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Efficiency of optically pumping a quantum battery and a two-stroke heat engine
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In this paper, we study the efficiency of charging a quantum battery through optical pumping. The battery
consists of a qutrit and is connected to a natural thermal reservoir and an external coherent drive in the limit
where its upper energy level can be adiabatically eliminated from the dynamics. In this scenario, the drive
plus spontaneous emission optically pumps the intermediate energy level of the qutrit, and the battery can be
understood as being charged by an effective higher temperature reservoir that takes it out of equilibrium with the
natural reservoir and stores useful energy in it. We also analyze the efficiency of using this battery and charging
scheme as the work fluid of a two-stroke thermal machine. The thermal machine includes a fourth level through
which work is extracted from the battery via a unitary transformation, therefore setting the limit of maximum
efficiency of the machine.
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I. INTRODUCTION

The growing interest in quantum technologies and the
continuous miniaturization of current devices has made it
essential to understand the thermodynamics laws on micro-
and nanoscales. It has also led to a growing research interest
in devices where microscopic media are used as the work fluid
of heat engines or as energy-storing quantum batteries.

A quantum heat engine is a machine whose work fluid
is a quantum system operating in or out of equilibrium. In
that sense, any quantum system coherently and incoherently
exchanging energy with its environment can be interpreted as
such a machine. In fact, the first quantum dynamics viewed as
a quantum heat engine was a three-level maser [1]. Since then,
many different analogs of classical heat engines operating in
equivalent Carnot and Otto cycles have been studied [2–18],
as well as many other more general models [18–31]. In most
cases, the main goal is to define the efficiency and output
power of the machines, their particular regimes of operations,
and if they present some quantum advantage when compared
to their classical counterparts, when there is one.

In parallel to that, another relevant energetic problem
related to the development of new quantum technologies
concerns the efficiency and input power of the charging of
quantum batteries [32], namely, quantum systems that can
store energy to be later extracted as work. The charging of
quantum batteries has been studied both for unitary dynamics
[33–40] as well as for incoherent processes [41–51]. In most
cases, the target of investigation has been the enhancement
of input power due to quantum properties such as coherence
and correlation [52–60], whereas in Refs. [41,43,61–65] the
authors also analyzed the energetic efficiency of the charging
process. Most of them, however, do not include in the calcu-
lation of the charging efficiency the eventual cost to produce
anomalous energy sources such as structured of engineered
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reservoirs or classical drives. A notable exception is found
in Ref. [65], where the authors compute the thermodynamic
cost of measurements used to help stabilize the charging of
the battery.

One very common example of an engineered reservoir is
found in the ubiquitous method of optically pumping en-
ergy into an atomic system. In general, optical pumping
involves the combination of one or more external coherent
driving fields and spontaneous emission to incoherently trans-
fer atomic populations between lower energy levels with the
mediation of a higher energy one. If the parameters are such
that this higher energy level can be adiabatically eliminated
from the dynamics, the overall time evolution can be approx-
imately treated in the subspace of the lower energy levels and
the optical pumping may eventually mimic a thermal reser-
voir. In particular, in the simplest scenario of the population
transfer between a ground state to an excited level, the varia-
tion of internal energy of the system will be exactly equal to
the heat pumped by this effective reservoir. This calculation,
however, does not take into consideration the energetic cost
to create such an effective reservoir and may even lead to the
false impression that the charging of the atomic system can be
done with the efficiency one. Furthermore, it does not reveal
the thermodynamics limitations and costs to sustain such an
effective reservoir if the temperature of the environment sur-
rounding the system increases.

Our goal in this paper is to investigate these thermody-
namic costs and limitations in this simplest case of optically
pumping energy into an effective two-level quantum battery.
We particularly focus on analyzing the efficiency and input
power of the charging of this battery as we change parameters
such as the energy separation of its levels, the pumping rate,
and the temperature of the outside environment. The battery
consists of a qutrit that is coupled to an external work drive
and to a standard thermal reservoir in a typical optical pump-
ing setup (see Fig. 1). We assume that the qutrit is initially
in thermal equilibrium with the reservoir and it is driven
out of equilibrium by the coherent external source, so useful
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FIG. 1. A three-level system in cascade configuration scheme.
The transitions between the energy levels are induced by the coupling
of the system to a thermal reservoir and to an external work drive that
injects energy into the system: �mi = Em − Ei.

energy is stored in it. We analyze the efficiency and the stored
power in this process, taking into consideration the energy
transferred by the external classical source as well as that
exchanged with the thermal reservoir, in the limit where the
upper energy level of the qutrit can be adiabatically eliminated
from the dynamics [66,67].

In the sequence, we use this battery as the quantum work
fluid of the two-stroke thermal machine analyzed in Ref. [68].
There, the battery is charged through a heat current estab-
lished when reservoirs of distinct temperatures affect different
transitions of a three-level atom and it is shown that the
machine operates at the Otto cycle efficiency. However, this
calculation does not consider the cost of preparing the effec-
tive reservoir. Here, we recalculate the efficiency and output
power of the machine, considering that the effective reservoir
is the result of an optical pumping process. The engine in-
cludes a fourth level and operates a cycle where energy is
stored through the optical pumping and extracted by means
of a unitary transformation.

The paper is organized as follows. In Sec. II, we revisit
the theory of quantum open system dynamics and thermody-
namics and present our models of the quantum battery and
the two-stroke quantum heat engine. We also show some
algebraic results for particular regimes of operation of the
machine. In Sec. III, we show and analyze the numerical
results for both setups. Finally, in Sec. IV we summarize
and comment on the results and discuss possible future de-
velopments. Details of the calculations are reported in the
Appendix.

II. THEORETICAL BACKGROUND

A. Open quantum system dynamics and thermodynamics

Here we will assume that the interaction between the quan-
tum system and the thermal reservoir is Markovian so the
dynamics is ruled by a master equation in the Lindblad form
[69] (h̄ = kB = 1 in the following):

ρ̇ = −i[H (t ), ρ] + L(ρ). (1)

The first term on the right side accounts for the unitary part
of the dynamics. The Hamiltonian reads H (t ) = H0 + V (t ),
where H0 is the free Hamiltonian of the system (e.g., non-
degenerate three- or four-level atoms) and V (t ) accounts
for its coupling with external coherent sources (e.g., laser
fields). The second term represents the nonunitary part of the

dynamics, L(ρ), given by

L(ρ) =
∑

j

L j (ρ) =
∑

j

� j

[
JjρJ†

j − 1

2
{J†

j J j, ρ}
]
, (2)

where {A, B} = AB + BA, � j are the incoherent energy ex-
change rates and Jj are the corresponding energy jump
operators in the system. In this scenario and defining the
internal energy of the system at time t as the expectation value
of its total energy, U (t ) = Tr{ρ(t )H (t )}, R. Alicki [19] has
defined the work, W , and the heat, Q, exchanged between the
system and the reservoirs, respectively, by

W =
∫ t

t0

dt ′ Tr{ρ(t ′)Ḣ (t ′)} (3)

and

Q =
∫ t

t0

dt ′ Tr{ρ̇(t ′)H (t ′)} =
∫ t

t0

dt ′ Tr{L[ρ(t ′)]H (t ′)}. (4)

Note that these definitions automatically satisfy the first law
of thermodynamics. Even though there has been a long dis-
cussion about the definitions of work and heat in quantum
thermodynamics [70–73], for all the purposes of this paper,
Alicki’s are satisfactory.

To analyze the efficiency of the charging of our bat-
tery, we need to compute its nonequilibrium Helmholtz
free energy, F (t ) = U (t ) − T S(t ), where T is the tempera-
ture of the reservoir in which the system is embedded and
S(t ) is the von Neumann entropy of the system, S(t ) =
− Tr{ρ(t )ln[ρ(t )]}. We also need to remember that in an
isothermal and generally irreversible process, the maximum
amount of work, Wext, that can be extracted or stored in
the battery is at most equal to a decrease or increase in its
Helmholtz free energy, where the equality holds for reversible
processes.

B. Quantum battery model

We consider a quantum battery (Fig. 1) that consists of a
qutrit of levels |g〉, |i〉, and |m〉 (Eg = 0 < Ei < Em) connected
to an external work drive, Vin(t ) = �(σgmeiω f t + σmge−iω f t )
(σkl ≡ |k〉〈l|) that couples levels |g〉 and |m〉 and injects energy
into the system, and to a thermal reservoir of finite tempera-
ture T that generates a Markovian incoherent energy exchange
with the system. The dynamics of the battery is given by
Eqs. (1) and (2) where L(ρ) is decomposed in the following
terms:

Lγm [ρ(t )] = γ +
m

2
(2σmiρ(t )σim − {σii, ρ(t )})

+ γ −
m

2
(2σimρ(t )σmi − {σmm, ρ(t )}), (5)

where γ +
m = γ m

0 n̄m, γ −
m = γ m

0 (n̄m + 1) and n̄m = (e
Em−Ei

T −
1)−1, and

Lγi [ρ(t )] = γ +
i

2
(2σigρ(t )σgi − {σgg, ρ(t )})

+ γ −
i

2
(2σgiρ(t )σig − {σii, ρ(t )}), (6)
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where γ +
i = γ i

0 n̄i, γ −
i = γ i

0 (n̄i + 1) and n̄i = (e
Ei−Eg

T − 1)−1.
Here, γ m

0 (γ i
0) denotes the spontaneous emission rate for

the transition |m〉 → |i〉 (|i〉 → |g〉). Note that we consider
that the reservoir does not directly couples levels |m〉 and |g〉
or that, if it does, this coupling is very weak when compared to
the others (two approximations commonly found in quantum
optical systems).

We assume that the system is in contact with the natural
reservoir at temperature T and, thus, it is initially prepared
in a Gibbs state, ρ(0) = e−βH0/Z , where H0 = ω j |Ej〉〈Ej |,
β = 1/T , and Z = Tr(e−βH0 ) is the partition function. Turn-
ing on Vin(t ) evolves the system into a nonequilibrium energy
storing steady state, ρNESS, whose free energy is larger than
that of ρ(0) (see the Appendix for a detailed calculation of
the dynamics). The efficiency of this process is given by
ηpump = �F

Ein
, and its input power by Ppump = �F

τ
, where Ein

is the total energy injected into the system, τ is the time it
takes for the system to reach ρNESS from the initial Gibbs state
ρ(0), and �F = FNESS − F (0) is the variation of Helmholtz
free energy. There are two possible energy sources for the
process: the external drive and the thermal reservoir. The first
will always inject energy in the battery whereas the latter may
or may not do so, depending on the parameters. To compute
the total amount of injected energy, Ein, we need to consider

Ein = Max{Win,Win + Qγm ,Win + Qγi ,Win + Q}, (7)

where Win is the work done by the external source and Qk the
heat injected by reservoir k. Taking Vin(t ) into consideration,
the injected work is given by

Win = i�ω f

∫ τ

0
dt [�mg(t ) − �gm(t )], (8)

where �gm = 〈g|eiH ′
0tρe−iH ′

0t |m〉, H ′
0 = H0 + �ω|m〉〈m| and

�ω = ω f − ωm, whereas the heat components of the energy
exchange are given by

Qγm = −�
γ −

m

2

∫ τ

0
dt [�mg(t ) + �gm(t )]

+ (ωm − ωi )
∫ τ

0
dt [γ +

m �ii(t ) − γ −
m �mm(t )], (9)

between levels |m〉 and |i〉, and

Qγi = −�
γ +

i

2

∫ τ

0
dt [�mg(t ) + �gm(t )]

+ωi

∫ τ

0
dt [γ +

i �gg(t ) − γ −
i �ii(t )], (10)

between levels |i〉 and |g〉 (see Appendix for details). Q =
Qγm + Qγi is the total heat exchange.

In this paper, we are interested in the scenario where we
can adiabatically eliminate level |m〉 from the dynamics. This
limit is achieved if we consider that the decay rate from level
|m〉 to |i〉 is much larger than the other rates involved in the
dynamics, γ −

m � γ +
m , γ ±

i ,�. Note that γ −
m � γ +

m means that
kBT � Em − Ei, establishing either a maximum temperature
or a minimum energy separation between levels |m〉 and |i〉
for the adiabatic elimination to work. Under these conditions,
the population of level |m〉 becomes approximately stationary
and very small when compared to the others, in a timescale

that is much smaller than the effective changes experienced by
the battery. In this case, the combination of the external work
drive with spontaneous emission optically pumps level |i〉, i.e.,
population is effectively and incoherently transferred straight
from level |g〉 to level |i〉, and Eq. (8) reads (see Appendix for
details)

Win = pω f γ
−
m

∫ τ

0
dt �gg(t ), (11)

where

p = 4�2

γ −2

m + 4�ω2
(12)

is the pumping rate. For fixed values of � and γ −
m , p is maxi-

mized when �ω = ω f − ωm = 0, i.e., when the laser drives
the |g〉 → |m〉 transition resonantly. As for the exchanged
heat, Eqs. (9) and (10) read (see Appendix for details)

Qγm ≈ pγ −
m (ωi − ω f )

∫ τ

0
dt �gg(t ) (13)

and

Qγi = −pγ +
i �ω

∫ τ

0
dt �gg(t )

+ωi

∫ τ

0
dt (γ +

i �gg(t ) − γ −
i �ii(t )). (14)

These are the equations ultimately used to compute ηpump

and Ppump. Before advancing to the next section, it is worth
noting that the optical pumping plus the natural reservoir can
be seen as an effective higher temperature reservoir acting
on the {g〉, |i〉} transition, given that the adiabatic elimination
of level |m〉 produces an effective dynamics in this sub-
space, that corresponds to an extra term of the type Lp(ρ) =
pγ −

m (2σigρσgi − {σgg, ρ}). This term adds to the ones pro-
duced by the natural reservoir, described by Eq. (6), and

unbalances the natural ratio γ −
i

γ +
i

= e
Ei−Eg

kBT to produce an ef-

fective higher temperature TH = h̄ωi

kBln(
γ−

i
pγ−

m +γ+
i

)
in the subspace

[74–76]. This effective temperature can even be negative, if
pγ −

m > γ i
0. The main goal of this paper is to analyze the

energy cost of creating this effective reservoir.

C. Quantum heat engine model

The proposed quantum heat engine is based on the version
developed in Ref. [42] of a two-stage machine. The first stage
uses an effective temperature difference to recharge the work
fluid and the second stage, a unitary operation to extract work
from it. Here, we will consider the battery described in the last
section as the work fluid of the machine.

The operation of the machine requires introducing a fourth
level |e〉 into the system, whose energy Ee lies in between
those of levels |g〉 and |i〉 (see Fig. 2): Eg = 0 < Ee < Ei <

Em. The |g〉 → |e〉 transition is in contact only with the natural
reservoir at temperature T . When level |m〉 is adiabatically
eliminated from the dynamics, the optical pumping of level
|i〉, produced by Vin(t ), eventually inverts the population in the
subspace {|e〉, |i〉}. This is equivalent to say that the machine
operates under a temperature difference TH − T where TH (T )
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FIG. 2. A four-level system as the working fluid. The transitions
between the energy levels are induced by the coupling of the system
to a thermal reservoir and to an external work drive that injects
energy into the system. �mi = Em − Ei and �ie = Ei − Ee.

affects the {|g〉, ‖i〉} ({|g〉, ‖e〉}) subspace. This difference in
temperature establishes a heat flux through the system and if
heat flows through the system for a long enough time it even-
tually produces states that are diagonal in the H0 eigenbasis
and given by ρOSS = ∑

k rkσkk (k = g, e, i), with rg > ri > re.
Because the machine operates in closed cycles, we refer to
these states as operational steady states, hence the label OSS.
Such states have positive ergotropy [77], E = (Ei − Ee)(ri −
re), meaning they store energy that can be extracted in the
form of work by unitary operations. The largest population
difference (largest value of ergotropy) is achieved asymptot-
ically and corresponds to the most amount of energy that
can be stored by the recharging stage. This particular OSS is
called the nonequilibrium steady state (NESS), from now on
labeled ρNESS. Previous works [42,68] have shown, however,
that NESS is not necessarily the best regime for the operation
of the machine. In general, intermediate charging times will be
used, generating ρOSS that carry less ergotropy but are much
faster to recharge. The faster recharging time, from now on
referred to as τr , increases both the output power that depends
on the inverse of the total duration of the cycle as well as the
efficiency, since less heat is lost to the reservoirs. To each τr ,
there corresponds a particular state ρOSS.

The second stage of the machine, called the discharging
stage, corresponds to a swap of the |e〉 and |i〉 populations,
for the class of OSS here analyzed. Physically, such a swap
can be implemented by turning on a second external source,
Vext(t ) = ε (σeiei(ωi−ωe )t + σiee−i(ωi−ωe )t ) for a finite time τd =
π
2ε

, in what is known as a π/2 pulse. This pulse takes ρOSS

into a corresponding passive state [78] of the form ρOSS(τd ) =
rg|g〉〈g| + ri|e〉〈e| + re|i〉〈i|, from which it can be recharged in
the next cycle. Note that, by construction, the energy gained
during the recharging stage balances out the energy extracted
during the discharging stage so �Ucycle = 0 in a cycle, as
expected.

From the dynamical point of view, taking level |e〉 into
consideration adds extra nonunitary terms to the time evolu-
tion of the machine. Once again, we will consider that the
natural reservoir directly couples only levels |e〉 and |g〉 but
does not act (or acts very weakly) in the |e〉 → |i〉 transition.
This approximation simplifies the calculations with no loss of

generality. The new terms read

Lγe [ρ(t )] = γ +
e

2
(2σegρ(t )σge − {σgg, ρ(t )})

+ γ −
e

2
(2σgeρ(t )σeg − {σee, ρ(t )}), (15)

where γ +
e = γ e

0 n̄e, γ −
e = γ e

0 (n̄e + 1), n̄e = (e
Ee−Eg

T − 1)−1

and γ e
0 is the spontaneous emission rate for the transition

|e〉 → |g〉. Adiabatic elimination of level |m〉 also imposes
γ −

m � γ ±
e .

At the end of one cycle, the work done on the system,
Win, the work performed by the machine, Wext, and the heat
exchanged between the system and the thermal reservoir, Q,
are, once again, computed using Eqs. (3) and (4).

The efficiency of the machine is given by η = −Wext
Ein

, where
Ein is the total energy injected in the system in one cycle,
whereas its power output is P = −Wext/τ .

In general, the energy exchanged by the machine as well as
its efficiency and power output are obtained by numerically in-
tegrating in time different functions of the state of the system,
similar to the ones obtained for the battery in Eqs. (8)–(10).
However, the calculations of these quantities are significantly
simpler in the ideal operational regime of the machine, derived
in previous works [42,68], that is achieved for τd 
 τr and∑

j γ jτ 
 1. The first condition allows us to assume that the
discharging stage is isentropic and isochoric, meaning that
the extracted work is maximal, i.e., equal to the ergotropy
stored in the system. The second condition establishes the
short-cycle operation, described in detail in Refs. [42,68] and
characterized by a linear variation with time of the thermody-
namics quantities and the minimization of the heat exchanged
with the reservoirs. In this regime, the work injected in the
machine is given by

W SC
in = Tr[ρ̃V̇in(τ )]τ

= ω f pγ −
m

γ −
i + γ −

e

κ
τ, (16)

where κ = 2(�+
i + γ +

e ) + γ −
i + γ −

e , �+
i = γ +

i + pγ −
m and p

is given by Eq. (12). The heat, in turn, can be decomposed in
the following three components:

QSC
γe

= Tr{Lγe [ρ̃][H0 + Vin(τ )]}τ

= ωe
γ +

e γ −
i − �+

i γ −
e

κ
τ − pγ +

e �ω
γ −

i + γ −
e

κ
τ, (17)

QSC
γi

= Tr{Lγi [ρ̃][H0 + Vin(τ )]}τ

= ωi
γ +

i γ −
e − γ −

i (γ +
e + pγ −

m )

κ
τ

− pγ +
i �ω

γ −
i + γ −

e

κ
τ, (18)

and

QSC
γm

= Tr{Lγm [ρ̃][H0 + Vin(τ )]}τ

= (ωi − ω f ) pγ −
m

γ −
i + γ −

e

κ
τ. (19)

To obtain the results in Eqs. (16)–(19), we use that
� = eiH ′

0tρe−iH ′
0t , whereas ρ̃ = UρU −1 is the corresponding
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FIG. 3. We plot the pumping efficiency (a), ηpump, and the pop-
ulation of levels |m〉 and |i〉 (b) as a function of γ i

0t for T = 0 and
ω f = ωm. In (b), ρeff

i is the population of level |i〉 when we adiabat-
ically eliminate level |m〉 and obtain an effective two-level system,
with levels |g〉 and |i〉. Parameters: ωm/ωi = 1.02, γ m

0 /ωi = 10−4,
γ i

0/ωi = 10−9, �/ωi = 10−6, and ωiτ ≈ 0.45 × 109. In the graphics,
Bohr energies are given in units of h̄ and thermal energies in units
of kB.

passive state of the system in this limit of operation, where U
is a unitary transformation that swaps the populations of levels
|e〉 and |i〉 (see Appendix for details). Finally, the ergotropy
stored in the system can also be algebraically computed and
is given by

ESC = (ωi − ωe)
�+

i γ −
e − γ −

i γ +
e

κ
τ. (20)

Note that all quantities above are proportional to the cycle
duration τ , and for the ergotropy to be positive it is necessary

that �+
i

γi− >
γ +

e
γe− . Also note that if this condition is not fulfilled,

a similar scheme can still be used as a refrigerator [79–82].
Finally, note that the linear dependence on time of both er-
gotropy and injected energy makes both the efficiency of the
short cycle ηSC = ESC/ESC

in and its power output PSC = ESC/τ

to be time independent, relying only on the rates of energy
exchange, the temperature of the reservoir, and the optical
pump.

FIG. 4. Stored energy versus efficiency of the charging pro-
cess for two temperatures. Parameters: ωm/ωi = 1.02, ω f = ωm,
γ m

0 /ωi = 10−4, γ i
0/ωi = 10−9, �/ωi = 10−6.

III. RESULTS

A. Quantum battery

The first aspect to analyze regarding the charging of the
battery via optical pumping is the timescales of the process.
In Figs. 3(a) and 3(b), we present, respectively, the numer-
ical results for the pumping efficiency and the population
of level |i〉 as a function of (parameterized) time. We con-
sider a resonant pump (ω f = ωm) and parameters consistent
with the adiabatic elimination of level |m〉 (γ −

m = 105γ −
i and

γ −
m = 102�). In Fig. 3(a), we show that there are clearly two

timescales involved in the process, as expected. The first one,
much faster, concerns the coarse graining in time required to
take the adiabatic elimination of level |m〉 into consideration.
Its characteristic time is of the order of 1/γ −

m , as it becomes
clear in the inset where we show how the population ρm

quickly stabilizes in time when compared to the effective
dynamics of the battery dominated by γ −

i . At t = 0, there
is no stored power in the battery and the very first process
coherently transfers the population from level |g〉 to level |m〉.
As the decay from |m〉 to |i〉 begins to dominate the process,
the battery begins to store energy and, the closer level |m〉
gets to its asymptotic value, the more efficient this energy
transference gets until the moment where almost all the energy
pumped into the system is stored as the population of level |i〉.
That is when the efficiency reaches its peak, at which point
the only wasted energy is the heat dissipated to the |m〉 → |i〉
reservoir and the little remaining population in level |m〉. From
the efficiency point of view, this is the best operating interval
for charging the battery. A glance at Fig. 3(b), however, shows
that at this timescale, the battery is far from fully charged.
In fact, the population of level |i〉 is still comparable to that
of level |m〉 and much smaller than its asymptotic value, as
is made explicit by the inset of the figure. The further we
pump the system, the more stored power we get at the cost
of lowering the efficiency of the process because, now, the
system begins to dissipate heat to the |i〉 → |g〉 reservoir as
well. This becomes clear in Fig. 4, where we plot the stored
energy versus the efficiency for two different temperatures of
the natural reservoir. In each curve, both plotted quantities
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FIG. 5. Pumping efficiency, ηpump, as a function of �ω/ωi, where
�ω = ω f − ωm, for different temperatures. Parameters: �/ωi =
10−6, γ m

0 /ωi = 10−4, γ i
0/ωi = 10−9, and ωm/ωi = 1.02.

are parameterized by the duration of the charging cycle of
the battery for a fixed set of the remaining parameters. Note
that the temperature does not significantly affect the process
except for very short times (higher efficiencies).

We also show in Fig. 3(b) that the chosen parameters are in-
deed consistent with the adiabatic elimination condition since,
at the timescale of the battery charging, the population of level
|i〉 is essentially the same, taking both the full three-level or
effective two-level dynamics.

The next relevant point concerning the battery is how its
charging efficiency depends on the frequency of the pump-
ing field. In Fig. 5, we plot the efficiency of the optical
pumping process as a function of the difference in energy
�ω = ω f − ωm between the photon coming from the exter-
nal drive, of frequency ω f , and the |g〉 → |m〉 transition, of
frequency ωm. First, note the existence of a resonance peak
when the frequency of the pump field matches the energy gap
of level |m〉 (ω f = ωm). The height of this peak increases with
pumping rate p, saturating for values of p that maximize the
population of level |i〉. At this point, the only main source
of efficiency degrading is the already mentioned heat wasted
in the |m〉 → |i〉 channel. This heat is proportional to the
difference Em − Ei and will increase (lowering the efficiency)
for higher energy gaps.

When pumping off-resonantly, the detuning �ω = ω f −
ωm is one of the main factors that affects the efficiency. This
can be seen in the inset of Fig. 5: there is a decay of the effi-
ciency as soon as ω f > ωi and until resonance is reached. The
steady efficiency for lower pumping frequencies (ω f � ωi)
is due to a compensation mechanism in which the heat flux
from |m〉 to |i〉 inverts signal and becomes positive, injecting
energy into the system to complement the energy coming from
the work done by the outside source. Note, however, that
the very low pump power at this range (displayed in Fig. 6)
generates really low efficiencies and stored energies in the
battery, making the resonance condition by far the best one
to transfer energy into it.

The other mechanism that affects the efficiency is the
energy fluctuation due to the natural reservoir. Its first and
clearest effect comes from the fact that, for fixed values of

FIG. 6. We plot the logarithm of the normalized input power,
P̄pump = Ppump/Pmax

pump, where Ppump is the input power and Pmax
pump

is the maximum input power obtained at �ω = 0 (ω f = ωm ), as a
function of �ω/ωi for different temperatures. We use the same set of
parameters as in Fig. 5.

the remaining parameters, the lower the temperature of the
reservoir the higher the efficiency of the optical pumping. As
we have seen, in the limit of very low T , these fluctuations do
not play a significant role and the only energy waste comes
from the mechanisms described above. As T increases, the
relative effect of the pumping becomes less pronounced and
the efficiency of the process decreases.

Note, however, that, as long as the conditions for the
adiabatic elimination of level |m〉 hold, meaning as long as
the temperature is not too high for its thermal population
to become significant, the efficiency becomes approximately
independent of the temperature of the reservoir at the res-
onance. Therefore, temperature itself is not the main issue
regarding the charging of the battery. As mentioned before,
as long as KBT 
 Em − Ei, one can still eliminate level |m〉
and fully charge the battery, even for high temperatures. For
example, in Fig. 7 we plot the power stored in the battery
as a function of pumping power p for a much higher tem-
perature (KBT/h̄ωi ≡ 0.5). To guarantee the validity of our
protocol, we have also raised the energy gap of level |m〉
from Em/Ei = 1.02 to Em/Ei = 5. Note that for high enough
values of p, we can still fully charge the battery. Just for the
sake of completeness, we have also included in Fig. 7 a line
representing the best charging of the battery that a unitary
(hence isentropic) protocol could achieve at the same temper-
ature. This unitary can be, for example, a Rabi flip induced by
directly coupling levels |g〉 and |i〉 and it has efficiency one.
However, this method of charging the battery is limited by
the entropy of its initial state: At best, it inverts the initial
populations of level |g〉 and |i〉, a limitation not shared by
optical pumping which can produce pi ≈ 1. This difference
becomes more and more accentuated as the temperature of
the environment surrounding the battery increases. The price
to pay, on the other hand, is the downgrade of the efficiency
of the optical pumping: higher temperatures require higher
energy separations Em − Ei, which lead to a larger heat dis-
sipation due to the |m〉 → |i〉 decay. In the inset of Fig. 7,
we plot the efficiency as a function of the temperature for
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FIG. 7. We plot the population of level |i〉 for a Rabi flip, pR
i ,

and for the optical pumping in the steady state, pNESS
i as a func-

tion of p̄ = p/pmax. We vary � from 10−9ωi to 10−6ωi and we
kept the other parameters fixed. To calculate pmax, we use �/ωi =
10−6. Parameters: T/ωi = 0.5, ω f = ωm = 5ωi, γ m

0 /ωi = 10−4, and
γ i

0/ωi = 10−9. In the inset, we plot the efficiency as a function of
the temperature for a fixed ratio KBT/h̄ωm and for ω f = ωm. Inset
parameters: �/ωi = 10−6, γ m

0 /ωi = 10−4, and γ i
0/ωi = 10−9.

maximized pumping rate p and a fixed ratio KBT/h̄ωm (i.e.,
fixed initial population of level |m〉).

B. Quantum heat engine

We start by analyzing the performance of the two-stroke
machine in the short-cycle limit (

∑
j γ jτ 
 1) which was

previously proven to be the most efficient one. In this sce-
nario, the efficiency and the output power are given by ηSC =
ESC/ESC

in and PSC = ESC/τ , respectively, where ESC is given
by (20) and ESC

in is calculated similarly to what was done for
the quantum battery in Sec. II B.

In Fig. 8, we plot the efficiency as a function of �ω.
Note that, except for very low temperatures, ηSC is maxi-
mized at resonance, ω f = ωm. Again, this happens because
that is when the pumping rate, p, reaches its maximum value,

FIG. 8. We plot the efficiency of the machine as a function
of �ω/ωi in the short cycle (SC) limit for different temperatures.
Parameters: �/ωi = 10−6, γ m

0 /ωi = 10−4, γ i
0/ωi = γ e

0 /ωi = 10−9,
ωe/ωi = 0.01, and ωm/ωi = 1.02.

FIG. 9. Here we plot the efficiency in the asymptotic cycle,
ηNESS, and the efficiency in the short cycle, ηSC, for different
values of the frequency of the external drive, ω f , as a function
of the temperature of the natural thermal reservoir. Parame-
ters: �/ωi = 10−8, γ m

0 /ωi = 10−4, γ i
0/ωi = γ e

0 /ωi = 10−7, ωe/ωi =
0.01, ωm/ωi = 1.02, and ε/ωi = 2 × 10−4 (for the asymptotic
cycle).

injecting the most possible energy into the work fluid to be
later extracted in the discharging stage. Contrary to the bat-
tery, however, the machine does not work at any temperature
and for any detuning. Here, it is not enough to take the sys-
tem out of thermal equilibrium by storing some energy in
it. By design, the machine requires positive ergotropy after
the recharging stage, which is achieved for ρii > ρee and this
condition cannot be matched if T is too high and/or p is
too low. In fact, as the temperature of the natural reservoir
increases, so does the thermal population of level |e〉. This
requires more pumping power to invert the population in the
{|e〉, |i〉} subspace, limiting the operation of the machine to
detunings around the resonance. The higher the temperature,
the closer to resonance one needs to pump. In fact, as we see
in Fig. 9, there is a temperature threshold beyond which the
machine does not work, no matter how strongly we pump. We
comment more on this later in this section.

Thermal fluctuations also do affect the overall efficiency
of the machine in the short cycle but in a much smaller scale
than its range of operation, i.e., as long as the machine works,
its efficiency is close to the maximum for a given pumping
frequency.

As we have seen in Sec. II C, the efficiency of the short

cycle is maximized when �+
i

γ −
i

� γ +
e

γ −
e

. If we consider a standard
thermal reservoir, then one of the ways to achieve this limit is
to operate coupled to a very low temperature (T 
 1) and in
resonance. In this limit, �+

i ∼ pγ −
m , γ +

e ≈ 0 and the efficiency
of the short cycle is approximated by

ηSC ≈ γ −
e

γ −
e + γ −

i

ωi − ωe

ωm
= γ −

e

γ −
e + γ −

i

ωi − ωe

ωi

1

1 + δω
ωi

,

(21)
where δω = ωm − ωi. This result approaches the efficiency
of the Otto cycle operating in a three-level scheme, ηOtto =
ωi−ωe

ωi
, when γ −

e � γ −
i . ηOtto was shown to be the efficiency

of this two-stroke machine operating under thermal reservoirs
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FIG. 10. We plot the logarithm of the normalized output power,
P̄SC = PSC/Pmax

SC , where PSC is the output power and Pmax
SC is the

maximum output power, as a function of �ω/ωi for different tem-
peratures. We use the same parameters as in Fig. 8.

of temperatures TH and T affecting, respectively, the |g〉 →
|i〉 and the |g〉 → |e〉 transitions [68]. The extra factor 1

1+ δω
ωi

that reduces this efficiency, comes from the energy wasted to
generate the effective temperature TH through optically pump-
ing level |m〉. Note that, as long as δω 
 ωi, this correction
amounts to a small linear decay of the efficiency proportional
to δω

ωi
. This factor, however, cannot be made as small as

possible because there must be a minimum energy separation
between levels |i〉 and |m〉 to make it possible to adiabatically
eliminate the latter.

The other relevant figure of merit of the heat machine is
its output power. In Fig. 10, we see that this quantity reaches
its maximum value when the external source drives the |g〉 →
|m〉 transition resonantly, ω f = ωm, and decays symmetrically
around it. We also note that around resonance, ω f ∼ ωm, as
long as the positive ergotropy condition is achieved, the output
power does not depend significantly on the temperature of the
natural reservoir. However, as previously analyzed, the higher
the temperature, the closer to resonance one needs to be for
the machine to operate.

From the efficiency and power analysis, we can state that,
as in the quantum battery, the machine works better in the
regime of low temperature. It is worth noting that the short
cycle gives the best performance but the output power per
cycle, that is proportional to the stored ergotropy, is very
small. That is the downside of maximizing the efficiency.

We can also analyze the performance of the machine op-
erating in the limit of the asymptotic cycle, i.e., when the
duration of the recharging stage τr is set to allow the battery
to store close to its maximum capacity. In this limit, the
operational steady state, ρOSS, converges to ρNESS and the
efficiency and the output power are given by η = −Wext/Ein

and P = −Wext/τ , respectively, where Wext is calculated via
Eq. (3). In Fig. 9, we plot the efficiency of both the short and
long cycles as a function of the temperature for two pumping
frequencies. Note that, for a given detuning, the temperature
threshold is the same for both cycles. The largest threshold, on
the other hand, is found at resonance (ω f = ωm) whereas, for
fixed couplings to the external drive, larger detunings lower
the temperature threshold, as expected.

The dependence of the output power with the duration of
the cycle is the same as the one observed in previous works
[42,68]: the power is maximized for the short cycle and decays
as the cycle duration increases. Considering that the output
power is the ratio between the extracted work and the duration
of the cycle τ , that means that the increase in the extraction of
work grows slower than linearly with τ , the linear increase
being the one obtained exactly in the short cycle.

IV. CONCLUSION

This paper has encompassed two studies: First, we have
studied the optical pumping of a quantum battery from the per-
spective of the efficiency, the input power, and the total energy
stored in the process. We have concentrated our analysis in a
cascade three-level scheme where the upper energy level is
adiabatically eliminated from the dynamics. In this particular
scenario, we have found that there is no universal optimal
set of parameters to charge the battery. The process is more
efficient for short times, in a timescale comparable with the
adiabatic elimination condition, dominated by the decay rate
of the accessory higher energy level |m〉 (t ∼ 1/γ −

m ). This is
consistent with the idea that the stabilization of the population
of the eliminated level marks the moment in time when most
of the pumped energy is directly transferred to the optically
pumped target level of the battery. This is the best achievable
efficiency in the process but, in this timescale, the battery is
still quite empty. The other meaningful timescale is the one
to the fully charge the battery, connected to the decay time
of the optically pumped level (t ∼ 1/γ −

i ). At this timescale,
the battery stores as much power as possible but the overall
efficiency drops because some of the pumped energy is lost in
the form of heat. We have also shown that, as long as the adi-
abatic elimination is still valid, i.e., as long as the temperature
of the dissipative thermal reservoir is not too high compared
to the energy gap of the eliminated level, temperature does not
affect significantly the charging process. Finally, the charging
process is much more efficient in resonance (ωm = ω f ), justi-
fying this condition as the best charging protocol.

The second part of the work is in regard to using the
battery as the working fluid of a two-stroke thermal machine.
Once again, the best performance is achieved operating at low
temperature and in short cycles. The maximum efficiency ap-
proaches that of an equivalent machine running an Otto cycle
between two different reservoirs. The correcting factor that re-
duces the Otto cycle efficiency comes from the energy wasted
to create the effective high temperature reservoir through the
optical pumping mechanism and can be made small as long as
the adiabatically eliminated level is not much more energetic
than the optically pumped one. The Otto cycle efficiency can-
not be achieved, though, because for the adiabatic elimination
to work, some energy separation is still required between the
levels.

Still concerning the short cycle, highest efficiency is
achieved when the pumping frequency matches the Bohr
frequency of the optically pumped transition (ω f = ωi). How-
ever, different from the first part of the work, the analyzed
two-stroke machine cannot operate at any combination of
pump frequency and temperature. The higher the cold reser-
voir temperature, the closer to resonance (ω f ∼ ωm) the ma-
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chine needs to be. On the other hand, in resonance and as long
as the machine is able to operate, its efficiency is not signif-
icantly affected by the temperature of the cold reservoir. The
shutdown transition due to the temperature rise is quite sharp.

We also analyzed the machine under the asymptotic cy-
cle, where the battery is allowed to be fully charged in the
recharging state. We have shown that it has the same shutdown
temperature of the short cycle, i.e., the threshold temperature
of the cold reservoir beyond which work extraction stops is
the same regardless of the duration of the cycle. Efficiency
and output power are both lower in this regime, however, as
has already been shown in previous works [42,68].

Finally, it is worth mentioning that the models adopted here
can be adapted to different quantum optical setups. Both the
quantum battery and the heat engine can be implemented in
both natural and artificial atoms, superconducting circuits, and
similar systems.
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APPENDIX

Here we show more details about the calculations of the
results shown in the main text.

1. Quantum batterry

a. Adiabatic elimination

The dynamics of the system is described by a master equa-
tion in the Lindblad form (h̄ = 1 and kB = 1):

ρ̇(t ) = −i[H (t ), ρ(t )] + L[ρ(t )]. (A1)

The Hamiltonian reads H (t ) = H0 + V (t ), where H0 is the
free Hamiltonian of the system and V (t ) account for coupling
with an external work source. For the quantum battery model,
we have V (t ) = Vin(t ), where Vin(t ) is given by

Vin(t ) = �(|g〉〈m|eiω f t + |m〉〈g|e−iω f t ). (A2)

The nonunitary part of the dynamics, represented by L[ρ(t )],
is given by

L[ρ(t )] = Lγm [ρ(t )] + Lγi [ρ(t )], (A3)

where Lγm [ρ(t )] and Lγi [ρ(t )] are given by Eqs. (5) and (6),
respectively.

In a rotating framework, defined by �(t ) = eiH ′
0tρe−iH ′

0t ,
where H ′

0 = H0 + �ω|m〉〈m| and �ω = ω f − ωm, Eq. (A1)
reads

�̇(t ) = −i[V̄ , �(t )] + L[�(t )], (A4)

where

V̄in = �(|g〉〈m| + |m〉〈g|) − �ω|m〉〈m| (A5)

and L[�(t )], is the same as in Eq. (A3).
If γ −

m � γ +
m , γ ±

i ,�, we can adiabatically eliminate
level |m〉 and its coherences ({ρmi, ρim}). In particular,

we obtain

�mm ≈ 1

γ −
m

[pγ −
m �gg + γ +

m �ii], (A6)

where p = 4�2

γ −2
m +4�ω2 
 1 and

�mg − �gm ≈ − 4i�

γ −2
m + 4�ω2

γ −
m (�gg − �mm) (A7)

for the time evolution of the variables related to level |m〉.
Substituting Eq. (A6) in the equation of motion for level

|i〉, we end up with

�̇ii(t ) = �+
i �gg − γ −

i �ii, (A8)

where �+
i = γ +

i + pγ −
m . For level |g〉 and the coherence be-

tween level |g〉 and |i〉, we obtain

�̇gg(t ) = γ −
i �ii − �+

i �gg (A9)

and

�̇gi(t ) = −ip�ω�gi − (�+
i + γ −

i )�gi. (A10)

Using these equations, we can, finally, write a master equa-
tion for the effective qutrit in the Lindblad form

�̇(t ) = −i[V̄eff, �(t )]

+ �+
i

2
(2|i〉〈g|�(t )|g〉〈i| − {|g〉〈g|, �(t )})

+ γ −
i

2
(2|g〉〈i|�(t )|i〉〈g| − {|i〉〈i|, �(t )}), (A11)

where V̄eff = p�ω|g〉〈g| and {A, B} = AB + BA. This equa-
tion is the same as the ones for a qubit in contact with a
thermal reservoir at temperature TH = h̄ωi

kBln(
γ−

i
pγ−

m +γ+
i

)
.

b. Thermodynamics

The efficiency of the pumping process, ηpump, and its input
power, Ppump, are defined, respectively, by

ηpump = �F

Ein
(A12)

and

Ppump = �F

τ
, (A13)

where �F is the variation of the Helmholtz free energy dur-
ing the process, from t0 = 0 to t = τ , and Ein is the energy
injected into the system:

Ein = Max{Win,Win + Qγm ,Win + Qγi ,Win + Q}. (A14)

Here Win is the work done on the system, given by

Win =
∫ τ

0
dt Tr{ρ(t )V̇in(t )}

=
∫ t f

t0

dt Tr{ρ[i�ω f (|g〉〈m|eiω f t − |m〉〈g|e−iω f t )]}

=
∫ t f

t0

dt i�ω f [ρmg(t )eiω f t − ρgm(t )e−iω f t ]

= i�ω f

∫ τ

0
dt [�mg(t ) − �gm(t )], (A15)
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where � = eiH ′
0tρe−iH ′

0t . Qγm is the heat exchange associated
with the transitions between levels |i〉 and |m〉,

Qγm =
∫ τ

0
dt Tr[Lγm [ρ(t )]H (t )]

= −�
γ −

m

2

∫ τ

0
dt [�mg(t ) + �gm(t )]

+ (ωm − ωi )
∫ τ

0
dt [γ +

m �ii(t ) − γ −
m �mm(t )], (A16)

Qγi with the transitions between levels |g〉 and |i〉,

Qγi =
∫ τ

0
dt Tr[Lγi [ρ(t )]H (t )]

= −�
γ +

i

2

∫ τ

0
dt [�mg(t ) + �gm(t )]

+ωi

∫ τ

0
dt [γ +

i �gg(t ) − γ −
i �ii(t )] (A17)

and Q = Qγm + Qγi is the total heat exchange in the system.
In the adiabatic elimination regime, substituting Eq. (A7)

in Eq. (A15), we obtain

Win = pγ −
m ω f

∫ τ

0
dt (�gg(t ) − �mm(t )). (A18)

In this limit, �gg � �mm, and

Win ≈ pγ −
m ω f

∫ τ

0
dt �gg(t ). (A19)

We can make similar approximations for the calculation
of the heat exchange. The sum of the coherences is approxi-
mately given by

�mg(t ) + �gm(t ) ≈ 8�

γ −2

m + 4�ω2
�ω(�gg(t ) − �mm(t )),

(A20)
and substituting this expression and Eq. (A6) in Eqs. (A16)
and (A17), we obtain

Qγm ≈ −pγ −
m �ω

∫ τ

0
dt �gg(t )

− (ωm − ωi )pγ −
m

∫ τ

0
dt �gg(t )

= pγ −
m (ωi − ω f )

∫ τ

0
dt �gg(t ) (A21)

and

Qγi = − pγ +
i �ω

∫ τ

0
dt �gg(t )

+ ωi

∫ τ

0
dt (γ +

i �gg(t ) − γ −
i �ii(t )). (A22)

Once again, we consider that �gg � �mm.

2. Quantum heat engine

a. Adiabatic elimination

The calculations for the adiabatic elimination of the level
|m〉 for the two-stroke quantum heat engine are similar to
those of the quantum battery. The dynamics of the system
is also described by a master equation in the Lindblad form,
given by Eq. (A1). The quantum heat engine includes a fourth
level, |e〉, so the nonunitary part of the dynamics has an extra
term and given by

L[ρ(t )] = Lγm [ρ(t )] + Lγi [ρ(t )] + Lγe [ρ(t )], (A23)

where Lγm [ρ(t )] and Lγi [ρ(t )] are given by Eqs. (5) and (6),
respectively, and Lγe [ρ(t )] is given by (15).

For the unitary part of the dynamics, we have that in the
discharging stage V (t ) has an extra term, Vext, that extracts the
energy stored in the system in the form of work and is given
by

Vext(t ) = ε(|e〉〈i|ei(ωi−ωe )t + |i〉〈e|e−i(ωi−ωe )t ). (A24)

In the recharging stage, we have that V (t ) = Vin(t ), as in the
quantum battery, given by Eq. (A2).

In the same rotating framework used before, the master
equation for the engine becomes

�̇(t ) = −i[V̄ , �(t )] + L(�(t )), (A25)

where in the discharging stage we have

V̄ = V̄ext + V̄in

= ε(|e〉〈i| + |i〉〈e|)
+�(|g〉〈m| + |m〉〈g|) − �ω|m〉〈m|, (A26)

and in the recharging stage we have

V̄ = �(|g〉〈m| + |m〉〈g|) − �ω|m〉〈m|. (A27)

Once again, considering that γ −
m �, γ +

m , γ ±
e(i),�, we obtain

approximate solutions for the time evolution of the population
and coherences of level |m〉. Here, however, we must also
assume that γ −

e(i) � γ +
m . By doing so, we obtain the following

master equation for the effective qutrit of levels |g〉, |e〉, and
|i〉:

�̇(t ) = −i[V̄eff, �(t )]

+ �+
i

2
(2|i〉〈g|�(t )|g〉〈i| − {|g〉〈g|, �(t )})

+ γ −
i

2
(2|g〉〈i|�(t )|i〉〈g| − {|i〉〈i|, �(t )})

+ γ +
e

2
(2|e〉〈g|�(t )|g〉〈e| − {|g〉〈g|, �(t )})

+ γ −
e

2
(2|g〉〈e|�(t )|e〉〈g| − {|e〉〈e|, �(t )}), (A28)

where V̄eff = p�ω|g〉〈g|, �+
i = γ +

i + pγ −
m , and {A, B} =

AB + BA.

3. Calculations for the short-cycle limit

In this section, we use the the conditions of the adiabatic
elimination of |m〉 to calculate the thermodynamic quantities
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of interest for the machine operating in the limit of short
cycles (

∑
j γ

±
j τ 
 1, where τ is the duration of the cycle).

For the short cycle, the operational steady state is obtained
solving the equation ρOSS = ρ̃OSS + τL(ρ̃OSS), where ρ̃OSS =
UρU −1, U = −i(|i〉〈e| + |e〉〈i|) + |g〉〈g| + |m〉〈m| and the
coupling with the thermal reservoir, L(ρ̃OSS), is given by
Eq. (A3).

In the rotating reference frame, the equation of motion for
the populations and for the coherences between levels |g〉 and
|m〉 are given by

i�(rmg − rgm) = γ −
e ri + γ −

i re − (γ +
e + γ +

i )rg, (A29)

−i�(rmg − rgm) = γ +
m re − γ −

m rm, (A30)

ri − re = [γ +
i rg + γ −

m rm − (γ +
m + γ −

i )re]τ, (A31)

re − ri = [γ +
e rg − γ −

e ri]τ, (A32)

2i�(rg − rm) = (γ +
e + γ +

i + γ −
m + 2i�ω)rgm, (A33)

where r jk = 〈 j|�|k〉 and �ω = ω f − ωm. Using Eq. (A33)
and its complex conjugate, we obtain

rmg − rgm = − 4i�α

α2 + 4�ω2
(rg − rm). (A34)

Under the adiabatic elimination conditions, this expression
becomes

rmg − rgm = − 4i�

γ −2
m + 4�ω2

γ −
m (rg − rm). (A35)

Note that, since rm 
 rg, we can simplify the expression
above to

rmg − rgm ≈ − 4i�

γ −2
m + 4�ω2

γ −
m rg. (A36)

Substituting Eq. (A36) in Eq. (A29), we obtain

rg = γ −
e ri + γ −

i re

�+
i + γ +

e

, (A37)

where �+
i = γ +

i + pγ −
m and p = 4�2

γ −2
m +4�ω2 
 1.

Substituting Eq. (A36) in Eq. (A30), we obtain

γ −
m rm = γ +

m re + pγ −
m rg. (A38)

From the Eq. (A32), we obtain

re = ri[1 − (γ +
e + γ −

e )τ ] + γ +
e τ

1 + γ +
e τ

. (A39)

Substituting Eqs. (A37) and (A39) in Eq. (A31) and doing
some algebraic manipulation, we obtain

ri = �+
i + γ +

e − γ +
e γ −

i τ

2(�+
i + γ +

e ) + γ −
i + γ −

e − [γ −
e (�+

i + γ −
i ) + γ +

e γ −
i ]τ

.

(A40)
Using the relations between re and ri and keeping terms up

to first order in τ , the ergotropy, given by EV = (ωi − ωe)(ri −
re), becomes

ESC = ωi − ωe

2(�+
i + γ +

e ) + γ −
i + γ −

e

(�+
i γ −

e − γ −
i γ +

e )τ. (A41)

Note that, for the ergotropy to be positive, it is necessary

that �+
i

γi− >
γ +

e
γ −

e
. It means that the temperature of the effective

reservoir, Ti, that appears due to the adiabatic elimination
procedure, has to be larger than the temperature of the thermal
reservoir, T . For the output power, defined as PSC = ESC/τ ,
we have

PSC = (ωi − ωe)
�+

i γ −
e − γ −

i γ +
e

2(�+
i + γ +

e ) + γ −
i + γ −

e

. (A42)

The efficiency of the short cycle is defined by

ηSC = ESC

ESC
in

, (A43)

where ESC
in is the energy injected into the system in the cycle,

given by

ESC
in = Max

{
W SC

in ,W SC
in + QSC,W SC

in

+ QSC
γm

,W SC
in + QSC

γi
,W SC

in + QSC
γe

}
, (A44)

where W SC
in is the work done on the system due to its coupling

to the external work source represented by Vin(t ),

W SC
in = Tr{ρ̃(τ )V̇in(τ )}τ

= Tr{ρ̃(τ )[iω f �(|g〉〈m|eiω f τ − |m〉〈g|e−iω f τ )]}τ
= iω f �(ρmgeiω f τ − ρgme−iω f τ )τ

= iω f �(rmg − rgm)τ. (A45)

Substituting Eq. (A36) in Eq. (A45), we obtain

W SC
in ≈ pω f γ

−
m rgτ

= pω f γ
−
m

γ −
e + γ −

i

κ
τ, (A46)

where κ = 2(�+
i + γ +

e ) + γ −
i + γ −

e . The total heat exchange
between the system and the reservoir, QSC is given by

QSC = QSC
γe

+ QSC
γi

+ QSC
γm

, (A47)

where QSC
γe

is the heat exchange associated with the transitions
between levels |e〉 and |g〉,

QSC
γe

= Tr{Lγe [ρ̃][H0 + Vin(τ )]}τ
= ωeτ (γ +

e rg − γ −
e ri ) − γ +

e

ω

2
τ (rmg + rgm)

= ωe
γ +

e γ −
i − �+

i γ −
e

κ
τ − pγ +

e �ω
γ −

i + γ −
e

κ
τ, (A48)

where

rmg + rgm = 8��ω

γ −2
m + 4�ω2

(rg − rm)

≈ 8��ω

γ −2
m + 4�ω2

rg, (A49)
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QSC
γi

is the heat exchange associated with the transitions be-
tween levels |i〉 and |g〉,

QSC
γi

= Tr{Lγi [ρ̃][H0 + Vin(τ )]}τ
= ωiτ (γ +

i rg − γ −
i re) − γ +

i

ω

2
τ (rmg + rgm)

= ωi
γ +

i γ −
e − γ −

i (γ +
e + pγ −

m )

κ
τ

− pγ +
i �ω

γ −
i + γ −

e

κ
τ, (A50)

and QSC
γm

is the heat exchange associated with the transitions
between levels |m〉 and |i〉:

QSC
γm

= Tr{Lγm [ρ̃][H0 + Vin(τ )]}τ

= (ωi − ωm)τ (γ −
m rm − γ +

m re) − γ −
m

�

2
τ (rmg + rgm)

= (ωi − ωm)τ i�(rmg − rgm) − γ −
m

�

2
τ (rmg + rgm)

= (ωi − ωm)pγ −
m

γ −
i + γ −

e

κ
τ − pγ −

m �ω
γ −

i + γ −
e

κ
τ

= (ωi − ω f ) pγ −
m

γ −
i + γ −

e

κ
τ. (A51)

In the regime of very low temperature, we have that for
ω f � ωi,

ESC
in = W SC

in , (A52)

and the efficiency is given by

ηSC =
(

ωi − ωe

ω f

)
�+

i γ −
e − γ −

i γ +
e

pγ −
m (γ −

i + γ −
e )

. (A53)

We also have that pγ −
m � γ +

e(i), γ −
j ≈ γ0, so

ηSC ≈
(

ωi − ωe

ω f

)
γ e

0

γ e
0 + γ i

0

≈
(

1 − ωe

ωi

) γ e
0

γ e
0 + γ i

0

(
ωm

ωi
− �ω

ωi

)
. (A54)

For ω f < ωi, we have

ESC
in = W SC

in + QSC
m , (A55)

so the efficiency is given by

ηSC =
(ωi − ωe

ωi

)�+
i γ −

e − γ −
i γ +

e

pγ −
m (γ −

i + γ −
e )

. (A56)

For temperatures low enough,

ηSC ≈
(ωi − ωe

ωi

) γ e
0

γ e
0 + γ i

0

. (A57)
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