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Maxwell’s two-demon engine under pure dephasing noise

Feng-Jui Chan,1,2,* Yi-Te Huang ,1,2,* Jhen-Dong Lin,1,2 Huan-Yu Ku ,1,2,3,4 Jui-Sheng Chen,1,2

Hong-Bin Chen ,2,5,† and Yueh-Nan Chen 1,2,‡

1Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan
2Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, 701 Tainan, Taiwan

3Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
4Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences,

Boltzmanngasse 3, 1090 Vienna, Austria
5Department of Engineering Science, National Cheng Kung University, 701 Tainan, Taiwan

(Received 8 June 2022; accepted 3 October 2022; published 1 November 2022)

The interplay between thermal machines and quantum correlations is of great interest in both quantum
thermodynamics and quantum information science. Recently, a quantum Szilárd engine has been proposed,
showing that the quantum steerability between a Maxwell’s demon and a work medium can be beneficial to
a work extraction task. Nevertheless, this type of quantum-fueled machine is usually fragile in the presence
of decoherence effects. Therefore, in this work we tackle this question by introducing a second demon who
can access a control system and make the work medium pass through two dephasing channels in a manner of
quantum superposition. Furthermore, we provide a quantum circuit to simulate our proposed concept and test it
on IBMQ and IonQ quantum computers.
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I. INTRODUCTION

Due to the development of quantum theory, the mi-
croscopic picture of thermodynamics is constructed by
reconciling the quantum phenomena and is turned into a new
version called quantum thermodynamics. In fact, it is con-
ceived from the necessity to deal with quantum effects, e.g.,
quantum superposition and quantum correlations, for different
scenarios, such as thermal engine [1–13], protocols for work
extractions [9,14–18], and fluctuations of work [19–21]. Re-
cently, quantum steering [22–26], a type of spatial quantum
correlations, has been used to demonstrate quantum advan-
tage on a quantum Szilárd engine [27,28], a work extraction
machine assisted by Maxwell’s demon [29]. A steering-type
inequality is derived in terms of classical limit of the engine’s
work output, i.e., the maximum extractable work by using
classical resources. They further show that some steerable
resources can exceed this classical limit, implying that the
Maxwell’s demon should be certified as a genuinely “quan-
tum” entity for these cases.

In contrast to the quantum correlations for spatially sepa-
rated systems, Leggett and Garg proposed the concept called
(non-)macrorealism and the well-known Leggett-Garg in-
equality [30,31], suggesting that the nonclassical features can
also be revealed in temporal evolutions of quantum systems
(see Ref. [32] for a comprehensive review). The nonclassical
properties in time domain are now termed “temporal quantum
correlations,” which are beneficial to several quantum infor-
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mation tasks, such as certifying quantum memory [33,34] and
self-testing quantum measurement [35].

As aforementioned, Ref. [27] investigated the influence of
spatial quantum steerability on a heat engine. Here we propose
a mirror of this steering heat engine by considering temporal
quantum steering [36–40]. More specifically, in each round of
the experiment, the Maxwell’s demon (say Alice for conve-
nience) performs a measurement on the work medium taken
from a heat bath. She then sends the work medium to Bob
through a quantum channel, so that Bob can charge his battery
by extracting energy from the work medium. We also derive a
temporal steering inequality in terms of the classical limit of
the extractable work, which can be numerically computed via
semidefinite program (SDP). Therefore we can identify useful
temporal steerable resources that can demonstrate a quantum
advantage for the work extraction task.

In practice, the quantum channel between Alice and Bob
could suffer from unwanted noise that further degrades the
temporal steerability as well as the engine’s performance. To
tackle this problem, we adopt the recent developed scheme
called a superposition of quantum channels, which has been
utilized in quantum information science [41–48]. This ap-
proach involves two or several channels placed in parallel and
introduces a control system to decide which channel for the
work medium to pass through. We consider that the control
system can be accessed by another demon, Charlie. He can
prepare the control system in a quantum superposition state so
that the work medium can also pass through the channels in
a manner of quantum superposition. Before Bob receives the
work medium, Charlie can perform a selective measurement
on the control system and discard the unwanted results.

In this work we consider a superposition of two pure de-
phasing channels. With Charlie’s assistance, one can observe
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an enhancement of the extractable work in comparison with
the case that involves only one dephasing channel. Moreover,
we implement the two-demon engine on IBMQ and IonQ
quantum computers [49–52]. We find that even in the presence
of the intrinsic errors of the quantum computers, the results
still demonstrate significant enhancement with the help of the
superposition of quantum channels and the second demon.
To further analyze the effect of the intrinsic errors, we also
consider a Markovian noise model to numerically simulate
device imperfections. We find that the results for IBMQ are
in good agreement with our noise simulations, while those
for IonQ contain unexpected oscillatory behavior, suggesting
a non-Markovian nature of the device.

II. SINGLE-DEMON HEAT ENGINE

In this section we provide a detailed description of the work
extraction engine with only one Maxwell’s demon (Alice).
Also, we derive the temporal steering inequality in terms of
the classical limit of the engine’s work output.

Let us start from the process to extract work from a work
medium. We consider that the work medium W is modeled
as a two-level system with the Hamiltonian ĤW = h̄ω|1〉〈1|,
where h̄ω is the energy difference between the excited state
|1〉 and the ground state |0〉. In general, a work extraction
operation is a process that transfers the energy from a work
medium to a battery. As reported in Refs. [15,16], an ideal
work extraction process can be described by a local uni-
tary evolution acting on the work medium W , because it
does not decrease the entropy of W . If the quantum state of
the work medium is available, one can then design a suitable
work extraction operation for this particular state. When the
work medium is prepared in a pure state |ψ〉, then the optimal
work extraction strategy is described by a local unitary U such
that U |ψ〉 = |0〉. This idea can be generalized to the situation
where the work medium is prepared in a mixed state. A mixed
state can be interpreted as a statistical mixture of pure states.
In fact, for a given mixed state ρW , there are infinite possi-
bilities of pure state decomposition D = {pk, |ψk〉〈ψk|} such
that

∑
k pk|ψk〉〈ψk| = ρW . If a Maxwell’s demon can reveal

the knowledge of this decomposition, one can then design a
set of optimal work extraction operations {Uk}. Therefore the
average extracted work can be expressed as W = ∑

k pk�Wk ,
where

�Wk = Tr[ĤW |ψk〉〈ψk|] − Tr[ĤWUk|ψk〉〈ψk|U †
k ]. (1)

Now we introduce the single-demon heat engine, as shown
in Fig. 1. A thermal bath can supply unlimited copies of work
medium W , which is initialized in the Gibbs state at temper-
ature T . Alice (the demon) performs a measurement (labeled
by x) on W with the associated outcome (labeled by a). The
work medium with the postmeasurement state ρa|x is then sent
to Bob via a noisy quantum channel �. In addition, Alice
informs Bob of (a, x) through a classical communication so
that Bob can apply a unitary operator Ua|x to W to extract
work according to Alice’s message. Thus the extracted work
for the measurement x with the outcome a is given by

�Wa|x = Tr[ĤW�(ρa|x )] − Tr[ĤWUa|x�(ρa|x )U †
a|x]. (2)

FIG. 1. Schematic illustration of the single-demon heat engine.
Alice (a Maxwell’s demon) takes a work medium W from a thermal
bath at temperature T . She then performs a measurement labeled
by x and obtains the corresponding outcome a. Then Alice informs
Bob of (a, x) through a classical communication and sends the post-
measurement work medium through a pure dephasing channel � to
Bob. After that, Bob chooses a suitable work extraction operation
Ua|x based on Alice’s information.

The average extracted work can then be expressed as

W � =
∑
a,x

p(x)p(a|x)�Wa|x

=
∑
a,x

Tr[p(a|x)Fa|x�(ρa|x )], (3)

where the shorthand Fa|x := p(x)(ĤW − U †
a|xĤWUa|x ) is

adopted for convenience, p(x) is the probability of Alice’s
choice on measurements, and p(a|x) is the probability of ob-
taining the outcome a conditioned on the measurement x. The
work extraction unitaries {Ua|x}a,x can be optimized for the
postmeasurement states {ρa|x}a,x, i.e., Ua|xρa|xU †

a|x = |0〉〈0| for
all a and x. However, the presence of the noise in the quantum
channel � invalidates the optimal extraction process; conse-
quently, the average extracted work will be impaired due to
the noise. Note that the average extracted work W � can be
regarded as a linear function of the so-called temporal steering
assemblage {p(a|x)�(ρa|x )}a,x, which is a widely accepted
terminology for characterizing one-sided device-independent
nature of steering scenarios [53–56]. In other words, one can
relax the assumptions of Alice’s measurement devices.

Let us now present a concrete example. In each round of
the work extraction task, Alice receives a work medium in the
Gibbs state at the infinite temperature, i.e., ρW = 1/2, from
the bath and randomly performs one of the two measurements
σz = |0〉〈0| − |1〉〈1| or σx = |0〉〈1| + |1〉〈0| on W with equal
probability. She then sends the W with the postmeasurement
state ρa|x to Bob through a pure dephasing channel � de-
scribed by

�(ρ) =
(

1 − γ

2

)
ρ + γ

2
σzρσz, (4)

where γ denotes the dephasing strength. In addition, she
informs him of the message (a, x) via a classical communi-
cation. After receiving the message, Bob then applies Ua|x
to the work medium W . The corresponding Ua|x, Fa|x, and
the measurement settings are summarized in Table I. For this
setting, the average extracted work is given by

W � = 2 − γ

4
h̄ω. (5)

As expected, the average extracted work decreases mono-
tonically when the dephasing strength γ increases. We note
that, since � is Gibbs preserving [57–61], it does not change
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TABLE I. A list of Alice’s measurement results, p(a|x) and
ρa|x , and the work extraction procedure (described by Ua|x and Fa|x)
on Bob’s side. Here, |±〉 = (|0〉 ± |1〉)/

√
2, σz = |0〉〈0| − |1〉〈1|,

σx = |0〉〈1| + |1〉〈0|, and H = (σz + σx )/
√

2 denotes the Hadamard
transform.

x σz σx

p(x) 0.5 0.5

a +1 −1 +1 −1

p(a|x) 0.5 0.5 0.5 0.5
Ua|x 1 σx H σxH
ρa|x |0〉〈0| |1〉〈1| |+〉〈+| |−〉〈−|
Fa|x 0 − h̄ω

2 σz − h̄ω

4 (σz − σx ) − h̄ω

4 (σz + σx )

the thermal state of W on average. Thus, the work medium
remains the same Gibbs state on average after the delivery,
i.e.,

∑
a p(a|x)�(ρa|x ) = ρW for all x.

Let us turn to the description of classical strategy. In classi-
cal world one can perform noninvasive measurement to reveal
physical properties of a system without disturbing its state
and its consequent dynamics [30]. Suppose that there exists a
hidden variable λ associated with a classical randomness p(λ),
and for each moment the work medium W is described by a
predetermined hidden state ρλ. If Alice performs noninvasive
measurements, where she only reveals the hidden variable
λ without changing the state of W , her measurements can
be described by a classical postprocessing p(a|x, λ). In this
case the temporal steering assemblage received by Bob can be
described by a hidden state (HS) model, i.e.,

σ HS
a|x =

∑
λ

p(λ)p(a|x, λ)ρλ ∀ a, x. (6)

Therefore, given a work extraction protocol, which is de-
scribed by {Fa|x}a|x and the Gibbs state ρW , the maximal
value of the average extracted work attainable by classical
assemblages is given by

W cl = max
{σ̃a|x}∈C

∑
a,x

Tr[Fa|xσ̃a|x],

s.t.
∑

a

σ̃a|x = ρW ∀ x, (7)

where C denotes the set of all HS models. The constraint
in the second line of Eq. (7) is introduced because the HS
model should also preserve the same Gibbs state on average.
Moreover, Eq. (7) can be considered as a convex optimization
problem, because C is a convex set. In Appendix A we show
that one can recast the classical limit of average extracted
work in Eq. (7) as a semidefinite program (SDP), which can
be solved numerically [62]. Therefore, when a temporal steer-
able resource can exceed this classical limit, i.e., W � � W cl,
Bob can be convinced that Alice is a genuinely “quantum”
Maxwell’s demon.

For the aforementioned concrete example, as summarized
in Table I, the classical limit of the W is

W cl ≈ 0.354 h̄ω (8)

(see also Appendix A for the optimal solution of HS model in
this case). Note that the above classical limit can be violated

if γ < γTH ≈ 0.586, where γTH is the quantum-to-classical
transition threshold for the dephasing channel in Eq. (4).

It is worthwhile to note that the SDP method presented in
Appendix A can obtain the same values of the classical limit
in the cases proposed in Refs. [27,28]. Nevertheless, their
derivations only work for restricted considerations of p(x) as
well as the numbers of measurements x and outcomes a. Here
we generalize their considerations by providing an efficient
approach to compute the value of classical limit in arbitrary
work extraction tasks.

Further, in comparison with the standard steering inequal-
ity (see Ref. [25], for instance), the classical limit W cl in
Eq. (7) endows the mathematical hyperplane theory with a
physical interpretation in a thermodynamical fashion. Thus
W cl can be seen as a thermodynamical temporal steering wit-
ness. However, the thermodynamical steering witness cannot
certify all steerable resources because the constitution of the
Hamiltonian and the unitary cannot in general represent all
positive semidefinite operators, which is used to construct a
steering witness.

III. TWO-DEMON HEAT ENGINE

We have shown the detrimental effects of the noise in the
quantum channel � on the work extraction task. To quench
the noise in � requires substantial efforts, which are typically
formidable obstacles in various branches of quantum technol-
ogy. Instead of tackling the noise by engineering the quantum
channel �, we circumvent this obstacle by the approach of the
superposition of quantum channels, as shown in Fig. 2.

More specifically, instead of a single quantum channel �,
we consider a superposition of two channels, which involves
an additional control system C that can be accessed by the
second demon, Charlie. The state of C determines which

FIG. 2. Schematic illustration of the two-demon heat engine. The
second demon, Charlie, can prepare a state of control system ρC

to determine which of the two channels the work medium to pass
through and perform a selective measurement on the control system.
If the control system is prepared in a superposition state, the work
medium can pass through two dephasing channels in a manner of
superposition.
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channel for W to pass through. Charlie also performs a se-
lective measurement on C to condition the dynamics of the
work medium before reaching Bob. In the following we will
show that if the control system is prepared in a superposition
state, one can observe a clear enhancement of the average
extracted work compared with the case of the single use of
the dephasing channel discussed in the previous section.

Before elaborating the superposition of quantum channels
[43], it will be helpful to specify the implementation of a
single quantum channel. According to the Stinespring dilation
theorem [63–65], any channel with Kraus operators {Kk}k can
be implemented by a unitary VW,E acting on the work medium
W and an environment E . For the dephasing channel Eq. (4),
it can be implemented by the following VW,E :

VW,E |0〉W |0〉E =
√

1 − γ

2
|0〉W |0〉E − i

√
γ

2
|0〉W |1〉E ,

VW,E |1〉W |0〉E =
√

1 − γ

2
|1〉W |0〉E + i

√
γ

2
|1〉W |1〉E . (9)

If E is initialized in the state |0〉E , the corresponding Kraus
operators are K0 = √

1 − γ /2 1 and K1 = −i
√

γ /2 σz.
To implement the superposition of two quantum channels,

we introduce two independent environments, E0 and E1, giv-
ing rise to the two channels to be superposed. Along with a
control qubit C, Charlie can determine which environment to
interact with according to the state of C by the global unitary:

VT = |0〉〈0|C ⊗ VW,E0 + |1〉〈1|C ⊗ VW,E1 . (10)

Particularly, if C is prepared in a superposition state |+〉C =
(|0〉C + |1〉C )/

√
2, W can pass through the two channels in a

manner of quantum superposition. Then the joint state of C
and W evolves according to

ρCW = TrE0,E1 [VT(|+〉〈+|C ⊗ ρ ⊗ |0〉〈0|E0 ⊗ |0〉〈0|E1 )V †
T ]

= 1
2 [1 ⊗ �(ρ) + σx ⊗ K0ρK†

0 ]. (11)

Before sending W to Bob, Charlie will perform a selective
measurement on C. For a concrete example, we assume that
Charlie measures the observable σx on C and only selects
the outcome associated with the eigenstate |+〉C , while the
one associated with the eigenstate |−〉C is discarded. The
normalized postmeasurement state of W is given by

S (ρ) = �+(ρ)

Tr[�+(ρ)]
, (12)

where

�+(ρ) = TrC[(|+〉〈+| ⊗ 1)ρCW (|+〉〈+| ⊗ 1)†]

= 1
2 [�(ρ) + K0ρK†

0 ]. (13)

Note that Eq. (12) is in general a nonlinear equation. Nev-
ertheless, S (ρ) is still a linear process in this case because
Tr[�+(ρ)] = 1 − γ /4 for arbitrary input state ρ. We refer
the reader to see Refs. [66–69] when the most general cases
are considered. Therefore the effective evolution of W under
the superposition scenario can be written as

S (ρ) =
(

1 − γ ′

2

)
ρ + γ ′

2
σzρσz, (14)

0 1γTH γS
γ

0.25

0.3

0.4

0.5

W clW
(h̄

ω
)

Superposition

Single-Channel

FIG. 3. The average extracted works for pure dephasing chan-
nels. The blue solid line and red dashed line represent the W obtained
from a single-channel and superposition scenario, respectively. One
can observe that the average extracted work can be enhanced when
the second demon (Charlie) superposes two dephasing channels, i.e.,
W S � W �. Here, γTH ≈ 0.586 and γS ≈ 0.906 are the quantum-to-
classical transition thresholds.

where γ ′ = 2γ /(4 − γ ). It is crucial to note that the overall
effect of the superposition of two pure dephasing channels is
equivalent to a single pure dephasing channel with dephasing
strength γ ′ � γ , for 0 � γ � 1. Therefore the effect of the
noise in a single channel is quenched.

Finally, we apply this approach to the work extraction task,
and the average extracted work in this case reads

W S =
∑
a,x

Tr[p(a|x)Fa|xS (ρa|x )]

= 2 − γ ′

4
h̄ω. (15)

The transition threshold in this case is given by γS ≈ 0.906.
The comparison of the average extracted works between
a single-channel and superposition scenario is presented
in Fig. 3. One clearly sees that W S � W � for γ ∈ [0, 1].
Note that if Charlie does not perform the measurement on
the control system C, i.e., S (ρ) = TrC[ρCW ] = �(ρ), one
can observe that W S = W �. This means that the operation
conducted by the second demon, Charlie, is essential for en-
hancing the extracted work.

IV. CIRCUIT REALIZATIONS AND NOISE SIMULATIONS

In this section we provide a circuit model for the two-
demon heat engine with the superposition of two pure
dephasing channels. In addition, we implement the circuit on
IBMQ and IonQ quantum computers, where the enhancement
due to the second demon, Charlie, can be clearly observed.
Moreover, we introduce the noise simulation algorithm and
compare the results from IBMQ and IonQ devices with the
noise simulations.

The circuit model consists of four qubits: the control C,
the work medium W , and the environments, E0 and E1. The

052201-4



MAXWELL’S TWO-DEMON ENGINE UNDER PURE … PHYSICAL REVIEW A 106, 052201 (2022)

FIG. 4. (a) The qubits we choose in ibmq_jakarta and the corresponding coupling map. Here Q0, Q1, Q2, and Q3 serve as C, W , E0, and
E1, respectively. (b) Circuit model for the temporal steering heat engine with superposition of dephasing channels. (c) The gate sequence for
implementing the superposition of pure dephasing channels. Here u1, u2, and u(θ ) are given by Eq. (16).

connections between qubits and the labels on IBMQ device
are shown in Fig. 4(a). On the other hand, due to the full
connectivity of the trapped ion device, we can choose four
arbitrary qubits on IonQ device for the circuit. The circuit
model is described in Fig. 4(b) and can be divided into three
parts: (1) state preparation, (2) superposition of pure dephas-
ing channels, and (3) measurements on C and W . In part 1, we
prepare the control system C and the environments in |+〉〈+|
and |0〉〈0|, respectively. Also, we replace Alice’s measure-
ments by directly preparing the postmeasurement state ρa|x in
Table I and assign the probability p(a|x) = 1/2 ∀a, x.

In part 2, we construct the VW,E (θ ) according to Eq. (9),
and the dephasing strength is modulated through the rotation
angle θ with θ = arccos(1 − γ ). In addition, to achieve the
superposition of quantum channels, we make a series of con-
trolled unitaries according to Eq. (10). As shown in Fig. 4(c)
(see also Appendix B for details), each controlled unitary can
be decomposed into two controlled-Z gates and two Ising cou-
pling gates XX (θ ) = cos θ/2 1 ⊗ 1 − i sin θ/2 σx ⊗ σx. Note
that, XX (θ ) is a native gate for the IonQ trapped ion quantum
computer. Nevertheless, because the Ising coupling gate is not
a native gate in IBMQ, we further decompose the XX gate
into CNOT gates, H gates, and three other single-qubit gates
listed as follows:

u1 = 1√
2

(
1 −i

−1 −i

)
, u2 = 1√

2

(
1 −1
i i

)
,

u(θ ) = diag(1, eiθ/2). (16)

Note that u1 = U3(π/2, π, π/2), u2 = U3(π/2, π/2, 0), and
u(θ ) = P(θ/2) can be easily implemented in IBMQ, where

P(θ ) =
(

1 0
0 eiθ

)

and U3(θ, φ, ξ ) =
(

cos
(

θ
2

) −eiξ sin
(

θ
2

)
eiφ sin

(
θ
2

)
ei(φ+ξ ) cos

(
θ
2

)). (17)

In part 3 we measure C in the σx basis and denote 0 (1)
as the outcome associated with the eigenstate |+〉C (|−〉C).
For the single-channel scenario, both of the outcomes are
taken into account, whereas for the superposition scenario,
we postselect the outcome 0. Furthermore, as indicated in
Eq. (3), the average extracted work can be obtained by the
expectation values {〈Fa|x〉 = Tr(Fa|xρa|x )}a,x. In addition, as
summarized in Table I, each 〈Fa|x〉 can be constructed by
{〈σi〉a|x = Tr(σiρa|x )}i∈{x,z}. Therefore, instead of applying the
work extraction unitaries {Ua|x}, we measure the observables
σx and σz on W to estimate W � and W S .

In Fig. 5 we present the results obtained from the de-
vices of ibmq_jakarta and IonQ. For each circuit, it runs
with 8192 shots and 1000 shots for IBMQ and IonQ devices,
respectively. The blue dots and the red triangles represent the
average extracted work for the scenarios with and without the
postselection, respectively. We can observe a clear enhance-
ment due to the postselection.

To gain a further insight on the devices’ imperfections,
we perform noise simulations [70,71] (the solid and dashed
curves in Fig. 5) that take the intrinsic errors of the quantum
devices into account. To model the intrinsic errors, we con-
sider three major sources of the errors, including the qubit
relaxation, the qubit decoherence, the two-qubit gate error,
and the readout error. The corresponding relaxation rate (ηT 1),
decoherence rate (ηT 2), and the error rates of the devices,
ibmq_jakarta and IonQ, are summarized in Tables II and
III. In the following, we elaborate on the noise model in
detail.

The qubit relaxation and decoherence are described by the
following Lindblad master equation:

ρ̇(t ) := L[ρ(t )]

= ηT1

2
[2σ−ρ(t )σ+ − σ+σ−ρ(t ) − ρ(t )σ+σ−]

+ ηT2 [σzρ(t )σz − ρ(t )]. (18)
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TABLE II. A summary of the intrinsic errors for the ibmq_jakarta and IonQ devices, which include the qubit relaxation rate ηT1 ,
decoherence rate ηT2 , and readout error rate �. The gate times for single-qubit gates are also presented in the table.

Qubit ηT1 (ns−1) ηT2 (ns−1) Single-qubit gate time (ns) �

IBMQ Q0 6.35 × 10−6 1.45 × 10−5 35.56 1.95%
Q1 7.62 × 10−6 2.78 × 10−5 35.56 2.12%
Q2 6.94 × 10−6 2.01 × 10−5 35.56 N/A
Q3 1.02 × 10−5 1.44 × 10−5 35.56 N/A

IonQ All 10−10 2.48 × 10−9 104 0.39%

When each ideal quantum gate (or unitary transformation) is
applied to the system, we apply the propagation of the state
according to Eq. (18), i.e., exp(Lt ), where t is the gate time.

Among the gates we implement, two-qubit gates are the
major source of gate errors because their gate time is almost
one order of magnitude longer than that of single-qubit gates.
Following the idea from Refs. [72–74], we model the gate
error as a depolarizing channel denoted as

Ger(ρ) = (1 − pGE)ρ + pGE
1
2 , (19)

where pGE is the two-qubit gate error rate. We apply the model
after the Lindblad master equation only when a two-qubit gate
is operated on the circuit.

To model the readout errors, we recall that quantum com-
puters measure the systems in a computational basis, |0〉 and
|1〉. The outcome is 0 (1) when the qubit is in |0〉 (|1〉) in the
ideal case. Hence we can determine the readout error rate �

by the average probability of measuring |0〉 (|1〉) but obtaining
the opposite outcome 1 (0). Therefore the readout errors can
be modeled as a bit-flip channel, i.e.,

Ereadout(ρ) = (1 − �)ρ + � σxρσx. (20)

Here we give a brief summary of our noise simulation pro-
cess and how this is integrated with the superposition scenario
in Sec. III. We first modulate the dephasing strength γ through
the rotation angle θ with θ = arccos(1 − γ ) and provide a
circuit model [as shown in Fig. 4(c)] for the superposition sce-
nario in Sec. III. Thus, in order to obtain the average extracted
work for a specific γ through the circuit model, one needs
to generate totally six quantum circuits because of the four
different state preparations and two different measurement
observables as presented in Table I. For each quantum circuit,
one can apply the noise simulation by considering the intrinsic

TABLE III. A summary of the two-qubit gate time and two-qubit
gate error pGE for the ibmq_jakarta and IonQ devices. The CNOT

(CN) gate is the two-qubit gate for IBMQ devices, and the subscripts
represent the qubit indices [see Fig. 4(a)] to which the CN gates are
applied. The Ising coupling gate (XX ) is the two-qubit gate for IonQ
devices. In addition, due to the full connectivity of the trapped ion
device, we can apply the XX gate to two arbitrary qubits.

Gate Two-qubit gate time (ns) pGE

IBMQ CN0,1 234.67 0.67%
CN1,2 284.44 0.12%
CN1,3 384.00 0.8%

IonQ XX 2.1 × 105 3.04%

errors (as presented in Tables II and III) including the qubit
relaxation and decoherence in Eq. (18), the two-qubit gate
error in Eq. (19), and the measurement error in Eq. (20). The
noise simulation algorithm for a given quantum circuit can be
summarized by the flowchart presented in Fig. 6. As shown in
Fig. 5, one can observe that the results from the IBMQ agree
with the noise model. However, the results from IonQ do not
fit the simulations well. The result at γ = 0 is nearly the same
as the ideal result, instead of that from noise simulations. It is
because the IonQ software provides compulsorily optimized
gates, and the total unitary of the circuit at γ = 0 is effectively
the same as 1 applied to four qubits.

In order to better understand how each intrinsic
error affects the work medium and, in particular, the value
of average extracted work W , we simplify the discussion by
only considering the errors on the work medium (Q1) and
taking dephasing strength γ = 0 under a single-channel sce-
nario as an example. We first discuss the effect of single-qubit
relaxation and decoherence errors on the work medium. As
shown in Fig. 4(c), the circuit has totally 26 (6) single-qubit
gates and 12 (8) two-qubit gates in IBMQ (IonQ) device.
Because the controlled-Z operation is further decomposed
into one CNOT gate and two Hadamard gates, one can then
estimate the total gate time for IBMQ and IonQ devices are
approximately 4.82 × 103 and 1.98 × 106 ns, respectively.
By solving Eq. (18), one can further calculate W by only
considering the qubit relaxation and decoherence error on
the work medium (Q1). The values obtained for IBMQ and
IonQ devices are approximately 0.4107h̄ω and 0.4974h̄ω,
respectively. In this case, the ideal value of W is 0.5h̄ω, and
one can thus define the error rate of qubit relaxation and
decoherence for both devices, namely, pIBMQ

T1,T2
= 17.86% and

pIonQ
T1,T2

= 0.52%. Next we discuss the influence of the two-
qubit gate error on both devices. For the IonQ device, since
there are eight two-qubit gates applied to the work medium
Q1 in total, the effective two-qubit gate error rate for the
IonQ device is given as pIonQ

GE = 1 − (1 − 3.04%)8 ≈ 21.88%.
For the IBMQ device, since each CNOT gate (CN0,1, CN1,2,
and CN1,3) is applied four times to the work medium Q1,
the effectively two-qubit gate error rate for the IBMQ device
can be given as pIBMQ

GE = 1 − [(1 − 0.67%)(1 − 0.12%)(1 −
0.8%)]4 ≈ 6.18%. Combining all the error rates including
qubit relaxation, qubit decoherence, two-qubit gate, and read-
out, the total error rates for IBMQ and IonQ devices are given
by

1 − (
1 − pIBMQ

T1,T2

)(
1 − pIBMQ

GE

)(
1 − �

IBMQ
Q1

) ≈ 24.57%

and 1 − (
1 − pIonQ

T1,T2

)(
1 − pIonQ

GE

)(
1 − �IonQ

) ≈ 22.59%,
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FIG. 5. The noise simulations and results from (a) IBMQ and (b) IonQ devices. The results for W � and W S are represented by blue
dots and red triangles, respectively. The corresponding noise simulations are represented by blue-solid and red-dashed curves. Both the noise
simulations and results from the devices show that W S > W �. (a) For IBMQ, the results fit the noise simulations well. The results from the
noise simulations show that W S and W � reach the classical limit W cl at γ ≈ 0.133 and γ ≈ 0.527, respectively. (b) For IonQ, the results show
an oscillatory deviation from the noise simulations because of the non-Markovian nature of the device’s intrinsic errors. In addition, W S (W �)
obtained from IonQ reaches the classical limit W cl at γ ≈ 0.167 (γ ≈ 0.575) and are both larger than those from IBMQ.

FIG. 6. The flowchart of the noise simulation algorithm for a
given n-qubit quantum circuit with a specific gate_sequence.

respectively. As seen, the total error rates for both devices are
quite similar, which can also be observed from Fig. 5 (the
noise simulation for γ = 0 under a single-channel scenario).
Note that, for real noise simulation, one has to further take the
errors on the other three qubits (Q0, Q2, and Q3) into account.

The oscillations of the results obtained from IonQ device,
as shown in Fig. 5(b), could originate from the non-Markovian
nature of the device’s intrinsic errors. More specifically, in
our noise simulations, we implicitly assume that the errors
of each gate are independent of each other (i.e., the model
respects Markov approximation). That is, for the circuits with
the same depth (e.g., the circuit model for different dephasing
strength γ ), the differences between the ideal results and the
noise simulations are roughly the same. Therefore, we do not
observe oscillations from the noise simulations in Fig. 5(b);
the oscillations observed from the data in Fig. 5(b) suggest
that there could be some non-Markovian effects from the
intrinsic errors in the IonQ device. For instance, as reported
in Ref. [75], the noise of each gate could be correlated and
induces the non-Markovian effects.

V. CONCLUSION

In this work we introduced the notion of a two-demon
steering heat engine and obtained the corresponding classical
limit for extractable work via SDP. We considered that the
work medium passes through a pure dephasing channel. We
observed a monotonic decrease of the extractable work and a
threshold for quantum-to-classical transition. Further, we uti-
lized a superposition of the pure dephasing channels and intro-
duced the second demon. We can observe clear enhancements
of the extractable work and the quantum-to-classical thresh-
olds. Moreover, we performed proof-of-principle demonstra-
tions on IBMQ and IonQ quantum computers. The results
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also demonstrate enhancements with the assistance of the
second demon, Charlie. The results from IBMQ also agree
with the noise simulations that include the accumulation of
errors (qubit relaxation, qubit decoherence, two-qubit gate
error, and readout error) during the process. On the other hand,
the results from IonQ demonstrate an unexpected oscillated
behavior, implying an intrinsic non-Markovian nature of the
device.

The quantum channels considered in our work are pure
dephasing. It will be interesting to generalize the present work
to the cases of different channels, such as a depolarizing chan-
nel or amplitude damping channel. In addition, the quantum
control can also be used in the case of indefinite causal order
[76–80]. How the second demon affects the extractable work
in this case also deserves further investigations.
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APPENDIX A: SEMIDEFINITE PROGRAM FOR THE
CLASSICAL LIMITS OF AVERAGE EXTRACTED WORK

In this section we briefly summarize how to obtain the
classical limit of the average extracted work by introducing
the hidden-state (HS) model and semidefinite program (SDP).
Bob will conceive that the assemblage {p(a|x)�(ρa|x )} is
classical whenever it can be decomposed with the HS model
[23] as Eq. (6). If Bob can construct any one of such decom-
positions, he considers that the extracted work is produced
by classical resources. Therefore, for a given work extrac-
tion protocol, consisting of {Fa|x}a|x and the Gibbs state ρW ,
the classical limit of average extracted work is the maximal
value attainable by classical assemblages (described by the
HS model). Besides, since all the marginals of the HS model
should result in the same Gibbs state ρW , as discussed in
Sec. II, this imposes an additional constraint on the definition
of the classical limit. Furthermore, because the set of all HS
models (denoted as C) is a convex set, we can define the clas-
sical limit of average extracted work as a convex optimization
problem, recalled from the main context:

W cl = max
{σ̃a|x}∈C

∑
a,x

Tr[Fa|xσ̃a|x],

s.t.
∑

a

σ̃a|x = ρW ∀ x. (A1)

To solve the above optimization problem, we recast the HS
model by introducing the deterministic strategy [24,25]. Let
us consider x ∈ {1, 2, ..., m} and a ∈ {1, 2, ..., q}. Since m and
q are finite, the number of hidden variables λ is qm. Each λ

can be considered as a string of ordered outcomes according
to the measurements, i.e., λ = (ax=1, ax=2, ..., ax=m ). We can
now define the deterministic strategy with δa,λ(x), where δ is
the Kronecker delta function and λ(x) denotes the value of a at
position x. Therefore the HS model in Eq. (6) can be expressed
by the deterministic strategy δa,λ(x) together with a set of un-
normalized hidden states {σλ}λ, namely, σ HS

a|x = ∑
λ δa,λ(x)σλ.

We can then recast the constraint in Eq. (A1) as

∑
a

σ̃a|x =
∑
a,λ

δa,λ(x)σλ =
∑

λ

σλ = ρW ∀x

and σλ � 0 ∀ λ. (A2)

The second equality in the first constraint holds because∑
a δa,λ(x) = 1 for all λ and x. Since {σλ}λ belongs to a convex

set and all the constraints are linear, one can obtain the optimal
solution of Eq. (A1) by solving the following semidefinite
program:

W cl = max
{σλ}

∑
a,x,λ

δa,λ(x)Tr[Fa|xσλ],

s.t.
∑

λ

σλ = ρW ,

σλ � 0∀λ. (A3)

Finally, we obtain the value of the classical limit of average
extracted work.

Here, we take the case summarized in Table I as an example
and provide the optimal solution obtained from the SDP in
Eq. (A3). Since x ∈ {σx, σz} and a ∈ {+1,−1}, the number
of local hidden variables λ is 4, and each λ = (ax=σz , ax=σx ).
Therefore, by numerically solving the SDP in Eq. (A3), one
can obtain the optimal value of W cl ≈ 0.354h̄ω, where the
hidden variable λ and the optimal solution {σ ∗

λ } can be sum-
marized in Table IV. Furthermore, one can obtain the optimal

TABLE IV. One of the optimal solutions of Eq. (A3) for the
case summarized in Table I. Each λ can be considered as a string of
ordered outcomes according to the measurements. Here, σ ∗

λ denotes
the optimal solution for the un-normalized hidden states obtained
from the SDP.

λ = (ax=σz , ax=σx ) σ ∗
λ

(+1, +1)

(
0.2134 0.0884

0.0884 0.0366

)

(+1, −1)

(
0.2134 − 0.0884

−0.0884 0.0366

)

(−1, +1)

(
0.0366 0.0884

0.0.0884 0.2134

)

(−1, −1)

(
0.0366 − 0.0884

−0.0884 0.2134

)
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FIG. 7. (a) The controlled VW,E can be decomposed into two H gates and a controlled-XX (θ ) gate. (b) Controlled XX (θ ) can be
decomposed to the combination of two controlled-Z gates, XX (−θ/2) and XX (θ/2). (c) The decompositions of XX (θ ) are u1, u2, u(θ ),
two H gates, two CNOT gates, and H gates.

HS assemblage:

σ HS
a=+1|x=σz

≈
(

0.4268 0.0000

0.0000 0.0732

)
,

σ HS
a=−1|x=σz

≈
(

0.0732 0.0000

0.0000 0.4268

)
,

σ HS
a=+1|x=σx

≈
(

0.2500 0.1768

0.1768 0.2500

)
,

σ HS
a=−1|x=σx

≈
(

0.2500 −0.1768

−0.1768 0.2500

)
. (A4)

Note that the optimal solution {σ ∗
λ } is not unique, and the

above HS assemblage is therefore not unique either.

APPENDIX B: THE DECOMPOSITION OF
CONTROLLED-VW,E OPERATIONS

In this section we describe in detail how we decompose
the controlled VW,E into the combination of two-qubit gates
and single-qubit gates that can be applied on IBMQ and IonQ
platforms.

According to Eq. (9), we can construct the VW,E (θ ) as

VW,E (θ ) =

⎛
⎜⎜⎜⎝

cos
(

θ
2

) −i sin
(

θ
2

)
0 0

−i sin
(

θ
2

)
cos

(
θ
2

)
0 0

0 0 cos
(

θ
2

)
i sin

(
θ
2

)
0 0 i sin

(
θ
2

)
cos

(
θ
2

)

⎞
⎟⎟⎟⎠.

(B1)

In addition, to achieve the superposition of quantum channels,
we use a controlled unitary according to Eq. (10). Moreover,
the controlled unitary is equal to the product of two controlled
unitaries.

We now consider the controlled unitary: |0〉〈0|C ⊗ 1 +
|1〉〈1|C ⊗ VW,E , as shown in Fig. 7(a). From Eq. (B1), VW,E

is equal to (H ⊗ 1)XX (θ )(H ⊗ 1), where XX (θ ) is a kind
of Ising coupling gate denoted as XX (θ ) = cos(θ/2)1 ⊗ 1 −
i sin(θ/2)σx ⊗ σx. The controlled VW,E can be separated to
three controlled unitaries: two controlled-H operations and a
controlled-XX (θ ) operation. In this case the two controlled-H
operations can be replaced with two H gates applied to the
W . Thus we can focus on the XX (θ ). As shown in Fig. 7(b),
the controlled XX (θ ) can be decomposed to two controlled-Z
operations, XX (−θ/2) and XX (θ/2).

However, IBMQ does not have the Ising coupling gates.
According to IBMQ, XX (θ ) can be decomposed to u1, u2,
u(θ ), two Hs, and two CNOT operations. In Fig. 7(c), we
show the order of the aforementioned unitary operations to
construct the XX (θ ).
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