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Recent works on quantum resource theories of non-Gaussianity, which are based upon the type of tools
available in contemporary experimental settings, put Gaussian states and their convex combinations on equal
footing. Motivated by this, in this paper, we derive a model of dissipative time evolution based on unitary
Lindblad operators which, while it does not preserve the set of Gaussian states, preserves the set of their convex
combinations, i.e., so-called quantum Gaussian states. As we demonstrate, the considered evolution proves useful
both as a description for random scattering and as a tool in dissipator engineering.
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I. INTRODUCTION

One of the most prominent families of states in continuous
variable quantum mechanics consists of Gaussian states, i.e.,
states with Gaussian (normal) characteristic functions. Due
to their relative simplicity in both analytical description and
practical implementation, they found extensive use in fields as
varied as quantum optics, information and thermodynamics,
among others [1–4].

Consequently, much interest was devoted to time evolution
which preserves the set of Gaussian states. Such evolution
is described by the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) equation generated by a polynomial of at most second
degree in the quadrature operators. Over the years, it proved
to be successful in studies of quantum thermodynamics [5],
optics [6], entanglement [7,8], discord [9], purity [10,11],
fidelity [12], steering [13], stabilizability [14,15] and classical
limits of quantum mechanics [16,17], among others.

Despite the popularity of Gaussian states and dynamics,
in comparison, little interest was devoted to the so-called
quantum Gaussian states, which are a generalization of Gaus-
sian states that also includes their convex combinations
[18–23]. However, according to recent developments in quan-
tum resource theories of non-Gaussianity [24,25], which are
motivated by the type of operations available in modern ex-
periments employing continuous variables, Gaussian states
and their convex combinations are equally resourceful. From
this perspective, the aforementioned restriction to evolution
preserving the set of Gaussian states is too severe and should
be relaxed to allow the more general quantum Gaussian states.

In this paper, we develop an explicit model of time evolu-
tion compatible only with this weaker restriction: it preserves
the convex hull of Gaussian states and not the Gaussian family
of states itself. Despite that, it is fully compatible with the
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symplectic (covariance matrix) picture used extensively in
studies of Gaussian phenomena. The model is derived from
the central assumption of unitary Lindblad operators, a class
studied first in 1972 within the then-rapidly developing field
of quantum dynamical semigroups [26–28].

The considered evolution has two very different applica-
tions depending on the nature of unitary Lindblad operators
entering it. For a large number of noncommuting oper-
ators, we use a combination of the collision model and
kicked top dynamics to show that the evolution describes
random scattering, a view consistent with the first find-
ings regarding unitary Lindblad operators [26]. On the other
hand, for a single Lindblad operator, time evolution may
be employed in dissipator engineering, which we demon-
strate with an example of entanglement creation in two-mode
states.

The paper is organized as follows. Section II is devoted to
preliminaries: a symplectic picture of quantum states and evo-
lution that preserves the set of Gaussian states. In Sec. III, we
develop the discussed evolution equation and study its basic
technical properties: Gaussianity and symplectic representa-
tion. In Sec. IV, we consider the evolution as a description
of random scattering. In Sec. V, we investigate the stationary
solutions of the derived evolution equation, which we then use
in Sec. VI in an engineered dissipation scenario for entangle-
ment harvest. We conclude in Sec. VII.

II. SYMPLECTIC PICTURE

Studies of Gaussian states and their evolution often make
use of the symplectic picture, which reduces the N-mode
infinitely dimensional Hilbert space associated with the den-
sity operator to a space of dimension 2N , which is typically
easier to work with. Here, we briefly summarize the rel-
evant information about the symplectic picture, including
the so-called covariance matrix and Gaussianity-preserving
evolution.
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A. Covariance matrix and vector of means

Let us consider an N-mode Hilbert space H = ⊗N
k=1 Hk

equipped with N pairs of quadrature operators x̂k, p̂k , conve-
niently collected in a single vector:

�̂ξ := (x̂1, p̂1, . . . , x̂N , p̂N )T . (1)

As the quadrature operators form a basis of operators acting
on H, every state describing the system can be fully charac-
terized [29] by the complete (n = 1, . . . ,∞) set of nth-order
correlation functions (correlations) of the form〈

ξ̂l1 . . . ξ̂ln

〉
:= Tr

[
ρ̂ ξ̂l1 . . . ξ̂ln

]
, (2)

which we also call nth moments for short. In many studies,
especially those involving Gaussian states, i.e., states with
Gaussian characteristic functions [1,30,31], it is enough to
consider only the first and second moments. The advantage is
that, in contrast to the infinitely dimensional density operator,
the first two moments are completely described by a moderate
number of degrees of freedom [32].

Information about the first moments is contained in a 2N-
dimensional vector of means

ξk := 〈ξ̂k〉, (3)

while the second moments are encoded in the 2N × 2N co-
variance matrix

Vkk′ := 1
2 〈{ξ̂k, ξ̂k′ }〉 − ξkξk′ . (4)

Both {·, ·} and [·, ·] as usual denote commutators and anticom-
mutators, respectively. Any valid covariance matrix has to be
positive and fulfill the Heisenberg uncertainty relations (we
assume natural units):√〈

x̂2
k

〉− 〈x̂k〉2
√〈

p̂2
k

〉− 〈p̂k〉2 � 1

2
, (5)

where k ∈ {1, . . . , N}, equivalent to [30]

V + i

2
J � 0. (6)

Here, J is the symplectic form, defined in terms of the canoni-
cal commutation relations as

Jkk′ := −i[ξ̂k, ξ̂k′ ], (7)

and explicitly equal to

J =
N⊕

k=1

J2, J2 :=
[

0 1
−1 0

]
. (8)

The symplectic form defines the symplectic group
Sp(2N,R) consisting of matrices K of size 2N × 2N , such
that [33]

KJKT = J. (9)

In this paper, special emphasis is put on a subset of symplectic
matrices which possess the following exponential represen-
tations (both of which are useful depending on the context)
[34,35]:

K = eJS ≡ eS′J , (10)

for some symmetric matrices S and S′ = JSJT . We stress that
while all matrices of the form (10) are symplectic [36], not all

symplectic matrices are of this form due to the fact that the
symplectic group is not compact [37,38].

The pair (V, �ξ ) defines the symplectic picture (also known
as the covariance matrix picture) of quantum states. All stan-
dard notions known from the density operator picture translate
in a natural way to the symplectic picture. In particular, just
like any density operator can be diagonalized by a unitary
operation and is therefore described by its eigenvalues, any
covariance matrix can be brought to a diagonal form by a
symplectic operation and is described by its symplectic eigen-
values:

1/2 � ν1 � · · · � νN . (11)

The symplectic eigenvalues come in pairs, i.e., the diagonal-
ized covariance matrix reads Vdiag = diag(ν1, ν1, . . . , νN , νN ).
Furthermore, they are related to the eigenvalues μ j of the
matrix JV via

iμ2k = −iμ∗
2k−1 = νk, k ∈ {1, . . . , N}. (12)

In the case of Gaussian states, the symplectic picture is
complete, i.e., it is equivalent to the density operator descrip-
tion. Otherwise, it describes a subset of the system’s degrees
of freedom.

B. Gaussianity-preserving evolution

In the theory of quantum dynamical semigroups, the state
of the system at time t � 0 is given by

ρ̂(t ) = etL·ρ̂(0). (13)

Here, L is the generator of evolution, which has the general
form

L· = −i[Ĥ, ·] +
∑

j

(
L̂ j · L̂†

j − 1
2 {L̂†

j L̂ j, ·}
)
. (14)

The system Hamiltonian Ĥ is responsible for unitary evolu-
tion, while the Lindblad operators (Lindbladians) L̂ j govern
the dissipative part of the dynamics.

Here and below we use the dot to denote the argument
of the generator, e.g., the action Lρ̂ of the generator on a
generic state is given by the right-hand side of Eq. (14) with
the dot replaced by ρ̂. On the other hand, the exponential
of the generator is to be understood in terms of its repeated
application on the state via

etL·ρ̂ =
∞∑

n=0

t n

n!
LL . . .L︸ ︷︷ ︸

n times

ρ̂. (15)

This convention is followed by us throughout the paper.
By differentiating both sides of Eq. (13) with respect to

time, we obtain the GKLS (Lindblad) equation [39–41]:

d

dt
ρ̂ = −i[Ĥ , ρ̂] +

∑
j

(
L̂ j ρ̂L̂†

j − 1
2 {L̂†

j L̂ j, ρ̂}). (16)

If the generator is a polynomial of at most second degree in
the quadrature operators, the evolution preserves the set of
Gaussian states. In such cases, the Hamiltonian equals

Ĥ = 1
2
�̂ξT G�̂ξ, (17)
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where G is a 2N × 2N real, symmetric matrix. The Lindblad
operators, on the other hand, equal

L̂ j =
2N∑

k=1

(�c j )k ξ̂k, �c j ∈ C2N , (18)

necessarily being just linear in the quadratures.
Computing the time derivative of the covariance matrix

and assuming that the system evolves according to the GKLS
equation specified by Eqs. (17) and (18), we obtain the corre-
sponding equations for the covariance matrix and the vector
of means [7,10,14,15]:

d

dt
V = AV + VAT + JreC†CJT ,

d

dt
�ξ = A�ξ,

(19)

where A := J[G + imC†C] and Cjk := (�c j )k .

III. DISSIPATIVE EVOLUTION STEMMING
FROM UNITARY LINDBLAD OPERATORS

Quantum resource theories classify quantum operations
and states according to a given physical property, typically
corresponding to usefulness with respect to some practical
tasks [42]. For example, in resource theories of entanglement,
entangled states are considered resourceful, while separable
states are classified as free [43,44]. Accordingly, operations
incapable of creating entangled states from separable ones
are also deemed free. Such classification is natural from the
experimental point of view, since, like any valuable resource,
entanglement is useful yet difficult to obtain, while operations
preserving the set of separable states are relatively easy to
implement. By calling entanglement a resource, one can better
pose and answer practical questions; e.g., assuming no limits
on free operations, how much entanglement is needed to real-
ize a given teleportation protocol?

In the resource theories of Gaussianity [24,25], the set
of free operations consists of operations routinely available
in current experiments employing continuous variable quan-
tum systems. These include Gaussianity-preserving unitary
operations, compositions with Gaussian states, and homo-
dyne measurements. In such a setting, the emergent free
states (which are preserved by the free operations) are quan-
tum Gaussian, that is, they consist of Gaussian states and
their convex combinations [20,21,23] (we stress that quan-
tum Gaussian states and Gaussian states are not the same, as
the former generalize the latter). From this resource-theoretic
point of view, it is natural to look for physically meaningful
evolution preserving the set of quantum Gaussian states. By
definition, such evolution requires no input resources and can
be thus used to manipulate a given system at no cost.

Observe that the usually assumed Gaussian dynamics (19)
already preserve the set of quantum Gaussian states: since
they map Gaussian states to Gaussian states, then, by linearity,
they also map their convex combinations to other such combi-
nations. Thus, the generator of Gaussian dynamics, given by
Eq. (14) with Eqs. (17) and (18) at the input, preserves the set
of quantum Gaussian states. However, in principle, there may
exist other generators that preserve the set of quantum Gaus-

sian states without necessarily preserving the set of Gaussian
states. This is exactly what we investigate here.

A. The model of time evolution

Let us go back to the GKLS equation (16). Being interested
in the dissipative part of the equation only, we can disre-
gard the Hamiltonian term. As for the dissipator, we follow
[26–28,45,46] and consider a particular case of M Lindblad
operators, all being proportional to unitary operators:

L̂ j = √
γ jÛ j, (20)

where γ j � 0, ÛjÛ
†
j = Û †

j Û j = 1̂, and Ûj is moreover as-
sumed to be Gaussianity preserving. All our results are based
on this central assumption. The corresponding GKLS equa-
tion is generated by

L· =
M∑

j=1

γ j (Ûj · Û †
j − 1̂) (21)

and thus reads

d

dt
ρ̂ =

M∑
j=1

γ j (Ûj ρ̂Û †
j − ρ̂). (22)

For convenience, we assume that γ j fulfill
∑M

j=1 γ j = 1.
We stress that the choice (20) of Lindblad operators consti-

tutes a certain loss of generality with respect to the general
GKLS equation (16). For example, in the considered case,
operators L̂†

j L̂ j and L̂ j L̂
†
j are proportional to the identity, and

consequently both commute with any state ρ̂. Such property
is not fulfilled by generic Lindblad operators.

To see that Eq. (22) preserves the set of quantum Gaussian
states, we start with a single unitary operation. Since Eq. (22)
is a subclass of the GKLS evolution, its formal solution is
given by Eq. (13) with generator (21). For a single Lind-
bladian, the latter reduces to L· = Û · Û † − 1̂. The identity
commutes with any operator, so

ρ̂(t ) = etÛ ·Û †
e−t 1̂ρ̂(0) =

∞∑
k=0

pk (t )Û k ρ̂(0)(Û †)k, (23)

where

pk (t ) := e−t t k/k! (24)

is the Poisson distribution.
Similarly, for an arbitrary number of Lindbladians, we have

ρ̂(t ) =
∞∑

k=0

M∑
l1...lk=1

pl1...lk (t )Ûlk . . . Ûl1 ρ̂(0)Û †
l1

. . . Û †
lk
, (25)

where for k = 0 the summand is e−t ρ̂(0) and for k >

0 pl1...lk (t ) := γl1 . . . γlk e−t t k/k!.
Any unitary operator has an exponential representation of

the form

Ûj = e−iĥ j , (26)

for some Hermitian operator ĥ j , called the operator’s gen-
erator [not to be confused with the generator of the GKLS
evolution (14)]. As is well known [24,25,31], unitary opera-
tions with generators that are polynomials of at most second
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degree in quadrature operators preserve the set of Gaussian
states. Furthermore, if each Ûl j preserves Gaussian states, then
so does Ûlk . . . Ûl1 , and therefore each of the terms in the sum
(25) maps Gaussian states to other Gaussian states.

Since the sum of Gaussian states is in general not Gaussian,
then even for an initial Gaussian state the time-evolved state
(23) is also not Gaussian in general. On the other hand, if the
initial state is a convex combination of Gaussian states, then,
by linearity, the time-evolved state is also a convex combina-
tion of Gaussian states. Therefore, under the assumption that
each Lindblad operator (20) is generated by a polynomial of
at most second degree in quadrature operators, Eq. (32) pre-
serves the set of quantum Gaussian states without preserving
the set of Gaussian states, as we wanted to show.

B. Representation in the symplectic picture

One of the advantages of working with Gaussian states
is that Gaussianity-preserving evolution corresponds to self-
contained Eqs. (19) in the symplectic picture, by which we
mean that the evolution of the covariance matrix and the
vector of means can be traced without having to consider
third- and higher-order correlation functions. As we show
here, this property extends to Eq. (22), allowing one to study
the evolution of quantum Gaussian states in the same fashion
as in the case of Gaussian states.

Multiplying Eq. (22) by appropriate polynomials in the
quadrature operators and taking the trace, we obtain the cor-
responding evolution of the first and second moments:

d

dt
〈ξ̂nξ̂n′ 〉 =

M∑
j=1

γ j〈ξ̂n, j ξ̂n′, j − ξ̂nξ̂n′ 〉,

d

dt
〈ξ̂n〉 =

M∑
j=1

γ j〈ξ̂n, j − ξ̂n〉,
(27)

where

ξ̂n, j := Û †
j ξ̂nÛj (28)

denotes transformed quadrature operators.
Clearly, if the transformed quadrature operators are lin-

ear in the initial quadratures, then Eqs. (27) are closed with
respect to the first two moments. In order for the new quadra-
tures to have a physical meaning, they should also fulfill the
canonical commutation relations. A generic transformation
fulfilling these conditions is called a Bogoliubov transfor-
mation [47–49]. In the case at hand, a generic Bogoliubov
transformation reads explicitly

ξ̂n, j =
2N∑

m=1

(Kj )nmξ̂m, (29)

where Kj is a real symplectic matrix of size 2N × 2N . Under
the assumption that the Lindbladians (26) are generated by
polynomials of at most second degree in quadrature operators,
the matrices Kj possess the convenient exponential represen-
tation (10).

Taking the time derivative of the covariance matrix and the
vector of means with Eqs. (27)–(29) at the input yields the

symplectic picture equivalent to Eq. (22):

d

dt
V =

M∑
j=1

γ j
[
KjV KT

j − V + Fj (�ξ )
]
,

d

dt
�ξ =

M∑
j=1

γ jKj �ξ,

(30)

where

Fj (�ξ ) = (Kj − 1)�ξ �ξT (KT
j − 1). (31)

Note that in typical applications of the covariance matrix
evolution, concerning, e.g., quantum entanglement, the vector
of mean values is irrelevant. For this reason, later on we
will assume �ξ (0) = 0, in which case Fj (�ξ ) = 0 [50] and the
evolution simplifies to

d

dt
V =

M∑
j=1

γ j
[
KjV KT

j − V
]
. (32)

The corresponding explicit solutions are

V (t ) =
∞∑
j=0

p j (t )K jV (0)(KT ) j (33)

for a single Lindbladian and

V (t ) =
∞∑

k=0

M∑
l1...l j=1

pl1...l j (t )Klj . . . Kl1V (0)KT
l1 . . . KT

lj
(34)

for an arbitrary number of Lindbladians.
As we investigate below, depending on the number and

nature of the unitary Lindblad operators, Eq. (22) and its
symplectic representation (32) can have radically different
applications, ranging from random scattering to engineered
dissipation.

IV. RANDOM SCATTERING

We now employ the collision model and kicked top dy-
namics to show that for a large number M of noncommuting
Lindblad operators, the discussed evolution constitutes a nat-
ural description of random scattering.

A. Derivation from the collision model

In the collision model [51–53], the initial system is coupled
to an infinite number of identical copies of ancilla η̂. The total
initial state is separable:

ρ̂T (0) = ρ̂(0) ⊗ η̂ ⊗ η̂ ⊗ . . . . (35)

During the first time step �t , a unitary operation Ŵ1 acts on
the system and the first ancilla, after which the latter is traced
out. The resulting state of the system is thus

ρ̂(�t ) = Trη{Ŵ1[ρ̂(0) ⊗ η̂]Ŵ †
1 }, (36)

where Trη denotes the partial trace over the ancilla. Since the
corresponding total state has the same form as initially (35),

ρ̂T (�t ) = ρ̂(�t ) ⊗ η̂ ⊗ η̂ ⊗ . . . , (37)
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the second and further steps lead to analogous results as the
first one. After n steps

ρ̂(n�t ) = Trη{Ŵn[ρ̂[(n − 1)�t] ⊗ η̂]Ŵ †
n }. (38)

The unitaries Ŵn are typically assumed to have the elementary
form [53]

Ŵn = exp [−i(ŵS + ŵη + ŵint,n)�t], (39)

where the Hamiltonian ŵS acts on the system, ŵη acts on
the bath, while ŵint,n is responsible for interaction between
the two. The last Hamiltonian may be step dependent, while
the others are assumed to be the same in each step. All three
operators are time independent.

Here, we employ a more general model [52], in which the
unitary operators are unrestricted. This gives the following
general form:

Ŵn = T exp

(
−i
∫ n�t

(n−1)�t
dτ ŵn(τ )

)
(40)

where T is the time-ordering operator and the time-dependent
Hamiltonian ŵn can act on both the system and the nth ancilla
in an arbitrary way.

Clearly, by choosing the ancilla and the unitaries accord-
ingly, we can use the collision model to emulate a wide range
of dynamics. This fact, coupled with the relative concep-
tual simplicity, makes the collision model a popular tool in
dealing with topics as varied as optics, thermodynamics, and
non-Markovianity, among others [52,53]. Here, we use the
collision model framework to derive the GKLS equation with
M unitary Lindblad operators.

For the ancillas, we choose qudits of dimension d = M + 1
in the ground state:

η̂ = |0〉〈0|. (41)

Furthermore, we choose unitary operations of the form

Ŵn =
(
1̂ ⊗ |0〉〈0| +

M∑
j=1

Ûj ⊗ | j〉〈 j|
)

[1̂ ⊗ Ô(�t )], (42)

where Ûj are arbitrary unitary operators with generators ĥ j

[which, in the case of evolution preserving the convex hull
of Gaussian states, are polynomials of at most second degree
in quadrature operators] and Ô is a time-dependent unitary
matrix defined by its action on the ancilla:

Ô(�t )|0〉 = √
1 − �t |0〉 +

√
�t

M∑
j=1

√
γ j | j〉. (43)

As before, γ j � 0 and
∑M

j=1 γ j = 1. With these inputs,
Eq. (36) becomes

ρ̂(�t ) =
[
1̂ + �t

M∑
j=1

γ j (Ûj · Û †
j − 1̂)

]
ρ̂(0). (44)

Since in this setting we can easily recognize that Ŵn does not
depend on the step number, each step corresponds to the same

transformation. For t = n�t we therefore obtain

ρ̂(t ) =
[
1̂ + t

n

M∑
j=1

γ j (Ûj · Û †
j − 1̂)

]n

ρ̂(0). (45)

In the continuous time limit �t → 0 taken simultaneously
with n → ∞, so that we approach a fixed value of time pa-
rameter n�t = t = const, we obtain the formal solution (13)
to the GKLS equation with generator (21). In other words,
we recover the solution to the GKLS equation with M unitary
Lindbladians, as intended.

B. Kicked top and scattering

We demonstrated that the GKLS evolution with unitary
Lindbladians can be cast into the framework of collision
models. To better understand implications of this fact, we
now more deeply investigate the operator Ŵn. As seen from
Eq. (42), it is an unusual product of two subunitaries: a stan-
dard unitary operator and a time-independent “kick.”

Such structure is a staple in the kicked top model [54–56],
defined by Hamiltonians of the form

ĤKT(t ) = Ĥ0(t ) +
∑

m

δ(t − mT )V̂ . (46)

Here, the standard unitary dynamics generated by the base
Hamiltonian Ĥ0 are periodically disturbed (with period length
T ) by the delta potential V̂ , leading to chaotic behavior. Note
that typically, the base Hamiltonian is assumed to be time
independent. However, the results remain qualitatively the
same as long as the time dependence of the Hamiltonian is
well behaved (i.e., not unbounded and discontinuous like the
Dirac delta distribution). Due to its relative simplicity and ease
of implementation in terms of qubits, the kicked top is the
theoretical [56] and experimental [57] go-to model for testing
the implications of dynamical chaos on quantum phenomena
(such as, e.g., entanglement).

In the Appendix, we show that the unitary operator (42)
can be obtained from the general Eq. (40) by the kicked top
Hamiltonian ŵn = ĤKT with

T = �t, Ĥ0(t ) = ôn(t ), V̂ =
M∑

j=1

ĥ j ⊗ | j〉〈 j|, (47)

where ôn is the generator of Ô in the nth step [see Eq. (A4) in
the Appendix for definition]. Note that, because ŵn acts only
during the time interval ((n − 1)�t, n�t], effectively only the
nth term in the sum (46) contributes.

Due to its close association with Poisson distribution
[27,28], which describes random scattering through the Pois-
son scatter theorem [58], the GKLS equation with unitary
Lindbladians constitutes a valid model of random scattering.
Our results make this interpretation explicit.

Each collision can be seen as a single scattering event in the
medium described by ancillas in the state (43). Crucially, the
probability that the system will be kicked by the jth Hamilto-
nian ĥ j depends on γ j through Eqs. (43) and (47). For a single
Lindbladian, the system experiences identical scattering at
every instant, quickly driving it towards a well-controlled sta-
tionary state (we investigate this in detail in the next section).
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However, as the number of mutually noncommuting unitaries
entering the equation grows, so does the uncertainty in the
outcome state. In particular, in the limit M → ∞ the outcome
probabilities γ j may be replaced by a probability measure
μ(dU ) on the unitary group, yielding a scattering integral [26]

d

dt
ρ̂ =

∫
dμ(U )(Û ρ̂Û † − ρ̂ ). (48)

These results are consistent with previous findings [28,59] that
unitary Lindbladians can be interpreted as the S matrices of
the system interacting with a dilute gas.

The use of the collision model is particularly appealing
also when it comes to interpreting the role of the environment.
Because the ancillas are traced out after each collision, during
each step the system interacts with the same bath, fulfilling
the expectation that the bath should not be influenced by the
scattering (in particular, future scattering should not depend
on previous events).

As a final remark, we note the the notion of quantum
Gaussianity was born largely to address the fact that even
though convex combinations of Gaussian states are techni-
cally not Gaussian, i.e., they have non-Gaussian characteristic
functions, they can be experimentally created and manipu-
lated using the same methods as Gaussian states [24,25].
This makes Gaussian states and their convex combinations
similar in practical applications. Our findings put the two
families even closer, showing that states from the latter can
be obtained from the former by simply subjecting them to
random scattering, which may be regarded as pure noise. This
result supports the developments made over the last decade to
construct measures of quantum non-Gaussianity [18,19,22],
which, contrary to measures of non-Gaussianity [60–64], do
not assign positive values of the resource to convex combina-
tions of Gaussian states.

V. EXPLICIT SOLUTIONS AND STATIONARY STATES

As seen, for a large number of unitary Lindblad oper-
ators, the considered evolution equation describes random
scattering. However, the same equation equipped with a single
Lindblad operator has well-controlled stationary states, as we
proceed to show.

We start by deriving explicit solutions to the considered
equation. Looking at Eq. (22), we can easily see that the
stationary solutions ρ̂∞ must commute with all the generators:

0 = [ĥ j, ρ̂∞] for all j. (49)

As the number of noncommuting Lindbladians, and thus gen-
erators, approaches infinity, the evolution begins to describe
pure decoherence, driving any initial state towards the max-
imally mixed state in the asymptotic time limit. This view
was explored by us in the previous section. However, from
the point of view of engineered dissipation, we expect only a
few or even a single Lindbladian to appear, in which case it
is possible to drive the system towards more useful stationary
solutions.

Let us thus assume a single unitary Lindbladian generated
by a Hermitian operator ĥ with eigendecomposition

ĥ|hk〉 = hk|hk〉, (50)

where hk ∈ R are assumed to be nondegenerate for simplicity.
Since ĥ is Hermitian, its eigenvectors form a basis of the
Hilbert space. In particular, one can write the initial density
operator in this basis:

ρ̂ =
∑
k,k′

ρh
kk′ |hk〉〈hk′ |. (51)

Upon substituting into Eq. (22), we obtain

d

dt
ρh

kk′ = (e−i(hk−hk′ ) − 1)ρh
kk′ . (52)

This differential equation is easy to solve, yielding, after sim-
plification, the general solution:

ρh
kk′ (t ) = e[cos(hk−hk′ )−1]t e−i[sin(hk−hk′ )]tρh

kk′ (0), (53)

where ρh
kk′ (0) are the matrix elements of the initial state.

The stationary states follow by taking the limit t → ∞. All
but the diagonal terms decay exponentially, leaving

ρ̂∞ = lim
t→∞ ρ̂(t ) =

∑
k

λk|hk〉〈hk| (54)

with the final state’s eigenvalues equal to

λk = ρh
kk (0) = 〈hk|ρ̂(0)|hk〉. (55)

A similar results holds in the symplectic picture. It is easy
to show by using Eqs. (9) and (10) that, since JKj = JeSj J =
eJSj J , Eq. (32) is equivalent to

d

dt
(JV ) =

∑
j

[eJSj (JV )e−JS j − JV ]. (56)

Clearly, the stationary solutions V∞ are given by

0 = [JS j, JV∞] for all j. (57)

Therefore, just like in the standard picture the stationary so-
lutions commute with the Hermitian generators of evolution,
in the symplectic picture the stationary solutions “commute”
(commute after multiplication by J) with the symmetric gen-
erators of evolution.

Like before, let us consider a single unitary Lindbladian,
which corresponds to a single symplectic operator. We denote
the eigendecomposition of JS by

JS �sk = sk�sk. (58)

Contrary to the Hermitian generator ĥ from the density oper-
ator picture, JS does not have to be a normal matrix, meaning
that its eigenvectors may not form a basis of the corresponding
vector space. To solve the evolution equation explicitly, we
consider the special case in which JS is normal. This allows
us to follow the reasoning from the density operator picture.

We start by writing the initial covariance matrix as

JV =
∑
k,k′

(JV )s
kk′ �sk �s†

k′ . (59)

Upon substituting into Eq. (56), we have

d

dt
(JV )s

kk′ = (esk−sk′ − 1)(JV )s
kk′ , (60)
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which is solved by

(JV )s
kk′ (t ) = exp [(esk−sk′ − 1)t](JV )s

kk′ (0). (61)

The asymptotic time limit depends on sk . Denoting

xkk′ := re(sk − sk′ ),

ykk′ := im(sk − sk′ ),

ζkk′ := exp(xkk′ ) cos(ykk′ ),

(62)

we obtain, as t → ∞,

(JV )s
kk′ (t ) →

⎧⎪⎨
⎪⎩

∞ ζkk′ > 1,

exp[i tan(ykk′ )t](JV )s
kk′ (0) ζkk′ = 1,

0 ζkk′ < 1.

(63)

In the particular case of nondegenerate and purely imag-
inary sk (the latter happens whenever K is passive, i.e., it
is orthogonal in addition to being symplectic), the diagonal
matrix elements approach the middle line (with ykk = 0),
while the remaining elements approach zero. Consequently,
the covariance matrix approaches the stationary solution

JV∞ = lim
t→∞ JV (t ) =

∑
k

μk�sk �s†
k (64)

with eigenvalues

μk = (JV )s
kk (0) = �s†

kJV (0)�sk. (65)

The corresponding symplectic eigenvalues can be then easily
inferred from Eq. (12).

On the other hand, for a generic choice of K , some matrix
elements (61) diverge and some vanish exponentially with
time. Thus, in this case, formally speaking there is no sta-
tionary solution to the equation considered. However, from
a physical perspective, we focus on large rather than infinite
times. From the point of view of the previous section, this may
be interpreted as turning on the interaction with the environ-
ment for a given time, during which the system is subjected to
a large but finite number of infinitesimal kicks. Note that, in
general, such kicks are not energy preserving, since they may
describe, e.g., squeezing transformations. In this regime, the
covariance matrix becomes exponentially dominated by terms
characterized in the first row of Eq. (63). An example of such
dynamics is investigated by us in the next section.

VI. ENTANGLEMENT CREATION IN TWO-MODE STATES

To illustrate the results derived in the previous section, we
consider an engineered dissipation scenario, in which we use
the discussed evolution equation for creation of two-mode
entanglement from a system initially in the vacuum state:

ρ̂(0) = |00〉〈00|, (66)

which is separable and Gaussian. For the evolution, we choose
a single Lindblad operator from the one-parameter family of
unitary two-mode squeezing operators:

L̂ = Ûr := eiĥr , ĥr = −ir(â†
1â†

2 − â1â2), (67)

where r > 0 is the squeezing strength and âk := 1
2 (x̂k + i p̂k )

is the annihilation operator for mode k.

Let us stress that, from the physical point of view, the
evolution given by such a Lindblad operator is not at all equiv-
alent to a “smooth” unitary evolution given by a squeezing
Hamiltonian Ĥ = ĥr . Instead, here, the squeezing should be
understood as a series of regular, infinitely strong but infinites-
imally short squeezing kicks, driving the system towards a
high-energy state. In our case, the Hamiltonian behind the
evolution is the kicked top Hamiltonian (46), with ĥr enter-
ing at the level of the Dirac delta potential, as discussed in
Sec. IV B.

We will proceed in two steps. First, we will certify that the
evolved state is entangled. Then, we will quantify the amount
of entanglement, showing that it is asymptotically unlimited.

A. Certifying entanglement

In the symplectic picture, the two-mode vacuum state is
described by the covariance matrix

V (0) = 1
214, (68)

with �ξ (0) = 0. As for the squeezing operator, it is well known
[65] that

Û †
r â1Ûr = cosh r â1 + sinh r â†

2,

Û †
r â2Ûr = sinh r â†

1 + cosh r â2. (69)

Through Eqs. (28) and (29), we can see that the above trans-
formation corresponds to the symplectic matrix

Kr =

⎡
⎢⎢⎣

cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r

⎤
⎥⎥⎦. (70)

One can easily check that Kr = exp(JSr ) with

Sr =

⎡
⎢⎢⎣

0 0 0 r
0 0 r 0
0 r 0 0
r 0 0 0

⎤
⎥⎥⎦. (71)

The matrix JSr is normal and has the following eigendecom-
position [the notation is the same as in Eq. (58)]:

s1 = −r, �s1 = 1√
2

(0, 1, 0, 1)T ,

s2 = −r, �s2 = 1√
2

(−1, 0, 1, 0)T ,

s3 = r, �s3 = 1√
2

(0,−1, 0, 1)T ,

s4 = r, �s4 = 1√
2

(1, 0, 1, 0)T . (72)

Using the methodology developed in the previous section, we
can easily calculate the matrix JV at any point in time. From
the fact that J2 = −1, we then have −J (JV ) = V , which
explicitly reads

V (t ) =
[

A(t ) C(t )
C(t ) A(t )

]
(73)
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where

A(t ) = 1

2
e2t sinh2 r cosh (t sinh 2r)

[
1 0
0 1

]
,

C(t ) = 1

2
e2t sinh2 r sinh (t sinh 2r)

[
1 0
0 −1

]
.

(74)

Having obtained the time-evolved covariance matrix, we
can use it to certify that the corresponding state is entangled.
In the symplectic picture, a sufficient condition for the pres-
ence of entanglement in the system is given by the positive
partial transpose criterion for continuous variable systems
[66,67]. The criterion states that, if the partial transposition
of the state with respect to a given bipartition is not positive
semidefinite, then the state is entangled with respect to this
bipartition. In the case of two modes, the partially transposed
state is not positive semidefinite, and thus the state is entan-
gled, if [30]

ν̃− < 1/2, (75)

where ν̃− denotes the smallest symplectic eigenvalue of the
covariance matrix of the partially transposed state:

V PT = QV Q, Q = diag(1, 1, 1,−1). (76)

Calculating the symplectic eigenvalues of V PT via the eigen-
values of JV PT as in Eq. (12), we find that, in the case at hand,

ν̃−(t ) = 1
2 exp[−(1 − e−2r )t]. (77)

Evidently, the PPT criterion (75) for entanglement is fulfilled
for all

t > 0. (78)

In other words, despite being initially separable, the state of
the system is entangled throughout the whole evolution.

B. Quantifying entanglement

We certified that the considered dissipative evolution drives
the, initially separable, system into an entangled state. We will
now proceed to assess how much entanglement is contained in
the time-evolved state. To this end, we consider a measure of
entanglement called squashed entanglement, one of the most
prominent measures of entanglement [44,68,69]. For a generic
bipartite state σ̂AB, squashed entanglement is defined as

Esq(σ̂AB) := 1
2 inf

σ̂ABE

I (A : B|E ), (79)

where I (A : B|E ) := SV (σ̂AE ) + SV (σ̂BE ) − SV (σ̂E ) −
SV (σ̂ABE ) is the conditional mutual information, σ̂X are
the (reduced) density operators of (sub)systems X , and the
minimization is over all purifications σ̂ABE of σ̂AB. Finally,

SV (σ̂ ) := −Trσ̂ ln σ̂ (80)

is the von Neumann entropy.
Like other entanglement measures defined in terms of min-

imization over some set of states, squashed entanglement is
notoriously difficult to calculate, being an NP-hard computa-
tion problem [70]. Here, we will not compute the squashed
entanglement itself, but instead compute a lower bound for

it and show that it is an asymptotically unbounded function
of time.

We begin by observing that, due to the extremality of
Gaussian states with respect to continuous, superadditive en-
tanglement measures [71], the squashed entanglement of any
state σ̂ is lower bounded by the squashed entanglement of a
Gaussian state σ̂G with the same covariance matrix. Further-
more, squashed entanglement of any state is lower bounded
by so-called distillable entanglement Edist [68], which, in turn,
is lower bounded by the coherent information [72,73]

IC (σ̂ ) := SV (σ̂A) − SV (σ̂ ), (81)

where σ̂A = TrBσ̂ .
In our case, this means that we have the following chain of

inequalities:

Esq[ρ̂(t )] � Esq[ρ̂G(t )] � Edist[ρ̂G(t )]

� IC[ρ̂G(t )] = SV [ρ̂G,A(t )] − SV [ρ̂G(t )], (82)

where ρ̂G(t ) is a Gaussian state with the same covariance
matrix (73) as our state and ρ̂G,A(t ) = TrBρ̂G(t ). Crucially,
both von Neumann entropies on the right-hand side are simple
functions of the symplectic eigenvalues of the respective state.
Let us define the auxiliary function:

f (x) := (x + 1/2) ln(x + 1/2) − (x − 1/2) ln(x − 1/2).
(83)

Then, for a one- or two-mode Gaussian state σ̂G with covari-
ance matrix Vσ̂ [74]

SV (σ̂G) =
N∑

j=1

f [ν j (Vσ̂ )], (84)

where N is the number of modes. In the case at hand, it is easy
to calculate that the symplectic eigenvalues of the covariance
matrix (73) equal

ν1(t ) = ν2(t ) = 1
2 e2t sinh2 r ≡ ν(t ). (85)

On the other hand, one can easily see from the definition (4)
that the reduced covariance matrix VA corresponding to the
first mode is given by the upper-left block of (73), i.e., VA =
A(t ). The only symplectic eigenvalue of VA equals

νA(t ) = 1
2 cosh(t sinh 2r)e2t sinh2 r . (86)

Using the last four equations in Eq. (82), we finally obtain

Esq[ρ̂(t )] � IC[ρ̂G(t )] = f [νA(t )] − 2 f [ν(t )]. (87)

The above lower bound for squashed entanglement, and there-
fore also squashed entanglement itself, grows indefinitely. To
show this, we first calculate that

IC[ρ̂G(t )] = e2z ln tanh z + ln
2{e2z cosh[2 coth(r)z] + 1}

e4z − 1
,

(88)

where we denoted z := t sinh2 r for shortness. For very large
t , corresponding to very large z, the first term on the right-
hand side approaches the constant value of −2. In the second
term, cosh[2 coth(r)z] approaches e2 coth(r)z/2, which means
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that the logarithm behaves like ln e4z[coth(r)−1] = 4z[coth(r) −
1]. It follows that

IC[ρ̂G(t )] −−−→
t→∞ − 2 + 4z[coth(r) − 1]

= − 2 + 4t sinh2(r)[coth(r) − 1], (89)

where, to be explicit, in the bottom line we went back to
the parametrization in terms of t . Clearly, this is a linear
function in t with positive slope, since coth(r) > 1 for all
r > 0. Therefore, IC[ρ̂G(t )] is asymptotically infinite, and thus
the same is also true for squashed entanglement itself. This is
what we wanted to show.

VII. CONCLUDING REMARKS

Motivated by recent findings in resource theories of non-
Gaussianity, we developed a model of dissipative evolution
which preserves the set of quantum Gaussian states without
preserving the set of Gaussian states itself. We showed that,
while such a model constitutes a natural description of random
scattering, it can also be applied to engineered dissipation, as
showcased through an example of entanglement creation in
two-mode states. Finally, the model is fully compatible with
the symplectic (covariance matrix) picture of quantum states,
allowing one to study it with the same tools that are typically
used for Gaussian states.

Besides applications to phenomena that include random
scattering, as well as engineered dissipation, our findings sug-
gest the following directions for future research. To start with,
let us briefly denote the generator of Gaussian evolution (19)
by LG and the generator of the evolution (22) based on unitary
Lindbladians by LcG. Because both LG and LcG preserve the
set of quantum Gaussian states, then, by Trotter’s formula [75]

e(LG+LcG )t = lim
n→∞(eLGt/neLcGt/n)n

(90)

the combined generator LG + LcG also does. Therefore, from
the point of view of dynamics of quantum Gaussian states, the
discussed generator can be seen not only as an alternative to
the Gaussian model, but also as its extension. For example, it
could be used to introduce generic quantum Gaussian noise,
especially in the form of the scattering integral (48), into an
otherwise Gaussian system.

Furthermore, while operations preserving the set of Gaus-
sian states are fully characterized [76], an analogous problem
was not resolved for quantum Gaussian states, partially due to
the lack of one-to-one correspondence with the set of states
with positive Wigner distribution [77]. This leads to the fol-
lowing question: what other evolution models preserve the
set of quantum Gaussian states but not the set of Gaussian
states? What physical scenarios can they describe? An imme-
diate generalization of our results would be to replace LcG by
L· = ∑

k (θk · −1̂), with θk being arbitrary Gaussian channels.
One can easily check that such generator preserves the set of
quantum Gaussian states. It would be interesting to see if this
is the most general generator with this property, and if not,
how it could be generalized further.
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APPENDIX: REWRITING THE OPERATOR (42)
IN TERMS OF A KICKED TOP HAMILTONIAN

In this Appendix, we show that the unitary operator (42)
can be obtained by substituting the kicked top Hamiltonian
ŵn = ĤKT with inputs (47) into Eq. (40). In other words, we
show that the operators

X̂n =
(
1̂ ⊗ |0〉〈0| +

M∑
j=1

Ûj ⊗ | j〉〈 j|
)

Ô(�t ), (A1)

Ŷn = T exp

(
−i
∫ n�t

(n−1)�t
dτ ŵn(τ )

)
(A2)

are identical for

ŵn(τ ) = ôn(τ ) + δ(τ − n�t )
M∑

j=1

ĥ j ⊗ | j〉〈 j|, (A3)

with Ûj = e−iĥ j and

Ô(�t ) = T exp

(
−i
∫ n�t

(n−1)�t
dτ ôn(τ )

)
. (A4)

We begin by observing that Ŷn can be recast into

Ŷn = lim
ε→0

T exp

(
−i
∫ n�t+ε/2

n�t−ε/2
dτ ŵn(τ )

)

× T exp

(
−i
∫ n�t−ε/2

(n−1)�t
dτ ŵn(τ )

)
. (A5)

Provided ôn is a well-behaved function of time [which can be
inferred from the well-behaved nature of its exponential (43)],
its contribution to the first integral vanishes in the limit. At the
same time, the delta distribution integrates to one. See, e.g.,
[78] for rigorous treatment. In conclusion,

T exp

(
−i
∫ n�t+ε/2

n�t−ε/2
dτ ŵn(τ )

)
→ e−i

∑M
j=1 ĥ j⊗| j〉〈 j|. (A6)

In the second integral, the situation is reversed. Because the
integral does not contain the point τ = n�t , the delta distri-
bution does not contribute and we can simply put ŵn = ôn.
Thus, based on Eq. (A4),

T exp

(
−i
∫ n�t−ε/2

(n−1)�t
dτ ŵn(τ )

)
→ Ô(�t ). (A7)
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Combining the last three expressions, we obtain

Ŷn = e−i
∑M

j=1 ĥ j⊗| j〉〈 j|Ô(�t ). (A8)

Because the generator of the exponential on the right-hand
side is diagonal in the second subsystem’s number basis, the

exponentiation can be explicitly performed, quickly yielding

e−i
∑M

j=1 ĥ j⊗| j〉〈 j| = 1̂ ⊗ |0〉〈0| +
M∑

j=1

Ûj ⊗ | j〉〈 j|. (A9)

Clearly, this makes Eq. (A8) identical to (A1), which is what
we wanted to prove.
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[54] F. Haake, M. Kuś, and R. Scharf, Classical and quantum chaos
for a kicked top, Z. Phys. B 65, 381 (1987).

[55] M. J. Christensen and J. Piepenbrink, Quantum dynamics of
Hamiltonians perturbed by pulses, J. Math. Phys. 20, 2187
(1979).

[56] U. T. Bhosale and M. S. Santhanam, Periodicity of quantum
correlations in the quantum kicked top, Phys. Rev. E 98, 052228
(2018).

[57] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S.
Jessen, Quantum signatures of chaos in a kicked top, Nature
(London) 461, 768 (2009).

[58] J. Pitman, Probability, 1st ed. (Springer, New York, 1993).
[59] R. Dümcke, The low density limit for an N-level system inter-

acting with a free Bose or Fermi gas, Commun. Math. Phys. 97,
331 (1985).

[60] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Measure of the
non-Gaussian character of a quantum state, Phys. Rev. A 76,
042327 (2007).

[61] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Quantifying the
non-Gaussian character of a quantum state by quantum relative
entropy, Phys. Rev. A 78, 060303(R) (2008).

[62] M. G. Genoni and M. G. A. Paris, Quantifying non-Gaussianity
for quantum information, Phys. Rev. A 82, 052341 (2010).

[63] J. S. Ivan, M. S. Kumar, and R. Simon, A measure of non-
Gaussianity for quantum states, Quant. Info. Proc. 11, 853
(2012).

[64] A. Mandilara and N. J. Cerf, Quantum uncertainty relation
saturated by the eigenstates of the harmonic oscillator, Phys.
Rev. A 86, 030102(R) (2012).

[65] G. De Palma, The Wehrl entropy has Gaussian optimizers, Lett.
Math. Phys. 108, 97 (2018).

[66] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of
mixed states: Necessary and sufficient conditions, Phys. Lett. A
223, 1 (1996).

[67] R. Simon, Peres-Horodecki Separability Criterion for Continu-
ous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000).

[68] M. Christandl and A. Winter, “Squashed entanglement”: An
additive entanglement measure, J. Math. Phys. 45, 829 (2004).

[69] H. Jeng, S. Tserkis, J. Y. Haw, H. M. Chrzanowski, J. Janousek,
T. C. Ralph, P. K. Lam, and S. M. Assad, Entanglement
properties of a measurement-based entanglement distillation
experiment, Phys. Rev. A 99, 042304 (2019).

[70] Y. Huang, Computing quantum discord is NP-complete, New J.
Phys. 16, 033027 (2014).

[71] M. M. Wolf, G. Giedke, and J. I. Cirac, Extremality of Gaussian
Quantum States, Phys. Rev. Lett. 96, 080502 (2006).

[72] B. Schumacher and M. A. Nielsen, Quantum data processing
and error correction, Phys. Rev. A 54, 2629 (1996).

[73] I. Devetak and A. Winter, Distillation of secret key and entan-
glement from quantum states, Proc. R. Soc. A 461, 207 (2005).

[74] A. Serafini, F. Illuminati, and S. D. Siena, Symplectic invari-
ants, entropic measures and correlations of Gaussian states,
J. Phys. B 37, L21 (2004); we remark that in this paper, the
equation for one mode von Neumann entropy is given in a
slightly different form; however, it is easy to show that it is
equivalent to the equation presented here.

[75] H. F. Trotter, On the product of semi-groups of operators, Proc.
Am. Math. Soc. 10, 545 (1959).

[76] G. De Palma, A. Mari, V. Giovannetti, and A. S. Holevo,
Normal form decomposition for Gaussian-to-Gaussian super-
operators, J. Math. Phys. 56, 052202 (2015).

[77] T. Bröcker and R. F. Werner, Mixed states with positive Wigner
functions, J. Math. Phys. 36, 62 (1995).

[78] M. Blume, Comments on quantum systems subject to random
pulses, J. Math. Phys. 19, 2004 (1978).

052206-11

https://doi.org/10.2307/2371633
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.3390/e21070705
https://doi.org/10.1134/S0001434620030372
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745589
https://doi.org/10.1103/PhysRev.129.1880
https://doi.org/10.1209/0295-5075/133/60001
https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.1007/BF01303727
https://doi.org/10.1063/1.523996
https://doi.org/10.1103/PhysRevE.98.052228
https://doi.org/10.1038/nature08396
https://doi.org/10.1007/BF01213401
https://doi.org/10.1103/PhysRevA.76.042327
https://doi.org/10.1103/PhysRevA.78.060303
https://doi.org/10.1103/PhysRevA.82.052341
https://doi.org/10.1007/s11128-011-0314-2
https://doi.org/10.1103/PhysRevA.86.030102
https://doi.org/10.1007/s11005-017-0994-3
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1063/1.1643788
https://doi.org/10.1103/PhysRevA.99.042304
https://doi.org/10.1088/1367-2630/16/3/033027
https://doi.org/10.1103/PhysRevLett.96.080502
https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/10.1098/rspa.2004.1372
https://doi.org/10.1088/0953-4075/37/2/L02
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1063/1.4921265
https://doi.org/10.1063/1.531326
https://doi.org/10.1063/1.523900

