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Understanding collective phenomena calls for tractable descriptions of correlations in assemblies of strongly
interacting constituents. Capturing the essence of their self-consistency is central. The parquet theory admits
a maximum level of self-consistency for strictly pairwise many-body correlations. While perturbatively based,
the core of parquet and allied models is a set of strongly coupled nonlinear integral equations for all-order
scattering; tightly constrained by crossing symmetry, they are nevertheless heuristic. Within a formalism due
to Kraichnan, we present a Hamiltonian analysis of fermionic parquet’s structure. The shape of its constitutive
equations follows naturally from the resulting canonical description. We discuss the affinity between the derived
conserving scattering amplitude and that of standard parquet. Whereas the Hamiltonian-derived model amplitude
is microscopically conserving, it cannot preserve manifest crossing symmetry. The parquet amplitude and its
refinements preserve crossing symmetry, yet cannot safeguard conservation at any stage. Which amplitude should
be used depends on physics rather than on theoretically ideal completeness.
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I. INTRODUCTION

In this paper we explore a canonical basis for a signifi-
cant class of theories of many-particle correlations. Growth
in computing capacity has fueled increasingly comprehen-
sive studies of assemblies of interacting elements and how
these come to determine the behavioral complexity of such
assemblies, at simulational and analytical levels. The resulting
numerics feed back to expand theoretical concepts of how
a system’s elementary components, with their interactions,
cooperate in subtle collective phenomena.

Among long-established formulations are the conserving
�-derivable approximations after Kadanoff and Baym [1,2]
and an especially significant candidate, parquet theory [3–6].
Our program also covers parquetlike variants such as the in-
duced interaction [7–9] which has a successful record in its
own right for problems of strong correlations. There is con-
ceptual merit in codifying the intuition behind these heuristic
models in a more top-down way.

� derivability concerns the response structure that emerges
from constructing, as its generator, an effective correlation
energy functional �. In parquet one constructs the correlated
two-body scattering amplitude directly. The interrelationship
of parquet and � derivability has been analyzed previously
[10–13] though not from a Hamiltonian point of view.

Parquet, its relatives, and the �-derivable descriptions are
all constructed by choosing judiciously, if by hand, physically
dominant substructures out of the complete set of correlation
energy diagrams. Parquet theory stands out by including topo-
logically the largest conceivable set of particle-particle-only
and particle-hole-only pair scattering processes. This maxi-
mally pair-coupled topology makes it worth seeking canonical
grounds for parquet to shed a different light on its structure.

Emerging from a formalism relatively unfamiliar to many-
body practice, our conclusions turn out to resonate strongly
with the diagrammatic investigation by Smith [11]. To estab-
lish a Hamiltonian basis for the class of theories in question,
we adapt the strategy originally devised by Kraichnan [14,15]
and applied recently to a series of simpler self-consistent
diagrammatic models [16]. These are � derivable in the sense
of Baym and Kadanoff; they each possess a model Luttinger-
Ward-like correlation energy functional [17] as the generator
of static and dynamic response and correlation functions
which, while approximate, strictly conserve particle num-
ber, momentum, and energy at both microscopic and global
levels.

In essential form the parquet scattering amplitude is
subsumed under a specific �-derivable description, the
fluctuation-exchange (FLEX) approximation [6]. Although
considered incomplete and subject to refinement, the simplest
configuration of parquet is thus already a component of a
correlated model whose desirable microscopic conservation
properties follow naturally. What is not in place is a Hamilto-
nian underpinning for FLEX.

To arrive at any conserving response formulation a price
is paid in committing to a canonical Hamiltonian descrip-
tion. Granted all its consequent analytical benefits, there is a
caveat on the possibility of further consistent refinement of
parquet beyond its basic form emerging directly from FLEX:
diagrammatic iteration of the renormalized two-body parquet
amplitude, feeding it back into the one-body self-energy func-
tional, cannot achieve control over conservation [11]. We
revisit this in the following.

Kraichnan’s embedding of the many-body problem in a
larger space departs substantially from traditional diagram-
matic reasoning. It is central to the project because it is
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applicable to systems with pair interactions. In principle it
should have something to say about parquet.

One starts by injecting the physical Hamiltonian into a
much larger sum (going to infinity) of identical but distin-
guishable replicas. A collective representation is introduced
over this total Hamiltonian. Next, isomorphic copies of these
large collective Hamiltonians are themselves summed into a
grand Hamiltonian, but with the interaction potential of each
collective copy now partnered by an individual coupling fac-
tor. The factor depends only on the collective indices as V
depends only on the physical indices. Adjoined to V in this
way, the coupling can be defined stochastically.

Provided the couplings transform in their abstract indices
as the elementary pair potential transforms in its physical
indices, the end result is a Hamiltonian in which the original
physical form is embedded. Left unmodified, with all coupling
factors set to unity, the expanded system recovers the exact
physics. If modified appropriately, all the unitary properties
of the collective Hamiltonians, and of their grand sum, are
unaffected.

Contingent upon the functional form of the couplings, any
operator expectation over their distribution in the superassem-
bly allows subsets of the exact correlation-energy diagrams
at any order to survive when their overall coupling-factor
product works out as unity, thus imparting immunity to taking
the expectation. All other products of random coupling factors
are asymptotically killed off by mutually destructive interfer-
ence in the expectation: an extension of the random-phase
approximation [18].

The key to the strategy is that, up to averaging over
Kraichnan’s couplings, the superensemble represents a well-
defined many-body Hamiltonian. Each collective member is
distinguished by its own assignment of coupling factors and
corresponds to a precisely defined Fock space. This means
that any exact identity in the hierarchy of analytic Green
functions will survive averaging if (and only if) the averaging
process is done consistently on both sides of the relation. This
covers the Ward-Pitaevsky identities between one-body self-
energy and two-body response kernel, and Kramers-Krönig
analyticity leading to the frequency sum rules for the corre-
lation functions [19]. Relations that do not rely on analyticity
are not preserved, however. We clarify the distinction in the
following.

One is therefore justified in discussing a canonical
Hamiltonian for the diagrammatic approximation giving the
expectation for � over the distribution of Kraichnan’s cou-
pling factors. To cite Baym [2]: “One reason underlying the
fact that these approximations have such a remarkable struc-
ture has been discovered by Kraichnan, who has shown that in
a certain sense they are exact solutions to model Hamiltonians
containing an infinite number of stochastic parameters.”

Unlike in a physically guided, constructive �-derivable
model, the approximation is encoded here a priori in the
couplings of the Kraichnan Hamiltonian. This does not mean
“from first principles,” as the intuitive task of isolating dom-
inant terms is merely shifted from the choice of a diagram
subset for � to that of an appropriate Kraichnan coupling (K
coupling hereafter). It really means that classes of conserving
consistency properties, though not all, that are fundamental in
the canonical description hold automatically after averaging.

Section II starts with a minimal review of � derivabil-
ity, recalling properties essential in building up a conserving
many-body expansion. Kraichnan’s formalism [14–16] is then
introduced and a form of it proposed, including all possible
pairwise-only interactions. In Sec. III we revisit the logi-
cal development of the pairwise correlation structure of the
Kraichnan model’s response to a perturbation. This teases out
real physical effects otherwise dormant, or virtual, in the self-
consistent structure of � itself. Finally in Sec. IV we arrive
at the parquet equations’ scaffold, displaying its provenance
from the Hamiltonian defined after Kraichnan. There too we
discuss conceptual points of difference between parquet topol-
ogy interpreted within the Hamiltonian outlook, and attempts
to enlarge the topology by an iterative feedback; these do not
accord with � derivability.

Despite their affinity, � derivability and parquet analysis
exhibit complementary inherent shortcomings deeply linked
to the general nature of so-called planar diagrammatic expan-
sions [10,11]. This invites care in considering which sets of
physical problems are better served by one or the other of the
two approaches. We offer concluding observations in Sec. V.

II. PRECISE HAMILTONIANS
FOR APPROXIMATE MODELS

A. Correlation energy

Our many-body system has the second-quantized Hamilto-
nian

H =
∑

k

εka∗
k ak + 1

2

∑
k1k2k3k4

′〈k1k2|V |k3k4〉a∗
k1

a∗
k2

ak3 ak4 ,

〈k1k2|V |k3k4〉 ≡ δs1s4δs2s3V (k1 − k4), (1)

in terms of one-particle creation operators a∗ and annihila-
tion operators a. The first right-hand term is the usual total
kinetic energy; the second term is the pairwise interaction. For
simplicity we discuss a spin- (or isospin-)independent scalar
V but this can be relaxed without invalidating the argument
for pair interactions. Here, again for simplicity, we address
a spatially uniform system for which momentum is a good
quantum number; index k stands for the wave vector and spin
pair (k, s), writing a∗

k as the creation operator with ak the an-
nihilation operator, both satisfying fermion anticommutation.
The summation

∑′
k1k2k3k4

comes with the restriction k1 + k2 =
k3 + k4. In a neutral uniform Coulomb system, potential terms
with k2 − k3 = 0 = k4 − k1 are canceled by the background
and are excluded.

The ground-state energy resulting from the full Hamilto-
nian includes a correlation component �[V ], the essential
generator for the diagrammatic expansions that act as vocab-
ulary to the grammar of the analysis. Here we go directly to
�[V ] and for full discussion of the interacting ground-state
structure we refer to the classic literature [2,17]. The correla-
tion energy can be written as a coupling-constant integral

�[V ] ≡ 1

2

∫ 1

0

dZ

Z
G[ZV ] : �[ZV ; G] : G[ZV ] (2)

in which G[V ] is the complete renormalized two-point Green
function of the system, describing propagation of a single
particle in the presence of all the rest, and �[V ; G] is the fully
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renormalized four-point scattering amplitude whose internal
structure manifests all the possible modes by which the prop-
agating particles (via G) interact via V . Single dots “·” and
double dots “:” denote single and double internal integrations,
respectively, over frequency, spin, and wave vector, rendering
G : � : G an energy expectation value.

The renormalized Green function satisfies Dyson’s equa-
tion

G[V ] = G(0) + G(0) · �[V ; G] · G[V ] (3)

with G(0) as the noninteracting Green function G(0)
k (ω) ≡

(ω − εk )−1 with �[V ; G] as the self-energy. Equation (3) links
back to the correlation-energy functional self-consistently
through the variation that defines the self-energy:

�[V ; G] ≡ δ�[V ]

δG[V ]
= �[V ; G] : G[V ]. (4)

We recall the basic requirements on �. In the expansion
to order n in V within any particular linked structure of
G :�[V ; G] : G reduced to its bare elements, there will be
2n bare propagators. The integral effectively treats each G(0)

as distinguishable, and there is a 2n-fold ambiguity as to
which bare propagator should be the seed on which the given
contribution is built. That is, integration replicates the same
graph 2n times from any particular G(0) in the integral, but the
structure contributes once only in �. The coupling-constant
formula removes the multiplicity to all orders.

The essential feature of � in the exact correlation energy
functional is the following symmetry: consider the skele-
ton G(0) :�[V ; G(0)] : G(0). Removal of any G(0) from the
skeleton, at any order in V , must result in the same unique
variational structure; all lines are equivalent. The same applies
when all bare lines are replaced with dressed ones [1]. This
is due to unitarity and ultimately to the Hermitian character
of the Hamiltonian. It also follows that � must be pairwise
irreducible: removing any two propagators G from G : � : G

cannot produce two unlinked self-energy insertions, or else
there would be inequivalent Gs in a contribution of form G :
�1 : GG :�2 : G. These conditions impose a strongly restric-
tive graphical structure upon the four-point scattering kernel
entering into the self-energy.

B. � derivability

Other than the generic symmetry of G in �, the variational
relationships among �, �, and G do not depend on topo-
logical specifics. Those relationships were thus adopted as
defining criteria by Baym and Kadanoff [1,2] for constructing
conserving approximations: the �-derivable models. Choos-
ing a subset of skeleton diagrams from the full �[V ] with
every G(0) topologically equivalent and replacing these with
dressed lines guarantees unitarity of the effective model � and
secures microscopic conservation not only at the one-body
level but also for the pairwise dynamic particle-hole response
under an external perturbation.

� derivability necessarily entails an infinite-order approx-
imation to the correlation structure in terms of the bare
potential. While a finite choice of skeleton diagrams of �

fulfills formal conservation, it must still lead to an infinite
nesting of bare interactions linked by pairs of renormalized
Gs. Self-consistency in Eqs. (3) and (4) is a fundamental
feature of all �-derivable models.

C. Kraichnan Hamiltonian

The authoritative references for Kraichnan Hamiltonians
are the original papers of Kraichnan [14,15]. Here we follow
the more recent paper by one of us, hereafter called KI [16].
As per the Introduction, Kraichnan’s construction proceeds by
two ensemble-building steps. First, one generates an assembly
of N functionally identical distinguishable copies of the exact
Hamiltonian, Eq. (1). The total Hamiltonian is

HN =
N∑

n=1

∑
k

εka∗(n)
k a(n)

k + 1

2

N∑
n=1

∑
k1k2k3k4

′ 〈k1k2|V |k3k4〉 a∗(n)
k1

a∗(n)
k2

a(n)
k3

a(n)
k4

. (5)

The creation and annihilation operators with equal index n anticommute as normal; for values of n that differ, they commute. At
this point one goes over to a collective description of the N-fold ensemble by Fourier transforming over index n. For integer ν

define the collective operators

a∗[ν]
k ≡ N−1/2

N∑
n=1

e2π iνn/N a∗(n)
k and a[ν]

k ≡ N−1/2
N∑

n=1

e−2π iνn/N a(n)
k . (6)

These preserve anticommutation up to a term strongly suppressed by mutual interference among unequal phase factors and at
most of vanishing order 1/N . The argument is a random-phase one [18]:

[
a∗[ν]

k , a[ν ′]
k′

]
+ = 1

N

∑
n,n′

e2π i(νn−ν ′n′ )/N
[
a∗(n)

k , a(n′ )
k′

]
+

= 1

N

∑
n

e2π i(ν−ν ′ )n/N
[
a∗(n)

k , a(n)
k′

]
+ + 2

N

∑
n �=n′

e2π i(νn−ν ′n′ )/N a∗(n)
k a(n′ )

k′

= δkk′δνν ′ + O(N−1), (7)
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and similarly for [a[ν]
k , a[ν ′]

k′ ]+. In practice, any term in the Wick expansion of physical expectations that links dissimilar elements
n �= n′ will not contribute in any case. The transformation yields the new representation

HN =
N∑

ν=1

∑
k

εka∗[ν]
k a[ν]

k + 1

2N

∑
k1k2k3k4

′
N∑

ν1ν2ν3ν4

δν1+ν2,ν3+ν4 〈k1k2|V |k3k4〉 a∗[ν1]
k1

a∗[ν2]
k2

a[ν3]
k3

a[ν4]
k4

≡
∑




εka∗

a
 + 1

2N

∑

1
2
3
4

′ 〈k1k2|V |k3k4〉 a∗

1

a∗

2

a
3 a
4 , (8)

where in the last right-hand expression we condense the
notation so 
 ≡ (k, ν) and the restriction on the sum now com-
prises ν1 + ν2 = ν3 + ν4 (modulo N) as well as the constraint
on the momenta; equivalently, 
1 + 
2 = 
3 + 
4.

D. Modifying the Hamiltonian

Performing averages given the extended Kraichnan Hamil-
tonian of Eq. (8), as it stands, simply recovers the exact
expectations for the originating one; any cross-correlations
between distinguishable members are identically zero. How-
ever, embedding the physical Hamiltonian within a collective
description opens a novel degree of freedom for treating in-
teractions. Figure 1 summarizes the whole process. From now
on we concentrate on the interaction part of Eq. (8), denoted
by Hi;N , since the one-body part conveys no new information.
We will not consider issues of convergence here; for particular
implementations they are carefully discussed in the original
papers [14,15].

We can modify the behavior of the interaction part, keeping
it Hermitian, by adjoining a factor ϕν1ν2|ν3ν4 such that

Hi;N [ϕ] ≡ 1

2N

∑

1
2
3
4

′〈k1k2|V |k3k4〉 ϕν1ν2|ν3ν4 a∗

1

a∗

2

a
3 a
4 . (9)

FIG. 1. Construction of the Kraichnan Hamiltonian. (a) The
exact many-body Hamiltonian is embedded in a large sum of N
identical but distinguishable duplicates. A Fourier transform over
the identifying index n = 1, 2, . . . , N is performed. To each physi-
cal interaction potential 〈k1k2|V |k3k4〉 a new parameter ϕν1ν2 |ν3ν4 is
attached, labeled by the new Fourier indices and transforming in
them as does V in its physical indices. (b) The modified Hamiltonian
is again embedded in a large sum of M replicas, but each replica
is now assigned a unique set of factors ϕ. The resulting Kraichnan
Hamiltonian remains Hermitian. Setting every instance of ϕ to unity
recovers the exact expectations resulting from the original, physical
Hamiltonian. If values are specifically structured but otherwise ran-
domly assigned to the M-fold ensemble {ϕ}, only a selected subset
of the physical correlations survives while the rest are suppressed by
random phasing.

The expression remains Hermitian if and only if the factor has
the same symmetry properties as the potential under exchange
of its indices. Thus

ϕν4ν3|ν2ν1 = ϕ∗
ν1ν2|ν3ν4

, ϕν2ν1|ν4ν3 = ϕν1ν2|ν3ν4 . (10)

The additional procedure of taking expectations will no longer
match those for the exact physical Hamiltonian unless, ev-
idently, ϕ is unity. The crux, however, is that all identities
among expectations, dependent on causal analyticity, will still
be strictly respected. The Kraichnan Hamiltonian remains
well formed in its own right (its Fock space is complete)
except that now it describes an abstract system necessarily
different from the physical one that motivated it. The task is to
tailor it to recover the most relevant aspects of the real physics
in reduced but tractable form.

The last step in the logic considers the much larger sum
H of collective Hamiltonians all of the form of Eq. (9), with
an interaction part Hi encompassing a distribution {ϕ} of
coupling factors prescribed by a common rule:

Hi ≡
∑
{ϕ}

Hi;N [ϕ]. (11)

In Eq. (11) the sum ranges over the prescribed couplings. Each
Hamiltonian in the family is Hermitian, so H must be also. As
stated, all physical quantities—with one exception—preserve
their canonical interrelationships as their expectations run
through ϕ.

The exception is for identities relying explicitly on the
completeness of Fock space associated with H; Kraichnan’s
ensemble averaging destroys completeness owing to its
decohering action. Consider, symbolically, the ensemble
projection operator

P ≡
∏
{ϕ}

∑
�[ϕ]

�[ϕ]�∗[ϕ].

Overwhelmingly the orthonormal eigenstates of H will be
products of correlated, highly entangled, Kraichnan-coupled
superpositions of states in the Fock space of each collective
member over the distribution {ϕ}. Any expectation over the
K couplings, directly for P , will cause only those terms to
survive whose components in every factor ϕν1ν2|ν3ν4 within
�[ϕ] find a counterpart in �∗[ϕ]; see Eq. (13) below for
the structure of ϕ. Any other legitimate but off-diagonal
cross-correlations interfere mutually and are suppressed. Nu-
merically, the integrity of the Kraichnan projection operator P
is not preserved [20].

Among other things, this loss of coherence leads to a clear
quantitative distinction, within the same �-derivable approx-
imation, of static (instantaneous) correlation functions over
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FIG. 2. Scheme for the self-consistent Hartree-Fock interaction
energy, derived by insertion into Eq. (12) of the Kraichnan cou-
pling ϕHF

ν1ν2 |ν3ν4
≡ δν1ν4δν2ν3 . Dots denote the antisymmetrized pair

interaction, broken lines the originating potential, and solid lines,
one-body propagators. (a) Contributions to the interaction energy.
(b) Self-consistency is made evident in the Dyson equation for the
single-particle propagator G, where G(0) is the noninteracting coun-
terpart. Nesting of G : V in the self-energy contribution means that
the bare potential is present to all orders, albeit as a highly reduced
subset of the physically exact self-energy.

dynamic ones. Given that distinction, the dynamic and static
response functions will still keep their canonical definitions
and the sum-rule relations among them are still preserved
[16,21].

To align the forthcoming presentation to the notion of
crossing symmetry [22] for fermion interactions, we take the
further step of antisymmetrizing the potential V . This is read-
ily done in the interaction Hamiltonian, which now reads

Hi;N [ϕ] ≡ 1

2N

∑

1
2
3
4

′ ϕν1ν2|ν3ν4

×〈k1k2|V |k3k4〉 a∗

1

a∗

2

a
3 a
4

where 〈k1k2|V |k3k4〉 ≡ 1

2
(〈k1k2|V |k3k4〉 − 〈k2k1|V |k3k4〉).

(12)

Invocations of the pair potential will now refer to Eq. (12).
Care has to be taken with signs for composite “direct” and
“exchange” objects that turn out actually to be mixtures of
both (yet still needing to be topologically distinguished), to
make sure the accounting for V itself stays consistent.

We end the review of the Kraichnan formalism by recalling
the simplest example for ϕ generating the exchange-corrected
random-phase, or Hartree-Fock, approximation. This choice is
ϕHF

ν1ν2|ν3ν4
≡ δν1ν4δν2ν3 [16]. The diagrammatic outcome of this

nonstochastic ansatz is illustrated in Fig. 2. The expectation

FIG. 3. Two skeleton diagrams for the exact correlation energy
not reducible to pairwise-only propagation. (a) Next-order compo-
nent, beyond first and second in V , fulfilling the symmetry for
� derivability but with no two nodes directly linked by a pair of
single-particle propagators. (b) Next-higher-order term. Such terms
are not generated by any Kraichnan formulation of the pairwise-only
parquet Hamiltonian but can be added freely, albeit only ad hoc, to
its �-derivable functional.

〈Hi;N [ϕHFV ]〉 of the interaction energy over ϕHF consists,
almost trivially, of a pair of one-body Hartree-Fock Green
functions attached to a single node representing V .

The physically richer stochastic definitions of ϕ, due orig-
inally to Kraichnan [14,15], were generalized and adapted
in KI [16]. They will again be used in the next section to
build up a Kraichnan Hamiltonian for the parquet-generating
correlation energy functional and all objects derived from it
variationally.

III. A HAMILTONIAN FOR PARQUET

A. The channels and their couplings

In simplest form, the parquet equations take the bare in-
teraction V and from it build up all possible iterations that
require propagation of pairs of particles from one interaction
to the next. This excludes any contributions to the interaction
energy functional in which no interaction nodes are directly
linked by such a pair; they cannot be broken down into simpler
particle-pair processes. Two examples are shown in Fig. 3. We
comment later on how these can always be added legitimately
but ad hoc to the minimal � functional of immediate interest.

There are three possible choices of randomized K cou-
plings for ϕ, each corresponding to the three channels
included in parquet: the s channel explicitly selects propaga-
tion of pairs of particles, the t channel covers particle-hole
pair propagation associated with long-range screening in
the random-phase approximation, and its complement, the u
channel, describes the Hartree-Fock-like exchange counter-
part to t . Recall that while antisymmetrization of the bare
potential from V to V superposes the actual t and u contribu-
tions, one has to continue distinguishing their diagrammatic
representations topologically (and their relative sign) to pre-
serve the quantitative outcomes of the Hamiltonian, Eq. (12).

For each possible channel we define a stochastic coupling:

s channel: σν1ν2|ν3ν4 ≡ exp[π i(ξν1ν2 − ξν3ν4 )], ξνν ′ ∈ [−1, 1] and ξν ′ν = ξνν ′ ,

t channel: τν1ν2|ν3ν4 ≡ exp[π i(ζν1ν4 + ζν2ν3 )], ζνν ′ ∈ [−1, 1] and ζν ′ν = −ζνν ′ ,

u channel: υν1ν2|ν3ν4 ≡ exp[π i(ϑν1ν3 + ϑν2ν4 )], ϑνν ′ ∈ [−1, 1] and ϑν ′ν = −ϑνν ′ . (13)
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Their full outworkings are detailed in KI. The uniformly
random numbers ξ , ζ , and ϑ are independently distributed;
expectations over them mutually decouple and all factors con-
form to Eq. (10). Each is designed so that, in the stochastic
average of the diagrammatic expansion of �, product chains
whose phases cancel identically from start to finish are im-
mune to the averaging. All other product chains fail to cancel.
Being stochastic they interfere destructively, vanishing in the
limit of an arbitrarily large ensemble.

With respect to t and u channels, note that an exchange
of labels 1 ↔ 2 or 3 ↔ 4 effectively swaps the definitions
and thus the actions of their K couplings. This is consis-
tent with the physics of these channels as mutual exchange
counterparts.

In the modality of Eq. (13), σ generates the particle-
particle Brueckner-ladder functional while the ring ap-
proximation is generated by τ . Last, υ also results in a
Brueckner-like functional where particle-hole ladders replace
particle-particle ones [16]. There are no other options for
pairwise propagation, just as with parquet.

B. Maximal pairwise coupling

None of the K couplings of Eq. (13), alone or in twos, can
cover all conceivable scattering arrangements strictly between
particle and/or hole propagator pairs. All three must combine
sequentially in all possible ways, while preventing any poten-
tial replication of terms if two or more K couplings led to
the survival of identical � terms. To first and second order in
V one can show that all three elementary couplings generate
identical contributions, inducing overcounting which would
propagate throughout the nesting of self-energy insertions.

The solution to overcounting is to combine the couplings of
Eq. (13) to inhibit any concurrency. We propose the candidate
parquet K coupling to be

ϕ ≡ 1 − (1 − σ )(1 − τ )(1 − υ )

so ϕν1ν2|ν3ν4 = σν1ν2|ν3ν4 + τν1ν2|ν3ν4 + υν1ν2|ν3ν4

− (σν1ν2|ν3ν4τν1ν2|ν3ν4 + τν1ν2|ν3ν4υν1ν2|ν3ν4

+υν1ν2|ν3ν4σν1ν2|ν3ν4 )

+ σν1ν2|ν3ν4τν1ν2|ν3ν4υν1ν2|ν3ν4 , (14)

preserving overall the Hermitian property specified by
Eq. (10).

In any diagram expanded to a given order in V , the products
of K couplings in Eq. (14) may or may not resolve into a
set of elementary closed cycles whose multiplicative chain
is identically unity when ϕ averaged (this means, by way of
definition, that any subchain hived off within an elementary
cycle would necessarily vanish through phase interference).
Chains not resolving into a set of independent closed cycles
over the contribution will be quenched to vanish in the Kraich-
nan expectation.

Should two or even three channels have coincident closed
cycles, the structure of ϕ makes certain that the net contribu-
tion from this coincidence is always precisely unity; Eq. (14)
ensures that there is no overcounting if GG pairings from dif-
ferent channels gave rise to the same diagrammatic structure.

FIG. 4. (a) Definition of the fundamental all-order s, t , and u
interactions. Dots denote antisymmetrized pair potential. (b) Sym-
bolic definition of �, the correlation energy functional [weightings
induced by Eq. (2) are understood], following Kraichnan averaging
over all K couplings σ , τ , and υ as in Eq. (14) to remove overcount-
ing when different K couplings lead to identical diagrams. Although
the skeleton graphs for � appear simple, their complexity is hidden
within the self-consistent nesting of self-energy insertions in the
propagators (solid lines) according to Eqs. (2)–(4). Since the stu cor-
relation energy is identical to that of the fluctuation-exchange model
[6,23], the Kraichnan construction already subsumes the essence of
parquet. The combinatorial stu structure is fully revealed only when
the response to an external perturbation is extracted (see following).

Such terms can turn up only once in their locations within the
expansion for �, including iteratively in the self-energy parts.

All allowed pairwise-only combinations of scatterings, and
only those, survive the expectation over {ϕ} to lead to a le-
gitimate �-derivable correlation term with all its symmetries
and conserving properties [2,14,16]. The individual energy
functional of each component Hamiltonian in Eq. (11), being
exact in its particular configuration prior to averaging, auto-
matically has these symmetries in the renormalized expansion
of Eq. (2). These are inherited by the diagrammatic structure
of every term that survives the taking of expectations and
ultimately by the complete averaged �.

In Fig. 4(a) we show schematically the structures of the
three possible pairwise multiple-scattering combinations con-
tributing explicitly to the correlation energy functional �,
Fig. 4(b). The K coupling σ leads to the particle-particle
Brueckner t matrix �s, while τ leads to the screened inter-
action �t and lastly υ is the t-exchange complement leading
to the particle-hole Brueckner-type ladder �u; this carries an
implicit sign change relative to �t owing to the difference of
one fermion loop count. From Eq. (14) all processes combine
so the renormalized one-body propagators G carry self-energy
insertions to all orders in which s, t , and u processes act syner-
getically, not competing in parallel but entering sequentially.

C. �-derivable response

Having arrived at the maximally paired structure of � in
Fig. 4(b) given the K couplings of Eq. (14), the work of
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FIG. 5. Systematic removal of a propagator G internal to the self-
energy �[ϕV ; G] = � : G, after Baym and Kadanoff [1,2], generates
the primitive scattering kernel �′. Removal of G(32), solid line,
simply regenerates �. Removing any internal G other than G(32)
yields additional terms required for � derivability (microscopic con-
servation). Top line: Beyond the s-channel ladder �s the noncrossing
symmetric t-like term �s;t and u term �s;u are generated. Middle line:
Generation of �t and the nonsymmetric �t ;s and �t ;u. Bottom line:
Generation of �u with �u;t and �u;s.

obtaining the parquet equations from it has been done, in
one sense, in the analysis detailed by Bickers [6] for the
equivalent heuristic FLEX model. However, the Hamiltonian
prescription’s ramifications lead beyond the derivation of clas-
sic parquet.

The goal, then, is to reconstruct a parquetlike scattering
amplitude � using the ingredients provided by the Kraichnan
machinery. We are still left to show its relation to the scat-
tering function �, generator of the �-derivable diagrammatic
stu expansion. While the renormalized structure of � seems
sparse compared with � for parquet [6], the structure for
actual comparison is not � but begins with the variation

�′ ≡ δ�

δG
= δ2�

δGδG
, (15)

which in fact is the source of the Ward-Pitaevsky identities
[19]. One goes from there to set up the complete scattering
interaction �′ for the total system response to a perturbation.

The full outcome of the derivation of �′ is the dynamical
theory of Baym and Kadanoff [2]; in it, conservation entails
the additional family of nonparquet diagrams �′′ = �′ − �

shown in Fig. 5. These contribute to every order of iteration.
The topologies contained in �′′ are not explicit in the renor-
malized � embedded within �[ϕV ; G]. Not being crossing
symmetric they are not permitted, much less generated, within
parquet. As with the normal parquet structures that we aim
to exhibit from the stochastic Hamiltonian construction, the
apparently extra correlation effects, actually mandated by con-
servation, remain virtual in the renormalized summation for �

until elicited by an external probe.
Figure 5 details how functional differentiation gives rise to

the nonparquet terms, typical of all �-derivable descriptions.
We want to trace how the purely parquet crossing-symmetric
� diagrams make up a nontrivial component of the complete
set for �′, the total Baym-Kadanoff response kernel. � is not
equivalent to �′; it is a proper subset [6].

We emphasize the necessary presence, for � derivability,
of the nonsymmetric components �′′. These are the approx-
imate system’s attempt to match its u terms, for example,
with partner terms topologically like the two complementary
channels t and s; the same applies correspondingly to the
primary s and t terms. However, the question is less why
they break antisymmetry but how their presence fits into the
cancellation of terms for conservation to govern the model’s
response.

IV. DERIVATION OF THE PARQUET EQUATIONS

A. Origin within response analysis

To unpack the nested correlations hidden in the renormal-
ized form of � we turn to the full Kraichnan Hamiltonian
prior to averaging and derive the response to a one-body non-
local perturbation 〈k′|U |k〉, which generally will have a time
dependence also [1,2]. External perturbations do not couple
to the collective index ν but physically only to labels k. The
interaction Hamiltonian in Eq. (12) is augmented:

Hi;N [ϕ;U ] ≡
∑

ll ′
〈k′|U |k〉a∗

l ′al + Hi;N [ϕ;U = 0]. (16)

Response to a local field is generated by setting 〈k′|U |k〉 →
U (q)δk′,k+q, dynamically linking (contracting) the propaga-
tors that terminate and start at U .

Physical expectations are taken next, while retaining the
individual K couplings ϕ to keep track of all pair processes.
We use matrix notation with repeated indices to expand the
intermediate sums.

The two-body Green function is δG/δU [1]. Working from
Eq. (3), vary G−1 for

δG−1(12) = −δU (12) − δ�[ϕ, G](12)

or G−1(12′)δG(2′1′)G−1(1′2) = δU (12) + δ�(12)

δG(43)

δG(43)

δU (56)

so
δG(21)

δU (56)
≡ G(25)G(61) + G(21′)G(2′1)�′(1′3|2′4)ϕ1′3|2′4

δG(43)

δU (56)
,
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where ϕ explicitly partners the effective interaction �′. There is no overcounting of the s, t , and u contributions of �′ since,
once a line in any self-energy insertion is opened, it will not reconnect to its originating structure but will join instead a new and
different (ultimately closed) loop. Symbolically, with I the two-point identity,

[II − GG : �′ϕ] :
δG

δU
= GG

so
δG

δU
= [II − GG : �′ϕ]−1 : GG

= GG + GG : [II − GG : �′ϕ]−1�′ϕ : GG. (17)

Recalling Eq. (2), the form of the generating kernel � (with-
out the non-crossing-symmetric components from Fig. 5) can
be read off from the structure of � as in Fig. 4, with the
subsidiary kernels �s, �t , and �u:

� = �s + �t − �u

where �s = V + φ−1V σ : GG : �sϕ,

�t = V + φ−1V τ : GG : �tϕ,

�u = V + φ−1V υ : GG : �uϕ. (18)

To put the interactions on the same representational footing
as V , we factor out the outermost K coupling, φ. Intermediate
chains that cancel right across will finally cancel with φ−1

appropriate to each channel. In Eqs. (18) the u-channel term
of �, being the exchange of the t channel, carries the sign
tracking the structural antisymmetry of �t on swapping parti-
cle (or hole) end points and restoring to V its proper weight of
unity in the intermediate summations.

From Eq. (17) the complete four-point amplitude is de-
fined:

�′ ≡ φ−1�′ϕ : [II − GG : �′ϕ]−1

= φ−1[II − �′ϕ : GG]−1 : �′ϕ. (19)

In terms of �′ the conserving two-body Green function be-
comes

δG

δU
= GG : [II + �′ϕ : GG]. (20)

B. Parquet equations

At this stage we specialize to the crossing-symmetric sub-
class of the expansion dictated by Eq. (19). After dropping �′′
all the crossing-symmetric terms are gathered. The equation is
truncated and defines the now crossing-symmetric kernel

� ≡ φ−1�ϕ : [II − GG : �ϕ]−1

= φ−1[II − �ϕ : GG]−1 : �ϕ, (21)

keeping in mind that the crossing-symmetric � consists only
of the primary structures embedded in �. While � inherits
antisymmetry, it forfeits conservation at the two-body level
that is guaranteed for �′ [24].

As with Eq. (19) above, Eq. (21) sums � differently from
parquet, but the underlying architecture of � is the same. In
the equation, s, t , and u processes combine in all possible
ways while inhibited from acting concurrently. The resolution
of � becomes a bookkeeping exercise: to make a systematic
species by species inventory of all its permissible pair-only

scattering sequences, irreducible in the parquet sense, within
each channel, finally to weave these into all possible reducible
contributions.

In Kraichnan’s description one resums � by tracking how
selective filtering works through the three possible K cou-
plings, while in the parquet approach one enforces, on the
intermediate GG pairs, the three distinct modes of momentum,
energy, and spin transfer characterizing the s, t , and u chan-
nels. Our operation is the same as the pairwise topological
argument for � in FLEX, detailed in Ref. [6]. To achieve it,
the first set of equations isolates the components that are not
further reducible within each particular channel:

�s ≡ V + φ−1�τ : GG : �tϕ − φ−1�υ : GG : �uϕ,

�t ≡ V − φ−1�υ : GG : �uϕ + φ−1�σ : GG : �sϕ,

�u ≡ V + φ−1�σ : GG : �sϕ + φ−1�τ : GG : �tϕ. (22)

Manifestly, the components of �s couple only via t or u,
excluding any s-channel processes where cutting a pair se-
quence σGG yields two detached diagrams. Thus, taking the
Kraichnan expectation of (�s − V )σ , nothing survives—and
so on for the other channels. The arrangement generates every
legitimate convolution involving internally closed cycles of
propagation through every channel within � while ensuring
irreducibility of the three component kernels.

Finally the complete � is assembled:

� = V + φ−1�σ : GG : �sϕ + φ−1�τ : GG : �tϕ

−φ−1�υ : GG : �uϕ. (23)

In the Kraichnan average only the pairwise terms we have
highlighted make it through. Equations (22) and (23) then
become identical to the FLEX parquet equations [6]. For each
channel the total amplitude can also be recast to reveal its
reducibility:

� = �s + φ−1�σ : GG : �sϕ

= �t + φ−1�τ : GG : �tϕ

= �u − φ−1�υ : GG : �uϕ.

C. Extension of the parquet equations

1. Complete specification of �′

The stu-based formalism leads to an interaction energy
functional � equivalent to the fluctuation-exchange approx-
imation introduced by Bickers et al. [23]. The radical
difference is that its properties are not imparted intuitively;
they are established from a Hamiltonian. The consequence
of this canonical provenance is to set a limit on what
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is possible diagrammatically for a conserving, optimally
pairwise-correlated model.

The FLEX model generates the parquet topology naturally
by generating, as we have done within Kraichnan’s formal-
ism, the variational structure of the �-derivable self-energy
�. Without the additional step of obtaining the perturbative
response, the intimate link between the renormalized topology
of � and the architecture of parquet, which is otherwise im-
plicit within the self-consistent correlation energy functional,
does not emerge.

A widespread line of thought in parquet literature assumes
there is no distinction between, on the one hand, the scattering
kernel � in the self-energy � and, on the other, � acting as
the kernel for the total two-body response within parquet. For
�-derivable models this is not permissible, if only because
they yield two different numerical estimates for the static
pair correlation function, of which only one meets the exact
formulation by functional differentiation of � with respect to
V [16,21]. This reflects the loss of Fock-space completeness.
Later we revisit the implications, for consistency in conserva-
tion, of the parquet model’s assumption � ≡ �.

We have a basis to build up more elaborate extensions of
the FLEX parquet model following the Kraichnan-based anal-
ysis. The complete �-derivable, conserving pair-scattering
kernel �′ can now be obtained simply by adapting the parquet
equations (22) and (23). Noting that the nonparquet term �′′
is absolutely irreducible within both parquet and Kadanoff-
Baym (recall Fig. 5); the bare potential is replaced with

V ≡ V + �′′.

Return to Eq. (22), this time to define

�′
s ≡ V + φ−1�′τ : GG : �′

tϕ − φ−1�′υ : GG : �′
uϕ,

�′
t ≡ V − φ−1�′υ : GG : �′

uϕ + φ−1�′σ : GG : �′
sϕ,

�′
u ≡ V + φ−1�′σ : GG : �′

sϕ + φ−1�′τ : GG : �′
tϕ, (24)

with the ultimate result

�′ = V + φ−1�′σ : GG : �′
sϕ + φ−1�′τ : GG : �′

tϕ

−φ−1�′υ : GG : �′
uϕ. (25)

We stress that the only feature that matters now in Eqs. (24)
and (25) is the topological arrangement of the elements of
the response kernel, exhausting all possible interplays among
the three �-derivable channels independently of crossing
symmetry.

Now we address the addition to the energy functional, pre-
sumably by physical reasoning, of absolutely pair-irreducible
graphs for �. (Two are shown in Fig. 3.)

2. Contributions from pair-irreducible correlations

Primitive additions to �′ can be incorporated once again
via Eqs. (24) and (25). In � derivability the choice of symmet-
ric structures for the � kernel is highly constraining. Readers
can convince themselves, with a bit of sketching, that no
such three-node term exists. Nor is there an stu-irreducible
four-node term for � that has the needed symmetry. Whereas
the crossing-symmetric four-node “envelope” graph depicted
in Fig. 6(a) is a valid irreducible interaction in parquet [6],
when incorporated as a fully closed diagram it must carry

FIG. 6. (a) Fourth-order stu-irreducible crossing-symmetric
graph, valid as a primitive input to the standard parquet equations but
not � derivable. While the graph can be generated by removing an
interaction node from its analog in Fig. 3(a), when closed with two
final propagators as in (b) it is forced to carry inequivalent propa-
gators (dotted lines). Thus it is disqualified from any �-derivable
approximation since it cannot lead to a unique self-energy functional.

inequivalent propagators, making it inadmissible in any �-
derivable subset of the correlation energy.

The next-order �-derivable skeleton beyond second is that
of Fig. 3(a), with five interaction nodes. Its variation with
respect to any node—removal of a node from Fig. 3(a)—
generates a two-body correlation with parquet’s envelope
graph as its kernel. However, there is no systematic link be-
tween such a variation and parquet.

The issue with adding higher-order stu-irreducible terms
to �, again assuming that they held some novel physical
effects, is that one gets back to adding many-body corre-
lations heuristically, without a Hamiltonian basis. Strictly,
then, the sum-rule identities no longer come for free but
require individual validation (this has been done up to the
third-frequency-moment rule [21]). Kraichnan’s procedure is
limited to pair interactions; so far, it is hard to envisage how
any Hamiltonian extension could generate these additional
complex objects. Nevertheless, adding a totally pairwise-
irreducible structure satisfying Baym-Kadanoff symmetry
will not spoil � derivability.

D. Parquet and � derivability

In establishing full parquet the �-derivable FLEX approx-
imation has been taken as a suitable entry point for successive
iterations aimed at approaching the full structure, but the
initial self-energy � : G is considered to fall short of a max-
imally correlated parquet. It is deemed necessary to feed the
FLEX-derived crossing-symmetric � in Eq. (23) back into �

in Eq. (4) via the replacements [6] (ensuring that G : � : G
does not double up on terms previously included)

�(13) ← �̂(12|34)G(42)

in which �̂(12|34) ← V (12|34)

+�(12|3′4′)G(4′2′)G(3′1′)V (1′2′|34),

(26)

with the nonconforming piece, �′′ = �′ − �, naturally absent.
Substitution of �̂ for � in the self-energy assumes that no dis-
tinction should be made between the approximate self-energy
kernel and the approximate two-body response kernel: that,
as in the exact theory, they are one and the same [5,6]. As
a generator of new primitively irreducible structures Eq. (26)
can be iterated at will.
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In view of how the generic parquet equations (24) and (25)
always build up from at least the leading primitive irreducible,
namely, V , any resulting � must always incorporate � from
Eq. (18). Reopening lines in the self-energy �̂[V, G] : G is
always going to regenerate pieces including the unwanted
nonparquet term �′′.

To compare the behaviors of the different self-energy ker-
nels for stu and standard parquet, we use a result of Luttinger
and Ward [17]. Equation (47) of that reference provides an
alternative formulation of the correlation energy when � in
Eq. (2) is the exact � interaction:

�[V ; G] = −〈ln(I − G(0) · � ·)〉 − G[V ] : �

+
∫ 1

0

dz

2z
G[V ] : �[zV ; G[V ]] : G[V ]. (27)

The difference between the coupling-constant integral on the
right-hand side of this identity and its counterpart in Eq. (2) is
that the former keeps track only of the combinatorial factors
for the V s in the original linked skeleton diagrams �[V ; G(0)]
but now with G[V ], containing V at full strength, in place
of each bare line G(0). By contrast, in the integral on the
right-hand side of Eq. (2) the coupling factor attaches to all
occurrences of V , that is, including those within G[V ] itself.

The correlation energy as given in Eq. (27) leads to two
identities. Exploiting the equivalence of all propagators in the
closed structure G : � : G within the integral, varying on both
sides with respect to the self-energy gives

δ�

δ�
= (I − G(0) · �)−1 · G(0) − G

− δG

δ�
: � + δG

δ�
: �[V ; G] : G

= − δG

δ�
: (� − �[V ; G] : G)

= 0 (28)

on using Eq. (4). In vanishing identically, the derivative estab-
lishes the correlation energy as an extremum with respect to
perturbations, as these add linearly to �.

Next,

δ�

δG
= ((I − G(0) · �)−1 · G(0) − G) · δ�

δG
+ �[V ; G] : G

= �. (29)

Consistency with Eq. (4) is confirmed.
We look at how Eq. (27) works in the �-derivable case.

Since it applies canonically in the case of the full Kraichnan
Hamiltonian, the form survives the expectation over the stu
couplings, as will the form of the variational derivatives; the
skeletal topology of the integrals on the right-hand sides of
Eqs. (2) and (27) is the same. In the stochastic expectations
on the right-hand side of Eq. (27), � goes over to the reduced
stu structure � depicted in Fig. 4. This is because, in the
coupling-constant integral, the pattern of surviving and sup-
pressed products of factors ϕ is identical with that leading to
Eq. (2).

Define the �-derivable correlation energy �KB from the
corresponding Eq. (27). All propagators in the structure G :

FIG. 7. The iterative parquet algorithm, Eq. (26), starting from
the FLEX self-energy, is incompatible with � derivability. (a) Differ-
entiation of the self-energy term at third order in the interaction gives
a term in the parquet kernel series. (b) Iteration of the self-energy in
the parquet algorithm must close the structure from (a) by adding an
interaction, avoiding overcounting of reducible terms. This generates
a novel irreducible component in the parquet series. A final closure
generates the linked correlation-energy diagram of Fig. 6(b), which is
not a legitimate �-derivable contribution. Since � derivability must
hold at every order, no level of iteration of the parquet kernel can
fulfill it.

� : G are equivalent. The variation in Eq. (28) again leads to

δ�KB

δ�
= − δG

δ�
: (� − � : G) = 0 (30)

so the extremum property holds for the approximate correla-
tion energy. Equation (29) becomes

δ�KB

δG
= � : G = � (31)

since the symmetry of the integral G : δ�/δG : G works once
more as for Eq. (4) to recover the self-energy.

The analysis is now applied to the classic parquet expan-
sion, whose candidate correlation energy functional, defined
from Eq. (27), we will call �PQ. In this instance one gets

δ�PQ

δ�
= − δG

δ�
: (� − �[V ; G] : G − ��[V ; G] : G),

��[V ; G] ≡
∫ 1

0

dz

z
(�[zV ; G[V ]] − z�[V ; G[V ]])

+
∫ 1

0

dz

2z

δ�[zV ; G[V ]]

δG
: G[V ]. (32)

This does not vanish because the parquet structure G : � : G
contains inequivalent propagators. Therefore Eq. (28) fails.
The same topological absence of �-derivable symmetry spoils
the complementary attempt to define �PQ from the alternative
fundamental expression of Eq. (2).

Figure 7 typifies the issue. At third order in the bare poten-
tial the parquet iteration of � obtained from FLEX produces a
new absolutely irreducible term at fourth order whose skeleton
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contribution to � would carry inequivalent propagators, as
already shown in Fig. 6(b). Since the symmetry leading to a
well-defined � must be present at all orders it follows that
no formulation of parquet, built on pairwise-only scattering,
can be � derivable. Conversely, the stu construction à la
Kraichnan is the only strictly pairwise-correlated model that
has a Hamiltonian basis while exhibiting the essential parquet
topology.

The failure of Eq. (32) to vanish has the more serious
implication that a parquet model does not correspond to a
system with a well-defined ground-state energy. Securing that
would require a �PQ conforming to the criteria of Baym and
Kadanoff. If such a functional can be constructed to satisfy
Eq. (29), say, it will not have the canonical Luttinger-Ward
form of either Eq. (2) or Eq. (27). The question of the exis-
tence of a stable ground-state configuration stays undecided
for parquet.

So far we have shown how both �-derivable and parquet
models fail to produce forms for the correlation energy that
are fully consistent both with respect to conservation and to
crossing symmetry. However, unlike parquet, � derivability
preserves internal consistency in the sense of Luttinger and
Ward [17], in particular � as an extremum with respect to
external perturbations.

Our conclusions on the limits of both parquet and
�-derivable models coincide fully with those of the diagram-
matic analysis of Smith [11]. That analysis applies as well
to more elaborate �-derivable structures beyond the one cor-
responding to stu or FLEX, underwritten by its Kraichnan
Hamiltonian. In his different functional-integral approach, ori-
ented towards critical behavior, Janiš [12,13] likewise remarks
on the discrepancy between the parquet kernel’s analytical
properties and those obtained from � derivability.

E. Crossing symmetry and response

Notionally, while crossing symmetry will apply to scatter-
ing off an open system, response analysis concerns a closed
system and thus a different interplay of two-body vertex and
one-body self-energy correlations. Any complement to the
extra term �′′, if found neither in � itself nor in the self-energy
insertions subsumed in the total two-body response, could
make no contribution to that conserving response within its
approximating �-derivable framework. If needed for conser-
vation, the counterterm must show up somewhere [25].

Specializing to the purely computational aspect of the stu
and parquet analyses, we draw attention to Fig. 2 of the paper
by Glick and Long [25], here replicated in Fig. 8. It exhibits
the dominant high-frequency contributions to the imaginary
(damping) part of the polarization function for the electron gas
and derives from the bare expansion of the density response,
generated by δ2�/δUδU when the exact correlation energy is
truncated at second order in the bare potential V . Self-energy
insertions from the externally coupled propagators must be
computed in systematic superposition with the corresponding
interaction-vertex contributions.

Glick and Long’s example demonstrates that, to account
systematically for the dynamical correlations in the response,
self-energy contributions from the propagators external to the
two-body interaction � enter, as well as those internal to

FIG. 8. Damping terms in the conserving high-frequency sum-
mation of the two-body electron-gas polarization function, exact to
second order in V (solid horizontal lines), after Fig. 2 of Glick
and Long [25]. Wavy lines terminating with x are couplings to the
external probe; directed lines are free propagators. Terms (a), (b),
(c), (f), (h), and (i) have their kernel in �′ as generated from �. For
consistency, these two-body vertex components are summed concur-
rently with the one-body insertions (d), (e), (g), and (j) that come
from the uncorrelated bubble GG. The overall topology in terms
of bare lines does not discriminate between self-energy and vertex
terms, and its systematic cancellations rely on more than manifest
crossing symmetry.

it. This means that a protocol broader than explicit crossing
symmetry determines the bookkeeping that produces the over-
all conserving result. In the �-derivable approach, a similar
pattern of cancellation also provides the counterbalancing
mechanism for the nonparquet component �′′.

The following is of interest. The �-derivable model, trun-
cated beyond second order in V , reproduces precisely the
diagrams of Fig. 8. At second order, the structure of the kernel
� of � is ambiguously defined (degenerate, if one likes);
it may be envisaged to manifest in any of the channels s,
t , or u, which is the very reason for forming the composite
K coupling of Eq. (14) to avoid overcounting. Nevertheless,
perturbing the system lifts the structural degeneracy, with all
three channels emerging on an equal footing in the Kadanoff-
Baym functional derivation of the second-order kernel �′. In
this quite special case �′ is crossing symmetric, yet crossing
symmetry is not uniquely assignable to the generating kernel
�. Beyond second order the channel ambiguity is lifted and
crossing symmetry for �′ is lost; but what the second-order
case highlights is that the stu parquet structure is inherent in �

derivability, even if in a weaker sense and even if insufficient
to secure strict crossing symmetry in general. One can refer to
Fig. 5 to see this stated graphically.

Equation (2) for the correlation energy implies that its
fundamental expansion is in powers of the underlying bare
interaction V regardless of where it occurs structurally. This
implies in turn that one should look again at the expansion
in terms of the bare propagator G(0) rather than focus ex-
clusively of the full propagator G. As indispensable as G is
as a construct in making sense of the correlation physics, it
tends to hide those instances of V within the propagators that
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counterbalance its presence in the skeleton graphs defining
the vertex components; a concealment that, as suggested by
Fig. 8, masks how cancellations pair up among two-body and
one-body self-energy elements.

The parquet model’s self-energy structures for G are set
by crossing symmetry through the feedback imposed on the
self-energy kernel. There, it is the skeletal topology of � that
governs the processes of cancellation. For �′ in the complete
�-derived two-body Green function, conservation operates
otherwise: as in Fig. 8, competing effects must cancel in a de-
terminate superposition. It is this that conditions the topology
of the approximate �′, not the other way around.

Since G is an infinitely nested functional of V , the renor-
malized � and �′ can well differ diagrammatically while
their bare-expansion analogs, respectively �̃ and �̃′, will not.
These last two cannot differ in their structure because the
only topological distinction between the bare graphs of �

and the bare graphs of the derived correlated response is the
external perturbation nodes attached to (at least) a pair of bare
propagators. In other words,

�̃′ = �̃.

By themselves, the internal arrangements of the renormal-
ized four-point kernel are insufficient for response. One needs
the entire physical object δG/δU and not simply δ2�/δGδG.
The response function’s graphs are closed: it is a contraction
of the two-body Green function [1]. The outer connections of
�′ must terminate in two particle-hole pairs GG to obtain the
dynamically correlated contribution. In the overall accounting
the leading uncorrelated particle-hole bubble GG also plays
an explicit role.

The physical response function is the same whether written
in terms of �̃′ or of �′. It follows that in the latter’s renor-
malized setting the nonparquet component �′′, embedded in
the complete response, finds its canceling counterparts among
the self-energies. For standard parquet, despite the bootstrap
equation (26), the self-energy terms in the internal propagat-
ing pairs GG are not necessarily tuned to overall cancellation;
crossing symmetry reflects only the skeletal form of �, not
its dynamics. It is an additional assumption that cancellations
in parquet are looked after automatically. In practice, they are
not. Figure 8 gives a clue as to why.

V. SUMMARY

We have recovered the parquet equations from an aug-
mented form of Hamiltonian within Kraichnan’s fundamental
stochastic embedding prescription [14,15]. Our particular re-
interpretation of the parquet model inherits the entire suite
of conserving analytic (causal) identities from the exact
many-body description for its generating model Hamiltonian.
Relations that rely explicitly on Fock-space completeness
are not preserved, since Kraichnan averaging must decohere
classes of interaction-entangled multiparticle states (for ex-
ample, structures as in Fig. 3).

On the way we have examined the seeming paradox of a
fully conserving pairwise-maximal �-derivable theory with
crossing-symmetric kernel yet leading to a nonsymmetric
response kernel on one side (while still including standard

parquet in its structure), and on the other the pairwise-
maximal parquet theory in both elementary and iterated forms,
maintaining crossing symmetry but not conservation. This
prompts thought on which philosophy to follow in formulat-
ing many-body approximations, and for which purpose.

The second lesson of this work goes to a conception of
how model correlation theories operate vis-à-vis the conser-
vation laws in a system closed to external particle exchange.
In understanding fluctuations and response, the parquet con-
struction can be applied fruitfully within a canonically
founded perspective that respects parquet’s pairwise-maximal
topology in logical independence from manifest crossing
symmetry, inherited from the distinct open-system physics of
nuclear scattering.

In nuclear scattering, at any rate conceptually [22], free
fermionic constituents arrive from asymptotic infinity to en-
counter an open assembly of the same species. They interact
strongly and the free final products scatter off to infinity.
One then expects the outcome to be governed by the optical
theorem, crossing symmetry, and thus the forward-scattering
sum rule [8].

In a setting such as transport, the boundary conditions are
different; the problem involves constituents that are always
confined to the medium, interacting collectively and strongly
while coupling weakly to an external perturbing probe. A
closed scenario interrogates the system very differently. Ac-
counting of the self-energy contributions from the initial and
final particle-hole GG pairs as well as the uncorrelated bubble
GG, coupled via the probe, now matters, and reflects the
main philosophical difference between standard parquet and
its �-derivable rereading in the ambit of response. The role of
the vertex terms demands attention to systematic counterbal-
ancing from the self-energy terms, including from incoming
and outgoing particle-hole states. Such processes are ensured
in � derivability, while in parquet they are assumed.

The elegant application of crossing symmetry to particle-
antiparticle processes, fusing them seamlessly with the less
problematic but structurally disparate particle-particle pair
processes, is a foremost idea in many-body understanding.
For � derivability defined by a Hamiltonian, centered upon
conservation and oriented towards response, one is led to a
violation of crossing symmetry in the derived stu scattering
kernel. In the context of self-energy-versus-vertex accounting,
this may be offset partly through the pattern of mutual cancel-
lations ensuring conservation.

A fully conserving parquet response theory, no longer
crossing symmetric but sharing the identical pairwise-only
arrangement of the original parquet equations, emerges nat-
urally from the Hamiltonian description of the stu or FLEX
approximation. The caveat is that, in it, the correlation-energy
kernel � and the scattering kernel �′ functionally derived
from it remain distinct in playing distinct roles in the renor-
malized physics. If their differing structures are conflated,
conservation fails.

The puzzle remains. � derivability in an approximate
expansion leads to crossing-symmetry violations, yet in main-
taining conservation it suggests that the violating components
are systematically canceled by other means. Imposing cross-
ing symmetry on an approximating subset of the two-body
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scattering amplitude would seem to take care of system-
atic cancellation, yet not in a way that conserves [26].
Understanding in greater detail just how cancellation acts
would therefore provide a much needed clarification.

How might Kraichnan’s idea in itself be taken further?
First, the present analysis is readily extended both to nonuni-
form cases and at least to some instances where singular
behavior in any of the pair channels may break ground-state
symmetry. Applying it to analyze nonperturbative many-body
formalisms is also promising. Variational and coupled-cluster
methods are potential candidates. The stochastic embedding
approach pioneered by Kraichnan may not be the only way
to set approximate many-body approaches on a canonical

footing. However, the power of the method in guaranteeing
all the conserving analytic identities that link one- and two-
body correlation functions, even in approximation and beyond
linear response, speak compellingly for revisiting an original
and penetrating analysis long celebrated in the turbulence-
theory community [27] yet, with rare exceptions, [2] largely
unnoticed by its sister community of many-body theory.
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