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Quantum vibrational mode in a cavity confining a massless spinor field
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We analyze the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity
wall. In our model, the oscillation amplitude of the harmonic oscillator is promoted to a quantum operator,
providing the system with an additional quantum degree of freedom having bosonic nature. After obtaining the
interaction Hamiltonian, we estimate the correction to both the ground state and its energy. We demonstrate that
the system is able to convert bosons into fermion pairs at the lowest perturbative order. Extension of our model
to multiple bags is contemplated.
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I. INTRODUCTION

Despite their intrinsically different nature, fermionic and
bosonic quantum fields share similar features when found in
their ground state. As an example, in both cases the standard
quantization procedure leads to the presence of a residual vac-
uum energy, also called Casimir energy, which plays an active
role when fields are confined in a finite region of space [1].
Generally, the mathematical formalism to confine quantum
fields is carried out differently for bosonic and fermionic
systems. While the confinement of bosonic fields typically
occurs by imposing specific boundary conditions on the equa-
tions of motion [2], for spinor fields the boundary conditions
are included in the Hamiltonian of the system and are brought
about by a well potential consisting of sharp walls, also called
Dirac spikes [3]. It is relevant to notice that the presence
of the above-mentioned vacuum energy induces an attractive
force between the cavity walls, as expected by the Casimir
effect [3–5].

Beyond the static scenario, further interesting phenomena
emerge when the cavity undergoes some noninertial motion,
the latest described in terms of time-dependent boundary
conditions for the confined field [6]. One of the most fasci-
nating effects ascribable to dynamical systems is the creation
of particles, which occurs whenever the vacuum state of
the quantum field under motion does not correspond to any
vacuum state of the same field in an inertial frame of refer-
ence [7]. As an example, let us assume that one of the cavity
walls confining the field undergoes an oscillating motion. In
this case, the modulation of the boundary condition alters
the modes of the field, and as a consequence, an inertial
detector would reveal particles even if the field was initially
prepared in its vacuum state. Such a phenomenon, called the
dynamical Casimir effect (DCE), was initially predicted for
the electromagnetic field [8,9] and afterwards extended to
spinor fields [10–12].

In the first formulation of the DCE, it was assumed that the
motion of the cavity wall is strictly determined by the time
dependence of the boundary conditions the field is subject to.
However, in a generic scenario, one can suppose that the wall

neither undergoes a motion imposed by an external force, nor
is fixed, but it is found unfastened at some position. In this
case, it can be thought that such a wall (and consequently
the length of the cavity) undergoes some fluctuation, which
can be mathematically described with the same formalism of
a quantum harmonic oscillator [13,14]. This idea, on which
quantum optomechanics is based [15,16], suggests that the
position of the wall can be treated as an additional quantum
mechanical degree of freedom of the system and that the
particle creation as predicted by the DCE can be thought as an
excitation transfer between the cavity field and the additional
mechanical mode [14,17].

In this paper, we want to apply these concepts to a sys-
tem consisting of a spinor field confined in a bag by two
Dirac spikes. In particular, following the procedure developed
in [14], we are going to induce a fluctuation in the position
one of the two spikes, and promote such a position to a
quantum operator acting on a vibrational degree of freedom.
The Hamiltonian of the entire system resulting from this for-
malism accounts for both the optomechanical coupling and
the excitation exchange between the field and oscillating wall;
moreover, it includes counterrotating terms, which give rise to
a shift of the energy of the ground state. In our model, the
fermionic particle creation can arise from both the conversion
of bosonic excitation and from the mechanical stimulation of a
time-dependent external drive acting on the vibrational mode.

The article is structured as follows. In Sec. II we present the
mathematical procedure to introduce the quantum vibrational
mode to a system consisting of a spinor field confined between
two infinite spikes. In Sec. III we evaluate the corrections to
both the ground state and its energy caused by the interaction
between fermionic and bosonic degrees of freedom. In Sec. IV
we present the transition probability to generate fermionic
particles starting from a generic input bosonic state and under
the action of the external drive. We calculate such a probabil-
ity for some concrete scenarios, using different bosonic states,
as well as an impulsive drive. In Sec. V we extend our model
to a scenario wherein multiple spikes are unfastened and are
hence free to vibrate. Finally, conclusions are given in Sec. VI.
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II. THEORETICAL MODEL

In this section we present the procedure to obtain the
Hamiltonian of a confined spinor field undergoing harmonic
boundary conditions. This is accomplished by adapting the
formalism developed in [14] to the fermionic case.

Hamiltonian of the system

We begin our analysis by considering a spinor field subject
to a static potential in 1+1 dimension. Adopting the natural
units h̄ = c = 1, the Lagrangian of such a field is

L(x, t ) = ψ̄ (x, t )[i/∂ − M − V (x)]ψ (x, t ), (1)

where M is the mass, the adjoint field is defined as ψ̄ = ψ†γ 0,
and the potential

V (x) = gLδ(x) + gRδ(x − L) (2)

determines the static (bag) boundary conditions of the spinor
field confined in the region of space x ∈ [0, L]. The coupling
constants gL and gR, where L and R stand for “left” and
“right,” respectively, quantify the degree of confinement of
the field, and it is shown that boundary conditions without
imperfections are fulfilled whenever gL = gR = 2 [4].

By solving the Dirac equation, we can express the spinor
field as

ψ (x, t ) =
∑

n

[e−iωntψn+(x)cn + eiωntψn−(x)d∗
n ], (3)

where cn and dn are the amplitudes for the fermionic particle
and antiparticle, respectively, and

ψn±(x) = 1√
L

(± sin(knx)
cos(knx)

)
. (4)

An analytical dispersion relation for a generic confined
spinor field in 1+1 dimension does not exist, but discrete ana-
lytical solutions can be found in the nonrelativistic (ML � 1)
and in the massless (M = 0) limits [12,18]. We will focus our
investigation on the laer case, therefore, the dispersion relation
reads ωn = kn = (n + 1

2 )π
L .

So far, the system was supposed classical and static.
To account for the dynamics of the environment, we adapt
the protocol developed in [14] for a scalar bosonic field
to the fermionic scenario under consideration, namely, we
suppose that the boundaries confining the field, rather than
being subject to an external motion, undergo a fluctuation.
It is fundamental to stress that the confinement of bosonic
and fermionic systems typically occurs in different manners.
While for bosonic systems this translates to boundary condi-
tions affecting the equation of motion, in the fermionic system
under consideration the confinement occurs by means of the
potential spikes in Eq. (2). Consequently, while in bosonic
systems the time dependence is included in the boundary
conditions for the equation of motion, thereby suggesting an
expansion of the field with respect to a set of time-dependent
eigenstates (instantaneous basis) [9]; in our fermionic system
the eigenmodes are static, whereas the potential spikes in the
Lagrangian contain all information concerning the dynamics
of the boundary conditions [12]. We mention that different
quantization procedures of the confined spinor field were
proposed in [10,18].

As a first step, we will assume that the right spike un-
dergoes a fluctuation of the form L → L + δL, where δL
is the increment. Supposing that such an increment is ex-
tremely small with respect to the cavity length δL � L, we
can Taylor-expand the delta function on the right side up to
the first perturbation order δ(x − L − δL) � −δL δ′(x − L),
where δ′(x − x0) indicates the derivative of the delta function
located around the point x0. As usual, the classical Hamilto-
nian is obtained by means of H (x, t ) = ∫

dx{ ∂L
∂ψ̇

ψ̇ + ∂L
∂ ˙̄ψ

˙̄ψ −
L}. Finally, we promote the amplitudes of the spinor fields
cn and dn (and their complex conjugates), as well as the in-
crement δL, to quantum operators. The fermionic amplitudes
turn to the fermionic annihilation and creation operators for
the particle and the antiparticle, respectively, cn → ĉn and
d∗

n → d̂†
n . Such operators follow the standard anticommu-

tation rules {ĉn, ĉm
†} = {d̂n, d̂m

†} = δnm, whereas all others
vanish. The notation {·, ·} specifies the anticommutator. Sim-
ilarly, the increment δL becomes proportional to the position
operator X̂ acting on an additional bosonic degree of freedom,
δL → δL0(b̂† + b̂), where δL0 is the oscillation amplitude,
and b̂† and b̂ are, respectively, the creation and annihilation
operators of a quantum harmonic oscillator having frequency
� and representing the vibrational degree of freedom of the
right wall. Such operators fulfill the standard bosonic com-
mutation rule [b̂, b̂†] = 1, where the notation [·, ·] specifies
the commutator.

By following the procedure reported above, we are in the
position to write the Hamiltonian operator of the entire sys-
tem, where we can distinguish the quantum spinor field, the
quantum harmonic oscillator, as well as their interaction. In
addition, we can apply external drives on both the fermionic
and bosonic degree of freedoms. Assuming that the drive acts
only on the oscillating wall, and that all operators are normal
ordered, the total Hamiltonian reads

Ĥ (t ) =Ĥ0 + εHI + Ĥdr(t ), (5)

Ĥ0 =
∑

n

ωn(ĉ†
nĉn + d̂†

n d̂n) + �b̂†b̂, (6)

ĤI = −2
∑
nm

(−1)n+m[(ωn + ωm)(ĉ†
nĉm + d̂†

md̂n)

+ (ωn − ωm)(d̂nĉm + d̂†
mĉ†

n )](b̂† + b̂), (7)

Ĥdr(t ) =λ(t )b̂† + λ∗(t )b̂, (8)

where we introduced the adimensional amplitude ε = δL0/L,
and the complex drive is expressed as λ(t ) = λx(t ) + iλp(t ).

The generic eigenstate of the unperturbed Hamilto-
nian Ĥ0 is |w; y1, y2, . . . , yn, . . . , ȳ1, ȳ2, . . . , ȳm, . . .〉, where
w ∈ N indicates the eigenvalue of the bosonic subsystem,
whereas yn and ȳm indicate the presence of a fermionic particle
in the mode n and the antiparticle in the mode m. Hence, yn

and ȳm can assume either the value 0 or 1.
It is relevant to stress that the form of ĤI is a direct conse-

quence of our quantization procedure [14]. Interestingly, such
a Hamiltonian operator contains terms expressing the optome-
chanical interaction between the field and harmonic oscillator,
namely, ĉ†

nĉn(b̂† + b̂) and d̂†
n d̂n(b̂† + b̂). Moreover, in addition

to the counterrotating terms, the last line in Eq. (7) expresses
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the possibility to convert single phonons into fermion pairs.
In a similar manner, this phenomenon occurs in fully bosonic
systems, where single phonons can be down-converted in
photon pairs [14,17,19]. However, in contrast to the bosonic
case, we stress that the interaction Hamiltonian in Eq. (7)
cannot be linearized following the arguments in [15,16] since
no coherent state can be defined for fermions.

III. GROUND STATE AND EFFECTIVE VACUUM ENERGY

The structure of Eq. (7) highlights that the interaction be-
tween the field and wall can occur in different ways. As a first
example, we already noticed the presence of the optomechani-
cal coupling, proportional to (ĉ†

nĉm + d̂†
md̂n)(b̂† + b̂). This term

describes the shift of the wall caused by the presence of
quantum excitations of the field within the cavity. In fully
bosonic systems, the translation of the wall is associated to
the radiation pressure due to the presence of a large amount
of photons, typically preparing a coherent state in a sin-
gle mode [15,16]. On the contrary, fermionic modes cannot
contain more than one particle, and the only way for the
optomechanical coupling to play a relevant role in the dy-
namics of our (nondegenerate) system would be to excite
different fermionic modes. We leave the investigation of the
radiation pressure in fermionic optomechanical systems to a
future work.

Since the optomechanical coupling is proportional to the
fermion number, we expect that its presence will alter both the
eigenstates and eigenenergy of the unperturbed Hamiltonian,
but it will not affect the vacuum state. However, the interaction
Hamiltonian also contains terms altering the total amount
of excitations, and in principle, such terms can bring about
modifications to the ground state of the total system. More
specifically, we observe that such modifications are caused by
counterrotating terms.

A. Correction to the vacuum state

When introducing the total Hamiltonian, we defined the
eigenstates of the unperturbed Hamiltonian Ĥ0. However,
even switching off the external drive, such states does not
represent an eigenbasis for the total Hamiltonian because
of the presence of the interaction Hamiltonian, Eq. (7). Never-
theless, since the strength of the interaction is proportional to
the amplitude ε, which is supposed to be relatively small, we
expect that the actual eigenstates of the entire Hamiltonian do
not differ substantially from the unperturbed states. Therefore,
we can think about retaining the unperturbed eigenstates of
Ĥ0 and calculating the corrections due to the presence of
the interaction Hamiltonian. In particular, we will focus our
analysis on the correction to the unperturbed vacuum state,
which is expected to not coincide to the ground state of the
system anymore.

To estimate the correction to the vacuum state, we make
use of the first-order perturbation theory. The correction to the
state at the lowest significant order yields

|�0〉 = |0; 0, 0̄〉 + 2ε
∑
nm

(−1)n+m(ωn − ωm)

ωn + ωm + �
|1; 1n, 1̄m〉.

(9)

The state can be normalized as |�̃0〉 = Z−1/2|�0〉, with
normalization constant Z = 〈�0 | �0〉. We observe that the
interaction between the field and the dynamical wall of the
bag brings about a change to the ground state of the system;
in particular, the ground state consists now of two parts: the
first is the vacuum state of the system, whereas the second is
the correction caused by the presence of counterrotating terms
in the interaction Hamiltonian. Such counterrotating terms
describe processes which do not fulfill the energy conserva-
tion, hence they cannot be responsible for the creation of real
particles at the lowest perturbative regime; nevertheless, they
can play a role at high-perturbative light-matter interaction
processes mediated by virtual particles [20,21]. It is relevant
to notice that the new dressed-like ground state indicates
the presence of entanglement between fermionic and bosonic
channels [22].

B. Energy shift

Another consequence of the field-wall interaction in Eq. (7)
is the shift of the energy levels. Again, the small amplitude
ε enables a perturbative approach; in particular, the energy
correction to the ground state is estimated by means of a
second-order perturbation theory, which yields

�E = −
∑
nm

4ε2(ωn − ωm)2

ωn + ωm + �
. (10)

It should not come as a surprise that, in contrast with the
bosonic scenario [22,23], such an energy correction excludes
diagonal terms, in accordance with the Pauli exclusion princi-
ple. The negative sign of the energy shift indicates that the
interaction between the fermionic and bosonic subsystems
leads to the lowering of the Casimir energy within the cav-
ity [22]. Generally, such energy can be normalized by means
of a cutoff frequency in the ultraviolet limit [24], although
different techniques are usually employed for the estimation
of the Casimir force in scenarios involving fermions [3–5].

We can summarize the results of this section as follows.
The presence of the interaction Hamiltonian leads to the mod-
ification of the ground state, which contains virtual particles
in the basis of the unperturbed Hamiltonian. Such virtual
particles mediate the interaction between the field and the wall
and reduce the ground energy of the system.

IV. BOSON-FERMION EXCITATION TRANSFER

The last line of Eq. (7) contains four coupling terms. Two
of them, i.e., the counterrotating terms, are responsible for
the shift of the energy levels, as seen in the previous sec-
tion. The other two, namely, those proportional to d̂nĉmb̂†

and d̂†
mĉ†

nb̂, can fulfill the energy conservation and contribute
to the fermion-boson excitation transfer. To analyze this
phenomenon, in this section we calculate the transition prob-
ability to generate fermion pairs from the fermionic vacuum
state. We specify that, due to the presence of the external drive,
our model can predict the fermion generation by either the
stimulation of the external drive acting on the bosonic mode
or by an effective excitation transfer between bosonic and
fermionic channels.
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A. Transition probability

We want to estimate the transition probability to find a
fermionic particle in the mode k and an antiparticle in the
mode k′ at time t . If we assume that phonons are initially pre-
pared in a pure state |ψi〉, the transition probability becomes

P(t ) = |〈ψ f ; 1k, 1̄k′ |Û (t )|ψi; 0n, 0̄n〉|2, (11)

where |ψ f 〉 is the final phononic state and Û (t ) is the unitary
operator determining the time evolution of the system. The
formalism to describe the time evolution of the system and
therefore the explicit expression of the unitary operators under

consideration are resumed in Appendix A. By making use
of the expansion of the unitary operator in Eq. (A9), we can
estimate the transition probability at the lowest order

P(t ) =
( ε

h̄

)2
∣∣∣∣〈� f |Û0(t )Ûdr(t )

∫ t

0
dt ′ ˆ̃HI(t

′)|�i〉
∣∣∣∣
2

, (12)

where we collected the initial and final states as follows:
|�i〉 = |ψi; 0k, 0̄k′ 〉 and |� f 〉 = |ψ f ; 1k, 1̄k′ 〉. Inserting the ef-
fective interaction Hamiltonian Eq. (A8) into Eq. (12), we
obtain the explicit form of P(t ):

P(t ) = 4ε2(ωk − ωk′ )2

∣∣∣∣χ1(t )tsinc

[
(ωk + ωk′ + �)t

2

]
e

i(ωk +ωk′ +�)t

2

+χ2(t )tsinc

[
(ωk + ωk′ − �)t

2

]
e

i(ωk +ωk′ −�)t

2 + χ3(t )
∫ t

0
ξ (t ′)ei(ωk+ωk′ )t ′

∣∣∣∣
2

, (13)

where we define the functions

χ1(t ) = 〈ψ f |e−i�t b̂†b̂Ûdr(t )b̂†|ψi〉,
χ2(t ) = 〈ψ f |e−i�t b̂†b̂Ûdr(t )b̂|ψi〉,
χ3(t ) = 〈ψ f |e−i�t b̂†b̂Ûdr(t )|ψi〉. (14)

It is therefore clear that our model is able to describe the
transition probability caused by both the action of the external
drive (whose intensity and trajectory can be controlled man-
ually [12]) and the spontaneous conversion of phonons into
fermions. Although the last occurs only if the system already
contains (bosonic) excitations, and hence it is not strictly as-
cribable to the stimulation of the quantum vacuum, henceforth
in this paper we will conveniently call the dynamical Casimir
effect (DCE) any effect of fermion pair generation.

Apart from its causes, in order for the DCE to occur,
we need to impose the resonance condition between the fre-
quency of the harmonic oscillator and the frequencies of the
fermion modes k and k′, namely, � = ωk + ωk′ . For large t ,
we can avoid secularities and drastically simplify Eq. (15) as
follows:

P(t ) �4ε2(ωk − ωk′ )2

∣∣∣∣χ2(t )t + χ3(t )
∫ t

0
ξ (t ′)ei�t ′

∣∣∣∣
2

. (15)

We notice that both terms within the modulus depend on the
action of the external drive. However, while the auxiliary func-
tion χ2(t ) vanishes in the absence of phonons, the last term
proportional to χ3(t ) vanishes by switching off the external
drive. In our following analysis we will explore some concrete
scenarios wherein we account for different input states and the
action of an impulsive external drive.

B. Phononic Fock state

Let us consider the transition probability between two Fock
states |ψi〉 ≡ | j〉 and |ψ f 〉 ≡ |l〉. In this case, it is possible to
show that the auxiliary functions in Eq. (14) are proportional
to the matrix elements of the time-dependent displace-
ment operator χ1(t ) = √

j + 1e−ilωt [D̂(�t )]l j+1, χ2(t ) =

√
je−ilωt [D̂(�t )]l j−1, and χ3(t ) = e−ilωt [D̂(�t )]l j , where

�t ≡ �(t ) and the displacement operator is defined as usual
D̂(λ) ≡ eλb̂†−λ∗b̂. We remind that the matrix elements of the
displacement operator in the base of the Fock states are well
known in the literature [25]:

[D̂(λ)]l j =
√

j!

l!
λl− je−|λ|2/2L(l− j)

j (|λ|2), (16)

with l � j, and

[D̂(λ)]l j =
√

l!

j!
(−λ∗) j−l e−|λ|2/2L( j−l )

l (|λ|2), (17)

with j � l , where Lk
n (x) are Laguerre polynomials.

By substituting the auxiliary functions into Eq. (15) we
obtain the transition probability

P(t ) � 4ε2(ωk − ωk′ )2

∣∣∣∣t√ j[D̂(�t )]l j−1

+[D̂(�t )]l j

∫ t

0
ξ (t ′)ei(ωk+ωk′ )t ′

∣∣∣∣
2

. (18)

We notice that this formula is drastically simplified by switch-
ing off the external drive, providing a direct relation between
the transition probability and the initial number of mechanical
excitations

P(t ) �4 j ε2(ωk − ωk′ )2t2. (19)

On the other hand, the presence of the drive ensures a non-
vanishing transition probability even in the phononic vacuum,
i.e., |ψi〉 = |ψ f 〉 = |0〉, which reduces Eq. (18) as follows:

P(t ) �4ε2(ωk − ωk′ )2e−|�t |2
∣∣∣∣
∫ t

0
ξ (t ′)ei(ωk+ωk′ )t ′

∣∣∣∣
2

. (20)

This equation describes the probability to excite a fermion pair
by directly converting all phonons produced by the external
drive, namely without enabling the excitation of the vibra-
tional mode.
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C. Phononic squeezed-coherent state

As a second example, we want to estimate the transi-
tion probability to generate fermion pairs when an initial
phononic squeezed-coherent state is fully converted in a vac-
uum state, namely, when |ψ f 〉 = |0〉 and |ψi〉 ≡ D̂(β )Ŝ(ζ )|0〉,
with squeezing operator Ŝ(ζ ) ≡ e

1
2 (ζ ∗b̂2−ζ b̂†2 ) having squeez-

ing parameter ζ = reiφ , whereas the coherent paremeter is
β = |β|eiθ . For this transition probability, the χi functions in
Eq. (14) assume a more complicated form with respect to the
case studied above; indeed, they read

χ1(t ) = −�∗
t c0(β + �t , ζ )e

1
2 (�t β

∗−�∗
t β ),

χ2(t ) = [c1(β + �t , ζ ) − �t c0(β + �t , ζ )]e
1
2 (�t β

∗−�∗
t β ),

χ3(t ) = c0(β + �t , ζ )e
1
2 (�t β

∗−�∗
t β ), (21)

where cn(β + �t , ζ ) are the coefficients of the squeezed-
coherent state in the Fock basis with β + �t coherent
parameter and ζ squeezing parameter. Such coefficients are
known in the literature and will be not reported here; their
explicit form was first calculated in [26].

We conclude this section by reporting the transition prob-
ability when the external drive is switched off. In the case of
resonance, this reads

P(t ) = 4ε2(ωk − ωk′ )2t2|c1(β, ζ )|2

= 4ε2|γ |2(ωk − ωk′ )2t2 e−|β|21+[cos(2θ−φ) tanh(r)]

cosh3(r)
, (22)

with γ = β cosh(r) + β∗eiφ sinh(r).

D. Impulsive drive

To concretely analyze and compare the trend of the transi-
tion probabilities studied so far, in this section we make use
of a specific external drive. For the sake of simplicity, we will
always assume that the transition occurs towards the bosonic
vacuum as the output state, |ψ f 〉 = |0〉. As a first case, we start
from the transition probability between a bosonic Fock state
and the vacuum, which becomes

P(t ) � 4
ε2

j!
|�t |2 j−2(ωk − ωk′ )2e−|�t |2

×
∣∣∣∣ jt − �∗

t

∫ t

0
ξ (t ′)ei(ωk+ωk′ )t ′

∣∣∣∣
2

. (23)

We now account for a specific complex external drive whose
real and imaginary parts, respectively, read

λxb(t ) = −gν

2
e−νt cos(�t ),

λpb(t ) = −gν

2
e−νt sin(�t ), (24)

where g is the drive strength and ν is a parameter having
the dimension of a frequency. When ν � �, such a drive
represents a short pulse, which kicks the wall and triggers
the classical harmonic motion; indeed, after a short transient
t � 1/ν the kinematics of the wall is perfectly described
by the classical trajectory x(t ) = L0[1 + εg sin(�t )] [14].
Clearly, the drive can always be switched off by imposing
g = 0.

Always assuming the resonance condition � = ωk + ωk′ ,
we are able to write a more convenient form of the transition
probability by first substituting Eq. (24) into Eq. (23), and
then taking the limit of large time to avoid secularities. This
reduces Eq. (23) to

PF(t ) ≈ε2(ωk − ωk′ )2t2
( g

2

)2 j−2
e−g2/4

(
g2 + 8 j

8
√

j!

)2

. (25)

We can now apply the same procedure to the initial
phononic squeezed-coherent state. However, since the for-
mula of the transition probability is cumbersome, we report
it in Appendix B, while here we restrict ourselves to give the
transition probabilities from a coherent state and a squeezed
state, respectively,

PC(t ) ≈ ε2(ωk − ωk′ )2t2e−g2/4−|β|2+gβ sin(θ )

×
(

g2

4
+ 4|β|2 + 2gβ sin(θ )

)
, (26a)

PS(t ) ≈ ε2g2(ωk − ωk′ )2t2 e− g2

4 [1−cos(φ) tanh(r)]

8 cosh3(r)

× [5 cosh(2r) + 4 sinh(2r) cos(φ) − 3]. (26b)

Such formulas are easily obtained from Eq. (B1) by setting
r = 0 and β = 0, respectively.

E. Theoretical results

Both Eqs. (25) and (26) describe the transition probability
to generate the fermion pair under the action of the external
drive in Eq. (24) and by completely depleting the vibrational
mode. To compare these formulas, we focus our attention on
the auxiliary functions

�F( j, g) =
( g

2

)2 j−2
e−|g|2/4

(
g2 + 8 j

8
√

j!

)2

, (27a)

�C(β, g) = e−g2/4−|β|2+gβ sin(θ )

(
g2

4
+ 4|β|2 + 2gβ sin(θ )

)
,

(27b)

�S(ζ , g) = g2 e− g2

4 [1−cos(φ) tanh(r)]

8 cosh3(r)

× [5 cosh(2r) + 4 sinh(2r) cos(φ) − 3], (27c)

and �SC(β, ζ , g) [reported in Appendix B, Eq.(B2)], so that
we can write Eqs. (25), (26), and (B1) in a more compact form
as

PF(t ) = ε2(ωk − ωk′ )2t2�F( j, g), (28a)

PC(t ) = ε2(ωk − ωk′ )2t2�C(β, g), (28b)

PS(t ) = ε2(ωk − ωk′ )2t2�S(ζ , g), (28c)

PSC(t ) = ε2(ωk − ωk′ )2t2�SC(β, ζ , g). (28d)

It becomes clear that Eqs. (27) and (B2) fully identify the
transition probabilities of interest and we can therefore focus
our attention on them rather than on Eq. (28). Hence, in Fig. 1
we plot the auxiliary functions at different drive strengths.
Such graphs are realized by exploiting the fact that, as long
as β and ζ are real numbers, the average phonon number
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FIG. 1. Comparison between the transition probabilities �F ( j, g) (black, single dots), �C (β, g) (dark blue), �S (ζ , g) (green), �SC(β, ζ , g)
(dashed, red), and different drive strengths: (a) g = 0, (b) g = 0.5, and (c) g = 1.

Nphon = 〈b̂†b̂〉 depends on j, β, or ζ in an univocal way, and
therefore we can invert them to use Nphon as a unique variable.
This means that we can plot the functions �F( j = Nphon, g),
�C(β = √

Nphon, g), �S[ζ = arsinh(
√

Nphon), g], and
�SC[β = √

Nphon/2, ζ = arsinh(
√

Nphon/2), g]. In the last
case we suppose that the displacement and the squeezing
operations contribute to the phonon number equally, i.e.,
|β|2 = sinh2 r = Nphon/2.

Our results in Fig. 1(a) clearly show that, as long as the
external drive is switched off, the transition probabilities reach
their maximum at Nphon = 1, except for �SC(β, ζ , g), which
is slightly shifted due to the squeezing contribution. This
behavior does not come as a surprise since in the interaction
Hamiltonian the generation of two fermions occurs at the price
of only one phonon. The fact that the green line, namely, the
function �S(ζ , g), is zero everywhere, stems from the boson
statistics of the squeezing state, which is zero whenever the
number of phonons is odd [27]. Hence, supposing that the
initial state contains two phonons, only one converts into
the fermion pair, and consequently the system never reaches
the state |ψ f 〉 = |0〉.

By turning the external drive on, the contribution of the
vacuum state to the transition probability becomes appre-
ciable. Such a contribution is analytically investigated and
reported in Eq. (20), and describes the probability to directly
convert the mechanical motion of the wall, caused by the
external drive, into fermion pairs. This process can be in-
terpreted as if the drive supplies the system with additional
phonons. This interpretation would also explain the slight shift
leftwards of the peak in the red dotted and dark blue line;
in fact, if the drive supplied additional phonons, we would
need a reduced amount of initial coherent phonons |β|2 to
generate the same number of fermions. Finally, we notice
that the presence of the drive, acting as a displacement, also
enables the total conversion of phonons at higher Fock number
and even when phonons are initially prepared in the squeezed
vacuum.

V. EXTENSION TO MULTIPLE BAGS

The potential in Eq. (2) embodies the boundary conditions
for a spinor field confined in a cavity; indeed, the two delta
functions constitute the walls of the cavity. In this section,
we want to extend the analysis to a field confined in a region

containing N equally spaced spikes, some of them undergoing
a position fluctuation dLq [28]. The generalization of the
potential becomes

V (x) = 2
N−1∑
q=0

δ(x − qL − lqdLq), (29)

where the parameters lq = 0, 1 determine which bag under-
goes the fluctuation.

Assuming that all spikes have the same mass, the gen-
eralization of the quantization protocol reported in Sec. II
is straightforward. Once we obtain the extended classical
Hamiltonian, we promote the increments dLq to quantum op-
erators as follows δLq → δL0(b̂†

q + b̂q ). This step expands the
number of bosonic degrees of freedom up to Nl � N , where
Nl is the number of fluctuating walls. The total Hamiltonian
therefore reads

H (t ) =H0 + εHI + Ĥdr(t ), (30)

H0 =
∑

n

ωn(ĉ†
nĉn + d̂†

n d̂n) +
Nl∑
l

�l b̂
†
l b̂l , (31)

ĤI = −2
Nl∑
l

∑
nm

(−1)n+m[(ωn + ωm)(ĉ†
nĉm + d̂†

md̂n)

+ (ωn − ωm)(d̂nĉm + d̂†
mĉ†

n )](b̂†
l + b̂l ), (32)

Ĥdr(t ) =
Nl∑
l

(
λl (t )b̂†

l + λ∗
l (t )b̂l

)
, (33)

where �l are the oscillation frequencies of the walls and we
introduce the set of external drives λl (t ).

As seen in Sec. III, the presence of counterrotating terms
in the interaction Hamiltonian alters the ground state of the
total system, which does not correspond to the vacuum state
anymore. Since the harmonic oscillators do not interact with
each other at the lowest order, the correction to the ground
state and the vacuum energy can be easily calculated

|�0〉 =|0; 0, 0̄〉 + 2ε

Nl∑
l

∑
nm

(−1)n+m(ωn − ωm)

ωn + ωm + �l
|1l ; 1n, 1̄m〉,

(34)

�E = −
Nl∑
l

∑
nm

4ε2(ωn − ωm)2

ωn + ωm + �l
. (35)
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VI. CONCLUSION

In this paper we presented a technique for the introduction
of a vibrational mode in a cavity system confining a fermionic
field. The new mode, having bosonic nature, stems from the
fluctuation of the position of one cavity wall, and represents
a further quantum degree of freedom of the system. Interest-
ingly, our quantization protocol of the harmonic motion of the
wall directly provides the coupling terms between the bosonic
subsystem and the trapped field.

We demonstrated that, due to the presence of coun-
terrotating terms, the interaction between the spinor field
and the oscillating wall brings about a modification of the
ground state, which does not correspond to the vacuum
state anymore, but is expressed as a superposition of terms
containing virtual particles. We showed that such virtual par-
ticles induce a negative shift in the Casimir energy of the
system.

The interaction Hamiltonian expresses the possibility to
convert vibrational excitations of the wall into fermion pairs.
Hence, we proved that the excitation transfer strictly depends
on the initial state of the phononic mode. As a specific
scenario, we investigated the excitation of two fermionic
modes, generating a particle and an antiparticle, following
the total depletion of the bosonic mode. We showed how
the manipulation of an external drive acting on the bosonic
mode permits to control the transition probability and en-
ables the conversion of a higher number of phonons into
fermions.

Finally, we generalized our model by considering a set of
oscillating walls. The new total system consists therefore of a
field interacting with a set of independent quantum harmonic
oscillators. Also in this case, the correction to both the ground
state and the Casimir energy was calculated.

The difficulties on the concrete realization of confined
spinor fields in one-dimensional (1D) setups push us to think
about possible extensions of this analysis as future works.
For instance, extended models can involve higher-dimensional
systems, such as fermions confined in two-dimensional (2D)
or three-dimensional (3D) cavities. Thanks to the extraordi-
nary successes reported on graphene platforms throughout
the last 20 years [29–31], systems characterized by fermionic
degree of freedoms in 2D lattices become more accessible ex-
perimentally [32]. In such platforms, the confinement occurs
by means of magnetic barriers [33–35] whose intensity and
time-dependent (fluctuating) gradient could offer the addi-
tional vibrational degree of freedom required for the analysis
reported in this work.

The techniques and the concepts presented in this work
allow to explore the thin borders between cavity electrody-
namics, optomechanics, and quantum field theory.
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APPENDIX A: TIME EVOLUTION

In this work we are interested in investigating the transi-
tion probability to convert vibrational excitations into fermion
pairs. To do that, we need an agreeable expression for the
time evolution operator Û (t ) [36,37]. In the presence of a
time-dependent Hamiltonian Ĥ (t ), this reads

Û (t ) =
←
T exp

[
− i

h̄

∫ t

0
dt ′ Ĥ (t ′)

]
, (A1)

where
←
T stands for the time-ordering operator.

The total Hamiltonian in Eq. (5) consists in three parts, one
of which depends on time. Although they do not commute
with each other, it turns out to be more convenient to rearrange
the time evolution operator such that we can split the action of
the single Hamiltonian contributions as follows:

Û (t ) = Û0(t )Ûdr(t )ÛI, (A2)

the modulo is an overall complex phase that has no physical
significance. In Sec. IV this choice allows us to address the
analysis of the transition probability via perturbation theory
in a more convenient way. In Eq. (A2) we distinguish the
following unitary operators:

Û0(t ) := exp[−i Ĥ0t], (A3)

Ûdr(t ) :=
←
T e−i

∫ t
0 dt ′ ˆ̃Hdr (t ′ ) � exp{ �∗(t )b̂† − �(t )b̂}, (A4)

ÛI(t ) :=
←
T e−iε

∫ t
0 dt ′ ˆ̃HI (t ′ ), (A5)

where we defined the effective drive ˆ̃Hdr(t ) :=
Û †

0 (t )Ĥdr(t )Û0(t ) and the time-dependent displacement
parameter

�(t ) :=
∫ t

0
dt ′{λx(t ′) sin(�t ′) − λp(t ′) cos(�t ′)

+ i[λx(t ′) cos(�t ′) + λp(t ′) sin(�t ′)]}, (A6)

which depends on the complex drive λ(t ) = λx(t ) + iλp(t ).
The approximation in Eq. (A4) is justified by the presence of
a global phase, which does not have any physical consequence
on our calculations and can therefore be omitted.

The unitary operator in Eq. (A5) contains the effective
interaction Hamiltonian

ˆ̃HI(t ) := Û †
dr(t )Û †

0 (t )ĤI(t )Û0(t )Ûdr(t ), (A7)

whose explicit expression is

ˆ̃HI (t ) = −2
∑
nm

(−1)n+m[(ωn + ωm)(ei(ωn−ωm )t ĉ†
nĉm

− e−i(ωn−ωm )t d̂nd̂†
m)

− (ωn − ωm)(ei(ωn+ωm )t ĉ†
nd̂†

m − e−i(ωn+ωm )t d̂nĉm)]

× [ei�t b̂† + e−i�t b̂ + 2ξ (t )], (A8)
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where ξ (t ) = Re{�(t )} cos(�t ) − Im{�(t )} sin(�t ). Such a unitary operator depends on the adimensional amplitude ε, which
is supposed to be extremely small. This enables the expansion of Eq. (A5) at the lowest perturbative orders

UI (t ) �1 − iε
∫ t

0
dt ′ ˆ̃HI(t

′) − ε2
∫ t

0
dt ′ ˆ̃HI(t

′)
∫ t ′

0
dt ′′ ˆ̃HI(t

′′). (A9)

APPENDIX B: TRANSITION PROBABILITY PSC(t )

The probability to convert all phonons prepared in a initial phononic squeezed-coherent state into a fermionic pair is given by

PSC(t ) ≈ ε2(ωk − ωk′ )2t2 exp

{
−g2

4
− |β|2 + g|β| sin(θ ) + tanh(r)

4
[g2 cos(φ) − 4|β|2 cos(2θ − φ) − 4g|β| sin(θ − φ)]

}

× sech(r)

{
sech(r)2

[
3g|β| sin(θ ) − 3

8
g2 + cosh(2r)

(
5

8
g2 + 4|β|2 − g|β| sin(θ )

)]

+[8|β|2 cos(2θ − φ) + g2 cos(θ ) + 2g|β| sin(θ − φ)] tanh(r)

}
. (B1)

From this transition probability we define the auxiliary function

�SC(β, ζ , g) = exp

{
−g2

4
− |β|2 + g|β| sin(θ ) + tanh(r)

4
[g2 cos(φ) − 4|β|2 cos(2θ − φ) − 4g|β| sin(θ − φ)]

}

× sech(r)

{
sech(r)2

[
3g|β| sin(θ ) − 3

8
g2 + cosh(2r)

(
5

8
g2 + 4|β|2 − g|β| sin(θ )

)]

+[8|β|2 cos(2θ − φ) + g2 cos(θ ) + 2g|β| sin(θ − φ)] tanh(r)

}
. (B2)
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