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Robust quantum walk search without knowing the number of marked vertices
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There has been a very large body of research on searching a marked vertex on a graph based on quantum walks,
and Grover’s algorithm can be regarded as a quantum walk-based search algorithm on a special graph. However,
the existing quantum walk-based search algorithms suffer severely from the soufflé problem, which mainly
means that the success probability of finding a marked vertex could shrink dramatically, even to zero, when
the number of search steps is greater than the right one, thus heavily reducing the robustness and practicability
of the algorithm. Surprisingly, while the soufflé problem of Grover’s algorithm has attracted enough attention,
how to address this problem for general quantum walk-based search algorithms is missing in the literature.
Here we initiate the study of overcoming the soufflé problem for quantum walk-based search algorithms by
presenting a quantum walk-based search framework that achieves robustness without sacrificing the quantum
speedup. In this framework, for any adjustable parameter ε, the quantum algorithm can find a marked vertex
on an N-vertex complete bipartite graph with probability at least 1 − ε, whenever the number of search steps
h satisfies h � ln( 2√

ε
)
√

N + 1. Note that the algorithm need not know the exact number of marked vertices.
Consequently, we obtain quantum search algorithms with stronger robustness and practicability.

DOI: 10.1103/PhysRevA.106.052207

I. INTRODUCTION

Quantum walks, the analogs of classical random walks in
the quantum realm, were first introduced by Aharonov et al.
[1] in 1993. In the last nearly 30 years, much progress about
quantum walks has been made from theory to experiments.
Quantum walks have become a basic tool for designing quan-
tum algorithms to settle a series of problems such as element
distinctness [2], triangle finding [3], quantum backtracking
[4], and so on [5–9]. Furthermore, they are a universal model
of quantum computation [10,11]. In the aspect of experiment
study, various hardware platforms have been used to demon-
strate results of quantum walks, e.g., Refs. [12–15]. There
are two types of quantum walks: discrete-time quantum walks
[16–20] and continuous-time quantum walks [21,22]. In this
paper, we are concerned with the discrete-time model.

A central topic in quantum walk-based algorithms is to
develop efficient quantum algorithms for searching a marked
vertex on a graph. This idea was initially proposed in 2003
by Shenvi et al. [23] who constructed a quantum walk search
algorithm on the Boolean hypercube for finding a marked item
in a data set. Later, Ambainis et al. [24] proposed search
algorithms based on quantum walks on d-dimensional lat-
tices (d � 2). A major breakthrough was that Ambainis [2]
obtained the optimal query complexity of the element distinct-
ness problem by employing quantum walk search on Johnson
graphs. In 2004, Szegedy [25] studied the general theory of
quantum walk search algorithms from the point of view of
Markov chains. In this direction, a series of work [26–29] was
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put forward for searching a marked state in different Markov
chains using phase estimation, interpolated quantum walks,
and quantum fast-forwarding.

Grover’s algorithm can be regarded as a quantum walk
search algorithm on a complete graph with a self-loop on
every vertex [24]. As pointed out by Brassard [30], Grover’s
quantum searching technique suffers from the soufflé problem
[31]. As a result, if the exact number of marked items is not
known in advance, then one does not know when to stop the
search iteration. Even if the number is known, the success
probability of the algorithm could shrink dramatically when
the number of query steps is greater than the right one, as
shown in Fig. 1(a). Two strategies are often used to deal
with the unknown number of solutions. One method is the
exponential search algorithm [32] in which the number of
iterations increases slowly but exponentially. Another strategy
is to employ quantum counting [33] to estimate the number
of marked items. However, they are still essentially an oscil-
latory Grover search and fail to completely solve the soufflé
problem. From a search perspective, the success probability
of getting a marked item should not shrink (at least not shrink
dramatically) as the number of search steps increases.

To overcome the soufflé problem, Grover [34] proposed a
fixed-point quantum search algorithm that converges mono-
tonically to the target, i.e., avoid overcooking by always
amplifying the marked items [as shown in Fig. 1(b)]. Yet, a
price paid for this monotonicity is that the quadratic speedup
of the original quantum search is lost. In 2014, Yoder et al.
[35] presented a quantum search algorithm that achieves both
goals—the search cannot be overcooked and also achieves
optimal time scaling, a quadratic speedup over classical un-
ordered search. This algorithm does not require that the error
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FIG. 1. The success probability of finding a marked item as a
function of steps in three search models. (a) Grover-type oscillatory
search. (b) Fixed-point Search. (c) Robust search.

monotonically improves, but ensures that the error becomes
bounded by a tunable parameter ε, as shown in Fig. 1(c).
Thus, this leads to a more robust quantum search algorithm.
In addition, the fixed-point quantum search was discussed
from an information perspective by Cafaro [36] and from the
view of analog quantum search with suitable Hamiltonians
specifying time-dependent two-level quantum systems by Ca-
faro and Alsing [37]. Currently, various quantum walk search
algorithms also suffer from the soufflé problem. To the best
of our knowledge, there has been no work considering how
to avoid the sofflé problem from the perspective of quantum
walk search. Actually, the problem becomes more challenging
than in Grover’s quantum search. There are at least three
reasons for the difficulty of addressing the soufflé problem
for quantum walk search algorithms. First, the search space
is more complicated because of the diversity of topological
structure of graphs. Second, more operations are involved in
quantum walk search. Third, it is generally difficult to get an
analytical expression for the success probability and to ana-
lyze the computational complexity of a quantum walk search
algorithm.

Our contributions

This paper considers how to address the soufflé problem
confronted by quantum walk search algorithms. We take a
step in this direction by designing a robust quantum walk
search algorithm on complete bipartite graphs (NOT complete
graphs). Note that this kind of graph was extensively studied
in quantum walk search algorithms [38–41]. The robustness
feature of our algorithm ensures that for an N-vertex complete
bipartite graph with marked vertices but without knowing the
number of marked vertices, if the number of search steps h
satisfies h � ln( 2√

ε
)
√

N + 1, then the algorithm will output a
marked vertex with probability at least 1 − ε for any given
ε ∈ (0, 1] (the formal statement can be found in Theorem
1). Thus, the algorithm both avoids overcooking and keeps

FIG. 2. The relationship among the theorems and technical
lemmas.

quadratic speedup over classical ones. Also note that our
algorithm need not know the number of target vertices.

To obtain the above result, some nontrivial technical treat-
ments are required. (1) First, compared to Grover’s algorithm,
the coined quantum walk search framework has two subsys-
tems and three operations. Thus, what operations should be
adjusted to create a robust version is not obvious, and we
show that a model with two parameterized operations is suf-
ficient. (2) Second, while one needs only consider essentially
a two-dimensional state space for Grover’s algorithm, higher
dimensional state spaces are involved in quantum walk search
and thus it is not even easy to track the state of the quantum
system. Luckily, we reveal some crucial observations (espe-
cially Lemma 4) to simplify the expression of the final state. It
is worth noting that these observations are specific to quantum
walks and are not seen in the robust version of Grover’s
algorithm [35]. We think that these technical treatments may
inspire the analysis of robust quantum walk search on other
general graphs.

Theorem 1. Given an N-vertex complete bipartite graph
with marked vertices but without knowing the number of
marked vertices, there exists a quantum walk-based algo-
rithm such that if the number of search steps h satisfies h �
ln( 2√

ε
) max(

√
Nl ,

√
Nr ) + 1, then the algorithm will output a

marked vertex with probability at least 1 − ε for any given
ε ∈ (0, 1], where Nl (Nr) is the number of the left (right)
vertices in the complete bipartite graph.

The relationship among the theorems and technical lemmas
obtained in this paper are depicted in Fig. 2. Theorem 1 states
the main result of this paper, which comes from Theorems
2 and 3, which corresponds, respectively, to the two cases:
the marked vertices are on one side and on two sides of a
complete bipartite graph. Furthermore, Lemma 2 (Lemma 3)
is crucial for proving Theorem 2 (Theorem 3), with proofs
given in Sec. IV and Appendices A–D.

II. PRELIMINARIES

A. Graph notation

Let G = (V, E ) be an undirected, unweighted graph with
N = |V | vertices and m = |E | edges. An edge between u and
v is denoted by (u, v). For u ∈ V , deg(u) = {v : (u, v) ∈ E}
denotes the set of neighbors of u, and the degree of u is
denoted as du = |deg(u)|. A bipartite graph is represented as
G = (V = {Vl ∪ Vr}, E ), where Vl (Vr) denotes the set of ver-
tices on the left (right) side, with Vl ∩ Vr = ∅. We use Nl and
Nr to denote the number of left and right vertices, respectively.
The number of the marked vertices on the left (right) side is
nl (nr). A complete bipartite graph is a bipartite graph where
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FIG. 3. (a) A complete bipartite graph G with ten vertices. (b) An
N-vertex complete bipartite graph with the marked vertices denoted
by u on the left, the unmarked vertices denoted by v on the left,
and s on the right. (c) An N-vertex complete bipartite graph with
the marked vertices denoted by u on the left and t on the right, the
unmarked vertices denoted by v on the left and s on the right.

every vertex on the left side is connected to every vertex on the
right side. For example, a complete bipartite graph in Fig. 3(a)
contains six vertices on the left side and four vertices on the
right side.

B. Coined quantum walk

In this model, the walker’s Hilbert space associated with an
N-vertex graph G = (V, E ) is HN2 = span{|uv〉 , u, v ∈ V },
where u is the position and v is the coin value representing one
neighbor of u. The evolution operator of the coined quantum
walk at each step is Uwalk = SC, where the flip-flop shift oper-
ator S is defined as S |uv〉 = |vu〉, and the coin operator is C =∑

u |u〉 〈u| ⊗ Cu. The Grover diffusion coin operator Cu often
used is Cu = 2 |su〉 〈su| − I , where |su〉 = 1√

du

∑
v∈deg(u) |v〉.

Given the initial state |�0〉, the walker’s state after h steps
is |�h〉 = U h

walk |�0〉.

C. Quantum walk search

In the quantum walk search framework, to find a marked
vertex in a graph, the query oracle Q is given by

Q |uv〉 =
{− |uv〉 if u is marked

|uv〉 if u is not marked.

The evolution operator corresponding to one step of the quan-
tum walk search is U = SCQ.

Given the initial state |�0〉, the walker’s state after t steps
is |�t 〉 = Ut |�0〉. Finally, the first register is measured and
the measurement result is output.

D. Chebyshev polynomial

The Chebyshev polynomials of the first kind Tn(x) are de-
fined by initial values T0(x) = 1, T1(x) = x, and for an integer
n � 2:

Tn(x) = 2xTn−1(x) − Tn−2(x).

The trigonometric identity Tn(x) = cos[n arccos(x)] is well-
known.

A result of one quasi-Chebyshev polynomial implied in
Ref. [35] is stated in the following lemma.

Lemma 1. Let x = cos(θ ) for θ ∈ [0, 2π ]. Let h � 3 be an
odd integer. One quasi-Chebyshev polynomial ak (x) is defined
by initial values a0(x) = 1, a1(x) = x, and for k = 2, . . . , h,

ak (x) = x(1 + e−i(ζk−ζk−1 ) )ak−1(x) − e−i(ζk−ζk−1 )ak−2(x).

When ζk+1 − ζk = (−1)kπ − 2arccot (tan(kπ/h)
√

1 − γ 2)
for k = 1, . . . , h − 1, where γ = 1

cos[ 1
h arccos( 1√

ε
)]

with

ε ∈ (0, 1], we have ah(x) = Th (x/γ )
Th (1/γ ) with Th(1/γ ) = 1/

√
ε.

III. ROBUST QUANTUM WALK SEARCH ON COMPLETE
BIPARTITE GRAPHS

As mentioned before, the already existing quantum walk
search algorithms suffer from the soufflé problem. Thus, this
paper is devoted to addressing this problem by considering
the case of searching a marked vertex in a complete bipartite
graph. For that, first the coin operator C and the query oracle
Q have to be adjusted, but the flip-flop shift operator S can
remain unchanged. The new evolution operator of one search
step is

U (α, β ) = SC(α)Q(β ), (1)

where the coin operator C is changed to

C(α) =
∑

u

|u〉 〈u| ⊗ [(1 − e−iα ) |su〉 〈su| − I]

and the query oracle Q is replaced by

Q(β ) |uv〉 =
{

eiβ |uv〉 if u is marked
|uv〉 if u is not marked.

When α = β = ±π , this model becomes the original quan-
tum walk search [24,39].

The algorithm of search on a complete bipartite graph is
given in Algorithm 1. In the input phase, according to the
information of marked vertices and a tunable parameter ε, the
number of search steps h is required to satisfy

h �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln
(

2√
ε

)√Nl
nl

+ 1 marked vertices in one side with nl � 1, nr = 0

ln

(
2√
ε

)
max

(√
Nl

nl
,

√
Nr

nr

)
+ 1 marked vertices in two sides with nl � 1, nr � 1

ln
(

2√
ε

)
max(

√
Nl ,

√
Nr ) + 1 without knowing the number and any arrangement of marked vertices.

(2)

The parameters α, β are given by
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Algorithm 1 Robust quantum walk search

Inputs: An N-vertex complete bipartite graph with marked vertices, ε ∈ (0, 1], and the number of search steps h.
Outputs: A marked vertex x0 [if h satisfies Eq. (2), it outputs a marked vertex with probability at least 1 − ε].
Procedure:

1. Prepare the initial state |�0〉 = 1√
2Nl Nr

(
∑

u |u〉 ⊗∑
v∈deg(u) |v〉).

2. Apply U (α1, β1), . . . ,U (αh, βh ) in turn, where the parameters αi, βi are determined by Eqs. (3) and (4).
3. Measure the first register in the computational basis. If the result vertex is not marked, then the second register is measured.

Output the measurement result.

Case 1: h is odd:

αk =
⎧⎨
⎩

−βh+2−k = 2arccot
(

tan
(

kπ
h

)√
1 − γ 2

)
k = 2, 4, . . . , h − 1

−βh−k = 2arccot
(

tan
( (k−1)π

h

)√
1 − γ 2

)
k = 3, 5, . . . , h

α1 and βh can be any value,
(3)

where γ −1 = cos[ 1
h arccos( 1√

ε
)].

Case 2: h is even:

αk = −βh+1−k =

⎧⎪⎪⎨
⎪⎪⎩

2arccot
[

tan
(

kπ
h+1

)√
1 − γ 2

1

]
k = 2, 4, . . . , h

2arccot
[

tan
( (k−1)π

h−1

)√
1 − γ 2

2

]
k = 3, 5, . . . , h − 1

α1 and βh can be any value,

(4)

where γ −1
1 = cos[ 1

h+1 arccos( 1√
ε

)] and γ −1
2 =

cos[ 1
h−1 arccos( 1√

ε
)].

In the first step, the initial state |�0〉 = 1√
2Nl Nr

(
∑

u |u〉 ⊗∑
v∈deg(u) |v〉) is prepared. Then, U (α1, β1), . . .,U (αh, βh)

with appropriate parameters are applied to |�0〉 in turn.
The whole operator that performs h steps is Γh =
U (αh, βh)...U (α1, β1). The walker’s state after h steps is
|�h〉 = Γh |�0〉. Finally, the two registers are measured. Note
that in the previous work generally only the first register is
measured, whereas here we measure the two registers. This
will double the success probability for our problems as shown
later. The success probability of getting a marked vertex is

Ph =
∑

u or v is marked

| 〈uv| Γh |�0〉 |2.

Figure 4 illustrates the success probability of finding a
marked item as a function of steps in Algorithm 1 and the one
with α = β = ±π in Eq. (1). They show that Algorithm 1 is
a robust search model.

Proof of Theorem 1. According to the arrangement of the
marked vertices, two cases are discussed: they are on one side
and two sides, as shown in Figs. 3(b) and 3(c), respectively.

(i) In the first case, without loss of generality, suppose
that all the marked vertices lie on the left side Vl . Then,

by Theorem 2, if h � ln( 2√
ε

)
√

Nl
nl

+ 1, then Algorithm 1 will

output a marked vertex with probability at least 1 − ε.
(ii) In the second case, by Theorem 3, if h �

ln( 2√
ε

) max(
√

Nl
nl

,
√

Nr
nr

) + 1, then Algorithm 1 will output a

marked vertex with probability at least 1 − ε2.
Note that the parameters αi, βi will be assigned with the

same values in the two cases (this can be seen from
the proof of Theorems 2 and 3). Thus, we need not know the
arrangement of marked vertices. In addition, in the two cases,

both
√

Nl
nl

and max(
√

Nl
nl

,
√

Nr
nr

) have the same upper bound

max(
√

Nl ,
√

Nr ). Therefore, if h � ln( 2√
ε

) max(
√

Nl ,
√

Nr ) +
1, then Algorithm 1 will output a marked vertex with proba-
bility at least 1 − ε. This completes the proof.

Theorem 2. In Algorithm 1, suppose that all the marked
vertices are on the left side. There exists a sequence of

parameters αi, βi, such that if h � ln( 2√
ε

)
√

Nl
nl

+ 1, then the

algorithm will output a marked vertex with probability at least
1 − ε, where Nl is the number of left vertices and nl is the total
number of marked vertices.

Proof. According to Lemma 2, when h is
odd, to ensure Ph � 1 − ε, it suffices to satisfy

| cos( 1
h arccos( 1√

ε
))
√

1 − nl
Nl

| � 1, that is,

nl

Nl
� 1 − cos−2

[
1

h
arccos

(
1√
ε

)]
. (5)

Note that the following functions (see, for instance, Ref. [42])
will be used:

arccos(z) = 1

i
ln(z +

√
z2 − 1), tan(iz) = i tanh(z),

tanh(x) = ex − e−x

ex + e−x
,

where ln(·) is the natural logarithm function, i denotes the
imaginary number, x is a real number, and z is a complex
number. Now we have

1 − cos−2

[
1

h
arccos

(
1√
ε

)]

= − tan2

[
1

h
arccos

(
1√
ε

)]
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FIG. 4. The success probability of finding a marked item as a function of steps in Algorithm 1 (blue solid curve) and the one with
α = β = ±π in Eq. (1) (red dash-dot curve). The green horizontal solid line indicates that the success probability is greater than or equal to 0.9.

(a) Nl = 600, nl = 10, Nr = 1000, nr = 0. The success probability Ph � 0.9 when h � ln( 2√
ε

)
√

Nl
nl

≈ 14.3 with ε = 0.1. (b) Nl = 1000, nl =
10, Nr = 600, nr = 0. (c) Nl = 600, nl = 10, Nr = 1000, nr = 5. (d) Nl = 1000, nl = 10, Nr = 600, nr = 5.

= − tan2

⎛
⎝1

h

1

i
ln

⎛
⎝ 1√

ε
+
√(

1√
ε

)2

− 1

⎞
⎠
⎞
⎠

= − tan2

⎛
⎝i

1

h
ln

⎛
⎝ 1√

ε
+
√(

1√
ε

)2

− 1

⎞
⎠
⎞
⎠

= tanh2

⎛
⎝1

h
ln

⎛
⎝ 1√

ε
+
√(

1√
ε

)2

− 1

⎞
⎠
⎞
⎠

< tanh2

[
1

h
ln

(
2√
ε

)]

<

(
ln(2/

√
ε)

h

)2

,

where the last inequality follows from x � tanh(x) for x �
0. Thus, to ensure the inequality (5), it suffices to set nl

Nl
�

( ln(2/
√

ε)
h )2, which leads to h � ln( 2√

ε
)
√

Nl
nl

.

Similarly, when h is even, to ensure Ph � 1 − ε, it

suffices to satisfy | cos( 1
h+1 arccos( 1√

ε
))
√

1 − nl
Nl

| � 1, and

| cos( 1
h−1 arccos( 1√

ε
))
√

1 − nl
Nl

)| � 1, which implies h + 1 �

ln( 2√
ε

)
√

Nl
nl

and h − 1 � ln( 2√
ε

)
√

Nl
nl

, respectively.

Thus, no matter if h is odd or even, Ph � 1 − ε holds for

h � ln( 2√
ε

)
√

Nl
nl

+ 1. This completes the proof of Theorem 2.

Theorem 3. In Algorithm 1, suppose that the marked
vertices are on both the left and right sides. There ex-
ists a sequence of parameters αi, βi, such that if h �
ln( 2√

ε
) max(

√
Nl
nl

,
√

Nr
nr

) + 1, then the algorithm will output a
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marked vertex with probability at least 1 − ε2, where Nl (Nr)
is the number of left (right) vertices and nl (nr) is the number
of marked vertices on the left (right) side.

Proof. Similar to the proof of Theorem 2, by Lemma 3 one
can show that:

(i) When h is odd, to ensure Ph � 1 − ε2, it suffices to

satisfy h � ln( 2√
ε

)
√

Nl
nl

and h � ln( 2√
ε

)
√

Nr
nr

.

(ii) When h is even, to ensure Ph � 1 − ε2, it suffices

to satisfy h + 1 � ln( 2√
ε

)
√

Nl
nl

, h − 1 � ln( 2√
ε

)
√

Nr
nr

, h − 1 �

ln( 2√
ε

)
√

Nl
nl

and h + 1 � ln( 2√
ε

)
√

Nr
nr

.

Therefore, no matter if h is even or odd, Ph � 1 − ε2 holds

for h � ln( 2√
ε

) max(
√

Nl
nl

,
√

Nr
nr

) + 1. This completes the proof

of Theorem 3.
Lemma 2. In Algorithm 1, suppose that all the marked ver-

tices are on the left side. There exists a sequence of parameters
αi, βi, such that the success probability satisfies

Ph = 1 − εT 2
h

(
cos

(
1

h
arccos

(
1√
ε

))√
1 − nl

Nl

)

for odd h, and

Ph = 1 − ε

2

(
T 2

h+1

(
cos

(
1

h + 1
arccos

(
1√
ε

))√
1 − nl

Nl

)

+T 2
h−1

(
cos

(
1

h − 1
arccos

(
1√
ε

))√
1 − nl

Nl

))
,

for even h.
Lemma 3. In Algorithm 1, suppose that the marked ver-

tices are in both the left and right sides. There exists a
sequence of parameters αi, βi, such that the success proba-
bility satisfies

Ph = 1 − ε2T 2
h

(
cos

(
1

h
arccos

(
1√
ε

))√
1 − nl

Nl

))

× T 2
h

(
cos

(
1

h
arccos

(
1√
ε

))√
1 − nr

Nr

))

for odd h, and

Ph = 1 − ε2

2

[
T 2

h+1

(
cos

(
1

h + 1
arccos

(
1√
ε

))√
1 − nl

Nl

)

× T 2
h−1

(
cos

(
1

h − 1
arccos

(
1√
ε

))√
1 − nr

Nr

)

+ T 2
h+1

(
cos

(
1

h + 1
arccos

(
1√
ε

))√
1 − nr

Nr

)

× T 2
h−1

(
cos

(
1

h − 1
arccos

(
1√
ε

))√
1 − nl

Nl

)]

for even h.

IV. METHOD

The section is devoted to the proof of Lemma 2. As shown
in Fig. 3(b), vertices can be classified into three types: the
marked vertices denoted by u on the left, the unmarked ver-
tices denoted by v on the left and s on the right. Therefore,

our analysis can be simplified in a four-dimensional subspace
with the orthogonal basis {|us〉 , |su〉 , |sv〉 , |vs〉} given below:

|us〉 = 1√
nl

∑
u

|u〉 ⊗ 1√
Nr

∑
s

|s〉 ,

|sv〉 = 1√
Nr

∑
s

|s〉 ⊗ 1√
NL − nl

∑
v

|v〉 ,

|su〉 = 1√
Nr

∑
s

|s〉 ⊗ 1√
nl

∑
u

|u〉 ,

|vs〉 = 1√
Nl − nl

∑
v

|v〉 ⊗ 1√
Nr

∑
s

|s〉 .

Note that |�0〉 can be rewritten in the above basis as |�0〉 =
1√

2Nl Nr
[
√

nl Nr |us〉 + √
nlNr |su〉 + √

Nr (Nl − nl ) |sv〉 +
√

Nr (Nl − nl ) |vs〉 ].
Hence, it can be expressed as a four-dimensional vector:

|�0〉 = 1√
2Nl Nr

⎛
⎜⎜⎝

√
nlNr√
nlNr√

Nr (Nl − nl )√
Nr (Nl − nl )

⎞
⎟⎟⎠.

Furthermore, we have

S =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, Q(β ) =

⎛
⎜⎜⎝

eiβ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

and

C(α) =

⎛
⎜⎜⎝

−e−iα 0 0 0
0 C22

(1−e−iα ) sin(ω)
2 0

0 (1−e−iα ) sin(ω)
2 C33 0

0 0 0 −e−iα

⎞
⎟⎟⎠,

with ω = arccos(1 − 2nl
Nl

), where C23 = (1−e−iα )(1−cos(ω))
2 − 1,

C33 = (1−e−iα )(1+cos(ω))
2 − 1, and cos(ω) = 1 − 2nl

Nl
, sin(ω) =

2
NL

√
nl ∗ (Nl − nl ).

Now some key results are given as follows: Let

R(θ ) = −

⎛
⎜⎜⎜⎝

e− iθ
2 0 0 0

0 e
iθ
2 0 0

0 0 e− iθ
2 0

0 0 0 e− iθ
2

⎞
⎟⎟⎟⎠

and

A(θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos

(
ω
2

) −ieiθ sin
(

ω
2

)
0

0 −ie−iθ sin
(

ω
2

)
cos

(
ω
2

)
0

0 0 0 1

⎞
⎟⎟⎠,

with ω = arccos(1 − 2nl
Nl

). One can verify the following iden-
tities:

C(α) = e− iα
2 A

(
π

2

)
R(α)A

(
− π

2

)
, (6)

Q(β )S = −ei β

2 SR(β ), (7)
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A(α + β ) = R(β )A(α)R(−β ), (8)

R(θ )R(−θ ) = I, (9)

|�0〉 = A
(π

2

)
SA
(π

2

)
|0̄〉 , (10)

where |0̄〉 denotes (0, 0, 1√
2
, 1√

2
)T . Another crucial observa-

tion is the following lemma, which will be useful later:
Lemma 4.

SB1SB2S = B2SB1, (11)

where B1 = ∏n
i=0 Di and B2 = ∏m

i=0 Di for Di ∈
{A(θi ), R(θi )}.

Proof. By calculation, the form of B1 and B2 is as follows:

B1 =

⎛
⎜⎝

1 0 0 0
0 B1(22) B1(23) 0
0 B1(32) B1(33) 0
0 0 0 1

⎞
⎟⎠

and

B2 =

⎛
⎜⎝

1 0 0 0
0 B2(22) B2(23) 0
0 B2(32) B2(33) 0
0 0 0 1

⎞
⎟⎠,

where B1(·) and B2(·) are mathematical expressions of θ and
ω. Hence, we have SB1SB2S = B2SB1.

Below we will prove Lemma 2 by two cases.
Case 1: h is an odd integer. First, we set

αk =
{−βh+2−k k = 2, 4, . . . , h − 1
−βh−k k = 3, 5, . . . , h.

(12)

Then |�h〉 reduces to

|�h〉 ∼ S[A(ηh)...A(η1)]R(α1)SR(βh)[A(ζh)...A(ζ1)] |0̄〉 ,

(13)

which will be proven in Appendix C by using Eqs. (6)–(11).
Here ηk = ηh+1−k and ζk = ζh+1−k for k = 1, 2, . . . , h, and

ηk+1 − ηk =
{
π − αk+1 k = 2, 4, . . . , h − 1
−π + αh−k+1 k = 3, 5, . . . , h,

(14)

ζk+1 − ζk =
{
π − αk k = 2, 4, . . . , h − 1
−π + αh−k k = 3, 5, . . . , h.

(15)

Let us have a more detailed analysis at the state evolution
in Eq. (13), which can be divided into four stages as follows:

1√
2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠ A(ζh )...A(ζ1 )−−−−−−→

1©
1√
2

⎛
⎜⎝

0
bh(x)
ch(x)

1

⎞
⎟⎠

R(α1 )SR(βh )−−−−−−−−→
2©

1√
2

⎛
⎜⎜⎝

eiβh bh(x)
0
1

ch(x)

⎞
⎟⎟⎠

A(ηh )...A(η1 )−−−−−−→
3©

1√
2

⎛
⎜⎜⎝

eiβh bh(x)
b̄h(x)
c̄h(x)
ch(x)

⎞
⎟⎟⎠

S−−−−−−−→
4©

1√
2

⎛
⎜⎜⎝

b̄h(x)
eiβh bh(x)

ch(x)
c̄h(x)

⎞
⎟⎟⎠.

Stage 1©: Apply A(ζh)...A(ζ1) to the initial state. Let
(a0, b0, c0, d0) = (0, 0, 1, 1) and

|μk〉 =

⎛
⎜⎝

ak

bk

ck

dk

⎞
⎟⎠ = A(ζk )...A(ζ1)

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠

for k = 1, 2, . . . , h. First note that A(ζi ) has an effect only on
the second and third dimensions of a four-dimensional vector.
Thus, ak = 0 and dk = 1 for all k. Furthermore, we have

|μk〉 = A(ζk ) |μk−1〉 (16)

=

⎛
⎜⎜⎝

0
bk−1 cos

(
ω
2

)− ick−1eiζk sin
(

ω
2

)
−ibk−1e−iζk sin

(
ω
2

)+ ck−1 cos
(

ω
2

)
1

⎞
⎟⎟⎠

and

|μk−2〉 = A(ζk−1)−1 |μk−1〉 (17)

=

⎛
⎜⎜⎝

0
bk−1 cos

(
ω
2

)+ ick−1eiζk−1 sin
(

ω
2

)
ibk−1e−iζk−1 sin

(
ω
2

)+ ck−1 cos
(

ω
2

)
1

⎞
⎟⎟⎠.

Combined with Eqs. (16) and (17), we have

ck = −ibk−1e−iζk sin
(ω

2

)
+ ck−1 cos

(ω

2

)
,

ck−2 = ibk−1e−iζk−1 sin
(ω

2

)
+ ck−1 cos

(ω

2

)
.

The recurrence formula of ck (x) is defined by c0(x) =
1, c1(x) = x, and for k = 2, . . ., h,

ck (x) = x(1 + e−i(ζk−ζk−1 ) )ck−1(x) − e−i(ζk−ζk−1 )ck−2(x),

with x = cos( ω
2 ). By Lemma 1, when

ζk+1 − ζk = (−1)kπ − 2arccot

[
tan

(
kπ

h

)√
1 − γ 2

]
(18)

for k = 1, . . . , h − 1, where γ −1 = cos[ 1
h arccos( 1√

ε
)], we

have

ch(x) =
Th
(

x
γ

)
Th
(

1
γ

) ,
with Th( 1

γ
) = 1√

ε
. Moreover, bh(x) is determined

by |bh(x)|2 + |ch(x)|2 = 1. Therefore, the state after
A(ζh)...A(ζ1) applied to the initial state is

1√
2

⎛
⎜⎝

0
bh(x)
ch(x)

1

⎞
⎟⎠.
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Stage 2©: Apply R(α1)SR(βh) to the above state. After that,
the state is

1√
2

⎛
⎜⎜⎝

eiβh bh(x)
0
1

ch(x)

⎞
⎟⎟⎠.

Stage 3©: Perform A(ηh)...A(η1). Let⎛
⎜⎜⎝

āk

b̄k

c̄k

d̄k

⎞
⎟⎟⎠ = A(ηk )...A(η1)

⎛
⎜⎜⎝

eiβh bh(x)
0
1

ch(x)

⎞
⎟⎟⎠

for k = 1, 2, . . . , h. By the property of the matrix A(ηi ), we
have āk = eiβh bh(x) and d̄k = ch(x) for all k. The recurrence
formula of c̄k (x) is defined by c̄0(x) = 1, c̄1(x) = x and for
k = 2, . . ., h,

c̄k (x) = x(1 + e−i(ηk−ηk−1 ) )c̄k−1(x) − e−i(ηk−ηk−1 )c̄k−2(x),

with x = cos( ω
2 ). By Lemma 1, when

ηk+1 − ηk = (−1)kπ − 2cot−1

(
tan

(
kπ

h

)√
1 − γ 2

)
(19)

for k = 1, . . . , h − 1, where γ −1 = cos( 1
h arccos( 1√

ε
)), we

have

c̄h(x) =
Th
(

x
γ

)
Th
(

1
γ

) ,
with Th( 1

γ
) = 1√

ε
. Moreover, b̄h(x) is determined by

|b̄h(x)|2 + |c̄h(x)|2 = 1. Hence, the result state is

1√
2

⎛
⎜⎜⎝

eiβh bh(x)
b̄h(x)
c̄h(x)
ch(x)

⎞
⎟⎟⎠.

Stage 4©: Perform the final operation S. The final state is

1√
2

⎛
⎜⎜⎝

b̄h(x)
eiβh bh(x)

ch(x)
c̄h(x)

⎞
⎟⎟⎠.

Therefore, the success probability Ph is

Ph = 1 − 1

2
(|ch(x)|2 + |c̄h(x)|2) = 1 − εT 2

h

(
x

γ

)

= 1 − εT 2
h

(
cos

(
1

h
arccos

(
1√
ε

))√
1 − nl

Nl

)
.

By Eqs. (12), (14), (15), (18), and (19), αk, βk can be chosen
such that

αk = −βh+2−k = π + (ηk+1 − ηk )

= 2arccot

[
tan

(
kπ

h

)√
1 − γ 2

]

for k = 2, 4, . . . , h − 1, and

αk = −βh−k = π − (ζk+1 − ζk )

= 2arccot

[
tan

(
(k − 1)π

h

)√
1 − γ 2

]

for k = 3, 5, . . . , h. In addition, α1 and βh can be any value.
Case 2: h is an even integer. The proof is given in Ap-

pendix A.

V. CONCLUSION AND OUTLOOK

In this paper, we investigated how to overcome the souf-
flé problem of quantum walk search. We presented a robust
quantum walk-based algorithm for searching a marked vertex
on a complete bipartite graph. The algorithm need not know
any prior information about the marked vertices (e.g., the
number of marked vertices) but keeps a quadratic speedup
over classical search algorithms and ensures that the error is
bounded by a tunable parameter ε.

We have just initiated a step toward robust quantum walk
search. More questions are worthy of further consideration.
For example, several interesting questions are listed below:

(i) Can the robustness feature be introduced into quantum
walk search on other graphs?

(ii) For the framework of searching a marked state in
Markov chains, can we propose a robust version?

(iii) Another interesting direction would be to explore
some important problems in practical scenarios by robust
quantum walk search algorithms.

We will try to address these questions in forthcoming
works.
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APPENDIX A: CASE 2 IN THE PROOF OF LEMMA 2: h IS AN EVEN INTEGER

First, we set

βk = −αh+1−k k = 1, 2, . . . , h − 1. (A1)

Then |�h〉 reduces to

|�h〉 ∼ R(βh)[A(φh−1)...A(φ1)]R(α1)S[A(ψh+1)...A(ψ1)] |0̄〉 , (A2)
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which will be proven in Appendix C by using Eqs. (6)–(11). Here φk = φh−k for k = 1, 2, . . . , h − 1, ψk = ψh+2−k for k =
1, 2, . . . , h + 1, and

φk+1 − φk =
{
π − αk+1 k = 2, 4, . . . , h − 2
−π + αh−k k = 1, 3, . . . , h − 3,

(A3)

ψk+1 − ψk =
{
π − αk k = 2, 4, . . . , h − 2
−π + αh−k+1 k = 1, 3, . . . , h.

(A4)

Similar to Eq. (13), the final state of Eq. (A2) can be obtained by the following four stages:

1√
2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠ A(ψh+1 )...A(ψ1 )−−−−−−−−→

1©
1√
2

⎛
⎜⎝

0
bh+1(x)
ch+1(x)

1

⎞
⎟⎠ R(α1 )S−−−→

2©
1√
2

⎛
⎜⎝

bh+1(x)
0
1

ch+1(x)

⎞
⎟⎠ A(φh−1 )...A(φ1 )−−−−−−−−→

3©
1√
2

⎛
⎜⎜⎝

bh+1(x)
b̄h−1(x)
c̄h−1(x)
ch+1(x)

⎞
⎟⎟⎠ R(βh )−−→

4©
1√
2

⎛
⎜⎜⎝

bh+1(x)
eiβh b̄h−1(x)

c̄h−1(x)
ch+1(x)

⎞
⎟⎟⎠.

Stage 1©: Apply A(ψh+1)...A(ψ1) to the initial state. Let (a0, b0, c0, d0) = (0, 0, 1, 1) and⎛
⎜⎝

ak

bk

ck

dk

⎞
⎟⎠ = A(ψk )...A(ψ1)

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠

for k = 1, 2, . . . , h + 1. By the property of matrix A(ψi ), we have ak = 0 and dk = 1 for all k. The recurrence formula of ck (x)
is defined by c0(x) = 1, c1(x) = x and for k = 2, . . ., h + 1,

ck (x) = x(1 + e−i(ψk−ψk−1 ) )ck−1(x) − e−i(ψk−ψk−1 )ck−2(x),

with x = cos( ω
2 ). By Lemma 1, when

ψk+1 − ψk = (−1)kπ − 2arccot

(
tan

(
kπ

h + 1

)√
1 − γ 2

1

)
, (A5)

with γ −1
1 = cos( 1

h+1 arccos( 1√
ε

)) for k = 1, 2, . . . , h, we have

ch+1(x) =
Th+1

(
x
γ1

)
Th+1

(
1
γ1

) ,
with Th+1( 1

γ1
) = 1√

ε
. Moreover, bh+1(x) is determined by |bh+1(x)|2 + |ch+1(x)|2 = 1. Therefore, the state after A(ψh+1)...A(ψ1)

applied to the initial state is

1√
2

⎛
⎜⎝

0
bh+1(x)
ch+1(x)

1

⎞
⎟⎠.

Stage 2©: Apply R(α1)S to the above state. After that, the state is

1√
2

⎛
⎜⎝

bh+1(x)
0
1

ch+1(x)

⎞
⎟⎠.

Stage 3©: Perform A(φh−1)...A(φ1). Let ⎛
⎜⎜⎝

āk

b̄k

c̄k

d̄k

⎞
⎟⎟⎠ = A(φk )...A(φ1)

⎛
⎜⎝

bh+1(x)
0
1

ch+1(x)

⎞
⎟⎠

for k = 1, 2, . . . , h − 1. By the property of matrix A(φi ), we have āk = bh+1(x) and d̄k = ch+1(x) for all k. The recurrence
formula of c̄k (x) is defined by c̄0(x) = 1, c̄1(x) = x and for k = 2, . . ., h − 1,

c̄k (x) = x(1 + e−i(φk−φk−1 ) )c̄k−1(x) − e−i(φk−φk−1 )c̄k−2(x),

with x = cos( ω
2 ). By Lemma 1, when

φk+1 − φk = (−1)kπ − 2arccot

(
tan

(
kπ

h − 1

)√
1 − γ 2

2

)
, (A6)
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with γ −1
2 = cos[ 1

h−1 arccos( 1√
ε

)] for k = 1, 2, . . . , h − 2, we have

c̄h−1(x) =
Th−1

(
x
γ2

)
Th−1

(
1
γ2

) ,
with Th−1( 1

γ2
) = 1√

ε
. Moreover, b̄h−1(x) is determined by |b̄h−1(x)|2 + |c̄h−1(x)|2 = 1. Hence, the result state is

1√
2

⎛
⎜⎜⎝

bh+1(x)
b̄h−1(x)
c̄h−1(x)
ch+1(x)

⎞
⎟⎟⎠.

Stage 4©: Perform the final operation R(βh). The final state is

1√
2

⎛
⎜⎜⎝

bh+1(x)
eiβh b̄h−1(x)

c̄h−1(x)
ch+1(x)

⎞
⎟⎟⎠.

Therefore, the success probability Ph is

Ph = 1 − 1

2
(|c̄h−1(x)|2 + |ch−1(x)|2)

= 1 − ε

2

(
T 2

h+1

(
x

γ1

)
+ T 2

h−1

(
x

γ2

))

= 1 − ε

2

[
T 2

h+1

(
cos

(
1

h + 1
arccos

(
1√
ε

))√
1 − nl

Nl

)
+ T 2

h−1

(
cos

(
1

h − 1
arccos

(
1√
ε

))√
1 − nl

Nl

)]
.

By Eq. (A1) and Eqs. (A3)–(A6), αk, βk can be chosen such that

αk = −βh+1−k = π − (φk − φk−1) = 2arccot

(
tan

(
kπ

h + 1

)√
1 − γ 2

1

)
for k = 2, 4, . . . , h, and

αk = −βh+1−k = π − (ψk+1 − ψk ) = 2arccot

(
tan

(
(k − 1)π

h − 1

)√
1 − γ 2

2

)
for k = 3, 5, . . . , h − 1. In addition, α1 and βh can be any value.

APPENDIX B: PROOF OF LEMMA 3: MARKED VERTICES IN TWO SIDES

The section is devoted to the proof of Lemma 3.
Proof. Vertices in Fig. 3(c) can be divided into four types: the marked vertices denoted by u on the left and t on the right,

the unmarked vertices denoted by v on the left and s on the right. Hence, our analysis can be simplified in an eight-dimensional
subspace defined by the following orthogonal basis {|ut〉 , |us〉 , |tu〉 , |tv〉 , |vt〉 , |vs〉 , |su〉 , |sv〉}:

|ut〉 = 1√
nl

∑
u

|u〉 ⊗ 1√
nr

∑
t

|t〉 , |us〉 = 1√
nl

∑
u

|u〉 ⊗ 1√
Nr − nr

∑
s

|s〉 ,

|tu〉 = 1√
nr

∑
t

|t〉 ⊗ 1√
nl

∑
u

|u〉 , |tv〉 = 1√
nr

∑
t

|t〉 ⊗ 1√
Nl − nl

∑
v

|v〉 ,

|vt〉 = 1√
Nl − nl

∑
v

|v〉 ⊗ 1√
nr

∑
t

|t〉 ,

|vs〉 = 1√
Nl − nl

∑
v

|v〉 ⊗ 1√
Nr − nr

∑
s

|s〉 ,

|su〉 = 1√
Nr − nr

∑
s

|s〉 ⊗ 1√
nl

∑
u

|u〉 ,

|sv〉 = 1√
Nr − nr

∑
s

|s〉 ⊗ 1√
Nl − nl

∑
v

|v〉 .

052207-10



ROBUST QUANTUM WALK SEARCH WITHOUT KNOWING … PHYSICAL REVIEW A 106, 052207 (2022)

Then |�0〉 can be rewritten in the above basis as

|�0〉 = 1√
2Nl Nr

[
√

nl nr |ut〉 +
√

nl (Nr − nr ) |us〉 + √
nlnr |tu〉

+
√

nr (Nl − nl ) |tv〉 +
√

nr (Nl − nl ) |vt〉 +
√

(Nl − nl )(Nr − nr ) |vs〉
+
√

nl (Nr − nr ) |su〉 +
√

(Nl − nl )(Nr − nr ) |sv〉].
Thus, |�0〉 can be expressed as an eight-dimensional vector:

|�0〉 = 1√
2Nl Nr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
nlnr√

nl (Nr − nr )√
nlnr√

nr (Nl − nl )√
nr (Nl − nl )√

(Nl − nl )(Nr − nr )√
nl (Nr − nr )√

(Nl − nl )(Nr − nr )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, we have

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q(β ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβ 0 0 0 0 0 0 0
0 eiβ 0 0 0 0 0 0
0 0 eiβ 0 0 0 0 0
0 0 0 eiβ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

C(α) =
(

1 0
0 1

)
⊗

⎛
⎜⎝

M1 M2 0 0
M2 M3 0 0
0 0 M4 M5

0 0 M5 M6

⎞
⎟⎠,

with

M1 = (1 − e−iα )(1 − cos(ω2))

2
− 1, M2 = (1 − e−iα ) sin(ω2)

2
,

M3 = (1 − e−iα )(1 + cos(ω2))

2
− 1, M4 = (1 − e−iα )(1 − cos(ω1))

2
− 1,

M5 = (1 − e−iα ) sin(ω1)

2
, M6 = (1 − e−iα )(1 + cos(ω1))

2
− 1,

where cos(ω1) = 1 − 2nl
Nl

, sin(ω1) = 2
Nl

√
nl (Nl − nl ), cos(ω2) = 1 − 2nr

Nr
, and sin(ω2) = 2

Nr

√
nr (Nr − nr ).

Let

R(θ ) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
iθ
2 0 0 0 0 0 0 0

0 e− iθ
2 0 0 0 0 0 0

0 0 e
iθ
2 0 0 0 0 0

0 0 0 e− iθ
2 0 0 0 0

0 0 0 0 e
iθ
2 0 0 0

0 0 0 0 0 e− iθ
2 0 0

0 0 0 0 0 0 e
iθ
2 0

0 0 0 0 0 0 0 e− iθ
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

A(θ ) =
(

1 0
0 1

)
⊗

⎛
⎜⎜⎝

cos
(

ω2
2

) −ieiθ sin(ω2 )
2 0 0

−ie−iθ sin(ω2 )
2 cos

(
ω2
2

)
0 0

0 0 cos
(

ω1
2

) −ieiθ sin(ω1 )
2

0 0 −ie−iθ sin(ω1 )
2 cos

(
ω1
2

)
⎞
⎟⎟⎠.

052207-11



YONGZHEN XU, DELONG ZHANG, AND LVZHOU LI PHYSICAL REVIEW A 106, 052207 (2022)

We have

C(α) = e− iα
2 A
(π

2

)
R(α)A

(
−π

2

)
, (B1)

Q(β )S = −ei β

2 SR(β ), (B2)

A(α + β ) = R(β )A(α)R(−β ), (B3)

R(θ )R(−θ ) = I, (B4)

|�0〉 = A
(π

2

)
SA
(π

2

)
|0̄〉 , (B5)

where |0̄〉 denotes (0, 0, 0, 0, 0, 1√
2
, 0, 1√

2
)T . Similarly to Eq. (11), the following equation holds:

SB1SB2S = B2SB1, (B6)

where B1 = ∏n
i=0 Di and B2 = ∏m

i=0 Di for Di ∈ {A(θi ), R(θi )}.
Below we will prove Lemma 3 by two cases.

1. Case 1: h is an odd integer

First, we set

αk =
{−βh+2−k k = 2, 4, . . . , h − 1
−βh−k k = 3, 5, . . . , h.

(B7)

Then |�h〉 reduces to

|�h〉 ∼ S[A(ηh)...A(η1)]R(α1)SR(βh)[A(ζh)...A(ζ1)] |0̄〉 , (B8)

which will be proven in Appendix D by using Eqs. (B1)–(B6). Here ηk = ηh+1−k , ζk = ζh+1−k for k = 1, 2, . . . , h, and

ηk+1 − ηk =
{
π − αk+1 k = 2, 4, . . . , h − 1
−π + αh−k+1 k = 3, 5, . . . , h,

(B9)

ζk+1 − ζk =
{
π − αk k = 2, 4, . . . , h − 1
−π + αh−k k = 3, 5, . . . , h.

(B10)

The final state of Eq. (B8) can be obtained by the following four stages:

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(ζh )...A(ζ1 )−−−−−−→
1©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

eh(x2)
fh(x2)
gh(x1)
lh(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R(α1 )SR(βh )−−−−−−→
2©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
eiβh gh(x1)

0
eiβh eh(x2)

0
gh(x1)

0
fh(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(ηh )...A(η1 )−−−−−−→
3©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh gh(x1)āh(x2)
eiβh gh(x1)b̄h(x2)
eiβh eh(x2)c̄h(x1)
eiβh eh(x2)d̄h(x1)

gh(x1)ēh(x2)
gh(x1) f̄h(x2)
fh(x2)ḡh(x1)
fh(x2)l̄h(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S−−−−−−−→
4©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh eh(x2)c̄h(x1)
fh(x2)ḡh(x1)

eiβh gh(x1)āh(x2)
gh(x1)ēh(x2)

eiβh eh(x2)d̄h(x1)
fh(x2)l̄h(x1)

eiβh gh(x1)b̄h(x2)
gh(x1) f̄h(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 1©: apply A(ζh)...A(ζ1) to the initial state. Let

(a0, b0, c0, d0, e0, f0, g0, l0) = (0, 0, 0, 0, 0, 1, 0, 1)
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and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak

bk

ck

dk

ek

fk

gk

lk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A(ζk )...A(ζ1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for k = 1, 2, . . . , h. The elements of an eight-dimensional vector are divided into four groups: (first, second), (third, fourth),
(fifth, sixth), and (seventh, eighth). Note that each block of matrix A(ζi ) acts on a corresponding group of an eight-dimensional
vector. Thus, ak = bk = ck = dk = 0 for all k. The recurrence formula of lk (x1) is defined by l0(x1) = 1, l1(x1) = x1 and for
k = 2, . . ., h,

lk (x1) = x1(1 + e−i(ζk−ζk−1 ) )lk−1(x1) − e−i(ζk−ζk−1 )lk−2(x1),

with x1 = cos( ω1
2 ). The recurrence formula of fk (x2) is defined by f0(x2) = 1, f1(x2) = x2 and for k = 2, . . ., h,

fk (x2) = x2(1 + e−i(ζk−ζk−1 ) ) fk−1(x2) − e−i(ζk−ζk−1 ) fk−2(x2),

with x2 = cos( ω2
2 ). By Lemma 1, when

ζk+1 − ζk = (−1)kπ − 2arccot

(
tan

(
kπ

h

)√
1 − γ 2

)
, (B11)

with γ −1 = cos[ 1
h arccos( 1√

ε
)] for k = 1, 2, . . . , h − 1, we have

lh(x1) =
Th
( x1

γ

)
Th
(

1
γ

) , fh(x2) =
Th
( x2

γ

)
Th
(

1
γ

) ,

with Th( 1
γ

) = 1√
ε
. Moreover, eh(x2) and gh(x1) are determined by |eh(x2)|2 + | fh(x2)|2 = 1 and |gh(x1)|2 + |lh(x1)|2 = 1, respec-

tively. Therefore, the state after A(ζh)...A(ζ1) applied to the initial state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

eh(x2)
fh(x2)
gh(x1)
lh(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 2©: Apply R(α1)SR(βh) to the above state. After that, the state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
eiβh gh(x1)

0
eiβh eh(x2)

0
gh(x1)

0
fh(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 3©: Perform A(ηh)...A(η1). Let (ā0, b̄0, c̄0, d̄0, ē0, f̄0, ḡ0, l̄0) = (0, 1, 0, 1, 0, 1, 0, 1) and⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh gh(x1)āk

eiβh gh(x1)b̄k

eiβh eh(x2)c̄k

eiβh eh(x2)d̄k

gh(x1)ēk

gh(x1) f̄k

fh(x2)ḡk

fh(x2)l̄k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A(ζk )...A(ζ1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
eiβh gh(x1)

0
eiβh eh(x2)

0
gh(x1)

0
fh(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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for k = 1, . . ., h. The recurrence formula of d̄k (x1) is defined by d̄0(x1) = 1, d̄1(x1) = x1, and for k = 2, . . ., h,

d̄k (x1) = x(1 + e−i(ηk−ηk−1 ) )d̄k−1(x1) − e−i(ηk−ηk−1 )d̄k−2(x1),

with x1 = cos( ω1
2 ), and the recurrence formula of l̄k (x1) is defined by l̄0(x1) = 1, l̄1(x1) = x1 and for k = 2, . . ., h:

l̄k (x1) = x1(1 + e−i(ηk−ηk−1 ) )l̄k−1(x1) − e−i(ηk−ηk−1 ) l̄k−2(x1).

The recurrence formula of b̄k (x2) is defined by b̄0(x2) = 1, b̄1(x2) = x2, and for k = 2, . . ., h,

b̄k (x2) = x2(1 + e−i(ηk−ηk−1 ) )b̄k−1(x2) − e−i(ηk−ηk−1 )b̄k−2(x2),

with x2 = cos( ω2
2 ), and the recurrence formula of f̄k (x2) is defined by f̄0(x2) = 1, f̄1(x2) = x2 and for k = 2, . . ., h:

f̄k (x2) = x2(1 + e−i(ηk−ηk−1 ) ) f̄k−1(x2) − e−i(ηk−ηk−1 ) f̄k−2(x2).

By Lemma 1, when

ηk+1 − ηk = (−1)kπ − 2arccot

(
tan

(
kπ

h

)√
1 − γ 2

)
, (B12)

with γ −1 = cos[ 1
h arccos( 1√

ε
)] for k = 1, 2, . . . , h − 1, we have

d̄h(x1) = l̄h(x1) =
Th
( x1

γ

)
Th
(

1
γ

) , b̄h(x2) = f̄h(x2) =
Th
( x2

γ

)
Th
(

1
γ

) ,

with Th( 1
γ

) = 1√
ε
. Moreover, āh(x2), c̄h(x1), ēh(x2), and ḡh(x1) are determined by |āh(x2)|2 + |b̄h(x2)|2 = 1, |c̄h(x1)|2 +

|c̄h(x1)|2 = 1, |ēh(x2)|2 + |ēh(x2)|2 = 1, and |ḡh(x1)|2 + |l̄h(x1)|2 = 1, respectively. Hence, the result state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh gh(x1)āh(x2)
eiβh gh(x1)b̄h(x2)
eiβh eh(x2)c̄h(x1)
eiβh eh(x2)d̄h(x1)

gh(x1)ēh(x2)
gh(x1) f̄h(x2)
fh(x2)ḡh(x1)
fh(x2)l̄h(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 4©: Perform the final operation S. The final state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh eh(x2)c̄h(x1)
fh(x2)ḡh(x1)

eiβh gh(x1)āh(x2)
gh(x1)ēh(x2)

eiβh eh(x2)d̄h(x1)
fh(x2)l̄h(x1)

eiβh gh(x1)b̄h(x2)
gh(x1) f̄h(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, the success probability Ph is

Ph = 1 − 1

2
| fh(x2)l̄h(x1)|2 − 1

2
|gh(x1) f̄h(x2)|2 = 1 − ε2T 2

h

(
x1

γ

)
T 2

h

(
x2

γ

)

= 1 − ε2T 2
h

(
cos

(
1

h
arccos

(
1√
ε

))√
1 − nl

Nl

))
T 2

h

(
cos

(
1

h
arccos

(
1√
ε

))√
1 − nr

Nr

)
.

By Eqs. (B7) and (B9)–(B12), αk, βk can be chosen such that

αk = −βh+2−k = π + (ηk+1 − ηk ) = 2arccot

(
tan

(
kπ

h

)√
1 − γ 2

)

for k = 2, 4, . . . , h − 1, and

αk = −βh−k = π − (ζk+1 − ζk ) = 2arccot

(
tan

(
(k − 1)π

h

)√
1 − γ 2

for k = 3, 5, . . . , h. In addition, α1 and βh can be any value.
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2. Case 2: h is an even integer

First, we set

βk = −αh+1−k k = 1, 2, . . . , h − 1. (B13)

Then |�h〉 reduces to

|�h〉 ∼ R(βh)[A(φh−1)...A(φ1)]R(α1)S[A(ψh+1)...A(ψ1)] |0̄〉 , (B14)

which will be proven in Appendix D by using Eqs. (B1)–(B6). Here φk = φh−k for k = 1, 2, . . . , h − 1, ψk = ψh+2−k for k =
1, 2, . . . , h + 1, and

φk+1 − φk =
{
π − αk+1 k = 2, 4, . . . , h − 2
−π + αh−k k = 1, 3, . . . , h − 3,

(B15)

ψk+1 − ψk =
{
π − αk k = 2, 4, . . . , h − 2
−π + αh−k+1 k = 1, 3, . . . , h.

(B16)

The final state of Eq. (B14) is given by the four stages as follows:

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(ψh+1 )...A(ψ1 )−−−−−−−−→
1©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

eh+1(x2)
fh+1(x2)
gh+1(x1)
lh+1(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R(α1 )S−−−→
2©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
gh+1(x1)

0
eh+1(x2)

0
lh+1(x1)

0
fh+1(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(φh−1 )...A(φ1 )−−−−−−−−→
3©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gh+1(x1)āh−1(x2)
gh+1(x1)b̄h−1(x2)
eh+1(x2)c̄h−1(x1)
eh+1(x2)d̄h−1(x1)
lh+1(x1)ēh−1(x2)
lh+1(x1) f̄h−1(x2)
fh+1(x2)ḡh−1(x1)
fh+1(x2)l̄h−1(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R(βh )−−−−−−−−−−→
4©

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh gh+1(x1)āh−1(x2)
gh+1(x1)b̄h−1(x2)

eiβh eh+1(x2)c̄h−1(x1)
eh+1(x2)d̄h−1(x1)

eiβh lh+1(x1)ēh−1(x2)
lh+1(x1) f̄h−1(x2)

eiβh fh+1(x2)ḡh−1(x1)
fh+1(x2)l̄h−1(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 1©: Apply A(ψh+1)...A(ψ1) to the initial state. Let

(a0, b0, c0, d0, e0, f0, g0, l0) = (0, 0, 0, 0, 0, 1, 0, 1)

and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak

bk

ck

dk

ek

fk

gk

lk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A(ψk )...A(ψ1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for k = 1, 2, . . . , h. By the property of the matrix A(ζi ), we have ak = bk = ck = dk = 0 for all k, and ek, fk, gk, lk can be gotten
in the following. The recurrence formula of lk (x1) is defined by l0(x1) = 1, l1(x1) = x1 and for k = 2, . . ., h + 1,

lk (x1) = x1(1 + e−i(ψk−ψk−1 ) )lk−1(x1) − e−i(ψk−ψk−1 )lk−2(x1),
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with x1 = cos( ω1
2 ), and the recurrence formula of fk (x2) is defined by f0(x2) = 1, f1(x2) = x2 and for k = 2, . . ., h + 1,

fk (x2) = x2(1 + e−i(ψk−ψk−1 ) ) fk−1(x2) − e−i(ψk−ψk−1 ) fk−2(x2),

with x2 = cos( ω2
2 ). By Lemma 1, when

ψk+1 − ψk = (−1)kπ − 2arccot

(
tan

(
kπ

h + 1

)√
1 − γ 2

1

)
, (B17)

with γ −1
1 = cos( 1

h+1 arccos( 1√
ε

)) for k = 1, 2, . . . , h, we have

lh+1(x1) =
Th+1

( x1
γ1

)
Th+1

(
1
γ1

) , fh+1(x2) =
Th+1

( x2
γ1

)
Th+1

(
1
γ1

) ,
with Th+1( 1

γ1
) = 1√

ε
. Moreover, eh+1(x2) and gh+1(x1) are determined by |eh+1(x2)|2 + | fh+1(x2)|2 = 1 and |gh+1(x1)|2 +

|lh+1(x1)|2 = 1, respectively. Therefore, the state after A(ψh)...A(ψ1) applied to the initial state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

eh+1(x2)
fh+1(x2)
gh+1(x1)
lh+1(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 2©: Apply R(α1)S to the above state. After that, the state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
gh+1(x1)

0
eh+1(x2)

0
lh+1(x1)

0
fh+1(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 3©: Perform A(φh−1)...A(φ1). Let (ā0, b̄0, c̄0, d̄0, ē0, f̄0, ḡ0, l̄0) = (0, 1, 0, 1, 0, 1, 0, 1) and

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gh+1(x1)āk

gh+1(x1)b̄k

eh+1(x2)c̄k

eh+1(x2)d̄k

lh+1(x1)ēk

lh+1(x1) f̄k

fh+1(x2)ḡk

fh+1(x2)l̄k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A(φk )...A(φ1)
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
gh+1(x1)

0
eh+1(x2)

0
lh+1(x1)

0
fh+1(x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for k = 1, . . ., h − 1. The recurrence formula of d̄k (x1) is defined by d̄0(x1) = 1, d̄1(x1) = x1 and for k = 2, . . ., h − 1,

d̄k (x1) = x(1 + e−i(φk−φk−1 ) )d̄k−1(x1) − e−i(φk−φk−1 )d̄k−2(x1),

with x1 = cos( ω1
2 ), and the recurrence formula of l̄k (x1) is defined by l̄0(x1) = 1, l̄1(x1) = x1 and for k = 2, . . ., h − 1:

l̄k (x1) = x1(1 + e−i(φk−φk−1 ) )l̄k−1(x1) − e−i(φk−φk−1 ) l̄k−2(x1).

The recurrence formula of b̄k (x2) is defined by b̄0(x2) = 1, b̄1(x2) = x2 and for k = 2, . . ., h − 1,

b̄k (x2) = x2(1 + e−i(φk−φk−1 ) )b̄k−1(x2) − e−i(φk−φk−1 )b̄k−2(x2),

with x2 = cos( ω2
2 ), and the recurrence formula of f̄k (x2) is defined by f̄0(x2) = 1, f̄1(x2) = x2 and for k = 2, . . ., h − 1:

f̄k (x2) = x2(1 + e−i(φk−φk−1 ) ) f̄k−1(x2) − e−i(φk−φk−1 ) f̄k−2(x2).

By Lemma 1, when

φk+1 − φk = (−1)kπ − 2arccot

[
tan

(
kπ

h − 1

)√
1 − γ 2

2

]
, (B18)
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with γ −1
2 = cos[ 1

h−1 arccos( 1√
ε

)] for k = 1, 2, . . . , h − 2, we have

d̄h−1(x1) = l̄h−1(x1) =
Th−1

( x1
γ2

)
Th−1

(
1
γ2

) , b̄h−1(x2) = f̄h−1(x2) =
Th−1

( x2
γ2

)
Th−1

(
1
γ2

) ,
with Th−1( 1

γ2
) = 1√

ε
. Moreover, āh(x2), c̄h(x1), ēh(x2), and ḡh(x1) are determined by |āh(x2)|2 + |b̄h(x2)|2 = 1, |c̄h(x1)|2 +

|d̄h(x1)|2 = 1, |ēh(x2)|2 + | f̄h(x2)|2 = 1, and |ḡh(x1)|2 + |l̄h(x1)|2 = 1, respectively. Hence, the result state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gh+1(x1)āh−1(x2)
gh+1(x1)b̄h−1(x2)
eh+1(x2)c̄h−1(x1)
eh+1(x2)d̄h−1(x1)
lh+1(x1)ēh−1(x2)
lh+1(x1) f̄h−1(x2)
fh+1(x2)ḡh−1(x1)
fh+1(x2)l̄h−1(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Stage 4©: Perform the final operation R(βh). The final state is

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiβh gh+1(x1)āh−1(x2)
gh+1(x1)b̄h−1(x2)

eiβh eh+1(x2)c̄h−1(x1)
eh+1(x2)d̄h−1(x1)

eiβh lh+1(x1)ēh−1(x2)
lh+1(x1) f̄h−1(x2)

eiβh fh+1(x2)ḡh−1(x1)
fh+1(x2)l̄h−1(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the success probability Ph is

Ph = 1 − 1

2
|ch+1(x1)dh−1(x2)|2 − 1

2
|ch+1(x2)dh−1(x1)|2

= 1 − ε2

2

(
T 2

h+1

(
x1

γ1

)
T 2

h−1

(
x2

γ2

)
+ T 2

h+1

(
x2

γ1

)
T 2

h−1

(
x1

γ2

))

= 1 − ε2

2

[
T 2

h+1

(
cos

(
1

h + 1
arccos

(
1√
ε

))√
1 − nl

Nl

)

× T 2
h−1

(
cos

(
1

h − 1
arccos

(
1√
ε

))√
1 − nr

Nr

)

+ T 2
h+1

(
cos

(
1

h + 1
arccos

(
1√
ε

))√
1 − nr

Nr

)

× T 2
h−1

(
cos

(
1

h − 1
arccos

(
1√
ε

))√
1 − nl

Nl

)]
.

By Eqs. (B13) and (B15)–(B18), αk, βk can be chosen such that

αk = −βh+1−k = π − (φk − φk−1) = 2arccot

(
tan

(
kπ

h + 1

)√
1 − γ 2

2

)

for k = 2, 4, . . . , h, and

αk = −βh+1−k = π − (ψk+1 − ψk ) = 2arccot

(
tan

(
(k − 1)π

h − 1

)√
1 − γ 2

1

)

for k = 3, 5, . . . , h − 1. In addition, α1 and βh can be any value.

APPENDIX C: PROOF OF EQUATIONS (13) AND (A2)

In this Appendix, we give the detailed proof of Eqs. (13) and (A2).
Recall that

|�h〉 = U (αh, βh) . . .U (α1, β1) |�0〉 = SC(αh)Q(βh) . . . SC(α1)Q(β1) |�0〉 .
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Using SS = I , we have

|�h〉 = SC(αh)Q(βh) . . . SC(α1)Q(β1)SS |�0〉 .

Using Eqs. (6) and (7), we have

|�h〉 ∼ SA

(
π

2

)
R(αh)A

(
− π

2

)
SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
SR(βh−1) . . .

A

(
π

2

)
R(α2)A

(
− π

2

)
SR(β2)A

(
π

2

)
R(α1)A

(
− π

2

)
SR(β1)S |�0〉 .

The number of S is h + 2. Two cases need to be considered.
Case 1: h is odd. By Eq. (11), we have

|�h〉 ∼ SA

(
π

2

)
R(αh)A

(
− π

2

)
. . . SR(β h+5

2
)A

(
π

2

)
R(α h+3

2
)A

(
− π

2

)

×
{

SR(β h+3
2

)A

(
π

2

)
R(α h+1

2
)A

(
− π

2

)
SR(β h+1

2
)A

(
π

2

)
R(α h−1

2
)A

(
− π

2

)
S

}

× R(β h−1
2

)A

(
π

2

)
R(α h−3

2
)A

(
− π

2

)
. . . SR(β2)A

(
π

2

)
R(α1)A

(
− π

2

)
SR(β1)S |�0〉

= SA

(
π

2

)
R(αh)A

(
− π

2

)
. . . SR(β h+5

2
)A

(
π

2

)
R(α h+3

2
)A

(
− π

2

)

×
{

R(β h+1
2

)A

(
π

2

)
R(α h−1

2
)A

(
− π

2

)
SR(β h+3

2
)A

(
π

2

)
R(α h+1

2
)A

(
− π

2

)}

× R(β h−1
2

)A

(
π

2

)
R(α h−3

2
)A

(
− π

2

)
. . . SR(β2)A

(
π

2

)
R(α1)A

(
− π

2

)
SR(β1)S |�0〉

= SA

(
π

2

)
R(αh)A

(
− π

2

)
R(βh−1)A

(
π

2

)
. . . A

(
π

2

)
R(α1)A

(
− π

2

)

× SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
. . . R(α2)A

(
− π

2

)
R(β1)S |�0〉 .

The process is as follows. We first select the formula{
SR(β h+3

2
)A

(
π

2

)
R(α h+1

2
)A

(
− π

2

)
SR(β h+1

2
)A

(
π

2

)
R(α h−1

2
)A

(
− π

2

)
S

}
,

containing the middle S, and then this formula reduces to{
R(β h+1

2
)A

(
π

2

)
R(α h−1

2
)A

(
− π

2

)
SR(β h+3

2
)A

(
π

2

)
R(α h+1

2
)A

(
− π

2

)}
,

according to Eq. (11). The final result can be obtained after repeating the above steps. Using Eq. (10) and A(−π
2 )A( π

2 ) = I , we
have

|�h〉 ∼ SA

(
π

2

)
R(αh)A

(
− π

2

)
R(βh−1)A

(
π

2

)
...A

(
π

2

)
R(α1)A

(
− π

2

)

× SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
...R(α2)A

(
− π

2

)
R(β1)SA

(
π

2

)
SA

(
π

2

)
|0̄〉

∼ SA

(
π

2

)
R(αh)A

(
− π

2

)
R(βh−1)A

(
π

2

)
...R(β2)A

(
π

2

)
R(α1)

× SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
...R(α2)A

(
− π

2

)
R(β1)A

(
π

2

)
|0̄〉 .

Here, two cases need to be discussed.
Case 1.1: When h mod 4 = 1, βi = αh+2−i for i = 2, 4, . . . , h − 1, and βi = αh−i for i = 1, 3, . . . , h − 2, using Eqs. (8) and

(9), we have

|�h〉 ∼ SA

(
π

2

)
A

(
− π

2
+ αh

)
A

(
π

2
− α3 + αh

)
A

(
− π

2
− α3 + αh + αh−2

)
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. . . A

(
π

2
− α3 − α5 · · · − αk1 + αk1+2 · · · + αh

)

. . . A

(
− π

2
− α3 + αh + αh−2

)
A

(
π

2
− α3 + αh

)
A

(
− π

2
+ αh

)
A

(
π

2

)
R(α1)

SR(βh)A

(
π

2

)
A

(
− π

2
+ αh−1

)
A

(
π

2
− α2 + αh−1

)
A

(
− π

2
− α2 + αh−1 + αh−3

)

. . . A

(
π

2
− α2 − α4 · · · − αk2 + αk2+2 · · · + αh−1

)

. . . A

(
− π

2
− α2 + αh−1 + αh−3

)
A

(
π

2
− α2 + αh−1

)
A

(
− π

2
+ αh−1

)
A

(
π

2

)
|0̄〉 , (C1)

where k1 = (h + 1)/2, k2 = (h − 1)/2.
Case 1.2: When h mod 4 = 3, βi = αh+2−i for i = 2, 4, . . . , h − 1, and βi = αh−i for i = 1, 3, . . . , h − 2, using Eqs. (8) and

(9), we have

|�h〉 ∼ SA

(
π

2

)
A

(
− π

2
+ αh

)
A

(
π

2
− α3 + αh

)
A

(
− π

2
− α3 + αh + αh−2

)

. . . A

(
− π

2
− α3 − α5 · · · − αk1 + αk1+2 · · · + αh

)

. . . A

(
− π

2
− α3 + αh + αh−2

)
A

(
π

2
− α3 + αh

)
A

(
− π

2
+ αh

)
A

(
π

2

)
R(α1)

SR(βh)A

(
π

2

)
A

(
− π

2
+ αh−1

)
A

(
π

2
− α2 + αh−1

)
A

(
− π

2
− α2 + αh−1 + αh−3

)

. . . A

(
− π

2
− α2 − α4 · · · − αk2 + αk2+2 · · · + αh−1

)

. . . A

(
− π

2
− α2 + αh−1 + αh−3

)
A

(
π

2
− α2 + αh−1

)
A

(
− π

2
+ αh−1

)
A

(
π

2

)
|0̄〉 , (C2)

where k1 = (h − 1)/2, k2 = (h − 3)/2.
Thus, we can get Eq. (13) by rewriting Eqs. (C1) and (C2) as follows:

|�h〉 ∼ S[A(ηh)...A(η1)]R(α1)SR(βh)[A(ζh)...A(ζ1)] |0̄〉 , (13)

where ηk = ηh+1−k and ζk = ζh+1−k for k = 1, 2, . . . , h, and

ηk+1 − ηk =
{
π − αk+1 k = 2, 4, . . . , h − 1
−π + αh−k+1 k = 3, 5, . . . , h,

ζk+1 − ζk =
{
π − αk k = 2, 4, . . . , h − 1
−π + αh−k k = 3, 5, . . . , h.

Here, when h mod 4 = 1,

η(h+1)/2 =π

2
+ (α(h+5)/2 + α(h+9)/2 + · · · + αh−2 + αh) − (α3 + α5 + · · · + α(h−3)/2 + α(h+1)/2),

ζ(h+1)/2 =π

2
+ (α(h+3)/2 + α(h+7)/2 + · · · + αh−3 + αh−1) − (α2 + α4 + · · · + α(h−5)/2 + α(h−1)/2),

and when h mod 4 = 3,

η(h+1)/2 = −π

2
+ (α(h+3)/2 + α(h+7)/2 + · · · + αh−2 + αh) − (α3 + α5 + · · · + α(h−5)/2 + α(h−1)/2),

ζ(h+1)/2 = −π

2
+ (α(h+1)/2 + α(h+5)/2 + · · · + αh−3 + αh−1) − (α2 + α4 + · · · + α(h−7)/2 + α(h−3)/2).
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Case 2: h is even. Using Eq. (11), there is

|�h〉 ∼ SA

(
π

2

)
R(αh)A

(
− π

2

)
...SR(β h

2 +2)A

(
π

2

)
R(α h

2 +1)A

(
− π

2

)

SR(β h
2 +1)A

(
π

2

)
R(α h

2
)A

(
− π

2

)
SR(β h

2
)A

(
π

2

)
R(α h

2 −1)A

(
− π

2

)

SR(β h
2 −1)A

(
π

2

)
R(α h

2 −2)A

(
− π

2

)
...SR(β2)A

(
π

2

)
R(α1)A

(
− π

2

)
SR(β1)S |�0〉

= SA

(
π

2

)
R(αh)A

(
− π

2

)
SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
...

SR(β h
2 +2)A

(
π

2

)
R(α h

2 +1)A

(
− π

2

)
R(β h

2
)A

(
π

2

)
R(α h

2 −1)A

(
− π

2

)

SR(β h
2 +1)A

(
π

2

)
R(α h

2
)A

(
− π

2

)
R(β h

2 −1)A

(
π

2

)
R(α h

2 −2)A

(
− π

2

)
S...

SR(β2)A

(
π

2

)
R(α1)A

(
− π

2

)
SR(β1)S |�0〉

= SA

(
π

2

)
R(αh)A

(
− π

2

)
R(βh−1)A

(
π

2

)
...A

(
π

2

)
R(α2)A

(
− π

2

)
R(β1)

SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
...R(α1)A

(
− π

2

)
|�0〉 .

Using Eq. (10) and A(−π
2 )A( π

2 ) = I , we have

|�h〉 ∼ SA

(
π

2

)
R(αh)A

(
− π

2

)
R(βh−1)A

(
π

2

)
...A

(
π

2

)
R(α2)A

(
− π

2

)
R(β1)

× SR(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
...R(α1)A

(
− π

2

)
A

(
π

2

)
SA

(
π

2

)
|0̄〉

∼ R(βh)A

(
π

2

)
R(αh−1)A

(
− π

2

)
...A

(
− π

2

)
R(β2)A

(
π

2

)
R(α1)S

× A

(
π

2

)
R(αh)A

(
− π

2

)
R(βh−1)A

(
π

2

)
...A

(
π

2

)
R(α2)A

(
− π

2

)
R(β1)A

(
π

2

)
|0̄〉 .

Here, two cases need to be discussed.
Case 2.1: When h mod 4 = 0, and βi = αh+1−i for i = 1, 2, . . . , h − 1, using Eqs. (8) and (9), we have

|�h〉 ∼ R(βh)A

(
π

2

)
A

(
− π

2
+ αh−1

)
A

(
π

2
− α3 + αh−1

)
A

(
− π

2
− α3 + αh−1 + αh−3

)

...A

(
− π

2
− α3 − α5 · · · − αk1 + αk1+2 · · · + αh−1

)
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A
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2
− α3 + αh−1 + αh−3

)
A

(
π

2
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)
A

(
− π

2
+ αh−1

)
A

(
π

2

)
R(α1)S

A

(
π

2

)
A

(
− π

2
+ αh

)
A

(
π

2
− α2 + αh

)
A

(
− π

2
− α2 + αh + αh−2

)

...A

(
π

2
− α2 − α4 · · · − αk2 + αk2+2 · · · + αh

)
...

A

(
− π

2
− α2 + αh + αh−2

)
A

(
π

2
− α2 + αh

)
A

(
− π

2
+ αh

)
A

(
π

2

)
|0̄〉 , (C3)

where k1 = h/2 − 1, k2 = h/2.
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Case 2.2: When h mod 4 = 2, and βi = αh+1−i for i = 1, 2, . . . , h − 1, using Eqs. (8) and (9), we have

|�h〉 ∼R(βh)A

(
π

2

)
A

(
− π

2
+ αh−1

)
A

(
π

2
− α3 + αh−1

)
A

(
− π
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)

...A
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π

2
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)
...

A

(
− π

2
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)
A

(
π

2
− α3 + αh−1

)
A

(
− π

2
+ αh−1

)
A

(
π

2

)
R(α1)S

A

(
π

2

)
A

(
− π

2
+ αh

)
A

(
π

2
− α2 + αh

)
A

(
− π

2
− α2 + αh + αh−2

)

...A

(
− π

2
− α2 − α4 · · · − αk2 + αk2+2 · · · + αh

)
...

A

(
− π

2
− α2 + αh + αh−2

)
A

(
π

2
− α2 + αh

)
A

(
− π

2
+ αh

)
A

(
π

2

)
|0̄〉 , (C4)

where k1 = h/2, k2 = h/2 − 1.
Using Eqs. (C3) and (C4), we can get Eq. (A2),

|�h〉 ∼R(βh)[A(φh−1)...A(φ1)]R(α1)S[A(ψh+1)...A(ψ1)] |0̄〉 , (A2)

where φk = φh−k for k = 1, 2, . . . , h − 1, ψk = ψh+2−k for k = 1, 2, . . . , h + 1, and

φk+1 − φk =
{
π − αk+1 for k = 2, 4, . . . , h − 2
−π + αh−k for k = 1, 3, . . . , h − 3,

ψk+1 − ψk =
{
π − αk for k = 2, 4, . . . , h − 2
−π + αh−k+1 for k = 1, 3, . . . , h.

Here, when h mod 4 = 0, there are

φh/2 = −π

2
+ (αh/2+1 + αh/2+3 + · · · + αh−3 + αh−1) − (α3 + α5 + · · · + αh/2−3 + αh/2−1),

ψh/2+1 = π

2
+ (αh/2+2 + αh/2+4 + · · · + αh−2 + αh) − (α2 + α4 + · · · + αh/2−2 + αh/2,

and when h mod 4 = 2, there are

φh/2 = π

2
+ (αh/2+2 + αh/2+4 + · · · + αh−3 + αh−1) − (α3 + α5 + · · · + αh/2−2 + αh/2),

ψh/2+1 = −π

2
+ (αh/2+1 + αh/2+3 + · · · + αh−2 + αh) − (α2 + α4 + · · · + αh/2−3 + αh/2−1).

APPENDIX D: PROOF OF EQUATIONS (B8) AND (B14)

The process of proving Eq. (13) [(A2)] uses Eqs. (6)–(11) in Appendix C. There are the same mathematical equations in two
cases [see Eqs. (6)–(11) and Eqs. (B1)–(B6)], although their subspace dimensions in the analysis are different. Therefore, the
proof of Eq. (B8) [Eq. (B14)] is the same as Eq. (13) [(A2)].
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