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In this paper, we consider the orthogonal product set (OPS) with strong quantum nonlocality in multipartite
quantum systems. Based on the decomposition of plane geometry, we present a sufficient condition for the
triviality of orthogonality-preserving positive operator-valued measures on fixed subsystem and partially answer
an open question given by Yuan et al. [Phys. Rev. A 102, 042228 (2020)]. The connection between the
nonlocality and the plane structure of OPSs is established. We successfully construct a strongly nonlocal OPS in
CdA ⊗ CdB ⊗ CdC (dA, dB, dC � 4), which contains fewer quantum states, and generalize the structures of known
OPSs to any possible three and four-partite systems. In addition, we propose several entanglement-assisted
protocols for perfectly local discrimination of the sets. It is shown that the protocols without teleportation use
less entanglement resources that on average and these sets can always be discriminated locally with multiple
copies of two-qubit maximally entangled states. These results also exhibit nontrivial signification of maximally
entangled states in the local discrimination of quantum states.
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I. INTRODUCTION

Quantum nonlocality, as one fundamental property and the
most celebrated manifestations of quantum mechanics, arises
from entangled states. Quantum entanglement has received
extensive attention, and many results have been obtained
[1–3]. Since entangled pure states violate Bell-type inequali-
ties, they are nonlocal [4–11]. However, in 1999, Bennett et al.
[12] proposed complete orthogonal product bases with nonlo-
cality, i.e., each of which cannot be reliably discriminated by
local operations and classical communication (LOCC) while
it can only be identified by a global measurement. It means
that nonlocal properties are no longer restricted only to entan-
gled systems. Later, this phenomenon, quantum nonlocality
without entanglement, has aroused wide research attention
[13–21]. Zhang et al. [14] gave a class of nonlocal orthogo-
nal product bases in the quantum system of Cd ⊗ Cd , where
d is odd. Wang et al. [15] obtained a small set with only
3(m + n) − 9 orthogonal product states in an arbitrary bipar-
tite quantum system Cm ⊗ Cn and proved that these states are
LOCC indistinguishable. Xu et al. [18] presented a locally
indistinguishable set of multipartite orthogonal product states
of size 2n, which can be projected to the quantum system
⊗n

i=1C2 in essence. Jiang et al. [21] proposed a simple method
to construct a nonlocal set of orthogonal product states in a
⊗n

i=1Cdi (n � 3, di � 2) quantum system. It is also shown that
local indistinguishability is a crucial primitive for quantum
data hiding [22–24] and quantum secret sharing [25–30].

*gaoting@hebtu.edu.cn
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Recently, the concept of quantum nonlocality without en-
tanglement was further developed [31–41]. Halder et al. [31]
presented a stronger manifestation of this kind of nonlocality
in multiparty systems. Specifically, an orthogonal product set
(OPS) on ⊗n

i=1Cdi (n � 3, di � 3) is defined to be strongly
nonlocal if it is locally irreducible in every bipartition. The
local irreducibility means that it is not possible to eliminate
one or more states from the set by orthogonality-preserving
local measurements [31]. Immediately, Zhang et al. [32] gave
a more general definition of strong quantum nonlocality for
multipartite quantum states, where the set is strongly nonlocal
if it is locally irreducible in every (n − 1) partition. Naturally,
the set of orthogonal quantum states which is locally irre-
ducible in every bipartition is the strongest manifestation of
nonlocality.

It is well known that entanglement is a very valuable re-
source which allows remote parties to communicate [42,43],
as in teleportation [44–46]. In fact, the set of orthogonal
quantum states with quantum nonlocality can always be
perfectly discriminated by sharing additional entangled re-
sources among the parties [33,47–52]. Most generally, by
using enough entanglement resource, we can teleport the
full multipartite states to one of the parties by LOCC, then
these states can be determined by performing suitable mea-
surement. In 2008, Cohen [48] proposed protocols using
entanglement more efficiently than teleportation to distin-
guish certain classes of unextendible product bases (UPBs),
where less entanglement was consumed in comparison with
the teleportation-based method. Rout et al. [33] studied
local state discrimination protocols with Einstein-Podolsky-
Rosen (EPR) states and Greenberger-Horne-Zeilinger (GHZ)
states. Zhang et al. [50,52] presented several protocols
to locally distinguish particular UPBs by using different

2469-9926/2022/106(5)/052209(17) 052209-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6290-7885
https://orcid.org/0000-0003-1486-9535
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.052209&domain=pdf&date_stamp=2022-11-15
https://doi.org/10.1103/PhysRevA.102.042228
https://doi.org/10.1103/PhysRevA.106.052209


HUAQI ZHOU, TING GAO, AND FENGLI YAN PHYSICAL REVIEW A 106, 052209 (2022)

entanglement resources and proved that some sets can
also be locally distinguished with multiple copies of EPR
states.

In this paper, we investigate OPSs with strong nonlocal-
ity. In Sec. II, we introduce some notations and required
preliminary concepts and results. In Sec. III, we study the
sufficient condition for local irreducibility of OPSs and
illustrate the smallest size of OPS under some specific con-
straints. Next, in Sec. IV, we generalize the structure of given
sets to higher dimension systems and construct a smaller
OPS with the strongest quantum nonlocality in CdA ⊗ CdB ⊗
CdC (dA, dB, dC � 4). Furthermore, we also investigate local
distinguishability of our OPSs by using different entangle-
ment resources in Sec. V. Finally, we conclude with a brief
summary in Sec. VI.

II. PRELIMINARIES

In this section, we introduce some definitions and notations
needed in the rest of the paper.

Definition 1 [53]. A measurement is trivial if all the positive
operator-valued measure (POVM) elements are proportional
to the identity operator. Otherwise, the measurement is non-
trivial.

In an n-partite system, a set {|ϕ〉} of orthogonal states is
locally irreducible if the orthogonality-preserving POVM [31]
on any party can only be trivial. The inverse does not hold
in general. Let X1 = {2, 3, . . . , n}, X2 = {3, . . . , n, 1}, X3 =
{4, . . . , n, 1, 2}, . . . , Xn = {1, 2, . . . , n − 1}.

Lemma 1 [36]. If Xi party can only perform a trivial
orthogonality-preserving POVM for all 1 � i � n, then the set
{|ϕ〉} is of the strongest nonlocality [32].

Let the d × d matrix E = (ai j )i, j∈Zd be the matrix rep-
resentation of the operator E = M†M in the basis B =
{|0〉, . . . , |d − 1〉}. Define

SET =
∑
|i〉∈S

∑
| j〉∈T

ai j |i〉〈 j|, (1)

where S and T are two nonempty subsets of B. Especially,
T ET is represented by ET . Let {|ψi〉}s−1

i=0 and {|φ j〉}t−1
j=0 be two

orthogonal sets spanned by S and T , respectively, where s =
|S| and t = |T |.

Lemma 2 [36]. If subsets S and T are disjoint and
〈ψi|E |φ j〉 = 0 for any i ∈ Zs, j ∈ Zt , then SET = 0 and
T ES = 0.

Lemma 3 [36]. Suppose that 〈ψi|E |ψ j〉 = 0 for any i �=
j ∈ Zs. If there exists a state |i0〉 ∈ S such that {|i0〉}ES\{|i0〉} =
0 and 〈i0|ψ j〉 �= 0 for any j ∈ Zs, then ES ∝ Is, i.e., ES is
proportional to the identity matrix.

Consider an n-partite quantum system H = ⊗n
i=1Cdi .

The computational basis of the whole quantum system
is denoted by B = {|i〉}d1d2···dn−1

i=0 = {⊗n
k=1|ik〉 | ik = 0, 1, . . . ,

dk − 1} = B{1} ⊗ B{2} ⊗ · · · ⊗ B{n}, where B{k} = {|ik〉}dk−1
ik=0 is

the computational basis of the kth subsystem. Let

Br = B{1}
r ⊗ B{2}

r ⊗ · · · ⊗ B{n}
r (2)

be a subset of basis B with B{i}
r ⊂ B{i}. Suppose that Br (1 �

r � q) are disjoint subsets of B, then, there is a class of OPSs

S = ∪r∈QSr, Q = {1, 2, . . . , q} (3)

2S
3S

4S

1S

     
A

B

FIG. 1. The plane structure of OPS given by Eq. (5) in bipartition.

in H, where Sr expresses the orthogonal product basis of the
subspace spanned by Br , and each component of the vector in
Sr is nonzero under the computational basis Br , that is, each
vector |φ〉r in Sr has the following form:

|φ〉r =
⎛⎝ ∑

| j1〉∈B{1}
r

a(1)
j1

| j1〉
⎞⎠ ⊗ · · · ⊗

⎛⎝ ∑
| jn〉∈B{n}

r

a(n)
jn

| jn〉
⎞⎠, (4)

with nonzero complex numbers a(k)
jk

for k = 1, 2, . . . , n. If the
set S is invariant under cyclic permutation of all subsystems,
then we call it symmetric.

A plane structure of the set S refers to a two-dimensional
grid diagram and each subset Sr corresponds to a domain in
the diagram.

Example 1. In C3 ⊗ C3, let

S1 = |0〉|0 ± 1〉, S2 = |1 ± 2〉|0〉,
S3 = |2〉|1 ± 2〉, S4 = |0 ± 1〉|2〉 (5)

be the plane structure of the OPS [12]. S = ∪4
i=1Si is depicted

in Fig. 1. The four dominos in this geometry structure repre-
sent the four subsets S1, S2, S3, and S4, respectively.

To facilitate the establishment of the connection
between the nonlocality and the plane structure of the
given set S, some symbols are introduced. Given a subset
X of {1, 2, . . . , n} and its complement Y = X̄ , we use
BX = {|i〉X }dX −1

i=0 with dX = ∏
j∈X d j to represent the

computation basis of the Hilbert space HX = ⊗ j∈XCd j

corresponding to the X party and analogously BY = {|i〉Y }dY −1
i=0

corresponding to the Y party. Under the basis B, the
projection set of Sr on the τ (τ = X,Y ) party is expressed as
S(τ )

r = {Trτ̄ (|i〉〈i|) | |i〉 ∈ B and 〈i|φr〉 �= 0 for any |φr〉∈ Sr}.
Naturally, the projection set S(τ )

r is a subset of
basis Bτ . For a fixed i ∈ ZdX , let BX

i := {|k〉X }dX −1
k=i ,

Vi := {⋃v S(Y )
v | |i〉X ∈ S(X )

v }, and S̃Vi := {⋃ j S(X )
j | S(Y )

j ∩
Vi �= ∅}.

Example 2. Consider the OPS given by Eq. (5). X and Y
represent B and A, respectively. Observe its plane structure
shown in Fig. 1, the projection set of a subset on the B (or A)
party is actually the coordinate of the corresponding grid on
the B (or A) party. We have

S(B)
1 = {|0〉B, |1〉B}, S(B)

2 = {|0〉B},
S(B)

3 = {|1〉B, |2〉B}, S(B)
4 = {|2〉B}, (6)
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and

S(A)
1 = {|0〉A}, S(A)

2 = {|1〉A, |2〉A},
S(A)

3 = {|2〉A}, S(A)
4 = {|0〉A, |1〉A}. (7)

For all i ∈ Z3, BB
i is a subset of basis BB and BB

0 is equal
to BB. It is easy to know that

BB
0 = {|0〉B, |1〉B, |2〉B},

BB
1 = {|1〉B, |2〉B},

BB
2 = {|2〉B}.

Since Vi expresses the union of the projection sets S(A)
v of

Sv on the A party, where all corresponding projection sets S(B)
v

of Sv on the B party contain quantum state |i〉B, then there are

V0 = S(A)
1 ∪ S(A)

2 = {|0〉A, |1〉A, |2〉A},
V1 = S(A)

1 ∪ S(A)
3 = {|0〉A, |2〉A},

V2 = S(A)
3 ∪ S(A)

4 = {|0〉A, |1〉A, |2〉A}.
Note that each projection set S(A)

j contains a quantum state in

Vi, S̃Vi is the union of all the projection sets S(B)
j of S j on the B

party. That is,

S̃V0 = S̃V1 = S̃V2 = ∪4
j=1S(B)

j = {|0〉B, |1〉B, |2〉B}.
Definition 2. A family of projection sets {S(τ )

r }r∈Q is
connected if it cannot be divided into two groups of sets
{S(τ )

k }k∈T (T � Q) and {S(τ )
l }l∈Q\T such that(⋃

k∈T

S(τ )
k

)⋂ ( ⋃
l∈Q\T

S(τ )
l

)
= ∅. (8)

Definition 3. Rr = ⋃
k∈T Sk (r /∈ T ⊂ Q) is called the pro-

jection inclusion (PI) set of Sr on the X party if the projection
sets satisfy

⋂
k∈T S(Y )

k �= ∅ and S(X )
r ⊂ ⋃

k∈T S(X )
k . Specifically,

Rr is called a more useful projection inclusion (UPI) set if
there exists a subset Sk ⊂ Rr such that |S(X )

r

⋂
S(X )

k | = 1.
From the definition, both the PI set and the UPI set of a

subset Sr of an OPS S may not be unique. By observing the
plane tile as shown in Fig. 1, it is easy to know that both S1 and
S1 ∪ S4 are PI sets of S2 in (5) on the B party, and S2 ∪ S3 is
the PI set of S1 on the B party. Due to |S(B)

1 ∩ S(B)
2 | = 1, these

PI sets are also UPI sets.
For the set S in (3), we construct a set sequence

G1, G2, . . . , Gs. The set G1 denoted as ∪r1∈T1 Sr1 is the union
of all subsets Sr1 that have UPI sets. The remaining sets
G2, . . . , Gs are expressed by ∪r2∈T2 Sr2 , . . . ,∪rs∈Ts Srs , respec-
tively. Moreover, this sequence also satisfies the following two
conditions:

(1) The sets Gx are pairwise disjoint and the union of all
sets is S.

(2) For any Srx+1 ⊂ Gx+1 (x = 1, . . . , s − 1), there is al-
ways a subset Srx ⊂ Gx such that S(X )

rx
∩ S(X )

rx+1
�= ∅.

Note that such a set sequence G1, G2, . . . , Gs satisfying
(1) and (2) above does not necessarily exist. In addition, we
call Srx an included (IC) subset about set Gx (x = 1, . . . , s), if
there is a subset Sr′

x
⊂ Gx such that S(X )

rx
� S(X )

r′
x

. Otherwise, it
is called a nonincluded (NIC) subset.

Example 3. We consider the OPS in (5), where each subset
has a corresponding UPI set

R1 = S2 ∪ S3, R2 = S1, R3 = S1 ∪ S4, R4 = S3.

(9)
So, there is only one set in its set sequence, which happens to
be this OPS. That is, G1 = ∪4

i=1Si.

III. THE SUFFICIENT CONDITION FOR THE TRIVIALITY
OF ORTHOGONALITY-PRESERVING POVM AND THE

SMALLEST SIZE OF OPS UNDER SOME CONSTRAINTS

It is an important way to illustrate the irreducibility of
OPS by proving that the orthogonality-preserving POVM on
the subsystems can only be trivial [21,31,32,34,36,40]. Here,
we present a sufficient condition for orthogonality-preserving
POVM being trivial. On a plane structure, the condition is
efficient for constructing an OPS with strong nonlocality and
demonstrating the irreducibility of the given OPS.

Theorem 1. For the given set S in (3), any orthogonality-
preserving POVM performed on the X party can only be
trivial if the following conditions are satisfied:

(i) There is an inclusion relationship BX
i ⊂ S̃Vi for any i ∈

ZdX −1.
(ii) For any subset Sr , there exists a corresponding PI set

Rr on the X party.
(iii) There is a set sequence G1, . . . , Gs satisfying (1) and

(2). Moreover, for each NIC subset Srx+1 ⊂ Gx+1, there exist
a subset Srx ⊂ Gx and a subset Sr′

x+1
⊂ Rrx+1 such that S(X )

rx
∩

S(X )
rx+1

⊃ S(X )
rx+1

∩ S(X )
r′

x+1
with x = 1, 2, . . . , s − 1.

(iv) The family of sets {S(X )
r }r∈Q is connected.

Proof. Let {E} be an any orthogonality-preserving POVM
performed on X . Without loss of generality, we assume

E =

⎛⎜⎜⎝
a00 a01 · · · a0(dX −1)

a10 a11 · · · a1(dX −1)
...

...
. . .

...

a(dX −1)0 a(dX −1)1 · · · a(dX −1)(dX −1)

⎞⎟⎟⎠, (10)

in the computation basis BX . Because the postmeasurement
states should be mutually orthogonal, for any two states
|ψ1〉X |φ1〉Y and |ψ2〉X |φ2〉Y in S, we have X 〈ψ1|Y 〈φ1|E ⊗
I|ψ2〉X |φ2〉Y = 0. If 〈φ1|φ2〉Y �= 0, then X 〈ψ1|E |ψ2〉X = 0.

Let Sτ
r = {Trτ̄ (|φr〉〈φr |) | |φr〉 ∈ Sr} (τ = X,Y ) express

the set of reduced density matrices. For any two different sub-
sets Sq1 and Sq2 , if S(Y )

q1
∩ S(Y )

q2
�= ∅, then S(X )

q1
∩ S(X )

q2
= ∅ and

there always exists two states |φq1〉Y ∈ SY
q1

and |φq2〉Y ∈ SY
q2

such that 〈φq1 |φq2〉Y �= 0. Due to the orthogonality-preserving
property, we obtain X 〈ψq1 |E |ψq2〉X = 0 for all |ψq1〉X ∈
SX

q1
and |ψq2〉X ∈ SX

q2
. According to Lemma 2, we deduce

S(X )
q1

ES(X )
q2

= 0. Using this result, we can prove that E ∝ I by
the following four steps. Here, Figs. 2–5 depict the process of
proving.

Step 1. When i = 0, we know V0 = {∪vS(Y )
v | |0〉X ∈ S(X )

v }.
For each | j〉Y ∈ V0, let {S js} js∈Qj (Qj ⊂ Q) represent the all
subsets whose projection sets on party Y contain the state
| j〉Y . Suppose S j1 is the subset such that |0〉X ∈ S(X )

j1
, then

one has S(X )
j1

ES(X )
js

= 0 for any s (s �= 1). By the definition

and condition (i), it is easy to derive ∪ j,sS
(X )
js

= S̃V0 = BX
0 =
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FIG. 2. In step 1, taking i = 0 as an example, we show that all
the elements of E in the first row and in the first column except EV̂0

are zero.

{|i〉X }dX −1
i=0 . Thus, we get a0k0 = ak00 = 0 for |k0〉X /∈ V̂0, where

V̂0 = {∪vS(X )
v | |0〉X ∈ S(X )

v }. See Fig. 2.
Similarly, when i = 1, . . . , dX − 2, we obtain aiki = akii =

0 for |ki〉X /∈ V̂i and ki > i. Here V̂i = {∪vS(X )
v | |i〉X ∈ S(X )

v }.
Step 2. According to the condition (ii), for each r ∈ Q,

there exists a PI set Rr = ⋃
t∈Tr

St (r /∈ Tr ⊂ Q) of Sr on party

X , where
⋂

t∈Tr
S(Y )

t �= ∅ and S(X )
r ⊂ ⋃

t∈Tr
S(X )

t . For any two
different indexes t1 and t2 in Tr , it is not difficult to deduce that
akl = alk = 0 with |k〉X ∈ S(X )

t1 ∩ S(X )
r and |l〉X ∈ S(X )

t2 ∩ S(X )
r

for k �= l .
Step 3. For any subset Sr1 in G1, the corresponding set Rr1

is the UPI set. From Definition 3, there is a subset Sr′
1
⊂ Rr1

such that |S(X )
r1

∩ S(X )
r′

1
| = 1. It is a special case in step 2. Let

|k〉X be the only element of S(X )
r1

∩ S(X )
r′

1
, then akl = 0 for all

|l〉X ∈ S(X )
r1

\ {|k〉X }. Since each component of the vector in Sr1

is nonzero under the computation basis Br1 from (4), it is easy
to know 〈k|ψ〉X �= 0 for any |ψ〉X ∈ SX

r1
. According to Lemma

3, we deduce Er1 = ES(X )
r1

∝ I.
By condition (iii), for each NIC subset Sr2 ⊂ G2, there

exist a subset Sr1 ⊂ G1 and a subset Sr′
2
⊂ Rr2 such that S(X )

r1
∩

S(X )
r2

⊃ S(X )
r2

∩ S(X )
r′

2
. Then akl = 0 for |k〉X , |l〉X ∈ S(X )

r2
∩ S(X )

r′
2

and k �= l . Combining this with the step 2 produces akl = 0
for |k〉X ∈ S(X )

r2
∩ S(X )

r′
2

, |l〉X ∈ S(X )
r2

and k �= l . It follows from
Lemma 3 that Er2 = ES(X )

r2
∝ I. For each IC subset Sr′′

2
, there is

always a corresponding NIC subset Sr2 that satisfies the inclu-
sion relationship S(X )

r′′
2

� S(X )
r2

, which implies Er′′
2

= ES(X )
r′′2

∝ I.

Similarly, Er ∝ I for each r. That is, there is a positive real
number br such that Er = brI. See also Fig. 3.

FIG. 3. In steps 2 and 3, it is proved that the operator Er = ES(X )
r

corresponding to subset Sr is proportional to the unit operator for all
r ∈ Q.

FIG. 4. Consider the operator EV̂0
. Because each Ev ∝ I, only

element a00 in the first row is nonzero. We can get the similar result
for other V̂i (i = 1, . . . , dX − 2). Therefore, we deduce that the off-
diagonal elements of E are all zero.

Step 4. Consider the set V̂0 = {∪vS(X )
v | |0〉X ∈ S(X )

v } of step
1. Due to each Ev ∝ I, we have a0k0 = 0 for |k0〉X ∈ V̂0 and
k0 �= 0. Combining this with the step 1 produces a0k0 = 0 for
all k0 > 0. We can obtain the similar result for other V̂i (i =
1, . . . , dX − 2). So, we deduce that the off-diagonal elements
of E are all zero. It is shown in Fig. 4. In addition, for any
x, y ∈ Q, if S(X )

x ∩ S(X )
y �= ∅, then bx = by. The condition (iv)

indicates that the family of sets {S(X )
r }r∈Q is connected. This

means that these scalars br are all equal. Therefore, the POVM
element can only be proportional to the unit operator I. See
also Fig. 5. �

Corollary 1. If the conditions (i)–(iv) in Theorem 1 are sat-
isfied for X = X1, X2, . . . , Xn with Xj = {1, 2, . . . , j − 1, j +
1, . . . , n}, then the set (3) is an OPS of the strongest quantum
nonlocality.

Note that it is obvious that Er ∝ I for each r ∈ Q, if the
set G1 is equal to the set S. That is, when the set sequence has
only one set G1, we still say that the condition (iii) is valid.
Next we provide an example to show the application of this
theorem on plane structure.

Example 4. We revisit the quantum nonlocality of the fol-
lowing OPS [34] in C3 ⊗ C3 ⊗ C3:

S1 = {|0〉|1〉|0 ± 1〉}, S7 = {|0〉|2〉|0 ± 2〉},
S2 = {|1〉|0 ± 1〉|0〉}, S8 = {|2〉|0 ± 2〉|0〉},
S3 = {|0 ± 1〉|0〉|1〉}, S9 = {|0 ± 2〉|0〉|2〉},

FIG. 5. It follows from condition (iv) that the scalars br are all
equal. Then the diagonal entries of the POVM element E are all
equal; that is, E = a00I for some positive real number a00, where
I is the identity matrix.
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2 8S 5S 9S 10S 5S 10S 8S 12S

1 2S

3S
11S 2S

6S
4S 11S

0 9S 1S 7S 12S 7S

00 01 02 10 11 12 20 21 22

FIG. 6. The corresponding 3 × 9 grid of {Sr}12
r=1 given by

Eq. (11) in A|BC bipartition.

S4 = {|1〉|2〉|0 ± 1〉}, S10 = {|2〉|1〉|0 ± 2〉},
S5 = {|2〉|0 ± 1〉|1〉}, S11 = {|1〉|0 ± 2〉|2〉},
S6 = {|0 ± 1〉|1〉|2〉}, S12 = {|0 ± 2〉|2〉|1〉}. (11)

Due to Lemma 1 and the symmetry of the OPS given
by Eq. (11), we only need to consider the orthogonality-
preserving POVM performed on party BC. Figure 6 is the
plane structure of OPS in the A|BC bipartition. By observing
this tile graph, we can easily obtain the four conditions in
Theorem 1.

First, the projection set ∪rS(ABC)
r differs from the compu-

tation basis B only by states |000〉, |111〉, and |222〉. It is
obvious that S̃Vi j = BBC for i, j ∈ Z3. Here BBC is the com-
putation basis on subsystem BC. Naturally, BBC

i j ⊂ S̃Vi j . The
condition (i) holds.

Second, for each subset Sr , we have the corresponding
PI sets R1 = S5 ∪ S10, R2 = S8 ∪ S10, R3 = S5, R4 = S8 ∪ S12,
R5 = S1 ∪ S3, R6 = S10, R7 = S4 ∪ S11, R8 = S2 ∪ S4, R9 =
S11, R10 = S2 ∪ S6, R11 = S7 ∪ S9, and R12 = S4. The condi-
tion (ii) is demonstrated.

Furthermore, for any two subsets Sx and Sy, we have
|S(BC)

x ∩ S(BC)
y | � 1. So, each Rr is an UPI set, i.e., G1 is the

union of all subsets. It is obvious that condition (iii) holds.
Finally, we find a sequence of projection sets (S(BC)

5 ,

S(BC)
10 ) → S(BC)

1 → S(BC)
2 → S(BC)

8 → S(BC)
4 → S(BC)

7 → S(BC)
11 .

In this sequence, the intersection of the sets on both sides
of the arrow is not empty and the union of these sets is the
computation basis BBC . So, it is impossible to divide all
projection sets into disjoint two groups of projection sets.
That is, the family of projection sets {S(BC)

r }12
r=1 is connected.

The condition (iv) is satisfied.
According to Theorem 1, we deduce the POVM performed

on party BC can only be trivial. Therefore, the OPS given by
Eq. (11) is of the strongest quantum nonlocality.

For the same set as stated in Theorem 1, we have the
following corollary:

Corollary 2. If any orthogonality-preserving POVM ele-
ment performed on party X can only be proportional to the
identity operator, then the set ∪r∈QS(X )

r is the basis BX and the
family of projection sets {S(X )

r }r∈Q is connected.
By using Corollary 2, in systems C3 ⊗ C3 ⊗ C3 and C4 ⊗

C4 ⊗ C4, we can discuss the minimum size of the OPS given
by Eq. (3) under the specific restrictions. Let N express the
maximum size of all subsets, i.e., N = maxr |Sr |. We have the
following two theorems:

Theorem 2. In C3 ⊗ C3 ⊗ C3, for the set S (3), if the
set S is symmetric and any orthogonality-preserving POVM
performed on party BC can only be trivial, then the set S is an
OPS of the strongest nonlocality. The smallest size of this set
is 24.

Theorem 3. In C4 ⊗ C4 ⊗ C4, for the set S in (3), if S is sym-
metric with N = 2 and any orthogonality-preserving POVM
element performed on party BC can only be proportional to
identity, then the set S is an OPS of the strongest nonlocality.
The smallest size of this set S is 48.

The detailed proofs are given in Appendixes A and B,
respectively. Theorems 2 and 3 show the minimum sizes of
two kinds of OPSs with strong nonlocality, respectively. They
are partial answers to the open question in Ref. [34], “Can we
find the smallest strongly nonlocal set in C3 ⊗ C3 ⊗ C3, and
more generally in any tripartite systems?”

IV. OPS WITH THE STRONGEST QUANTUM
NONLOCaLITY IN CdA ⊗ CdB ⊗ CdC AND

CdA ⊗ CdB ⊗ CdC ⊗ CdD

From Theorem 1, we know that the nonlocality of OPS is
closely related to its plane structure. In this section, we pro-
vide several strongly nonlocal OPSs in three- and four-partite
systems.

By extending the dimension of the grid in Fig. 6, we can
generalize the structure of the set (11) to any finite dimension.
The OPS in CdA ⊗ CdB ⊗ CdC is described as

H1 = {|0〉A|ξi〉B|η j〉C}i, j,

H2 = {|ξi〉A|η j〉B|0〉C}i, j,

H3 = {|η j〉A|0〉B|ξi〉C}i, j,

H4 = {|ξi〉A|d ′
B〉B|η j〉C}i, j,

H5 = {|d ′
A〉A|η j〉B|ξi〉C}i, j,

H6 = {|η j〉A|ξi〉B|d ′
C〉C}i, j,

H7 = {|0〉A|d ′
B〉B|0 ± d ′

C〉C},
H8 = {|d ′

A〉A|0 ± d ′
B〉B|0〉C},

H9 = {|0 ± d ′
A〉A|0〉B|d ′

C〉C},
H10 = {|d ′

A〉A|ξi〉B|0 ± d ′
C〉C}i,

H11 = {|ξi〉A|0 ± d ′
B〉B|d ′

C〉C}i,

H12 = {|0 ± d ′
A〉A|d ′

B〉B|ξi〉C}i, (12)

where |ξi〉τ = ∑dτ −3
u=0 ωiu

dτ −2|u + 1〉, |η j〉τ = ∑dτ −2
u=0 ω

ju
dτ −1|u〉,

d ′
τ = dτ − 1 for i ∈ Zdτ −2, j ∈ Zdτ −1, and τ ∈ {A, B,C}. Here

and below we use the notation ωn := e
2π i
n for any positive

integer n. Figure 7 is a geometric representation of this OPS
in the A|BC bipartition. We explain the strong nonlocality of
the OPS (12) in the following theorem:

Theorem 4. In CdA ⊗ CdB ⊗ CdC , the set ∪12
i=1Hi given by

Eq. (12) is an OPS of the strongest nonlocality. The size of
this set is 2[(dAdB + dBdC + dAdC ) − 2(dA + dB + dC ) + 3].

Proof. We only need to discuss the orthogonality-
preserving POVM performed on party BC. The tile structure
is depicted in Fig. 7. Because the set ∪12

i=1Hi has the same
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FIG. 7. The corresponding dA × dBdC grid of {Hi}12
i=1 given by

Eq. (12) in the A|BC bipartition.

structure as the set ∪12
i=1Si given by Eq. (11), the conditions

(i), (ii), and (iv) of Theorem 1 are obvious. Here R1 = H5 ∪
H10, R2 = H8 ∪ H10, R3 = H5, R4 = H8 ∪ H12, R5 = H1 ∪ H3,
R6 = H10, R7 = H4 ∪ H11, R8 = H2 ∪ H4, R9 = H11, R10 =
H2 ∪ H6, R11 = H7 ∪ H9, and R12 = H4. Now consider the
condition (iii).

It is not difficult to show that the set sequence

G1 = H2 ∪ H4 ∪ H7 ∪ H8 ∪ H9 ∪ H11,

G2 = H1 ∪ H10 ∪ H12,

G3 = H5 ∪ H6,

G4 = H3

satisfies (1) and (2). Here each subset contained in Gx (x =
2, 3, 4) is a NIC subset. For H1 ⊂ G2, we find that there are
H2 ⊂ G1 and H10 ⊂ R1 such that H (BC)

1 ∩ H (BC)
2 = H (BC)

1 ∩
H (BC)

10 . For the subsets H10, H12, H5, H6, and H3, there are H2 =
G1 ∩ R10, H4 = G1 ∩ R12, H1 = G2 ∩ R5, H10 = G2 ∩ R6, and
H5 = G3 ∩ R3, respectively. It follows that the condition (iii)
in Theorem 1 holds.

According to Theorem 1, the orthogonality-preserving
POVM performed on party BC can only be trivial. There-
fore, the set ∪12

i=1Hi given by Eq. (12) is of the strongest
nonlocality. �

Applying Theorem 1, we propose a strongly nonlocal OPS
in C4 ⊗ C4 ⊗ C4. The newly constructed OPS contains fewer
quantum states than in Refs. [34,36]. The specific OPS is
given by

S11 = {|0〉|1〉|2 ± 3〉}, S51 = {|1〉|3〉|2 ± 3〉},
S12 = {|1〉|2 ± 3〉|0〉}, S52 = {|3〉|2 ± 3〉|1〉},
S13 = {|2 ± 3〉|0〉|1〉}, S53 = {|2 ± 3〉|1〉|3〉},
S21 = {|0〉|2〉|1 ± 2〉}, S61 = {|2〉|3〉|1 ± 2〉},
S22 = {|2〉|1 ± 2〉|0〉}, S62 = {|3〉|1 ± 2〉|2〉},
S23 = {|1 ± 2〉|0〉|2〉}, S63 = {|1 ± 2〉|2〉|3〉},
S31 = {|0〉|3〉|0 ± 2〉}, S71 = {|3〉|0〉|2 ± 3〉},
S32 = {|3〉|0 ± 2〉|0〉}, S72 = {|0〉|2 ± 3〉|3〉},
S33 = {|0 ± 2〉|0〉|3〉}, S73 = {|2 ± 3〉|3〉|0〉},
S41 = {|1〉|0〉|0 ± 1〉}, S81 = {|3〉|1〉|0 ± 1〉},
S42 = {|0〉|0 ± 1〉|1〉}, S82 = {|1〉|0 ± 1〉|3〉},
S43 = {|0 ± 1〉|1〉|0〉}, S83 = {|0 ± 1〉|3〉|1〉}. (13)

3 32S
13S

71S 81S 62S
53S

32S 52S 62S
73S

52S

2
23S

33S 22S 22S
63S

61S

1 41S 82S
43S

82S 12S 12S
83S

51S

0 42S 33S 42S 11S 21S 72S 31S 31S 72S

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

FIG. 8. The corresponding 4 × 16 grid of {Si j} given by Eq. (13)
in A|BC bipartition.

A geometric representation of this OPS in A|BC bipartition is
depicted in Fig. 8.

Theorem 5. In C4 ⊗ C4 ⊗ C4, the set ∪8
i=1(∪3

j=1Si j ) given
by Eq. (13) is of the strongest nonlocality. The size of this set
is 48.

The detailed proof is shown in Appendix C. Up to now,
we have constructed a strongly nonlocal OPS containing 48
states in C4 ⊗ C4 ⊗ C4, which is six and eight fewer than states
presented in Refs. [34] and [36], respectively.

Next, we generalize the structures of OPSs given by
Eq. (13) and Ref. [34] to systems CdA ⊗ CdB ⊗ CdC and CdA ⊗
CdB ⊗ CdC ⊗ CdD , respectively.

In quantum system CdA ⊗ CdB ⊗ CdC (dA, dB, dC � 4), con-
sider the following OPS:

H11 = {|0〉A|1〉B

∣∣αl
3

〉
C

}
l
,

H12 = {|1〉A

∣∣αl
3

〉
B|0〉C

}
l
,

H13 = {∣∣αl
3

〉
A|0〉B|1〉C

}
l
,

H21 = {|0〉A|αi〉B

∣∣αk
1

〉
C

}
i,k

,

H22 = {|αi〉A

∣∣αk
1

〉
B|0〉C

}
i,k

,

H23 = {∣∣αk
1

〉
A|0〉B|αi〉C

}
i,k

,

H31 = {|0〉A|d ′
B〉B

∣∣α j
0

〉
C

}
j
,

H32 = {|d ′
A〉A

∣∣α j
0

〉
B|0〉C

}
j
,

H33 = {∣∣α j
0

〉
A|0〉B|d ′

C〉C
}

j
,

H41 = {|1〉A|0〉B|0 ± 1〉C},
H42 = {|0〉A|0 ± 1〉B|1〉C},
H43 = {|0 ± 1〉A|1〉B|0〉C},
H51 = {|1〉A|d ′

B〉B

∣∣αl
3

〉
C

}
l ,

H52 = {|d ′
A〉A

∣∣αl
3

〉
B
|1〉C

}
l
,

H53 = {∣∣αl
3

〉
A|1〉B|d ′

C〉C
}

l ,

H61 = {|αi〉A|d ′
B〉B

∣∣αk
1

〉
C

}
i,k,

H62 = {|d ′
A〉A

∣∣αk
1

〉
B|αi〉C

}
i,k,

H63 = {∣∣αk
1

〉
A
|αi〉B|d ′

C〉C
}

i,k
,

H71 = {|d ′
A〉A|0〉B

∣∣αl
3

〉
C

}
l ,

H72 = {|0〉A

∣∣αl
3

〉
B|d ′

C〉C
}

l ,

H73 = {∣∣αl
3

〉
A|d ′

B〉B|0〉C
}

l
,
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H81 = {|d ′
A〉A|1〉B|0 ± 1〉C},

H82 = {|1〉A|0 ± 1〉B|d ′
C〉C},

H83 = {|0 ± 1〉A|d ′
B〉B|1〉C}. (14)

Here |αi〉τ = ∑dτ −4
u=0 ωiu

dτ −3|u + 2〉, |α j
0〉τ = |0〉 + ∑dτ −3

u=1

ω
ju
dτ −2|u + 1〉, |αk

1〉τ = ∑dτ −3
u=0 ωku

dτ −2|u + 1〉, |αl
3〉τ = ∑dτ −3

u=0

ωlu
dτ −2|u + 2〉, d ′

τ = dτ − 1 for i ∈ Zdτ −3, j, k, l ∈ Zdτ −2, and
τ = A, B,C. Since the above OPS has the same structure as
the set (13), we find that it is strongly nonlocal.

Theorem 6. In CdA ⊗ CdB ⊗ CdC , the set ∪8
i=1(∪3

j=1Hi j )
given by Eq. (14) is an OPS of the strongest nonlocality.
The size of this set is 2[(dAdB + dBdC + dAdC ) − 3(dA + dB +
dC ) + 12].

The detailed proof is in Appendix D. In Cd ⊗ Cd ⊗ Cd ,
the size 6[(d − 1)2 − d + 3] of the strongly nonlocal OPS
of Theorem 4 is strictly fewer, 6(d − 3) fewer to be pre-
cise, than the size 6(d − 1)2 of the strongly nonlocal OPS
in Ref. [34]. Similarly, we propose the following OPS in
CdA ⊗ CdB ⊗ CdC ⊗ CdD :

U11 = {|0〉A|ξi〉B|η j〉C |0 ± d ′
D〉D}i, j,

U12 = {|ξi〉A|η j〉B|0 ± d ′
C〉C |0〉D}i, j,

U13 = {|η j〉A|0 ± d ′
B〉B|0〉C |ξi〉D}i, j,

U14 = {|0 ± d ′
A〉A|0〉B|ξi〉C |η j〉D}i, j,

U21 = {|ξi〉A|d ′
B〉B|γk〉C |η j〉D}i, j,k,

U22 = {|d ′
A〉A|γk〉B|η j〉C |ξi〉D}i, j,k,

U23 = {|γk〉A|η j〉B|ξi〉C |d ′
D〉D}i, j,k,

U24 = {|η j〉A|ξi〉B|d ′
C〉C |γk〉D}i, j,k,

U31 = {|d ′
A〉A|0〉B|0 ± d ′

C〉C |γk〉D}k,

U32 = {|0〉A|0 ± d ′
B〉B|γk〉C |d ′

D〉D}k,

U33 = {|0 ± d ′
A〉A|γk〉B|d ′

C〉C |0〉D}k,

U34 = {|γk〉A|d ′
B〉B|0〉C |0 ± d ′

D〉D}k,

U41 = {|ξi〉A|ξi〉B|0〉C |γk〉D}i|A,i|B,k,

U42 = {|ξi〉A|0〉B|γk〉C |ξi〉D}i|A,i|D,k,

U43 = {|0〉A|γk〉B|ξi〉C |ξi〉D}i|C ,i|D,k,

U44 = {|γk〉A|ξi〉B|ξi〉C |0〉D}i|B,i|C ,k,

U51 = {|d ′
A〉A|d ′

B〉B|ξi〉C |0 ± d ′
D〉D}i,

U52 = {|d ′
A〉A|ξi〉B|0 ± d ′

C〉C |d ′
D〉D}i,

U53 = {|ξi〉A|0 ± d ′
B〉B|d ′

C〉C |d ′
D〉D}i,

U54 = {|0 ± d ′
A〉A|d ′

B〉B|d ′
C〉C |ξi〉D}i,

U61 = {|0〉A|0〉B|d ′
C〉C |η j〉D} j,

U62 = {|0〉A|d ′
B〉B|η j〉C |0〉D} j,

U63 = {|d ′
A〉A|η j〉B|0〉C |0〉D} j,

U64 = {|η j〉A|0〉B|0〉C |d ′
D〉D} j,

U71 = {|0〉A|ξi〉B|0〉C |ξi〉D}i|B,i|D ,

U72 = {|ξi〉A|0〉B|ξi〉C |0〉D}i|A,i|C ,

U81 = {|0〉A|d ′
B〉B|0〉C |d ′

D〉D},
U82 = {|d ′

A〉A|0〉B|d ′
C〉C |0〉D},

U91 = {|ξi〉A|d ′
B〉B|ξi〉C |d ′

D〉D}i|A,i|C ,

U92 = {|d ′
A〉A|ξi〉B|d ′

C〉C |ξi〉D}i|B,i|D , (15)

where |ξi〉τ = ∑dτ −3
u=0 ωiu

dτ −2|u + 1〉, |η j〉τ = ∑dτ −2
u=0 ω

ju
dτ −1|u〉,

|γk〉τ = ∑dτ −2
u=0 ωku

dτ −1|u + 1〉, d ′
τ = dτ − 1 for i ∈ Zdτ −2,

j, k ∈ Zdτ −1, and τ = A, B,C, D.
Theorem 7. In the system CdA ⊗ CdB ⊗ CdC ⊗ CdD , the set

{∪6
i=1(∪4

j=1Ui j )} ∪ {∪9
i=7(∪2

j=1Ui j )} given by Eq. (15) is an
OPS of the strongest nonlocality. The size of this set is
dAdBdCdD − (dA − 2)(dB − 2)(dC − 2)(dD − 2) − 2.

The detailed proof is shown in Appendix E. It is worth
noting that the set (15) is still of the strongest nonlocality
even though it contains fewer quantum states than the set in
Ref. [34]. Moreover, its size is smaller than that of the strongly
nonlocal OPS in Ref. [36].

Each of Theorems 2–7 gives a positive answer to one
open problem in Ref. [31] of “whether incomplete orthogonal
product bases can be strongly nonlocal.”

V. ENTANGLEMENT-ASSISTED DISCRIMINATION

The above OPSs cannot be distinguished under LOCC
even if any n − 1 parties are allowed to come together. How-
ever, it is possible while one equips enough entanglement
resource. Let |φ+(d )〉 denote the maximally entangled state

1√
d

∑d−1
i=0 |ii〉 in Cd ⊗ Cd . Let (s, |φ+(d )〉AB) express a re-

source configuration, which means that on average an amount
s of the two-qudit maximally entangled state is consumed
between Alice and Bob. In this section, we present sev-
eral different entanglement-assisted discrimination protocols.
Without loss of generality, from now, we only consider the
case dA � dB � dC � dD.

Theorem 8. The entanglement resource configuration
{(1, |φ+(2)〉AB); (1, |φ+(dC )〉BC )} is sufficient for local dis-
crimination of the set (12).

The detailed process is provided in Appendix F. In this
protocol, we use quantum teleportation one time and consume
(1 + log2 dC )-ebit entanglement resources in total. It is strictly
less than the amount consumed in the protocol which tele-
ports all subsystems to one party. Next, we discuss the local
discrimination of OPS (12) without teleportation.

Theorem 9. When all the parties are separated, the set
∪12

i=1Hi given by Eq. (12) can be locally distinguished by using
the entanglement resource {(s, |φ+(2)〉AB); (1, |φ+(2)〉AC )},
where s = 1 + e−3 f +6

2e−4 f +6 for e = dAdB + dAdC + dBdC and f =
dA + dB + dC .

The specific process is given in Appendix G. The en-
tanglement consumed in this protocol is (1 + s) ebits, due
to s < 1.5 < log2 dC , which is less than the resources used
in Theorem 8. Since the set (13) is a special case of (14)
and they have the same structure, we only need to consider
the entanglement-assisted discrimination protocols for the
set (14).
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Theorem 10. The set ∪8
i=1(∪3

j=1Hi j ) given by Eq. (14) can
be locally distinguished by using the entanglement resource
configuration {(1, |φ+(2)〉AB); (1, |φ+(dC )〉BC )}.

Theorem 11. The set ∪8
i=1(∪3

j=1Hi j ) given by Eq. (14) can
be locally distinguished by using the entanglement resource
configuration {(1, |φ+(4)〉AB); (1, |φ+(2)〉AC )}.

The detailed proofs of Theorems 10 and 11 are given in
Appendixes H and I, respectively. The protocol in Theorem 10
uses teleportation while the protocol in Theorem 11 does not.
Clearly, 1 + log2 dC ebits of entanglement are consumed in
the previous protocol, which is not less than the amount used
of three ebits in the latter protocol because dC � 4. In other
words, the latter resource configuration is more effective when
the smallest dimension dC is greater than four. Next, by the
method presented by Zhang et al. in Ref. [52], using multiple
copies of EPR states instead of high-dimensional entangled
states, we can get a new resource configuration.

Theorem 12. The entanglement resource configuration
{(2, |φ+(2)〉AB); (1, |φ+(2)〉AC )} is sufficient for local discrim-
ination of the set ∪8

i=1(∪3
j=1Hi j ) given by Eq. (14).

In fact, using two EPR states has the same effect as using
one maximally entangled state |φ+(4)〉AB. In the ancillary
system of one party, |00〉, |01〉, |10〉, and |11〉 can correspond
to |0〉, |1〉, |2〉, and |3〉, respectively. For the detailed procedure
please refer to Appendix J. This also shows that, in the similar
discrimination protocol, we can replace a maximally entan-
gled state |φ+(d )〉 with n EPR states when 2n � d . Although
more resources may be used, the method should be relatively
easier to implement in a real experiment because it only
requires a device which can produce two-qubit maximally
entangled states. Besides, we also get several entanglement
resource configurations to discriminate the set (15) by LOCC.

Theorem 13. The entanglement resource configuration
{(1, |φ+(3)〉AB); (1, |φ+(dC )〉BC ); (1, |φ+(dD)〉BD)} is suffi-
cient for local discrimination of the set {∪6

i=1(∪4
j=1Ui j )} ∪

{∪9
i=7(∪2

j=1Ui j )} given by Eq. (15).
The protocol of Theorem 13 is given in Appendix K.
Theorem 14. Any one of the resource configurations

{(1, |φ+(3)〉AB); (1, |φ+(3)〉AC ); (1, |φ+(3)〉AD)} and {(2, |φ+
(2)〉AB); (2, |φ+(2)〉AC ); (2, |φ+(2)〉AD)} is sufficient for local
discrimination of the set (15).

We will not repeat the protocol of Theorem 14, because
it is similar to that of Theorems 11 and 12. In Theorem
13, we perform quantum teleportation twice and consume
log2 3dCdD ebits of entanglement resource. In comparison, the
first configuration of Theorem 14 is more effective because
log2 27 � log2 3dCdD, and the second configuration is simpler
because it only needs multiple EPR states.

VI. CONCLUSION

We have investigated the OPS with strong quantum
nonlocality in multipartite quantum systems through the de-
composition of plane geometry. Sufficient conditions for the
triviality of orthogonality-preserving POVM on fixed sub-
system are presented. We have shown the minimum size of
strongly nonlocal OPSs under some restrictions in C3 ⊗ C3 ⊗
C3 and C4 ⊗ C4 ⊗ C4, which partially answer the open ques-
tion in Ref. [34], “Can we find the smallest strongly nonlocal

set in C3 ⊗ C3 ⊗ C3, and more generally in any tripartite sys-
tems?” Furthermore, we successfully constructed a smaller
OPS which has the strongest nonlocality in CdA ⊗ CdB ⊗
CdC (dA, dB, dC � 4) and generalized the previous known
structures of strongly nonlocal OPSs to any possible three
and four-partite systems. Interestingly, we studied local dis-
crimination protocols for our OPSs with different types of
entangled resources. Among them, we have three protocols
which only need multiple copies of EPR states. We found that
the protocols without teleportation can be more efficient on
average. More than that, our results could also be helpful in
better understanding of the properties of maximally entangled
states.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants No. 12071110 and No.
62271189, the Hebei Natural Science Foundation of China
under Grant No. A2020205014, the Science and Technology
Project of Hebei Education Department under Grants No.
ZD2020167 and No. ZD2021066, and funded by School of
Mathematical Sciences of Hebei Normal University under
Grant No. 2021sxbs002.

APPENDIX A: PROOF OF THEOREM 2

According to Corollary 2, we know the union ∪rS(BC)
r of

all projection sets is the basis BBC and the family of projection
sets {S(BC)

r }r is connected.
When N = 1, it is obvious that the set S is locally

distinguishable. When N = 2, due to the symmetry, there
is the collection {St1 , St2 , St3} including six quantum states,
which satisfies |St1 | = |St2 | = |St3 | = 2, |S(BC)

t1 | = |S(BC)
t2 | = 2,

and |S(BC)
t3 | = 1. Moreover, the collection is invariant under the

cyclic permutation of the parties. According to the complete-
ness and connectedness of projection sets, the set S contains
at least eight subsets whose projection sets on party BC have
two elements. That is, we have no less than four disjoint
collections with above form. In other words, when N = 2, the
size of set S cannot be less than 24.

The case N = 3 does not exist. If N = 3, then there must
be a subset satisfying |S(A)

t | = 3 and |S(BC)
t | = 1. Meanwhile,

S(A)
t = BA. We have S(BC)

t ∩ (∪t ′∈Q\{t}S
(BC)
t ′ ) = ∅. Hence, the

family of projection sets {S(BC)
r }r is unconnected, which is a

contradiction. Similarly, the cases N = 6, 9 do not exist.
In the case N = 4, because of symmetry, there is a col-

lection {Su1 , Su2 , Su3} containing 12 quantum states, which is
symmetric and satisfies |Su1 | = |Su2 | = |Su3 | = 4, |S(BC)

u1
| = 4

and |S(BC)
u2

| = |S(BC)
u3

| = 2. Similarly, due to the completeness
and connectedness of projection sets, there are at least one
other subset whose projection set on party BC has four el-
ements or three additional subsets whose projection sets on
party BC have two elements. In either case, it means that the
size of set S is not less than 24.

It is obvious that |Sr | �= 5, 7 for any r ∈ Q. If there is a
subset such that |Sr | = 8, then for arbitrary cyclic permutation
Pc of subsystems, the two subspaces spanned by Sr and Pc(Sr ),
respectively, are not orthogonal. It follows that there must be
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TABLE I. Corresponding PI set Ri j for each subset Si j .

Subset PI set Subset PI set

S11 R11 = S53 ∪ S62 S51 R51 = S31 ∪ S72

S12 R12 = S32 ∪ S73 S52 R52 = S21 ∪ S83

S13 R13 = S41 S53 R53 = S11

S21 R21 = S52 ∪ S62 S61 R61 = S51 ∪ S83

S22 R22 = S32 ∪ S81 S62 R62 = S11 ∪ S21

S23 R23 = S71 S63 R63 = S72

S31 R31 = S12 ∪ S51 S71 R71 = S23 ∪ S82

S32 R32 = S12 ∪ S41 S72 R72 = S51 ∪ S63

S33 R33 = S82 S73 R73 = S12

S41 R41 = S13 ∪ S32 S81 R81 = S42 ∪ S43

S42 R42 = S13 ∪ S81 S82 R82 = S11 ∪ S33

S43 R43 = S81 S83 R83 = S61

two nonorthogonal quantum states, one of which belongs to
Sr and the other of which belongs to Pc(Sr ). This contradicts
the fact Pc(Sr ) ⊂ S. Consequently, the cases N = 5, 7, 8 do
not hold.

On the other hand, the strongly nonlocal OPS given by
Eq. (11) satisfies all conditions and contains 24 quantum
states. Thus, in C3 ⊗ C3 ⊗ C3, the minimum size of the set S
is 24. The proof is completed. �

APPENDIX B: PROOF OF THEOREM 3

Because the set is symmetric and the maximum size of all
subsets is two, there is a collection {St1 , St2 , St3} containing six
quantum states. It satisfies the same requirements as the proof
of Theorem 2. Due to the completeness and connectedness of
projection sets, there are at least 15 subsets whose projection
sets on party BC have size two. So, we have no less than
eight disjoint collections, each of which contains six quantum
states. That is, the set S contains at least 48 quantum states.
On the other side, we find the OPS given by Eq. (13) satisfies
all conditions and the size is 48. Therefore, the minimum size
of set S is 48. �

APPENDIX C: PROOF OF THEOREM 5

According to Lemma 1 and the invariance of the set
(13) under cyclic permutations, we only need to discuss the
orthogonal-preserving measurement on party BC. The tile
structure is illustrated in Fig. 8. It is obvious that S̃Vkl = BBC

for all k, l ∈ Z4, which implies that BBC
kl ⊂ S̃Vkl . Hence the

condition (i) holds.
For each subset Si j , there is the corresponding PI set Ri j ,

which is shown in Table I. It follows that the condition (ii) is
satisfied.

Since |S(BC)
i j ∩ S(BC)

kl | � 1 for any two subsets Si j and Skl ,
each Ri j is a UPI set. Therefore G1 is the union of all subsets.
Thus, the condition (iii) is true.

In addition, we have a sequence of projection sets
S(BC)

41 → S(BC)
42 → S(BC)

81 → S(BC)
22 → S(BC)

12 → S(BC)
31 → S(BC)

51

(→ S(BC)
72 ) → S(BC)

61 → S(BC)
52 → S(BC)

21 → S(BC)
62 → S(BC)

11 →
S(BC)

82 → S(BC)
71 , where the intersection of the sets on both

sides of the arrow is not empty and the union of these sets is
the computation basis BBC . Here the set S(BC)

72 in the bracket

FIG. 9. The corresponding 3 × 27 grid of {Ui j} given by Eq. (15)
in A|BCD bipartition.

is only related to the previous set S(BC)
51 . This means that it

is impossible to divide all projection sets into disjoint two
groups. That is, the family of projection sets {S(BC)

i j }i j is
connected. The condition (iv) holds.

By using Theorem 1, the orthogonality-preserving POVM
performed on party BC can only be trivial. Therefore, the OPS
(13) is of the strongest quantum nonlocality. �

APPENDIX D: PROOF OF THEOREM 6

We need only to consider the orthogonality-preserving
POVM on party BC. Because the set (14) has the same struc-
ture as the set (13), the conditions (i), (ii), and (iv) are obvious.
Consider the set sequence

G1 = H11 ∪ H12 ∪ H13 ∪ H22 ∪ H31 ∪ H32 ∪ H33

∪ H41 ∪ H42 ∪ H43 ∪ H51 ∪ H52 ∪ H53 ∪ H61

∪ H71 ∪ H72 ∪ H73 ∪ H81 ∪ H82 ∪ H83,

G2 = H21 ∪ H23 ∪ H62 ∪ H63. (D1)

Here each subset contained in G2 is a NIC subset. Referring
to Table I, we can get the PI set Ri j of Hi j on party BC.
More specifically, Hi j is substituted for Si j in Table I, one
gets the PI set Ri j of Hi j on party BC. For the subsets H21,
H23, H62, and H63, there are H52 = G1 ∩ R21, H71 = G1 ∩ R23,
H11 = G1 ∩ R62, and H72 = G1 ∩ R63, respectively. It implies
that condition (iii) holds.

The set (14) satisfies the four conditions in Theorem 1,
therefore it is locally irreducible in every bipartition. That is,
the OPS (14) is a set of the strongest nonlocality. �

APPENDIX E: PROOF OF THEOREM 7

We need to prove that the orthogonality-preserving POVM
performed on party BCD can only be trivial. To see this,
we prove that the OPS (15) satisfies the four conditions in
Theorem 1.

Figure 9 is the tile structure of this OPS. Note that S̃Vjkl =
BBCD for any j, k, l ∈ Z3. It is obvious BBCD

jkl ⊂ S̃Vjkl . The
condition (i) holds.

For each subset Ui j , there is the corresponding PI set Ri j ,
which is shown in Table II. Hence, the condition (ii) holds.

Furthermore, we construct the set sequence

G1 = U12 ∪ U21 ∪ U31 ∪ U33 ∪ U34 ∪ U61

∪ U62 ∪ U64 ∪ U81 ∪ U82,

G2 = U11 ∪ U13 ∪ U42 ∪ U51 ∪ U54 ∪ U63,

G3 = U14 ∪ U22 ∪ U23 ∪ U32 ∪ U41 ∪ U44

∪ U52 ∪ U91,

G4 = U24 ∪ U43 ∪ U53 ∪ U71 ∪ U72,

G5 = U92. (E1)
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TABLE II. Corresponding PI set Ri j for each subset Ui j .

Subset PI set Subset PI set

U11 R11 = U12 ∪ U23 ∪ U41 ∪ U44 U44 R44 = U11

U12 R12 = U33 ∪ U63 ∪ U82 U51 R51 = U32 ∪ U62

U13 R13 = U22 ∪ U31 U52 R52 = U11 ∪ U24

U14 R14 = U42 ∪ U72 U53 R53 = U32

U21 R21 = U22 ∪ U33 ∪ U51 ∪ U54 U54 R54 = U21

U22 R22 = U13 ∪ U43 ∪ U71 U61 R61 = U12 ∪ U42

U23 R23 = U11 ∪ U32 U62 R62 = U34 ∪ U51

U24 R24 = U52 ∪ U92 U63 R63 = U12

U31 R31 = U13 ∪ U42 ∪ U53 ∪ U64 U64 R64 = U31

U32 R32 = U23 ∪ U53 ∪ U91 U71 R71 = U41

U33 R33 = U12 ∪ U21 U72 R72 = U14

U34 R34 = U62 ∪ U81 U81 R81 = U34

U41 R41 = U11 ∪ U71 U82 R82 = U12

U42 R42 = U14 ∪ U61 U91 R91 = U51

U43 R43 = U22 U92 R92 = U24

For the subset U32 ⊂ G3, there are subsets U51 ⊂ G2 and
U91 ⊂ R32 such that U (BCD)

32 ∩ U (BCD)
51 = U (BCD)

32 ∩ U (BCD)
91 . For

any other subset Ut ⊂ Gx (x = 2, . . . , 5), the intersection of
set Gx−1 and PI set Rt is exhibited in Table III. This shows
that the condition (iii) is true.

We find the tree sequence of projection sets
U (BCD)

12 →U (BCD)
61 ( →U (BCD)

42 →U (BCD)
14 ) →U (BCD)

31 →U (BCD)
32

→U (BCD)
51 ( →U (BCD)

62 →U (BCD)
34 ) →U (BCD)

21 →U (BCD)
22 →

U (BCD)
41 ( →U (BCD)

11 ) →U (BCD)
52 →U (BCD)

24 , where the subseq-
uence in parentheses is a branch of the previous adjacent set.
In this sequence, the intersection of the sets on both sides
of the arrow is nonempty and the union of all these sets is
the computation basis BBCD. This means that the family of
projection sets {U (BCD)

i j }i j is connected. The condition (iv) is
proven.

Therefore, one can only perform a trivial orthogonality-
preserving POVM on the BCD party. Combining Lemma 1
with the symmetry of (15) ensures that the OPS (15) is of the
strongest quantum nonlocality. �

TABLE III. The intersection of set Gx−1 and PI set Rt about
subset Ut ⊂ Gx (x = 2, . . . , 5).

Subset Intersection Subset Intersection

U11 ⊂ G2 U12 = G1 ∩ R11 U44 ⊂ G3 U11 = G2 ∩ R44

U13 ⊂ G2 U31 = G1 ∩ R13 U52 ⊂ G3 U11 = G2 ∩ R52

U42 ⊂ G2 U61 = G1 ∩ R42 U91 ⊂ G3 U51 = G2 ∩ R91

U51 ⊂ G2 U62 = G1 ∩ R51 U24 ⊂ G4 U52 = G3 ∩ R24

U54 ⊂ G2 U21 = G1 ∩ R54 U43 ⊂ G4 U22 = G3 ∩ R43

U63 ⊂ G2 U12 = G1 ∩ R63 U53 ⊂ G4 U32 = G3 ∩ R53

U14 ⊂ G3 U42 = G2 ∩ R14 U71 ⊂ G4 U41 = G3 ∩ R71

U22 ⊂ G3 U13 = G2 ∩ R22 U72 ⊂ G4 U14 = G3 ∩ R72

U23 ⊂ G3 U11 = G2 ∩ R23 U92 ⊂ G5 U24 = G4 ∩ R92

U41 ⊂ G3 U11 = G2 ∩ R41

FIG. 10. While Alice and Bob share the EPR state |φ+(2)〉ab, the
initial state given by Eq. (F1) can be expressed by the corresponding
2dA × 2dBdC grid. The area covered with light gray represents the
measurement effect M11 in step 1.

APPENDIX F: PROOF OF THEOREM 8

Suppose that the whole quantum system is shared among
Alice, Bob, and Charlie. By taking advantage of entangled
resource |φ+(dC )〉, Charlie first teleports the state in his sub-
system C to Bob. Let the subindex B̃ represent the joint part
of B and C. Whereafter, to locally discriminate the states in
(12), the EPR state |φ+(2)〉ab is shared by Alice and Bob. The
initial state is

|ψ〉AB̃ ⊗ |φ+(2)〉ab, (F1)

where |ψ〉AB̃ is one of the states from the set (12), a and b
are ancillary systems of Alice and Bob, respectively. Because
each subset Hr (r ∈ Q) is LOCC distinguishable, one only
needs to locally distinguish these subsets. Now the discrim-
ination protocol proceeds as follows:

Step 1. Alice performs the measurement:

M1 ≡ {M11 := P[(|0〉, . . . , |d ′
A − 1〉)A; |0〉a]+P[|d ′

A〉A; |1〉a],

M12 := I − M11},
where P[(|0〉, . . . , |d ′

A − 1〉)A; |0〉a] := (|0〉〈0| + · · · + |d ′
A −

1〉〈d ′
A − 1|)A ⊗ (|0〉〈0|)a, this definition is applicable for all

the protocols. Suppose the outcome corresponding to M11

clicks (see Fig. 10), then the resulting postmeasurement states
are

H1 → {|0〉A|ξi ◦ η j〉B̃|00〉ab},
H2 → {|ξi〉A|η j ◦ 0〉B̃|00〉ab},
H3 → {|η j〉A|0 ◦ ξi〉B̃|00〉ab},
H4 → {|ξi〉A|d ′

B ◦ η j〉B̃|00〉ab},
H5 → {|d ′

A〉A|η j ◦ ξi〉B̃|11〉ab},
H6 → {|η j〉A|ξi ◦ d ′

C〉B̃|00〉ab},
H7 → {|0〉A|d ′

B ◦ (0 ± d ′
C )〉B̃|00〉ab},

H8 → {|d ′
A〉A|(0 ± d ′

B) ◦ 0〉B̃|11〉ab},
H9 → {(|0〉A|00〉ab ± |d ′

A〉A|11〉ab)|0 ◦ d ′
C〉B̃},

H10 → {|d ′
A〉A|ξi ◦ (0 ± d ′

C )〉B̃|11〉ab},
H11 → {|ξi〉A|(0 ± d ′

B) ◦ d ′
C〉B̃|00〉ab},

H12 → {(|0〉A|00〉ab ± |d ′
A〉A|11〉ab)|d ′

B ◦ ξi〉B̃}.
Henceforth, symbol “◦” represents the union of the
parties. For example, |ψ1 ◦ ψ2〉B̃ = |ψ1〉B|ψ2〉C for any
two quantum states |ψ1〉B and |ψ2〉C . Specifically, let
|(0, . . . , dB − 1) ◦ (0, . . . , dC − 1)〉B̃ express the set
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FIG. 11. The dA × 2dBdC grid is the states after clicking M11.
Areas covered by different light colors denote the different measure-
ment effect.

{|i j〉B̃ | i = 0, 1, . . . , dB − 1; j = 0, 1, . . . , dC − 1} denoted
by (|00〉, . . . , |0(dC − 1)〉, |10〉, . . . , |(dB − 1)(dC − 1)〉)B̃.

Step 2. Bob performs the measurement:

M2 ≡ {M21 := P[|0 ◦ (1, . . . , d ′
C − 1)〉B̃; |0〉b],

M22 := P[|(1, . . . , d ′
B − 1) ◦ d ′

C〉B̃; |0〉b],

M23 := P[|(0, d ′
B) ◦ 0〉B̃; |1〉b],

M24 := P[|(0, . . . , d ′
B − 1) ◦ (1, . . . , d ′

C − 1)〉B̃; |1〉b],

M25 := P[|(1, . . . , d ′
B − 1) ◦ (0, d ′

C )〉B̃; |1〉b],

M26 := I − M1 − M2 − M3 − M4 − M5}.
This step is shown in Fig. 11. If the corresponding operations
M21, M22, M23, M24, and M25 click, we can distinguish the
subsets H3, H6, H8, H5, and H10, respectively. If M26 clicks, the
given state is belonging to one of the remaining seven subsets
{H1, H2, H4, H7, H9, H11, H12}. At this point, we move on to
the next step.

Step 3. Alice performs the measurement:

M3 ≡ {M31 := P[|0〉A; |0〉a] + P[|d ′
A〉A; |1〉a],

M32 := I − M31}.
Figure 12 shows the intuitive situation. If M31 clicks, we can
determine the four subsets {H1, H7, H9, H12}. Otherwise, the
subset is one of the remaining three {H2, H4, H11}. Moreover,
they are all perfectly LOCC distinguishable.

In addition, if M12 clicks in step 1, we can find a similar
protocol where these states can be perfectly LOCC distin-
guished. �

APPENDIX G: PROOF OF THEOREM 9

Naturally, we only need to locally distinguish these subsets.
To this end, let Alice and Bob share an EPR state |φ+(2)〉a1b1 ,
meanwhile Alice and Charlie share the EPR state |φ+(2)〉a2c1 .

a0
i 2H 11H 2H 4H 11H

0 9H 1H 7H 12H 7H

a1 d 9H 12H

A
             00 0d i0 ii d    0   d    i       dB' dC 0d             d    i

b0 b1

BC

M
31

'
A

' ' ' ' ' '

9H 12H

0 9H 1H 7H 12H 7H

d'
Ad

B B B BC

FIG. 12. The remaining states after Bob performs the measure-
ment. Area covered by light gray is the measurement effect M31.

Therefore, the initial state is

|ψ〉ABC ⊗ |φ+(2)〉a1b1 ⊗ |φ+(2)〉a2c1 , (G1)

where the state |ψ〉ABC is one of the states from the set ∪12
r=1Hr

(12), a1 and a2 are ancillary systems of Alice, b1 and c1

are ancillary systems of Bob and Charlie, respectively. The
specific process is as follows:

Step 1. Bob performs the measurement:

M1 ≡ {M11 := P[(|0〉, . . . , |d ′
B − 1〉)B; |0〉b1 ]

+ P[|d ′
B〉B; |1〉b1 ],

M12 := I − M11},
and Charlie performs the measurement:

M2 ≡ {M21 := P[(|0〉, . . . , |d ′
C − 1〉)C ; |1〉c1 ]

+ P[|d ′
C〉C ; |0〉c1 ],

M22 := I − M21}.
Suppose M11 and M21 click (refer to Fig. 13), the resulting
postmeasurement states are

H1 → {|0〉A|ξi〉B|η j〉C |00〉a1b1 |11〉a2c1},
H2 → {|ξi〉A|η j〉B|0〉C |00〉a1b1 |11〉a2c1},
H3 → {|η j〉A|0〉B|ξi〉C |00〉a1b1 |11〉a2c1},
H4 → {|ξi〉A|d ′

B〉B|η j〉C |11〉a1b1 |11〉a2c1},
H5 → {|d ′

A〉A|η j〉B|ξi〉C |00〉a1b1 |11〉a2c1},
H6 → {|η j〉A|ξi〉B|d ′

C〉C |00〉a1b1 |00〉a2c1},
H7 → {|0〉A|d ′

B〉B|11〉a1b1 (|0〉C |11〉a2c1±
|d ′

C〉C |00〉a2c1 )},
H8 → {|d ′

A〉A(|0〉B|00〉a1b1 ± |d ′
B〉B|11〉a1b1 )

|0〉C |11〉a2c1},
H9 → {|0 ± d ′

A〉A|0〉B|d ′
C〉C |00〉a1b1 |00〉a2c1},

H10 → {|d ′
A〉A|ξi〉B|00〉a1b1 (|0〉C |11〉a2c1±

|d ′
C〉C |00〉a2c1 )},

H11 → {|ξi〉A(|0〉B|00〉a1b1 ± |d ′
B〉B|11〉a1b1 )

|d ′
C〉C |00〉a2c1},

H12 → {|0 ± d ′
A〉A|d ′

B〉B|ξi〉C |11〉a1b1 |11〉a2c1}.

Step 2. Alice performs the measurement:

M3 ≡ {
M31 := P

[
(|0〉, . . . , |d ′

A − 1〉)A; |0〉a1 ; |1〉a2

]
,

M32 := P
[
(|1〉, . . . , |d ′

A − 1〉)A; |1〉a1 ; |1〉a2

]
,

M33 := I − M31 − M32
}
.

This process is described in Fig. 14. If M31 clicks,
the given subset is one of {H1, H2, H3}, which con-
tains e − 3 f + 6 quantum states in total. Here e =
dAdB + dAdC + dBdC and f = dA + dB + dC . It is obvi-
ous that these three subsets cannot be perfectly distin-
guished by LOCC. Let Alice and Bob share the max-
imally entangled state |φ+(2)〉a3b2 . Moreover, Bob per-
forms the measurement M′

3 ≡ {M ′
31 := P[|0〉B; Ib1 ; |0〉b2 ] +
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FIG. 13. The two 2dA × 2dB × dC grids represent the initial
states (G1) of auxiliary system as |00〉a2c1 and |11〉a2c1 , respectively.
Areas covered with light gray represent the measurement effect M11

and M21 in step 1.

P[(|1〉, . . . , |d ′
B〉)B; Ib1 ; |1〉b2 ], M ′

32 := I − M ′
31}. When M ′

31
clicks, Alice performs the measurement M′′

3 ≡ {M ′′
31 :=

P[|0〉A; Ia1 ; Ia2 ; |1〉a3 ], M ′′
32 := I − M ′′

31}. The results corre-
sponding to operators M ′′

31 and M ′′
32 are H1 and {H2, H3},

respectively. The collection {H2, H3} is LOCC distinguish-
able. Similarly, when M ′

32 clicks, the task of local discrimi-
nation can also be accomplished. The average entanglement
consumed in this process is (e − 3 f + 6)/(2e − 4 f + 6)
maximally entangled state |φ+(2)〉a3b2 [33], because the size
of the set (12) is 2e − 4 f + 6.

If M32 clicks, the subset is H4. Otherwise, the subset is one
of the remaining eight.

Step 3. Charlie performs the measurement:

M4 ≡ {M41 := P[(|1〉, . . . , |d ′
C − 1〉)C ; |1〉c1 ],

M42 := I − M41}.
Refer to Fig. 15, if M41 clicks, the given subset is one of
{H5, H12}. Obviously, it is locally distinguishable.

FIG. 14. The states after clicking M11 and M21. The two areas
covered with light gray express the measurement effect M31 and M32,
respectively.

FIG. 15. The states with auxiliary system |11〉a2c1 after clicking
M33. The area covered with light gray represents the measurement
effect M41.

052209-12



ORTHOGONAL PRODUCT SETS WITH STRONG QUANTUM … PHYSICAL REVIEW A 106, 052209 (2022)

Step 4. Alice performs the measurement:

M5 ≡ {
M51 := P

[|0〉A; |1〉a1 ; Ia2

]
, M52 := I − M51

}
.

If M51 clicks, the subset is H7. Otherwise, the subset is one of
{H6, H8, H9, H10, H11}.

Step 5. Bob performs the measurement:

M6 ≡ {
M61 := P

[|0〉B; |0〉b1

] + P
[|d ′

B〉B; |1〉b1

]
,

M62 := I − M61
}
.

The results corresponding to operators M61 and M62 are
{H8, H9, H11} and {H6, H10}, respectively. They are all locally
distinguishable.

In summary, we consume a total of 1 +
(e − 3 f + 6)/(2e − 4 f + 6) EPR states between Alice
and Bob and one EPR state between Alice and Charlie for
this distinguishing task. If in the step 1 other operators click,
we can find similar protocols to distinguish these subsets
perfectly by LOCC. �

APPENDIX H: PROOF OF THEOREM 10

Suppose that the whole quantum system is shared among
Alice, Bob, and Charlie. Since dC � dB, the subsystem C
is teleported to Bob by using the entanglement resource
|φ+(dC )〉BC , and the new union subsystem is represented by B̃.
To locally discriminate the states, Alice and Bob should share
a maximally entangled state |φ+(2)〉ab. The discrimination
protocol proceeds as follows:

Step 1. Alice performs the measurement:

M1 ≡ {M11 := P[(|0〉, |1〉)A; |0〉a] + P[(|2〉, . . . , |d ′
A〉)A; |1〉a],

M12 := I − M11}.
Suppose M11 clicks, then the resulting postmeasurement states
are

H11 → {|0〉A

∣∣1 ◦ αl
3

〉
B̃
|00〉ab

}
,

H12 → {|1〉A

∣∣αl
3 ◦ 0

〉
B̃
|00〉ab

}
,

H13 → {∣∣αl
3

〉
A|0 ◦ 1〉B̃|11〉ab

}
,

H21 → {|0〉A

∣∣αi ◦ αk
1

〉
B̃|00〉ab

}
,

H22 → {|αi〉A

∣∣αk
1 ◦ 0

〉
B̃
|11〉ab

}
,

H23 → {(|1〉A|00〉ab + ∣∣αk,2
1

〉
A|11〉ab

)|0 ◦ αi〉B̃

}
,

H31 → {|0〉A

∣∣d ′
B ◦ α

j
0

〉
B̃
|00〉ab

}
,

H32 → {|d ′
A〉A

∣∣α j
0 ◦ 0

〉
B̃
|11〉ab

}
,

H33 → {(|0〉A|00〉ab + ∣∣α j,2
0

〉
A|11〉ab

)|0 ◦ d ′
C〉B̃

}
,

H41 → {|1〉A|0 ◦ (0 ± 1)〉B̃|00〉ab},
H42 → {|0〉A|(0 ± 1) ◦ 1〉B̃|00〉ab},
H43 → {|0 ± 1〉A|1 ◦ 0〉B̃|00〉ab},
H51 → {|1〉A

∣∣d ′
B ◦ αl

3

〉
B̃
|00〉ab

}
,

H52 → {|d ′
A〉A

∣∣αl
3 ◦ 1

〉
B̃
|11〉ab

}
,

H53 → {∣∣αl
3

〉
A|1 ◦ d ′

C〉B̃|11〉ab
}
,

H61 → {|αi〉A

∣∣d ′
B ◦ αk

1

〉
B̃
|11〉ab

}
,

H62 → {|d ′
A〉A

∣∣αk
1 ◦ αi

〉
B̃
|11〉ab

}
,

H63 → {(|1〉A|00〉ab + ∣∣αk,2
1

〉
A|11〉ab

)|αi ◦ d ′
C〉B̃

}
,

H71 → {|d ′
A〉A

∣∣0 ◦ αl
3

〉
B̃
|11〉ab

}
,

H72 → {|0〉A

∣∣αl
3 ◦ d ′

C

〉
B̃|00〉ab

}
,

H73 → {∣∣αl
3

〉
A|d ′

B ◦ 0〉B̃|11〉ab
}
,

H81 → {|d ′
A〉A|1 ◦ (0 ± 1)〉B̃|11〉ab},

H82 → {|1〉A|(0 ± 1) ◦ d ′
C〉B̃|00〉ab},

H83 → {|0 ± 1〉A|d ′
B ◦ 1〉B̃|00〉ab},

where |α j,2
0 〉A = ∑dA−3

u=1 ω
ju
dA−2|u + 1〉 and |αk,2

1 〉A = ∑dA−3
u=1

ωku
dA−2|u + 1〉.

Step 2. Bob performs the measurement:

M2 ≡
{

M21 := P[|(1, . . . , d ′
B − 1) ◦ (2, . . . , d ′

C − 1)〉B̃; |1〉b],

M22 := P[(|(2, . . . , d ′
B) ◦ (0, d ′

C )〉, |d ′
B ◦ (2, . . . ,

d ′
C − 1)〉)B̃; |0〉b] + P[|(2, . . . , d ′

B − 1)

◦ d ′
C〉B̃; |1〉b],

M23 := P[|01〉B̃; |1〉b],

M24 := P[(|(0, . . . , d ′
B − 1) ◦ 0〉, |11〉)B̃; |1〉b],

M25 := P[|1d ′
C〉B̃; |1〉b],

M26 := P[(|(2, . . . , d ′
B) ◦ 1〉, |d ′

B2〉)B̃; |1〉b],

M27 := P[|d ′
B0〉B̃; |1〉b],

M28 := P[(|00〉, |01〉, |11〉)B̃; |0〉b],

M29 := P[|10〉B̃; |0〉b],

M210 := P[|d ′
B1〉B̃; |0〉b],

M211 := P[|(2, . . . , d ′
B − 1) ◦ (1, . . . , d ′

C − 1)〉B̃; |0〉b],

M212 := I −
11∑

i=1

M2i

}
.

For the operator M2i (i = 1, . . . , 12), the result of postmea-
surement is

M21 ⇒ H62, M22 ⇒ H12, H31, H51, H72, H63,

M23 ⇒ H13, M24 ⇒ H22, H32, H81,

M25 ⇒ H53, M26 ⇒ H52, H61,

M27 ⇒ H73, M28 ⇒ H41, H42,

M29 ⇒ H43, M210 ⇒ H83,

M211 ⇒ H21, M212 ⇒ H11, H23, H33, H71, H82.

Clearly, {H52, H61} and {H41, H42} are locally distinguishable.
If M22 clicks, Alice performs the measurement M′

2 ≡
{M ′

21 := P[|0〉A; |0〉a], M ′
22 := I − M ′

21}. The outcomes corr-
esponding to the operators M ′

21 and M ′
22 are {H31, H72}

and {H12, H51, H63}, respectively. They are also locally
distinguishable. If M24 clicks, Alice performs the measure-
ment M′′

2 ≡ {M ′′
21 := P[(|2〉, . . . , |d ′

A − 1〉)A; |1〉a], M ′′
22 :=
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I − M ′′
21}. The outcomes corresponding to the operators M ′′

21
and M ′′

22 are H22 and {H32, H81}, respectively. Moreover,
{H32, H81} is a LOCC distinguishable collection. If M212

clicks, we proceed to the next step.
Step 3. Alice performs the measurement:

M3 ≡ {M31 := P[|d ′
A〉A; |1〉a], M32 := I − M31}.

If M31 clicks, the subset is H71. If M32 clicks, the subset is one
of the remaining four.

Step 4. Bob performs the measurement:

M4 ≡ {M41 := P[|0 ◦ (2, . . . , d ′
C − 1)〉B̃; Ib],

M42 := I − M41}.
If M41 clicks, the subset is H23. If M42 clicks, the result is one
of the three remaining subsets.

Step 5. Alice performs the measurement:

M5 ≡ {M51 := P[|1〉A; |0〉a], M52 := I − M51}.
If M51 clicks, the subset is H82. If M52 clicks, the subset is one
of {H33, H11}, which is locally distinguishable.

On the other hand, when M12 clicks in the step 1, we can
find the distinction protocol similarly. �

APPENDIX I: PROOF OF THEOREM 11

To locally distinguish the set (14), let Alice and Bob share a
maximally entangled state |φ+(4)〉a1b1 , while Alice and Char-
lie share an EPR state |φ+(2)〉a2c1 .

Step 1. Bob performs the measurement:

M1 ≡ {
M11 := P

[|0〉B; |0〉b1

] + P
[|1〉B; |1〉b1

]
+ P

[
(|2〉, . . . , |d ′

B − 1〉)B; |2〉b1

]
+ P

[|d ′
B〉B; |3〉b1

]
,

M12 := P
[|0〉B; |1〉b1

] + P
[|1〉B; |2〉b1

]
+ P

[
(|2〉, . . . , |d ′

B − 1〉)B; |3〉b1

]
+ P

[|d ′
B〉B; |0〉b1

]
,

M13 := P
[|0〉B; |2〉b1

] + P
[|1〉B; |3〉b1

]
+ P

[
(|2〉, . . . , |d ′

B − 1〉)B; |0〉b1

]
+ P

[|d ′
B〉B; |1〉b1

]
,

M14 := I − M11 − M12 − M13
}
.

Charlie performs the measurement:

M2 ≡ {
M21 := P

[
(|0〉, |1〉)C ; |0〉c1

]
+ P

[
(|2〉, . . . , |d ′

C〉)C ; |1〉c1

]
,

M22 := I − M21
}
.

Suppose the outcomes corresponding to M11 and M21 click,
the resulting postmeasurement states are

H11 → {|0〉A|1〉B

∣∣αl
3

〉
C |11〉a1b1 |11〉a2c1

}
,

H12 → {|1〉A
(∣∣αl,1

3

〉
B|22〉a1b1 + ∣∣αl,2

3

〉
B|33〉a1b1

)
|0〉C |00〉a2c1

}
,

H13 → {∣∣αl
3

〉
A|0〉B|1〉C |00〉a1b1 |00〉a2c1

}
,

H21 → {|0〉A|αi〉B|22〉a1b1

(|1〉C |00〉a2c1

+ ∣∣αk,2
1

〉
C
|11〉a2c1

)}
,

H22 → {|αi〉A
(|1〉B|11〉a1b1 + ∣∣αk,2

1

〉
B|22〉a1b1

)
|0〉C |00〉a2c1

}
,

H23 → {∣∣αk
1

〉
A|0〉B|αi〉C |00〉a1b1 |11〉a2c1

}
,

H31 → {|0〉A|d ′
B〉B|33〉a1b1

(|0〉C |00〉a2c1

+ ∣∣α j,2
0

〉
C |11〉a2c1

)}
,

H32 → {|d ′
A〉A

(|0〉B|00〉a1b1 + ∣∣α j,2
0

〉
B|22〉a1b1

)
|0〉C |00〉a2c1

}
,

H33 → {∣∣α j
0

〉
A|0〉B|d ′

C〉C |00〉a1b1 |11〉a2c1

}
,

H41 → {|1〉A|0〉B|0 ± 1〉C |00〉a1b1 |00〉a2c1},
H42 → {|0〉A

(|0〉B|00〉a1b1 ± |1〉B|11〉a1b1

)|1〉C

|00〉a2c1

}
,

H43 → {|0 ± 1〉A|1〉B|0〉C |11〉a1b1 |00〉a2c1

}
,

H51 → {|1〉A|d ′
B〉B

∣∣αl
3

〉
C |33〉a1b1 |11〉a2c1

}
,

H52 → {|d ′
A〉A

(∣∣αl,1
3

〉
B|22〉a1b1 + ∣∣αl,2

3

〉
B|33〉a1b1

)
|1〉C |00〉a2c1

}
,

H53 → {∣∣αl
3

〉
A
|1〉B|d ′

C〉C |11〉a1b1 |11〉a2c1

}
,

H61 → {|αi〉A|d ′
B〉B|33〉a1b1 (|1〉C |00〉a2c1

+ ∣∣αk,2
1

〉
C
|11〉a2c1 )

}
,

H62 → {|d ′
A〉A

(|1〉B|11〉a1b1 + ∣∣αk,2
1

〉
B|22〉a1b1

)
|αi〉C |11〉a2c1

}
,

H63 → {∣∣αk
1

〉
A|αi〉B|d ′

C〉C |22〉a1b1 |11〉a2c1

}
,

H71 → {|d ′
A〉A|0〉B

∣∣αl
3

〉
C |00〉a1b1 |11〉a2c1

}
,

H72 → {|0〉A
(∣∣αl,1

3

〉
B|22〉a1b1 + ∣∣αl,2

3

〉
B|33〉a1b1

)
|d ′

C〉C |11〉a2c1

}
,

H73 → {∣∣αl
3

〉
A|d ′

B〉B|0〉C |33〉a1b1 |00〉a2c1

}
,

H81 → {|d ′
A〉A|1〉B|0 ± 1〉C |11〉a1b1 |00〉a2c1

}
,

H82 → {|1〉A(|0〉B|00〉a1b1 ± |1〉B|11〉a1b1 )|d ′
C〉C

|11〉a2c1

}
,

H83 → {|0 ± 1〉A|d ′
B〉B|1〉C |33〉a1b1 |00〉a2c1

}
, (I1)

where |α j,2
0 〉τ = ∑dτ −3

u=1 ω
ju
dτ −2|u + 1〉, |αk,2

1 〉τ = ∑dτ −3
u=1

ωku
dτ −2|u + 1〉, |αl,1

3 〉τ = ∑dτ −4
u=0 ωlu

dτ −2|u + 2〉, and |αl,2
3 〉τ =

ω
l (dτ −3)
dτ −2 |dτ − 1〉 for j, k, l ∈ Zdτ −2 and τ = B,C.

Step 2. Alice performs the measurement:

M3 ≡
{

M31 := P
[|d ′

A〉A; |0〉a1 ; |1〉a2

]
,

M32 := P
[|1〉A; |0〉a1 ; |0〉a2

]
,
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M33 := P
[
(|2〉, . . . , |d ′

A − 1〉)A; (|1〉, |2〉)a1
; |0〉a2

]
,

M34 := P
[|0〉A; |1〉a1 ; |1〉a2

]
,

M35 := P
[|d ′

A〉A; |1〉a1 ; |0〉a2

]
,

M36 := P
[
(|1〉, . . . , |d ′

A − 1〉)A; |2〉a1 ; |1〉a2

]
,

M37 := P
[|1〉A; |3〉a1 ; |1〉a2

]
,

M38 := I −
7∑

i=1

M3i

}
.

The result of postmeasurement, corresponding to the operator
M3i (i = 1, . . . , 7) is

M31 ⇒ H71, M32 ⇒ H41, M33 ⇒ H22, M34 ⇒ H11,

M35 ⇒ H81, M36 ⇒ H63, M37 ⇒ H51.

If M38 clicks, we proceed to the next step.
Step 3. Charlie performs the measurement:

M4 ≡ {
M41 := P

[|d ′
C〉C ; |1〉c1

]
, M42 := I − M41

}
.

If M41 clicks, the given subset is one of {H33, H53, H72, H82}. It
is locally distinguishable. Otherwise, we continue to the next
step.

Step 4. Alice performs the measurement:

M5 ≡
{

M51 := P
[
(|0〉, |1〉)A; (|0〉, |1〉)a1

; |0〉a2

]
,

M52 := P
[
(|2〉, . . . , |d ′

A〉)A; (|1〉, |2〉)a1
; |1〉a2

]
,

M53 := P
[
(|1〉, . . . , |d ′

A − 1〉)A; |0〉a1 ; |1〉a2

]
,

M54 := P
[|0〉A; |2〉a1 ; Ia2

]
,

M55 := P
[
(|0〉, |1〉)A; |3〉a1 ; |0〉a2

] + P
[|0〉A;

|3〉a1 ; |1〉a2

] + P
[|1〉A; |2〉a1 ; |0〉a2

]
,

M56 := I −
5∑

i=1

M5i

}
.

Corresponding to the operator M5i (i = 1, . . . , 6), there is the
following result

M51 ⇒ H43, H42, M54 ⇒ H21,

M52 ⇒ H62, M55 ⇒ H12, H31, H83,

M53 ⇒ H23, M56 ⇒ H13, H32, H52, H61, H73.

If M55 clicks, then Charlie performs the measurement M′
5 ≡

{M ′
51 := P[|1〉C ; |0〉c1 ], M ′

52 := I − M ′
51}. The outcomes cor-

responding to the operators M ′
51 and M ′

52 are H83 and
{H12, H31}, respectively. Obviously, {H42, H43} and {H12, H31}
are locally distinguishable. If M56 clicks, we move on to the
next step.

Step 5. Charlie performs the measurement:

M6 ≡ {
M61 := P

[|0〉C ; |0〉c1

]
, M62 := I − M61

}
.

Corresponding to the operators M61 and M62, the subsets of
postmeasurement are {H32, H73} and {H13, H52, H61}, respec-
tively. They are all LOCC distinguishable.

If another operator clicks in the step 1, then also a similar
entanglement-assisted discrimination protocol follows. �

APPENDIX J: PROOF OF THEOREM 12

Let Alice and Bob share two EPR states
|φ+(2)〉a1b1 |φ+(2)〉a2b2 , while Alice and Charlie share an
EPR state |φ+(2)〉a3c1 .

Bob performs the measurement:

M1 ≡ {
M11 := P

[|0〉B; |0〉b1 ; |0〉b2

]
+ P

[|1〉B; |0〉b1 ; |1〉b2

]
+ P

[
(|2〉, . . . , |d ′

B − 1〉)B; |1〉b1 ; |0〉b2

]
+ P

[|d ′
B〉B; |1〉b1 ; |1〉b2

]
,

M12 := P
[|0〉B; |0〉b1 ; |1〉b2

]
+ P

[|1〉B; |1〉b1 ; |0〉b2

]
+ P

[
(|2〉, . . . , |d ′

B − 1〉)B; |1〉b1 ; |1〉b2

]
+ P

[|d ′
B〉B; |0〉b1 ; |0〉b2

]
,

M13 := P
[|0〉B; |1〉b1 ; |0〉b2

]
+ P

[|1〉B; |1〉b1 ; |1〉b2

]
+ P

[
(|2〉, . . . , |d ′

B − 1〉)B; |0〉b1 ; |0〉b2

]
+ P

[|d ′
B〉B; |0〉b1 ; |1〉b2

]
,

M14 := I − M11 − M12 − M13
}
.

Charlie performs the measurement:

M2 ≡ {
M21 := P

[
(|0〉, |1〉)C ; |0〉c1

] + P
[
(|2〉,

. . . , |d ′
C〉)C ; |1〉c1

]
,

M22 := I − M21
}
.

Similar to the proof of Theorem 11, when a1a2a3 and b1b2 are
substituted for ancillary systems a1a2 and b1 in (I1), respec-
tively, the outcomes are obtained. It is easy to prove that these
postmeasurement states are also locally distinguishable. �

APPENDIX K: PROOF OF THEOREM 13

Notice that dC, dD � dB. The states of subsystems C and
D are teleported to Bob using the maximally entangled states
|φ+(dC )〉BC and |φ+(dD)〉BD, respectively. Their union is rep-
resented by B̃. In addition, to locally discriminate the set (15),
Alice and Bob share a maximally entangled state |φ+(3)〉ab.
The specific protocol is as follows.

Alice performs the measurement:

M1 ≡ {M11 := P[|0〉A; |0〉a] + P[(|1〉, . . . , |d ′
A − 1〉)A;

|1〉a] + P[|d ′
A〉A; |2〉a],

M12 := P[|0〉A; |1〉a] + P[(|1〉, . . . , |d ′
A − 1〉)A;

|2〉a] + P[|d ′
A〉A; |0〉a],

M13 := I − M11 − M12}.
Suppose the outcome corresponding to M11 clicks, the result-
ing postmeasurement states are

U11 → {|0〉A|ξi ◦ η j ◦ (0 ± d ′
D)〉B̃|00〉ab},

U12 → {|ξi〉A|η j ◦ (0 ± d ′
C ) ◦ 0〉B̃|11〉ab},
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U13 → {(|0〉A|00〉ab + ∣∣η1
j

〉
A|11〉ab

)|(0 ± d ′
B) ◦ 0

◦ ξi〉B̃

}
,

U14 → {(|0〉A|00〉ab ± |d ′
A〉A|22〉ab)|0 ◦ ξi ◦ η j〉B̃},

U21 → {|ξi〉A|d ′
B ◦ γk ◦ η j〉B̃|11〉ab},

U22 → {|d ′
A〉A|γk ◦ η j ◦ ξi〉B̃|22〉ab},

U23 → {(∣∣γ 1
k

〉
A|11〉ab + ∣∣γ 2

k

〉
A|22〉ab

)|η j ◦ ξi ◦ d ′
D〉B̃

}
,

U24 → {(|0〉A|00〉ab + ∣∣η1
j

〉
A|11〉ab

)|ξi ◦ d ′
C ◦ γk〉B̃

}
,

U31 → {|d ′
A〉A|0 ◦ (0 ± d ′

C ) ◦ γk〉B̃|22〉ab},
U32 → {|0〉A|(0 ± d ′

B) ◦ γk ◦ d ′
D〉B̃|00〉ab},

U33 → {(|0〉A|00〉ab ± |d ′
A〉A|22〉ab)|γk ◦ d ′

C ◦ 0〉B̃},
U34 → {(∣∣γ 1

k

〉
A|11〉ab + ∣∣γ 2

k

〉
A|22〉ab

)|d ′
B ◦ 0 ◦ (0

± d ′
D)〉B̃

}
,

U41 → {|ξi〉A|ξi ◦ 0 ◦ γk〉B̃|11〉ab},
U42 → {|ξi〉A|0 ◦ γk ◦ ξi〉B̃|11〉ab},
U43 → {|0〉A|γk ◦ ξi ◦ ξi〉B̃|00〉ab},
U44 → {(∣∣γ 1

k

〉
A
|11〉ab + ∣∣γ 2

k

〉
A
|22〉ab

)|ξi ◦ ξi ◦ 0〉B̃

}
,

U51 → {|d ′
A〉A|d ′

B ◦ ξi ◦ (0 ± d ′
D)〉B̃|22〉ab},

U52 → {|d ′
A〉A|ξi ◦ (0 ± d ′

C ) ◦ d ′
D〉B̃|22〉ab},

U53 → {|ξi〉A|(0 ± d ′
B) ◦ d ′

C ◦ d ′
D〉B̃|11〉ab},

U54 → {(|0〉A|00〉ab ± |d ′
A〉A|22〉ab)|d ′

B ◦ d ′
C ◦ ξi〉B̃},

U61 → {|0〉A|0 ◦ d ′
C ◦ η j〉B̃|00〉ab},

U62 → {|0〉A|d ′
B ◦ η j ◦ 0〉B̃|00〉ab},

U63 → {|d ′
A〉A|η j ◦ 0 ◦ 0〉B̃|22〉ab},

U64 → {(|0〉A|00〉ab + ∣∣η1
j

〉
A|11〉ab

)|0 ◦ 0 ◦ d ′
D〉B̃

}
,

U71 → {|0〉A|ξi ◦ 0 ◦ ξi〉B̃|00〉ab},
U72 → {|ξi〉A|0 ◦ ξi ◦ 0〉B̃|11〉ab},
U81 → {|0〉A|d ′

B ◦ 0 ◦ d ′
D〉B̃|00〉ab},

U82 → {|d ′
A〉A|0 ◦ d ′

C ◦ 0〉B̃|22〉ab},
U91 → {|ξi〉A|d ′

B ◦ ξi ◦ d ′
D〉B̃|11〉ab},

U92 → {|d ′
A〉A|ξi ◦ d ′

C ◦ ξi〉B̃|22〉ab},

where |η1
j 〉A = ∑dA−2

u=1 ω
ju
dA−1|u〉, |γ 1

k 〉A = ∑dA−3
u=0 ωku

dA−1|u +
1〉 and |γ 2

k 〉A = ω
k(dA−2)
dA−1 |dA − 1〉 for j, k ∈ ZdA−1. Evidently,

they can be perfectly distinguished by LOCC. For all other
cases a similar protocol follows. �
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