted in Figs. 1(b) and 1(c).
All have in common that the system evolves coherently with
Hamiltonian (1) in between consecutive reset events. In Pro-
tocol I, we employ stochastic resetting, i.e., the system is
reinitialized to the state |↑〉N unconditionally to any measure-
ment. In Protocols II and III, instead, the reset state is chosen
conditionally on a measurement taken right before resetting,
as pictured in Fig. 1(c). A natural choice for the quantity to
be measured is the excitation density n = (1/N )

∑N
i=1 ni. In

particular, in Protocol II, first proposed in Ref. [51], two reset
states are present, |↑〉N and |↓〉N , which correspond to the
two completely polarized states with excitation density 1 and
0, respectively. The outcome of the measurement determines
the reset state: if the measured excitation density exceeds a
certain threshold, which is fixed to be 1/2, then the system is
reset to |↑〉N ; otherwise it is reset to |↓〉N . In Protocol III, the
system is reset to |↑〉N if the measured density exceeds the
threshold. Otherwise, the coherent dynamics resumes from
the state obtained by flipping all the spins in the postmeasure-
ment configuration, as sketched in Fig. 1(c).

III. PROTOCOL I: UNCONDITIONAL RESET

In this simple case, the coherent dynamics of the system
is interrupted at random times at which the system is reset
to state |↑〉N . Resets happen at a constant rate γ . The time
τ between consecutive reset is therefore distributed accord-
ing to the Poisson waiting time distribution f (τ ) = γ e−γ τ

(see Appendix E for a different waiting time distribution).
The survival probability, i.e., the probability that no reset
happens for a time τ , is given by q(τ ) = ∫ ∞

τ
f (s)ds = e−γ τ .

This, together with the reset-free time-evolved density matrix
ρF

↑ (t ), determines the quantum state of the system ρ↑(t ) in the
presence of resetting through the last renewal equation derived
in Ref. [48],

ρ↑(t ) = e−γ tρF
↑ (t ) + γ

∫ t

0
dt ′e−γ t ′

ρF
↑ (t ′). (2)

The first term in the above equation corresponds to having no
reset up to time t . The second term accounts for realizations of
the stochastic resetting process where the last reset has been at
a previous time t − t ′ and the system has then evolved without
reset events up to time t via the Hamiltonian (1).

The average excitation density in state (2) is given by
〈n(t )〉↑ = Tr[nρ↑(t )] and its stationary value reads

〈n〉↑,ness = lim
t→∞ 〈n(t )〉↑ = 1 − 2

�2

γ 2 + 4�
2 , (3)

which is shown in Fig. 2(a). This expression smoothly varies
with �/�, contrary to what we will show for Protocols II
and III. Equation (3) is equal to 1, i.e., the excitation density
of the initial state, for � = 0 (no coupling between single
spin states), γ → ∞ (the infinitely frequent resets induce a
quantum Zeno effect [64,65] which freezes the system to its
initial state), and � → ∞ (transitions between the two spins
states are highly off-resonant). Note, finally, that the limit
γ → 0 corresponds to a stationary state with extremely rare
reset events.
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FIG. 2. Collective behavior and quantum correlations induced by reset. First row: stationary excitation density as a function of �/� for
the three protocols. (a) For Protocol I, the order parameter (excitation density) is given by Eq. (3). For Protocols (b) II and (c) III, the order
parameter displays a nonanalyticity at the critical point �c = �, which is discontinuous or continuous, respectively. For Protocol III, the order
parameter behaves as a power law when approaching the critical point from the right with an exponent close to 0.5. Second row: Connected
correlation function (in blue, left axis) and quantum discord (in red, right axis), computed from the two-spin reduced density matrix ρ jk , as a
function of �/�. In contrast to (d) Protocol I, where both quantities are continuous, (e) Protocol II leads to a discontinuity of both quantities
at the critical point �c = �. Note that the discontinuity of the quantum discord is imperceptible on the scale shown. (f) For reset Protocol III,
both the connected correlation function and the quantum discord feature power-law behavior in a right neighborhood of the critical point. The
characteristic exponent is approximately 0.5 for the connected correlation function and 0.2 for the quantum discord. The dashed parts of the
curves in all panels highlight the fact that when � < �, the three protocols become equivalent. All data are obtained analytically, except for
(c) and (f) where numerical simulations are necessary. The reset rate is chosen to be γ = �/2.

Rather surprisingly, although in each realization of the
process the system is in a product state at all times, the reset
mechanism introduces long-range correlations. This is due to
the global character of the resetting procedure: all the individ-
ual spins are reset to the same single-spin state. This becomes
evident when looking at the stationary two-spin connected
correlation function C↑

jk = [〈n jnk〉↑,ness − 〈n j〉↑,ness 〈nk〉↑,ness],
which is equal to

C↑
jk = 4�4 5γ 2 + 8�

2

(γ 2 + 4�
2
)2(γ 2 + 16�

2
)
, (4)

showing that correlations do not depend on the considered
spins. This is reminiscent of what happens in fully connected
models (see, e.g., [66] for an example in dissipative settings).
However, in our case, these correlations are strong in the
sense that they do not vanish in the thermodynamic N →
∞ limit. As such, contrary to the case of fully connected
models [67], the stationary state of our reset process is not
clustering, i.e., it does not possess Gaussian fluctuations, as
shown by the fact that the susceptibility is diverging: χ =
limN→∞ 1/N

∑N
j,k=1 C↑

jk = ∞. Note that the correlations (4)
can also be computed from suitable single-spin trajectory
correlations, following, e.g., Ref. [68]. This is, however, not
possible for Hamiltonians with interactions among the spins
or for the Protocols II and III discussed further below.

In addition to these strong classical density-density correla-
tions, the NESS, in fact, also contain correlations of quantum
origin. This aspect can be shown by computing the local
quantum uncertainty (LQU), defined in Ref. [69], which is
a type of bipartite quantum discord [70,71]. It quantifies the

extent of the fluctuations of a local measurement due to the
noncommutativity between the state and the measured lo-
cal observable. The LQU isolates the fluctuations that are
caused only by the coherence of the state and not by its
mixedness. Despite being a fairly common feature in quan-
tum states [72], quantum discord is proved to be a useful
quantity for metrology and sensing applications [73–75]. Here
we compute the LQU for the stationary two-spin reduced
density matrix ρ jk ; see Appendix C. It is given by l jk =
1 − λmax{Wjk}, where λmax{Wjk} is the largest eigenvalue of
the 3 × 3 matrix Wjk with elements (Wjk )ab = Tr[

√
ρ jk (σ a

j ⊗
1)

√
ρ jk (σ b

j ⊗ 1)], with a, b = x, y, z. As for the classical cor-
relations, the LQU also does not depend on the distance
between sites. In Fig. 2(d), we show the connected correlation
function (4) (left axis) together with the quantum discord
quantified via the LQU (right axis) for Protocol I. Both quan-
tities possess qualitatively the same shape and smoothly vary
with �/�.

IV. PROTOCOL II: CONDITIONAL RESET
TO TWO STATES

This protocol exploits two reset states: |↑〉N and |↓〉N . At
each reset event, the local density at each site is measured
and the total excitation density n is computed. The system
is reinitialized to the reset state |↑〉N if the majority of the
spins is found in the excited state, i.e., n > 1/2. On the
contrary, if n < 1/2, the reset state is chosen as |↓〉N . For
large N , the probability distribution for measuring a certain
value of n after a time t since the last reset is a Gaussian
distribution centered on the average, 〈nF (t )〉↑/↓, with variance
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σ 2
n ∝ 1/N . This means that at each reset event, the system can,

in principle, be reinitialized in both reset states, albeit with
different probabilities. This aspect, together with the fact that
the Hamiltonian dynamics of the average density satisfies the
relation 〈nF (t )〉↑ = 1 − 〈nF (t )〉↓, makes the stationary excita-
tion density exactly equal to 1/2, i.e., the average between the
density of the two reset states; see Appendix B.

A different phenomenology takes place in the thermody-
namic limit N → ∞. In this case, as a consequence of the law
of large numbers applied to the operator n, the probability dis-
tribution to measure a certain value for n becomes a δ function
peaked around the average 〈nF (t )〉↑/↓. This self-averaging
property makes the measurement of the excitation density
fully deterministic with outcome equal to its average value.
As a consequence, for � < �, given the initial condition and
the fact that 〈nF (t )〉↑ > 1/2 ∀t , the system can only be reset
to the state |↑〉N and, therefore, the average density in the
process is always larger than 1/2. For � > �, instead, both
reset states can be reached so that the stationary excitation
density is equal to 1/2; see Appendix B. The stationary ex-
citation density, acting as an order parameter, then displays
a jump discontinuity at the critical point �c = �, as shown
in Fig. 2(b). This is a consequence of an abrupt change in
the dynamics: for � > �, the system can reset to both states,
while for � < �, the dynamics is effectively that of Protocol
I, with the stationary excitation density coinciding with Eq. (3)
(see, also, Fig. 2).

As shown in Fig. 2(e), the connected correlation function
and the quantum discord display a behavior that is qual-
itatively different from that of Protocol I. They are both
discontinuous at the critical point even though the disconti-
nuity of the LQU is tiny on the scale of the figure.

V. PROTOCOL III: CONDITIONAL RESET
TO THE INITIAL STATE

In the third protocol, the system is reset to its initial state
|↑〉N only if the measured excitation density exceeds 1/2. If
not, the system resumes its dynamics from the state generated
by the projective measurement after a subsequent flip of all
its spins is performed [see Figs. 1(b) and 1(c)]. This means
that if the state after the projective measurement possesses an
excitation density equal to n′ < 1/2, the reset state will have
excitation density 1 − n′ > 1/2. This protocol is still condi-
tioned on the measured excitation density, but, in contrast to
Protocol II, any state with n > 1/2 can be considered as a
reset state according to the parameter regime. The resulting
nonequilibrium phase diagram [see Fig. 2(c)] exhibits a con-
tinuous nonanalytic behavior at the critical point �c = �.

We note that without the additional spin-flip operation, the
stationary behavior of the density would be discontinuous also
for this protocol. Indeed, when � > �, each realization of
the reset process would spend, on average, half of the time in
configurations with n smaller than 1/2 and half of the time in
configurations with n larger than 1/2. The stationary state, ob-
tained by averaging over trajectories, would therefore be very
different from the one attained when � < �, where trajec-
tories maintain a positive magnetization, n > 1/2, throughout
the whole reset process. This substantial dissimilarity between
the two regimes would result in a jump discontinuity of the

order parameter at �c. On the contrary, with the introduction
of the spin-flip operation, the order parameter is continuous,
but still nonanalytic since its first derivative has a jump discon-
tinuity at �c. This can be understood by noticing that in this
case, for � � �, each trajectory of the reset process spends
only an infinitesimal time in states with n < 1/2 since after
a reset the system restarts the dynamics from a state with
n > 1/2.

In the vicinity of �c, the order parameter displays a
power-law behavior ∼ (� − �c)β , for � → �+

c , with a static
exponent β ≈ 0.5. This seems to indicate the emergence of a
second-order phase transition in the NESS. However, looking
at the behavior of the correlation function reveals a rather
unexpected phenomenology. Indeed, in second-order phase
transitions, upon approaching the critical point, the correlation
length of the system increases, giving rise to a power-law
divergence of the susceptibility at criticality. Here, instead,
as already mentioned when discussing Protocol I, the sys-
tem features strong long-range correlations which determine
a divergence of the susceptibility parameter χ for any value
of �/� and not only at criticality. Despite this divergence,
we can still analyze the two-spin correlation function C↑

jk .
This quantity, displayed in Fig. 2(f), interestingly also obeys
a power-law behavior ∼(� − �c)β close to the critical point,
with the same static exponent β of the order parameter. Also,
the quantum discord, as measured by the LQU, follows a
power law with exponent δ ≈ 0.2.

VI. CONCLUSIONS AND OUTLOOK

We have shown that combining a noninteracting quantum
dynamics with an externally imposed reset process can lead
to surprisingly rich nonequilibrium stationary states. Even the
simplest possible protocol results in a state with nontrivial
classical and quantum correlations. More involved protocols
lead to the emergence of a phase-transition behavior in an
initially noninteracting system, which may be relevant for
the implementation of quantum sensing and metrology appli-
cations [56,76–78]. The nonanalyticities characterizing such
collective behavior emerge since the reset state is completely
determined, in the thermodynamic limit, by the average value
of the density as a consequence of the law of large numbers.
For any finite system, fluctuations in the measurement out-
comes inhibit the emergence of the observed nonanalyticities.
We have shown how this occurs in the case of a noninteract-
ing unitary dynamics. However, one would observe a similar
phenomenology in the case of Hamiltonian dynamics with
short-range interactions, for which the time evolution only
builds up exponentially decaying correlations which do not in-
validate the convergence of the operator n to its average value,
in the large-N limit. Conceptually, this mechanism underlying
collective behavior may appear simpler than the creation of
strong coherent interactions. However, one requires the ability
to rapidly read out and initialize the spin ensemble [79]. For
the results discussed in Fig. 2, we have assumed a reset rate
γ = �/2, which in some settings may be impractical (it could
be of the order of MHz for cold atoms). However, our findings
do not change qualitatively for smaller values of the reset rate.
The key quantity is indeed the ratio �/�, while the value of γ

simply provides the timescale for the approach to stationarity.
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APPENDIX A: GENERAL EXPRESSION OF THE
STATIONARY DENSITY MATRIX FOR PROTOCOL II

The resetting dynamics described in Protocols I and II
allows one to write the exact form of the stationary density
matrix ρness in terms of the waiting time distribution and the
reset-free dynamical properties of the system. In particular,
for Protocol II, the expression of the stationary density matrix
ρness has been determined in Ref. [51] and it reads

ρness = c↑
q̂

∫ ∞

0
dt ′q(t ′)ρF

↑ (t ′) + c↓
q̂

∫ ∞

0
dt ′q(t ′)ρF

↓ (t ′),

(A1)
where

c↑ = R↓↑
R↓↑ + R↑↓

, c↓ = R↑↓
R↓↑ + R↑↓

, (A2)

and

q̂ =
∫ ∞

0
dt ′q(t ′), Ri j = γ

∫ ∞

0
dt ′e−γ t ′

Pi j (t
′),

i, j = ↑,↓ . (A3)

In the previous equation, Pi j (t ) is the probability that the
system, starting its reset-free evolution from the reset state
|i〉 (|↑〉N or |↓〉N ), in the occurrence of a reset event after a
time t , is reinitialized to the reset state | j〉 (|↑〉N or |↓〉N ).
Equation (A1) expresses ρness as a statistical mixture of the
unitary time evolutions ensuing from the reset states |↑〉N

and |↓〉N . Fundamentally, both weights c↑ and c↓ couple the
Hamiltonian dynamics with the reset via Eqs. (A2) and (A3).
In particular, since the probabilities Pi j (t ) depend on �, the
weights c↑/↓ also depend on �.

In the main text and further below in Appendices B–D,
for the sake of simplicity, we consider the case of Poissonian
resetting, with survival probability q(t ) = exp(−γ t ), while
we comment in Appendix E about the non-Poissonian case.

For Protocol III, any state with excitation density n > 1/2
can be considered as a reset state. The generalization of
Eq. (A1) is therefore of no practical utility since it involves a
summation over all the reset states, whose number is exponen-
tially large in the system size. In order to obtain the stationary
values of different properties such as the excitation density,
the two-point correlation function, and the quantum discord,
in Protocol III, we shall therefore resort to Monte Carlo simu-
lations and use combinatorial properties (see Appendix D).

We finally note that the expression in Eq. (A1) does not
apply in the regime � < �, when considering the nonin-
teracting spin system in the thermodynamic limit N → ∞.
Indeed, as we discuss below, for � < �, the magnetization
of the spin ensemble can never change sign so that whether
n < 1/2 or n > 1/2 throughout the whole dynamics solely
depends on the value of n in the initial state. This implies
that the system cannot visit all the reset states, as witnessed,
for instance, by the fact that P↑↓ = P↓↑ = 0 for Protocol II
(similar relations would apply to Protocol III). As such, the
quantities c↑/↓ become, in principle, ill defined. In any case,
it is straightforward to see that starting from the state with all
spins pointing up, in the regime � < � and in the thermody-
namic limit N → ∞, the system can only reset to its initial
state. As such, in this regime, the stationary density matrix is
the one given in Eq. (A1) with c↑ = 1 and c↓ = 0. Note that
in this limit, the stationary density matrix in Eq. (A1) reduces
to the stationary limit of Eq. (2) in the main text, as expected.
This applies to both Protocol II and Protocol III.

APPENDIX B: STATISTICAL PROPERTIES
OF THE EXCITATION DENSITY IN A FINITE SYSTEM

From Appendix A, it is evident that once the probabilities
Pi j (t ) in Eq. (A3) are computed, one can then easily obtain
the stationary density matrix defined in Eq. (A1), which is
valid for Protocol II. Exploiting the fact that the spins do not
interact, it is indeed possible to compute those probabilities.
Let us therefore focus on Protocol II, where the measurement
of the excitation density n determines the reset state to choose.
In particular, if the outcome of the measurement exceeds the
threshold 1/2, the selected reset state is |↑〉N ; otherwise it is
|↓〉N . It would therefore be beneficial to have an expression
for the probability to measure a certain value of n which, at a
given time t , is above or below this threshold. To compute
this probability, it is of course sufficient to consider only
the properties of the reset-free dynamics. The fact that the
system is noninteracting reduces the computation to a simple
combinatorial problem. Since the threshold is 1/2, a sort of
majority rule applies in the sense that the threshold is ex-
ceeded whenever there are more up spins than down spins.

As an example, let us show how to compute P(N )
↑↓ (t ), which

is defined to be the probability that the system, being ini-
tialized in |↑〉N (appearing as first subscript), is found after
a time t to have an excitation density n < 1/2 (appearing as
the second subscript). In the notation of Appendix A, it would
be Pi j (t ), with i =↑ and j =↓. Following the majority rule,
this amounts to the probability of having, after a time t , more
down spins than up spins. Assuming, for simplicity, that the
total number of spins, N , is odd and denoting with p↑↓(t ) =
(�2/�

2
) sin2(�t ) the probability that a single spin, initialized

in the state |↑〉, is found after a time t in the state |↓〉,

P(N )
↑↓ (t ) =

N−1
2∑

k=0

(
N

k

)
[1 − p↑↓(t )]k[p↑↓(t )]N−k, (B1)

which takes into account all the possible spin configurations
with, at most, (N − 1)/2 spins in the excited state. By using
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the normal approximation of the binomial distribution, which is valid for large N (see, e.g., Ref. [80]),(
N

k

)
(1 − p)k pN−k � 1√

2πN p(1 − p)
exp

[
− [k − N (1 − p)]2

2N p(1 − p)

]
, (B2)

and approximating the discrete sum with an integral, Eq. (B1) gets simplified to

P(N )
↑↓ (t ) � 1√

2πN p↑↓(t )[1 − p↑↓(t )]

∫ N
2

0
dx exp

{
− [x − N (1 − p↑↓(t ))]2

2N p↑↓(t )[1 − p↑↓(t )]

}
. (B3)

We can therefore write the probability P(N )
↑↓ (t ) as a difference between two error functions as

P(N )
↑↓ (t ) = 1

2

[
erf

( −N
2 + N p↑↓(t )√

2N p↑↓(t )[1 − p↑↓(t )]

)
− erf

( −N + N p↑↓(t )√
2N p↑↓(t )[1 − p↑↓(t )]

)]
. (B4)

With the explicit expression for the probabilities Pi j (t ), of which Eq. (B4) is an example, one can obtain the stationary density
matrix (A1). Note that thanks to the fact that the single-spin transition probabilities satisfy p↑↓(t ) = p↓↑(t ),

P(N )
↑↓ (t ) = P(N )

↓↑ (t ) and P(N )
↑↑ (t ) = P(N )

↓↓ (t ), (B5)

so the symmetry in the reset-free dynamics is not restricted to the average value of the excitation density operator through
〈nF (t )〉↑ = 1 − 〈nF (t )〉↓, but it is also extended to the probabilities.

In the thermodynamic limit, Eq. (B4) can be further simplified. Indeed, for N → ∞, the second term tends to 1 because
p↑↓(t ) � 1. On the other hand, the first term tends to +1 if p↑↓(t ) > 1/2 or to −1 if p↑↓(t ) < 1/2. Note that the number 1/2
comes from the chosen threshold. As a consequence, the probability P(N )

↑↓ (t ) simply reduces to a Heaviside step function with a
time-dependent argument,

P(∞)
↑↓ (t ) = lim

N→∞
P(N )

↑↓ (t ) = 

[
p↑↓(t ) − 1

2

]
. (B6)

Importantly, this result shows that P(∞)
↑↓ (t ) can be either 1 or 0, meaning that in the thermodynamic limit, the excitation density

n = (1/N )
∑N

i=1 ni, when measured, takes deterministically a certain value, which turns out to be equal to the average value of
the single-spin excitation density. This self-averaging property shows indeed that the fluctuations of n around its average value
are suppressed, in accordance with the law of large numbers.

It is also interesting to see how the previous results change if N is assumed to be large but finite. In particular, given the large
x expansion of the error function as erfx � 1 − e−x2

/(
√

πx), Eq. (B6) gets modified by a correction of the order of e−N/
√

N as

P(N )
↑↓ (t ) �

√
2p↑↓(t )[1 − p↑↓(t )]

2
√

πN

⎛
⎜⎝e

−N
[ 1

2 −p↑↓ (t )]
2

2p↑↓ (t )[1−p↑↓ (t )]

1
2 − p↑↓(t )

− e
−N [1−p↑↓ (t )]2

2p↑↓ (t )[1−p↑↓ (t )]

1 − p↑↓(t )

⎞
⎟⎠ if p↑↓(t ) <

1

2
, (B7)

and

P(N )
↑↓ (t ) � 1 −

√
2p↑↓(t )[1 − p↑↓(t )]

2
√

πN

⎛
⎜⎝e

−N
[ 1

2 −p↑↓ (t )]
2

2p↑↓ (t )[1−p↑↓ (t )]

1
2 − p↑↓(t )

+ e
−N [1−p↑↓ (t )]2

2p↑↓ (t )[1−p↑↓ (t )]

1 − p↑↓(t )

⎞
⎟⎠ if p↑↓(t ) >

1

2
. (B8)

Note that for N → ∞, one recovers the result in Eq. (B6).
Figure 3 investigates the behavior of the order parameter

in Protocol II as a function of �/� for various numbers N of
particles. The plotted curves are obtained with Monte Carlo
simulations. In particular, we fix a large observation time
T and we simulate several realizations of the reset process
within this time interval by drawing the times between con-
secutive resets from the waiting time distribution f (τ ). The
average of the computed excitation density at time T over the
many independent realizations of the reset process gives the
numerical estimate of 〈n〉↑,ness. This procedure is repeated for
different values of �/�, leading to the result in Fig. 3. The
discontinuous nonanalytic behavior of the order parameter
occurring in Protocol II, and shown in Fig. 2(b) of the main

text, becomes a continuous crossover when N is finite. The
reason for the observed smoothening is due to the fact that
for finite N , the measurement of n is no longer deterministic
and does not coincide with its average value because of the
statistical fluctuations encoded in Eqs. (B7) and (B8). As a
consequence, even for � < �, the probability to measure
n < 1/2 is nonzero and the system can be reset to the state
|↓〉N . Because of the symmetry relation between the transition
probabilities given by Eq. (B5), both coefficients c↑ and c↓
in Eq. (A1) would be equal to 1/2, leading to a stationary
value of the excitation density, computed as Tr[nρness], equal
to 1/2 for any value of �/�. This is only partly captured in
Fig. 3 because the exponentially small correction (B7) and
(B8) to Eq. (B6) due to finite-size effects would require an
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FIG. 3. Phase diagram of the (quasi)stationary excitation density
in Protocol II in a finite system. The first-order phase transition that
takes place in the thermodynamic limit becomes a crossover in a
finite system. In this latter case, the stationary excitation density
would be a constant function equal to 1/2. Due to the exponentially
small finite-size corrections to Eq. (B6), only a (quasi)stationary state
can be obtained numerically, which displays the expected plateau
up to a certain value of �/�. The plots are obtained numerically
averaging over 10 000 trajectories of the reset process. The reset rate
is γ = �/2 and the observation time is T = 2000 in units of 1/�.
The dashed line, valid in the thermodynamic limit, is Eq. (3) of the
main text.

exponentially long simulation to make this effect visible. In
other words, obtaining numerically the stationary state for
finite N becomes challenging because an exponentially large
value of T is needed. Nevertheless, for small values of N ,
the aforementioned correction becomes larger, making the
predicted plateau more visible as the crossover tends to take
place at smaller values of �/�. However, since these long
timescales are hardly reached in current experiments due to
dissipative and incoherent effects, the curves of Fig. 3 resem-
ble what can be realistically observed in the laboratory.

A change from the continuous nonanalytic behavior to
a smooth crossover is also expected to happen in Protocol
III, although the stationary excitation density would not be
equal to 1/2, but would remain a decreasing function of �/�

because all the possible reset states possess a positive mag-
netization (n > 1/2) and the reasoning that makes use of the
symmetric relation (B5) cannot be exploited.

APPENDIX C: COMPUTATION
OF THE QUANTUM DISCORD

In the main text, we compute the quantum discord of the
stationary two-spin reduced density matrix, defined as

ρ jk = lim
t→∞ ρ jk (t ), (C1)

where ρ jk (t ) is the two-spin reduced density matrix at time t .
In Protocol I, it is possible to explicitly compute ρ jk (t ) which,
from Eq. (2) of the main text, is given by

ρ jk (t ) = e−γ tρF
jk,↑(t ) + γ

∫ t

0
dt ′e−γ t ′

ρF
jk,↑(t ′), (C2)

where ρF
jk,↑(t ) = ρF

j,↑(t ) ⊗ ρF
k,↑(t ) = (e−iHjt |↑〉 j 〈↑| j eiHjt ) ⊗

(e−iHkt |↑〉k 〈↑|k eiHkt ), with Hj = �σ x
j + �σ z

j . The stationary
reduced density matrix is therefore obtained by taking the

infinite time limit,

ρ jk = γ

∫ ∞

0
dt ′e−γ t ′

ρF
jk,↑(t ′), (C3)

which suppresses the first term of Eq. (C2). In Protocol II,
instead, ρ jk has two different expressions for � < � and
� > �. In particular, as also mentioned in the main text about
the observable n, when � < �, its expression is the same of
Eq. (C3) due to the equivalence between the two protocols.
When � > �, instead, ρ jk takes its most general form from
Eq. (A1) and is given by two contributions, referring to the
reset-free evolution from the two reset states, weighted by the
coefficients c↑ and c↓ as [51]

ρ jk = γ

[
c↑

∫ ∞

0
dt ′e−γ t ′

ρF
jk,↑(t ′) + c↓

∫ ∞

0
dt ′e−γ t ′

ρF
jk,↓(t ′)

]
.

(C4)
Because of the symmetric relation 〈n(t )〉↑ = 1 − 〈n(t )〉↓, one
has from Eq. (B5) that c↑ and c↓ in Eq. (A1) simplify as c↑ =
c↓ = 1/2. This implies that the two contributions are equally
weighted. This is also the reason why, for � > �, 〈n〉↑,ness =
1/2, as explained in Appendix B.

The reduced density matrices in Eqs. (C3) and (C4) are
used to compute the quantum discord for Protocol I (and Pro-
tocol II for � < �) and Protocol II (only for � > �), respec-
tively. As mentioned in the main text, the quantum discord is
quantified via the LQU, which is defined according to Ref.
[69] as l jk = 1 − λmax{Wjk}, where λmax{Wjk} is the largest
eigenvalue of the 3 × 3 matrix Wjk with elements (Wjk )ab =
Tr[

√
ρ jk (σ a

j ⊗ 1)
√

ρ jk (σ b
j ⊗ 1)], with a, b = x, y, z.

APPENDIX D: COMPUTATION OF THE CONNECTED
CORRELATION FUNCTION

In the main text, we also compute the connected correlation
function between spins at sites j and k. Its stationary value is
defined as

C↑
jk = 〈n jnk〉↑,ness − 〈n j〉↑,ness 〈nk〉↑,ness . (D1)

For Protocols I and II when � < �, its value is given by
Eq. (4) of the main text. For Protocol II when � > �, its
expression can also be exactly computed using the stationary
density matrix (C4) and is given by

C↑
jk = 1

4
− 2�2 γ 2 − 12�2 + 16�

2

γ 4 + 20γ 2�
2 + 64�

4 . (D2)

This function is plotted in Fig. 2(e) of the main text.
As mentioned in Appendix A, for Protocol III, we resort to

numerical Monte Carlo simulations to efficiently compute the
connected correlation function and the quantum discord. We
adopt the same numerical procedure described in Appendix B
by simulating 80 000 independent realizations of the reset
process up to the observation time T = 30 (in units of 1/�).
The average over the reset realizations of the connected cor-
relation function at time T is plotted, as a function of �/�, in
Fig. 2(f) of the main text. Note that contrary to what has been
previously observed for the estimate of 〈n〉↑,ness, now there
is no need for a very large value of T because the simula-
tions are done in the thermodynamic limit and, therefore, one
does not need a long time to reach the stationary state. What
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is needed is just the dynamics of 〈nF
j (t )nF

k (t )〉 between two
consecutive resets. In Protocol III, every state with positive
magnetization (n > 1/2) can be considered as a reset state.
Therefore, we need an expression for the reset-free dynamics
of the two-point correlation function for any possible initial
state with n0 > 1/2. The dynamics of the order parameter is
readily obtained as

〈nF (t )〉n0
= n0 〈nF (t )〉↑ + (1 − n0) 〈nF (t )〉↓ (D3)

because N0 = Nn0 spins evolve starting from the |↑〉 state and
the remaining N − N0 from the |↓〉 state. For the two-point
correlation function, the computation is slightly more compli-
cated because, given an initial state with excitation density n0,
both spins at sites j and k can be initialized to |↑〉 or |↓〉, so
four different combinations are possible. Moreover, although
the probability that a single spin is initialized to |↑〉 is exactly
n0, an analog reasoning cannot naively be applied for two
spins because the event that one spin is in the excited state
is clearly not independent from the state of the other spin. As
a consequence, one has to follow another procedure through
direct counting. In particular, since the spin pair at sites j
and k can be initialized in four possible ways, given an initial
state with excitation density n0, the dynamics of the two-point
correlation function until the next reset event is given by〈
nF

j (t )nF
k (t )

〉
n0

= c↑↑ 〈n j (t )F nk (t )F 〉↑↑ + c↑↓ 〈n j (t )F nk (t )F 〉↑↓

+ c↓↑ 〈n j (t )F nk (t )F 〉↓↑

+ c↓↓ 〈n j (t )F nk (t )F 〉↓↓ , (D4)

where the coefficients cab are the probabilities to find the
spin at site j initialized in the state |a〉 and the spin at site k
initialized in the state |b〉, given that the system has excitation
density n0. In order to compute these probabilities, let us first
count the number of possible spin configurations which give
a total excitation density equal to n0 = N0/N . This is given
by

(N
N0

)
. The number of configurations in which both spins at

sites j and k are in the excited state is obtained by counting
the possible ways to arrange the remaining N0 − 2 up spins
among the remaining N − 2 sites. Since this number is simply
given by

(N−2
N0−2

)
, the first coefficient entering Eq. (D4) reads

c↑↑ =
(

N − 2

N0 − 2

)/(
N

N0

)
= N0(N0 − 1)

N (N − 1)
. (D5)

Analogously, the other coefficients are given by

c↑↓ =
(

N − 2

N0 − 1

)/(
N

N0

)
= N0(N − N0)

N (N − 1)
,

c↓↑ = c↑↓,

c↓↓ =
(

N − 2

N0

)/(
N

N0

)
= (N − N0)(N − N0 − 1)

N (N − 1)
.

(D6)

One can check that the coefficients normalize to 1, i.e.,
c↑↑ + c↑↓ + c↓↑ + c↓↓ = 1. By taking the thermodynamic
limit N → ∞, their dependence on N disappears and they

reduce to

c↑↑ = n2
0,

c↑↓ = c↓↑ = n0(1 − n0), (D7)

c↓↓ = (1 − n0)2,

showing that the thermodynamic limit eliminates the statisti-
cal dependence between the state of the spin at site j and the
one of the spin at site k. One can then easily obtain the dynam-
ics of the correlation function by inserting these coefficients
in Eq. (D4) and exploiting the factorization 〈nF

j (t )nF
k (t )〉 =

〈nF
j (t )〉 〈nF

k (t )〉 as a result of the fact that the spins do not inter-
act. The quantum discord, plotted in Fig. 2(f) of the main text
as a function of �/�, is obtained numerically in an analogous
way by simulating 20 000 independent realizations of the reset
process up to the observation time T = 30 (in units of 1/�).
Specifically, one needs the dynamics ρF

jk (t )n0 of the two-spin
reduced density matrix between two consecutive resets. The
dynamics ρF

jk (t )n0 is then written analogously as in Eq. (D4)
in terms of the reset-free dynamics ρF

jk (t )ab, where the spins j
and k are initialized in the state |a〉 and |b〉, respectively. The
coefficients cab of the four terms in the sum are again given in
Eq. (D7).

APPENDIX E: NON-POISSONIAN RESETTING

In the main text and in the previous sections, we focus
on the Poissonian resetting, where the waiting time distri-
bution is an exponential function. To account for the finite
coherence time attained in cold-atom systems, a more suitable
waiting time distribution would, however, be of the form of a
“chopped exponential” [51],

f (t ) = γ

1 − e−γ tmax
e−γ t (tmax − t ), (E1)

where tmax is the maximum reset time. The survival probabil-
ity then reads

q(t ) = e−γ t − e−γ tmax

1 − e−γ tmax
(tmax − t ). (E2)

The non-Poissonian case of Eqs. (E1) and (E2) does not bear
any additional conceptual difficulty with respect to the Pois-
sonian one and it can be analyzed along the same lines using
Eq. (A1) [which is indeed valid for an arbitrary waiting time
distribution f (t ) and survival probability q(t )]. For Protocol I,
the stationary density matrix ρness is obtained from the limit-
ing form of Eq. (A1) with c↑ = 1 and c↓ = 0, as explained in
Appendix A.

The results remain qualitatively the same as in the Pois-
sonian case, with the appearance of a discontinuous and a
continuous nonanalytic behavior of the order parameter at
the same critical point �c = � in Protocols II and III, re-
spectively. This is, in particular, true as long as tmax is large
enough compared to �−1 to allow for the magnetization to
change sign in the regime � > �. If this is not the case,
then all the protocols reduce to Protocol I. The properties of
the correlation function and the quantum discord also remain
unchanged. As an example, here we report the expression of
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the stationary excitation density 〈n〉↑,ness for � < � as

〈n〉↑,ness = 1 − �2

2�
2
(γ 2 + 4�

2
)

{
4�

2 − γ 2

eγ tmax − 1 − γ tmax

[
2 sin2(�tmax) − γ

�
sin(�tmax) cos(�tmax) + γ tmax

]}
, (E3)

which reduces to Eq. (3) of the main text for tmax → ∞.
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