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Chirality-driven delocalization in disordered waveguide-coupled quantum arrays
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We study theoretically the competition between directional asymmetric coupling and disorder in a one-
dimensional array of quantum emitters chirally coupled through a waveguide mode. Our calculation reveals a
highly nontrivial phase diagram for the eigenstates’ spatial profile, nonmonotonously depending on the disorder
and directionality strength. The increase of the coupling asymmetry drives the transition from Anderson localiza-
tion in the bulk through delocalized states to chirality-induced localization at the array edge. Counterintuitively,
this transition is not smeared by strong disorder but becomes sharper instead. Our findings could be important
for the rapidly developing field of waveguide quantum electrodynamics, where chiral interactions and disorder
play crucial roles.
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I. INTRODUCTION

Localization of waves and particles in disordered me-
dia remains one of the key universal concepts in modern
physics [1] starting from the first theoretical prediction by
Anderson [2]. One-dimensional (1D) systems are especially
remarkable since, according to the classical scaling theory [3],
all of the states are localized for an arbitrarily weak disorder.
However, the situation changes drastically in non-Hermitian
disordered quantum systems, where one can observe both
localized and delocalized states [4–8]. In this regard, one
of the most interesting platforms is offered by waveguide
quantum electrodynamics [9,10], studying interactions of
localized quantum emitters with photons propagating in a one-
dimensional waveguide. Such a system is inherently strongly
non-Hermitian due to the presence of radiative losses and
also features long-range light-induced couplings, that have
recently been predicted to suppress localization [11]. Photon-
photon interactions driven by anharmonicity of the emitter
Hamiltonians can enable quantum chaos [12], and many-body
localization [13]. The effects of disorder have been also exten-
sively studied in an alternative non-Hermitian system based
on semiconductor polaritonic lattices [14–16] and complex
systems with loss and gain [17].

The situation becomes even more interesting in the regime
of chiral quantum optics [18], when a constant magnetic
field applied transverse to the waveguide introduces artificial
“chirality” to the system and makes light-induced couplings
between the atoms partially unidirectional [see Fig. 1(a)].
The directional coupling appears due to polarization depen-
dent waveguide mode excitation. This destroys the internal
symmetry of the problem and also suppresses the quantum
interference effects responsible for localization. However, de-
spite recent numerical studies of the photon transmission and
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reflection through chiral disordered atomic arrays [19–21] and
the recent interest in non-Hermitian skin effects [22–24], as
well as scaling theory of localization in chiral non-Hermitian
systems [25], the fundamental problem of localization in non-
Hermitian disordered systems with directional couplings is
still open.

Here, we study theoretically localization and delocalization
of a single excitation in an array of atoms with fluctuating
frequencies, depending on the fluctuation strength and
the directionality of the atom-waveguide mode coupling.
We reveal a delicate competition between the chirality
and disorder strength. The origin of the competition is
straightforward: disorder tends to localize the states in the
bulk area, while chirality tends to localize the states at the
edge of the system. We show that, counterintuitively, the
effect of a chiral coupling is not universal and it can either
localize or delocalize eigenstates depending on the disorder
strength, as is schematically illustrated in Fig. 1(b). The
advantage of the considered atomic chiral setup is its high
coherence and tunability by external magnetic field [26].
However, our theoretical results are quite general and apply
both to quantum and classical chiral systems. For example,
topological photonic structures [27], where the unidirectional
propagation of protected edge states is one of the central
scenarios, attract now a lot of interest [28–30].

II. THEORETICAL FRAMEWORK

A. General description of a chiral disordered array

We start with the consideration of a 1D array of N two-
level quantum emitters placed at the coordinates zn ≡ nd, n =
1, 2 . . ., and coupled through a single guided mode, which is
schematically shown in Fig. 1(a). In the case of a finite system,
the effective Hamiltonian can be represented as Ĥ = Ĥ0 + V̂
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FIG. 1. (a) The geometry of an array of regularly spaced quan-
tum emitters separated by a distance a and directionally coupled
through a waveguiding mode. (b) Localized and delocalized eigen-
states depending on the coupling directionality parameter ξ ≡ γL/γR

calculated for δ = 0.05 and N = 100, having the eigenfrequencies
(ω − ω0)/γ0 = 0.48, 0.03, and 0.01, respectively.

with [31]

Ĥ0 = h̄
N∑

m=1

(
ωm − i

γ0

2

)
σ̂+

m σ̂−
m , V̂ = h̄

N∑
m,n=1
m �=n

gn,mσ̂+
n σ̂−

m ,

(1)
where ωm ≡ ω0 + �ωm and γm are the transition frequency
and radiative emission rate of the mth emitter, respectively,
and gn,m are the emitter-emitter coupling constants. We focus
on the diagonal disorder due to the fluctuations of transition
frequencies of the mth emitter so that the fluctuations �ωm are
normally distributed random numbers with standard deviation
equal to δγ0 in the absence of correlations between the emit-
ters. The radiative emission rates are assumed to be constant
for all emitters, γm = γ0. The proposed theoretical model can
potentially find an experimental realization, for instance, in a
cold-atomic array localized in the vicinity of a nanofiber in
a periodic optical potential [32] with random fluctuations or
a nanofiber with corrugated surfaces. The fluctuating stable
atom-fiber distance will provide random Lamb shift in the
energy of atomic transitions. Alternatively, one may suggest
a superconducting circuit [33] with random inharmonicity,
which will also contribute to random fluctuations of the tran-
sition energy of artificial atoms.

The interemitter coupling constants gn,m can be expressed
through the electromagnetic Green’s function [31,34]. They
depend on the polarization properties of both the guided
mode and the transition dipole moments, and take the form
gn,m = −iγReiϕnm for m > n, and gn,m = −iγLeiϕnm for m < n,
where γR = γ0/(1 + ξ ) and γL = ξγR are emission rates to
the right and left directions, correspondingly, and parameter
ϕnm = k0|zn − zm| is the phase due to propagation of a photon
between the emitters n and m. The parameter ξ, 0 � ξ � 1,

characterizes the degree of asymmetry.
Here, we focus on singly excited quasistationary states of

the emitter array |ψm〉 = ∑N
n=1 cnmσ+

n |0〉, which are collective
polaritonic states formed due to the long-range coupling of
emitters through the guided mode [35–38]. Their eigenfre-
quencies 
k in a finite structure are complex valued due to
the radiative decay rate, and can be found from the following
Schrödinger equation:

Ĥ |ψm〉 = h̄
m |ψm〉 , 
m = ωm − iγm/2. (2)

More details on the eigenstates of regular infinite and finite
periodic structures are provided in Appendices A and B,
respectively. The following analysis of the effects of disor-
der relies on the properties of eigenfunctions |ψm〉 of the
equation above. However, the localization effects can also be
manifested in the optical response of the system, for example,
the transmission coefficient, and the next subsection will cover
this aspect.

B. Localization length estimated from the transmission spectra

Another subject we want to cover in this section is how
to extract the localization length from the transmission coeffi-
cient through the structure.

In principle, propagation and localization of waves in one-
dimensional disordered structures should be described by a
general phase formalism [39] that has been successfully ap-
plied to photonic structures; see Ref. [40] and references
therein. However, generalization of the phase formalism for
the case of directional coupling is a separate task that lies out
of the scope of the current paper. Instead, we resort here to a
more simplified semiphenomenological approach that ignores
interference of waves reflected from different atoms but still
captures the essence of light localization away from the reso-
nance frequency ω0. Specifically, the reflection coefficient of
light from the mth atom can be presented as

rm =
√

γLγR

ωm − ω − iγ0/2
≈ 〈r〉 + δrm, (3)

〈r〉 =
√

γLγR

ω0 − ω − iγ0/2
, (4)

δrm = −
√

γLγR

(ω0 − ω − iγ0/2)2
δωm, (5)

where δωm ≡ ωm − ω0 is the frequency fluctuation, γR =
γ0/(1 + ξ ), and γL = ξγR. Here, 〈r〉 is the coherent part of
the reflection coefficient, responsible for the formation of the
polaritonic band gap in the ordered structure. On the other
hand, δrm is the disorder-induced reflection, zero on average,
but responsible for wave localization. In writing Eq. (3) we
have assumed that the frequency is far enough from atomic
resonance so that it is sufficient to take into account only
one term in the Taylor expansion in powers of frequency
fluctuations δωm. Our next crucial simplification, assuming
strong uncorrelated disorder, is the independent transmission
of waves through different atoms, without taking into account
multiple reflections:

TN = TN−1
(
1 − ∣∣δr2

N

∣∣). (6)

Equation (6) indicates that the probability of the wave to
pass through N atoms is given by the probability of light
to pass through N − 1 atoms times the probability of not
being scattered by the disorder at the N th atom. We stress
that Eq. (6) does not take into account the coherent part of
the reflection coefficient 〈r〉 that does not contribute to wave
localization away from the band gap and just renormalizes the
wave dispersion law.
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FIG. 2. Frequency dependence of the localization length calcu-
lated numerically from Eq. (7) and analytically from Eq. (9) for
three different values of the directionality parameter ξ , fixed disorder
strength δ = 0.2γ0, and period that implies φn,n+1 = k0�z = π/2.
The array length was chosen to be N = 1000, and the averaging has
been done over 500 disorder realizations.

Given that 〈δr2
N 〉 � 1 we find from Eq. (6) the decay law

for the transmission coefficient

ln TN ∝ − N

Lloc
, (7)

1

Lloc
= 〈|δrm|2〉, (8)

where Lloc is the length of extinction (being equivalent to the
localization length in the case of a one-dimensional system)
and the angular brackets denote averaging over the disorder.
Calculating the average 〈|δrm|2〉 we obtain the formula that
estimates Lloc provided that |ω − ω0| 
 γ0:

Lloc(ω, ξ ) = (1 + ξ )2(ω − ω0)4

ξγ 4
0 δ2

. (9)

A more formal equivalent derivation of Eq. (9) for the local-
ization length in case of symmetric coupling, ξ = 1, based
on the phase formalism and the Fokker-Planck equation is
presented in Ref. [40].

As this equation is only a rough analytical estimate of
the localization length, one also needs to calculate a pre-
cise numerical value of the transmission coefficient, which
can be done using the transfer-matrix approach, which is
widely known, and theoretical details of which are covered in
Appendix C.

Figure 2 presents the comparison of the localization length,
calculated numerically by averaging the logarithm of the
transmission coefficient over the disorder, following Eq. (7),
and analytically, following Eq. (9). The analytical and numer-
ical results are in a good quantitative agreement, especially in
an expected region ω − ω 
 γ0 far enough from the band gap.
By this we confirm the qualitative validity of Eq. (9), which
we will use in the next section when discussing the results.

III. NUMERICAL RESULTS AND DISCUSSIONS

We characterize the spectrum of a finite disordered struc-
ture with the density-of-states (DOS) function. The spatial
distribution of the eigenstates is described by the participation

ratio parameter (R) [41], that quantifies the effective num-
ber of the occupied sites by a single excitation, and reads
Rm = (

∑N
i=1 |cim|2)2/

∑N
i=1 |cim|4 for the mth state. Since the

polaritonic eigenmodes of the ordered periodic array are just
the delocalized Bloch waves, the excitation occupies almost
all of the lattice sites and R ∼ N . On the other hand, for
a localized eigenstate we expect smaller values of R ≈ 1,
independent of N .

The DOS profiles shown in Fig. 3(a) have a typical two-
peak structure that can be understood from the polariton
dispersion in a periodic array described in Appendix A. The
DOS manifests a band gap around the frequency ω0 result-
ing from the avoided crossing of the light line with the
atomic resonance [10]. The band-gap width is equal to γ0

in case of ϕ = π/2, ξ = 1[36]; see also Fig. 6. The DOS
function has van Hove singularities at the gap edges typical
for one-dimensional systems. As expected, disorder leads to
the smearing of the band edges, and formation of the Urbach
tails [41], where the states are strongly localized as can be
seen from Fig. 3(b). With the increase of the asymmetry
(smaller ξ ) the polaritonic band gap gets more narrow as can
be directly seen from the comparison of Figs. 3(a) and 3(b)
with Figs. 3(c) and 3(d). For small asymmetry parameters
the band-gap width becomes comparable to the energy of
Urbach tails, and there appears nonzero density of states in the
band-gap center with a relatively small value of R in Fig. 3(d).
In the symmetric case ξ = 1, localization length Lloc increases
fast when the frequency is detuned from the atomic resonance.
For |ω − ω0| ≡ |�ω| 
 γL,R the localization length can be
approximately estimated from the expression we derived in
the previous section: Lloc(ω, ξ ) = (1 + ξ )2(ω − ω0)4/ξγ 4

0 δ2.
In order to distinguish between the localized and extended
eigenstates for a finite array it is instructive to compare the
localization length with the array size, Lloc(ω, ξ ) = N , be-
cause if the array is shorter than the localization length then
the eigenstate is spread over all atoms. The obtained fre-
quency dependence Lloc(ω, ξ ) is shown by the black dashed
curve in Fig. 3(e). It is in qualitative agreement with the
numerical solution of Lloc(ω, ξ ) = N where the localiza-
tion length has been extracted from the disorder-averaged
logarithm of the numerically calculated transmission coeffi-
cient through a finite array as 1/Lloc = −〈ln |t2

N |〉/N (solid
curve). Specifically, for ξ = 1 the central spectral region in
Figs. 3(a), 3(b), and 3(e) with frequencies |�ω/γ0| � 0.4
corresponds to the band gap with no eigenstates [white color
in Fig. 3(e)], and it is surrounded by a region of Anderson-
localized states with 0.4 � |�ω/γ0| � 0.7 (blue color). For
even larger detunings �ω the localization length exceeds
the array size and the states become extended [red color in
Fig. 3(e)].

The profile of eigenstates changes dramatically for an
asymmetric array with ξ < 1. The effect of coupling asymme-
try is twofold. First, the smaller the ξ the narrower the spectral
region of localized states and the narrower the band gap in
the ordered structure [see black curves in Fig. 3(e)]. This is
the consequence of the suppression of back reflections and
Anderson localization in the strongly chiral setup with ξ � 1.

Strong asymmetry of the interaction destroys both the
polaritonic bands and Anderson localization in the bulk of
the system. However, one can consider an extreme case of
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FIG. 3. (a)–(d) Density of states (a), (c) and normalized participation ratios R/N (b), (d) for the ordered (δ = 0, blue color) and disordered
(δ = 0.1, red color) system with symmetric atom-waveguide coupling (a), (b) and directional (c), (d) coupling with ξ = 0.01. (e) Normalized
participation ratio of eigenstates for a fixed disorder amplitude δ = 0.1 as a function of the frequency detuning �ω and asymmetry parameter ξ .
Blue and red regions correspond to localized and delocalized states, respectively. The dotted black curve illustrates the band gap in an ordered
array, that closes for smaller ξ . Solid and dashed black curves show the boundary between localized and extended states Lloc = N , where the
localization length Lloc is calculated numerically and analytically. The horizontal dashed line indicates the value ξ = 0.01 corresponding to
panels (c), (d). The simulation parameters for (a)–(d) are N = 400 and ϕ = π/2; for (e) they are δ = 0.1, N = 1000. The results were obtained
after averaging over 1000, for (a)–(d), and 100, for (e), random realizations.

ξ → 0, when all of the states are squeezed to the right edge
of the system due to chiral localization [outer blue region in
Fig. 3(e) that corresponds to the chiral localization]. Such a
chiral localization can be also seen as a direct manifestation
of a so-called non-Hermitian skin effect [23,24]. Indeed, for
small ξ all of the modes are almost completely degenerate
with 
k = ω0 − iγ0/2 and are strongly localized at the right
edge of the chain even in the absence of disorder. This is ex-
plained by the fact that each emitter radiates to the left weaker

than to the right in the asymmetric coupling case. In the limit
ξ → 0 only one nontrivial state survives, |N〉 ≡ σ+

N |0〉, and
it is localized at only a single atom at the edge of the chain
(see Appendix D for details). When disorder is introduced the
spectral degeneracy is lifted and N nondegenerate eigenmodes
become smeared over a few sites close to the edge of the
system (see Fig. 9 in Appendix D) with inverse localization
length 1/Lloc having a logarithmic dependence on the disorder
amplitude as can be seen from Fig. 9. In order to obtain this

/1
0

FIG. 4. (a) Normalized participation ratio for the state A closest to the resonance [see Fig. 3(a)] calculated depending on the asymmetry
parameter ξ for several disorder strengths δ. (b) False color map of the participation ratio for the state A (ωgap) depending on both ξ and δ.
Black solid and dashed curves have been extracted from disorder-averaged localization length defined through a transmittance; the details are
explained in the text. The number of random realizations used for averaging in (a) and (b) is 500; calculation has been performed for N = 100
emitters.
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figure, we pick the state with the largest R for each realization
of disorder, average it over multiple realizations, and fit it with
the exponential function for the atoms close to the right edge
of the chain.

Finally, the most striking effect is observed in the transition
region for a moderate value of the asymmetry parameter ξ .
In this case, for a fixed spectral detuning, e.g., �ω = 0.5γ0,
the diagram in Fig. 3(e) indicates the appearance of delo-
calization (at ξ ≈ 0.1, marked with a dashed white line) on
the way of gradual transition from Anderson disorder-induced
localization (ξ → 1) to a chiral localization (ξ → 0). Appear-
ance of the region with a large participation number indicates
that chirality suppresses the effect of disorder and states be-
come extended at the scale of the array size. Since the results
in Fig. 3(e) have been obtained after averaging the R of states
in a finite energy range, the contributions from localized and
delocalized states could potentially be mixed and affect the
average R. In order to verify that this is not the case, it
is instructive to follow directly the evolution of individual
eigenstates with the increase of asymmetry, which has been
done in Fig. 4. Specifically, for each disorder realization we
select one eigenstate that is spectrally closest to the resonance
frequency ω0; see label A in Fig. 3(b). Next, we focus on this
state and analyze in Fig. 4 the transition from symmetric to
chiral coupling for different values of the disorder amplitude
δ. Figure 4(b) shows the dependence of the R on both δ and
ξ and Fig. 4(a) presents the slices of this dependence for
several characteristic disorder strength values δ. The calcu-
lation demonstrates that for the symmetric case and small
disorder, the eigenstate extends over the whole system. With
the increase of disorder amplitude δ, the closest to band-gap
center state occupies a small part of the array and R/N � 0.1,
which is a sign of Anderson localization in the bulk of the
system.

For an extremely strong asymmetry (ξ → 0) the state nat-
urally becomes localized at the edge of the system due to the
directional interaction. The boundary of this localized-states
region can be estimated from Lloc(ω0, ξ ) = N with local-
ization length evaluated numerically from the transmission
coefficient through a finite array at the transition frequency,
which also corresponds to the closure of the band gap due
to disorder. The corresponding boundary, extracted from the
extinction spectra, is shown by a black curve in Fig. 4(b)
and agrees well with the result of the calculation of the
participation ratio. However, for moderate values of asym-
metry parameter ξ � 10−4 and relatively weak disorder δ �
0.1, there exists a transition region, shown by yellow col-
ors in Fig. 4(b), where the states are extended, and occupy
a significant part of the array. In this transition region the
interaction asymmetry leading to edge localization competes
with the disorder, which tries to localize the state in the bulk
of the system. Thus, if we fix disorder strength, the tran-
sition from the Anderson localization at ξ = 1 to a chiral
edge localization at ξ → 0 is indeed nonmonotonous, and
occurs through extended states. Counterintuitively, when the
disorder strength increases from δ = 10−3 to 0.1, this transi-
tion becomes sharper and shifts, i.e., it occurs in a narrower
range of a parameter ξ and for smaller values of ξ . For an
even stronger disorder, δ > 0.1, the values of ξ correspond-
ing to the transition begin to increase. The second (right)

FIG. 5. (a) Dependence of the transmission spectra on the asym-
metry parameter ξ . Calculated for a disorder parameter δ = 10−2.
(b) Transmission coefficient calculated at the resonance frequency
and at the frequency of the closest to atomic resonance ω0 peak,
shown by an arrow in the panel (a).

boundary between the Anderson localization and delocaliza-
tion can be qualitatively found if one equates the localization
length [defined through transmittance T (ω)] at the frequency
of the state closest to the band gap for absent disorder in
a finite system to, for example, 10% of the system size:
Lloc(ωgap,N ) = N/10. In case of Fig. 4(b) this second boundary
is shown in dashed black, and it separates the states that are
Anderson localized due to disorder from the yellow transi-
tion region. Characteristic disorder-localized, extended, and
chiral-localized eigenstates are also shown in Fig. 1(b).

The transition from Anderson localization to delocalization
to chiral localization can be directly detected in the trans-
mission spectrum. To this end we have plotted in Fig. 5(a)
the disorder-averaged transmission spectra T ≡ exp[〈ln T 〉]
for a fixed disorder strength δ. The averaging of transmission
logarithm 〈ln T 〉 has been performed over Nav = 60 disorder
realizations. The frequency axis has been normalized to the
gap half width in the ordered system ωgap.

The transmission peaks correspond to the eigenmodes of
the finite array and the phase diagram Fig. 4(b) can be re-
produced by tracing the peak dependence on the asymmetry
and disorder parameters. In order to illustrate this, we plot
in Fig. 5(b) the asymmetry dependence of the transmission
coefficient at the resonance, T (ω0), and the transmission at the
frequency of the eigenstate closest to the gap center, T (ωA),
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shown by an arrow in panel (a). Three qualitatively differ-
ent ranges of the asymmetry parameter can be distinguished.
For ξ � 10−2 the transmission is suppressed both at the ωA

frequency and at the resonance frequency. This corresponds
to the regime of Anderson localization. In the intermediate
range, 10−4 � ξ � 10−2, the transmission coefficient T (ωA)
starts to increase [solid black curve in Fig. 5(b)]. This reflects
quenching of disorder and delocalization of the correspond-
ing eigenstate. Finally, when the asymmetry becomes even
stronger, ξ � 10−4, the transmission coefficient T (ω0) also
becomes large [dotted red curve in Fig. 5(b)]. This means
that the whole array becomes transparent and backscattering
is suppressed even at the resonance. Thus, the structure is
in the fully chiral regime (when all eigenstates are localized
due to strong interaction asymmetry). An analysis of such
transmission maps for different values of disorder strength δ

has allowed us to obtain the black curves Lloc(ξ ) ≡ −1/〈ln T 〉
in Fig. 3(b) and, thus, to independently reproduce the phase
diagram previously found from the study of the spatial profile
of the eigenstates.

Taking into account disorder in the radiative emission rate
of each atom γn will provide “nondiagonal” disorder [42]
which may enable new intriguing effects in the system such
as Dyson singularity [43–45]. At the same time, introducing
correlated disorder [46] will make the disorder contribution
in the chirality-disorder competition more pronounced but
keeping the physical picture the same.

IV. SUMMARY

To summarize, we have considered a periodic one-
dimensional array of two-level emitters with disorder in tran-
sition frequencies that are asymmetrically coupled through
a waveguide mode and have revealed a delicate competition
between the conventional Anderson localization and the chiral
localization. As a result, at moderate values of asymmetry pa-
rameter the chirality suppresses the localization, which leads
to the transition from bulk localized states to edge localized
states via extended states.

We believe that our findings will be important for a rapidly
developing field of waveguide QED, where chiral interactions
and disorder play a critical role. The modern experimental
setups and platforms such as fiber-coupled cold atoms [26,47]
and superconducting circuits [48] have been already used
for observing chiral interactions in complex quantum sys-
tems. The estimated and experimentally reported range of
asymmetry parameter 10−3 < ξ < 10−1 [26,47–50] enables
observation of the predicted delocalization effects in realistic
systems. Moreover, the extension of the obtained results to
the multiphoton domain will be of significant interest due to a
tremendous progress of theoretical [51–53] and experimental
studies in this area [33,54] as well as generalization of our
approach to nonstationary Floquet-type systems [17,55–57].
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APPENDIX A: DISPERSION OF AN
INFINITE PERIODIC CHAIN

In this section, we derive the dispersion relation for an
infinite ordered chain with an arbitrary coupling directionality
ξ . Namely, starting from the ansatz for the eigenstate wave
function |ϕ〉 = ∑+∞

n=−∞ eiqan |n〉 (where the |n〉 state corre-
sponds to the nth emitter being excited, while all the others
are in the ground state) and substituting into the equation

Ĥ |ϕ〉 = Ĥ0 |ϕ〉 + V̂ |ϕ〉 = h̄
(
ω − i

γ0

2

) +∞∑
n=−∞

eiqan |n〉

+ h̄
+∞∑

n,m=−∞
gm,nσ̂

+
n σ̂−

m

+∞∑
n′=−∞

eiqan′ |n′〉 = E |ϕ〉 ,

(A1)

one can obtain the following dispersion relation:

�ω(q) = γ0

2(1 + ξ )

[
cot

(
ϕ − qa

2

)
+ ξ cot

(
ϕ + qa

2

)]
,

(A2)

which can also be found in Ref. [58].
The dispersion curves calculated for three characteristic

values of the parameter ξ are shown in Fig. 6. The change
of the asymmetry parameter from ξ = 1 to 0 makes the dis-
persion nonreciprocal, �ω(q) �= �ω(−q). It also leads to the
closure of the band gap, as described by the equation

Eg = ω+ − ω− = 2
√

ξ

1 + ξ
γ0.
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APPENDIX B: FINITE REGULAR CHAIN

Once the system becomes finite, the nonzero radiative
losses appear due to photon escape at the edge of the array,
and the eigenfrequencies of the collective states acquire the
imaginary parts following Eq. (2). The wave functions of the
eigenstates |ψk〉 = ∑

n cnk |n〉 can be found analytically both
for symmetric and asymmetric coupling by generalizing the
results of Ref. [59]:

ck = eiq+(k−N−1) + r←↩e
iq−(k−N−1) ∝ r↪→eiq+k + eiq−k . (B1)

Here, the wave vectors q± satisfy the dispersion equation
Eq. (A2) at the eigenmode frequency 
 and are chosen in
such a way that Im q+ > 0, Im q− < 0. The representation
Eq. (B1) shows that the eigenmode of a finite array is given
by a superposition of corresponding forward- and backward-
propagating Bloch waves of the infinite system. The Bloch
waves transform into each other due to the reflection at the
internal left and right boundaries of the array with the corre-
sponding reflection coefficients:

r↪→ = −1 − ei(ϕ−q+ )

1 − ei(ϕ−q− )
, r←↩ = −1 − ei(q−+ϕ)

1 − ei(q++ϕ)
. (B2)

The two representations in Eq. (B1) are equivalent to each
other because the following identity holds at the eigenmode
frequency:

r←↩(
)r↪→(
)ei(q+−q− )(N+1) = 1. (B3)

Equation (B3) is a closed-form equation that can be used to
find the eigenfrequencies 
. It has the same physical meaning
as the Fabry-Pérot condition for the eigenmodes of a planar
cavity. The only difference is that the problem is now discrete,
and instead of just forward and backward going photons we
consider polaritonic waves. In practice, however, Eq. (B3) is
not easier to solve than the linear eigenproblem Eq. (2).

We now discuss these eigenmodes in more details in spe-
cific cases of symmetric and asymmetric coupling.

1. Symmetric coupling

In the case of symmetric coupling the eigenfrequencies
form a circular structure [36] in the complex plane typical for
Toeplitz-type matrices [60]. In order to plot the dispersion of
a finite system, one can map the obtained eigenfrequencies
of collective states to the first Brillouin zone of an infinite
structure.

The eigenfrequencies for an array of N = 100 emitters
and the phase parameter ϕ = π/2 are plotted in Fig. 7 for
(a) symmetric ξ = 1 and (b) asymmetric ξ = 10−4 coupling.
They form a discrete set of points on the dispersion line of the
infinite system (gray solid line in Fig. 7). The color of points in
the figure denotes the radiative decay rates for each particular
state, clearly showing that the states close to the band edge
have the smallest decay rate (subradiant), while the states
close to the avoided crossing region possess the strongest
radiative losses due to the better phase matching with the
waveguide mode. In the insets, we plot the distribution of
wave-function amplitudes |cnk|2.

The radiative losses of subradiant and superradiant states
scale with the size of the system as γsub ∝ N−3 [61,62], while

FIG. 7. (a) The resonant states of a symmetrically coupled (ξ =
1) array of N = 400 quantum emitters separated with ϕ = π/2. The
dispersion of the infinite system is shown with a solid gray line.
The color of labeling points denotes the normalized radiation loss
rate for each state. The diameter of the labeling point corresponds
to the normalized participation ratio. The typical R values are shown
for eye guidance in the inset. Mode profiles in the insets are plotted
for N = 50 for clearness. (b) The resonant states of the chirally
coupled array with asymmetry parameter ξ = 10−4. The parameters
of computation are the same as in (a).

the emission rates of superradiant states γsup ∝ N [11,63]. The
radiative losses scaling law on N is shown in Fig. 8(a) for
symmetric coupling ξ = 1. On the other hand, the effective
distance to the edge of the array Lq also changes with ξ and
gives its contribution to the modified radiation rate.

Since in the case of the ordered structure the eigenmodes
of the system are constructed from the Bloch waves, the
excitation occupies almost all of the lattice sites R ∼ N . We
have depicted the normalized participation ratio R/N for each
mode in Fig. 7(a) with the diameter of the circle labeling the
R value for each state. One can see that the superradiant states
have the smallest R, while the subradiant states, in contrast,
are the most extended ones with R ≈ N . Moreover, all of the
states in the ordered array scale linearly with the system size,
so R ∝ N , which is a sign of their truly extended nature. One
also needs to mention a special case of ϕ = 0, which corre-
sponds to a discrete Bardin-Cooper-Schrieffer model [64,65]
and is proposed for the description of superconducting states
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FIG. 8. (a) The radiative losses of the states with largest (su-
perradiant) and smallest (subradiant) values of γ as a function of
number of emitters for different values of asymmetry parameter
ξ and ϕ = π/2. (b) The participation ratio of the corresponding
super- and subradiant states as a function of asymmetry parameter
for N = 400 and ϕ = π/2.

in lattice models. In this case, there appear N − 1 degenerate
states with zero radiative rate and one nondegenerate state,
which has superradiant character with γN = Nγ0 and constant
mode profile with in-phase amplitudes |ψ〉 = 1/

√
N

∑
n |n〉.

2. Asymmetric coupling

Once the strongly asymmetric coupling is introduced for
a finite system, discrete resonant states follow the dispersion
behavior of an infinite structure as shown with a solid gray line
in Fig. 7(b). One can see that the avoided crossing at qa = −ϕ

vanishes for asymmetric coupling, and the resonant states
close to this point possess the lowest radiative losses. Inter-
estingly, the radiative losses of subradiant states have different
scaling with N comparing to a symmetric coupling case as one
can see from Fig. 8(a), where the radiative losses are plotted in
double logarithmic scale as functions of the emitter number N
for various values of the asymmetry parameter ξ . It is worth
noting that for small asymmetry parameter values the decay
rate of subradiant states scales as γsub ∼ N−1 for N � N∗,
while for larger N � N∗ the scaling modifies to γsub ∼ N−3.
As can be seen from Fig. 7(b), subradiant states appear close
to the light line qa = −ϕ, where the band gap shrinks with the
decrease of ξ as well as the region of the flat band, where the
group velocity tends to zero. The switching between the linear

dispersion regime and the flat band regime in the vicinity of
the light line qa = −ϕ provides the change in the radiative
rate behavior. Indeed, the radiative decay rate of a state can be
estimated as γ (q) ∼ vg(q)/Lq, where Lq is the characteristic
distance from the mode center to the structure edge, and vg

is the group velocity. The group velocity rapidly changes in
the vicinity of the light line from vg = qγ0/4 to vg → 0 as
|qa − ϕ| ∼ 1

√
ξ , which provides the observed change in the

scaling of the radiative losses and gives the estimation for
N∗ ≈ 1/

√
ξ .

The second factor which results in decrease of the radiative
rate of chirally coupled systems compared to symmetric cou-
pling is related to change of the R which also corresponds to
characteristic length Lq, i.e., the smaller the value of R the
faster the states escape through the edge by radiation. The
dependence of the R on the asymmetry parameter is shown
in Fig. 8(b). One can see that R for both sub- and superradiant
states decreases with ξ , which increases the radiative rate for
strongly asymmetric coupling.

Subradiant states have the largest R values close to N ;
therefore, the excitation occupies most of the array sites as
shown by the label diameter in Fig. 7(b). However, now the
modes become localized at the edge of the chain as it is shown
in the insets of Fig. 7(b). If ξ becomes small enough, the
excitation in the system is concentrated at the right side of
the chain as has been discussed in the main text.

APPENDIX C: BASIC FORMULAS
FOR TRANSFER MATRICES

The forward transmission coefficient TN ≡ |t→
N |2 in Eq. (7)

can also be calculated numerically. This allows us to imple-
ment an independent calculation of the localization length, not
relying on the evaluation of the eigenstates. To this end we use
the transfer-matrix method. Starting from the relation between
the fields to the left and right of the atom,(

E−→
R

E←−
R

)
= Matom

(
E−→

L

E←−
L

)
, (C1)

one can define the transfer matrix through a two-level atom
Matom [26]:

Matom = 1

t←

(
t→t← − r2 r

−r 1

)
(C2)

where r and t→ and t← are reflection and forward and back-
ward transmission coefficients of a single atom, respectively,
given by [18]

r = i
√

γLγR

ω0 − ω − iγ0/2
,

t→/← = 1 + iγR/L

ω0 − ω − iγ0/2
. (C3)

With the transfer matrix for a free part of the waveguide Md

being equal to

Md =
(

eiωd/c 0

0 e−iωd/c

)
, (C4)
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FIG. 9. Dimensionless inverse localization length L−1
loc vs disor-

der parameter δ for different numbers of atoms in a chain of N
unidirectionally coupled atoms ξ = 0. It has been extracted by fitting
an exponential function to the probabilities of few atoms closest to
the right edge of the chain being excited, as described by the inset.

we proceed to the total transfer matrix through an array of N
atoms periodically placed with the distance d as follows:

MN = (Md Matom )N , (C5)

and find reflection and transmission coefficients for the light
incident from left as

r←
N = − [MN ]2,1

[MN ]2,2
, t→

N = det MN

[MN ]2,2
. (C6)

APPENDIX D: DISORDER IN A PERFECTLY
UNIDIRECTIONAL SYSTEM

The effective Hamiltonian for a regular 1D array of atoms
that are unidirectionally coupled through a guided mode and
experience a small disorder in transition frequencies can be
formally expressed as

Heff =

⎛⎜⎜⎜⎜⎜⎜⎝

D1 0 0 . . . 0

geiφ D2 0 . . . 0

gei2φ geiφ D3 . . . 0

. . . . . . . . . . . . . . .

gei(N−1)φ gei(N−2)φ gei(N−3)φ . . . DN

⎞⎟⎟⎟⎟⎟⎟⎠,

(D1)

where g = −ih̄γ0, Dk = h̄(�ωk − i γ0

2 ), and φ = k0d . Owing
to a disorder, the degeneracy of eigenstates, appearing as a
result of interaction unidirectionality, is completely lifted. In
this case we have a full set of eigenvectors v(k) with the cor-
responding eigenvalues being equal to λk = Dk , and the latter
simply comes from the Heff matrix being a lower triangular
one. One can explicitly find the jth component of eigenvector
v(k) to be equal to

v
(k)
j = Ak

(
δ j,N + (1 − δ j,N )H[ j − k]

×
N∏

m= j+1

(Dk − Dm)

(g + Dk − Dm−1)
e−i(N− j)φ

)
, (D2)

where Ak is the normalization constant and H[ j − k] is a
discrete Heaviside function, being zero for k > j and 1
otherwise. Even though the above formula is slightly cum-
bersome, it is much easier to understand if one considers
the transformation matrix to the corresponding eigenspace
S = (v(1), v(2), . . . , v(N) ):

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A1
(D1−D2 )...(D1−DN )e−i(N−1)φ

(g+D1−D1 )...(g+D1−DN−1 ) 0 . . . 0 0

A1
(D1−D3 )...(D1−DN )e−i(N−2)φ

(g+D1−D2 )...(g+D1−DN−1 ) A2
(D2−D3 )...(D2−DN )e−i(N−2)φ

(g+D2−D2 )...(g+D2−DN−1 ) . . . 0 0

. . . . . . . . . . . . . . .

A1
(D1−DN )e−iφ

(g+D1−DN−1 ) A2
(D2−DN )e−iφ

(g+D2−DN−1 ) . . . AN−1
(DN−1−DN )e−iφ

(g+DN−1−DN−1 ) 0

A1 A2 . . . AN−1 AN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (D3)

As seen from the above, the matrix S is also lower tri-
angular, and the N th eigenstate corresponds to the last atom
being excited solely, similarly to the case of absent disorder,
which is a perfectly localized state with the corresponding
participation ratio being R(v(N) ) = 1. A simple inspection
tells that, obviously, all other states k �= N have R > 1, but,
simultaneously, even the state v(1) with all nonzero compo-
nents is not a delocalized one due to the fact that var(�ωk ) =
δγ0 � 0.1γ0 in our case. This is what is indicated in Fig. 9,
where the dimensionless inverse localization length L−1

loc (an
effective number of excited atoms) is plotted against the dis-

order strength δ for different numbers of atoms in a chain. As
seen, L−1

loc monotonically decreases with the disorder δ follow-
ing a logarithmical dependence almost perfectly. Moreover,
even for the largest disorder parameter considered δ = 0.1,
L−1

loc > 1, which means that localization length is smaller than
unity, hence we conclude that the most delocalized state in
terms of R is, strictly speaking, a localized one. We can
conclude that for a perfectly chiral case the introduction of
disorder into atomic transition frequencies does not lead to
localization-delocalization transition for the considered range
of a disorder parameter δ.
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