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Generation of nonreciprocal single photons in the chiral waveguide-cavity-emitter system
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We investigate the generation of nonreciprocal single photons in the chiral waveguide-cavity-emitter system.
Due to the chirality of light-emitter interactions, photons in the left direction couple to a cavity which induces
only linear optical effects, while photons in the right direction couple to a cavity-emitter system which can
generate optical nonlinearity. In the regime of single-photon transmission, photons in the left direction are
absorbed by the cavity at the resonance frequency, while photons in the right direction are transmitted due to
the Rabi splitting. In the regime of two-photon transmission, optical linearity in the left direction cannot produce
photon-photon interactions and does not change the statistics of photons. However, the effective repulsive
interaction between photons can be produced by the optical nonlinearity in the right direction, suppressing
two-photon transmission (photon blockade). Physically, the photon-photon bound state, which emerges due
to the strong-photon-photon correlation mediated by the cavity-emitter system, plays a key role in generation
of photon blockade at the resonance frequency. As a result, nonreciprocal single photons can be realized in
the combination of single-photon transmission and photon blockade at the resonance frequency. Additionally,
photon-photon interactions are sensitive to the width of the wave packet since photons should coincide at the
interaction site.
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I. INTRODUCTION

With the development of quantum technologies in the
emerging field of waveguide quantum electrodynamics
(WQED), various experimental platforms offer the intriguing
possibility to realize the coupling between quantum emitters
(QEs) and propagating photons through the integration of
natural or artificial atoms, such as superconducting qubits
and solid-state quantum dots and defects, and different types
of optical and microwave waveguides [1–3]. The research
offers novel opportunities both for fundamental physics and
for quantum information processing (QIP) [4]. The spatial
confinement of light leads to stronger light-QE interactions
in WQED, which enables the realization of near-deterministic
and coherent interfaces [5,6]. In particular, the tight light
confinement within advanced photonic nanostructures brings
about a new chiral interface, where the light-QE interaction
relies on the propagation direction of light and the polar-
ization of the transition dipole moment of the QE [7–11].
This type of chiral interaction constitutes a new element of
the quantum optics toolbox and opens up a range of non-
trivial functionalities and applications. It has motivated a
number of proposals of nonreciprocal devices in the quantum
regime, such as optical circulators and switches at a single-
photon level [12–14], non-destructive photon detectors [15],
implementation of

√
SWAP gates [16], and the deterministic

photonic Duan-Kimble quantum gate [17]. In order to operate
better at the single-photon level, researchers have recently
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investigated an alternative cavity-based chiral quantum inter-
face where cavities are employed to enhance the coupling
between light and QEs and also effectively increase the optical
nonlinearities [18–21].

The cavity-based chiral quantum interface requires the
use of nontransversally polarized whispering gallery mode
(WGM) resonators such as bottle, disk, sphere, and ring
microstructures [20–23]. Counterpropagating photons are dis-
tinguishable by their nearly orthogonal polarizations, which
are almost perfectly circularly polarized in the plane of propa-
gation with the input of linearly polarized pump light. When a
circularly polarized QE lies near the resonator, nonreciprocal
transmissions at the single-photon level have been exhibited
[21]. Moreover, the strong coupling of QE and cavities gives
rise to optical nonlinearity at the level of individual quanta.
The realization of coherent interactions between individual
photons could enable a wide variety of scientific and engineer-
ing applications in the regime of quantum nonlinear optics
[24]. Furthermore, the few-photon quantum effects observed
in recent experimental systems have sparked extensive interest
in the many-body problem of light propagation in strongly
nonlinear media [25].

In this work, we investigate the nonreciprocal single-
photon and two-photon transmissions in the chiral waveguide-
cavity-QE system. For the single-photon dynamics, the
photon in the right propagation direction enables the cavity-
QE interaction. It leads to the transmission on resonance
with the cavity frequency due to well-known vacuum-Rabi
splitting [26]. However, the left-moving photon couples to
only the cavity, and the transmission is suppressed due to
the absorption at the resonance frequency. Furthermore, in
the two-photon dynamics, quantum nonlinearity induced by
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FIG. 1. Schematic of chiral coupling in the waveguide-cavity-QE
system. A microcavity simultaneously couples to a nearby waveg-
uide and a single two-level QE. The light propagating in the +x
(−x) direction drives the counterclockwise (clockwise) mode. The
polarization of the evanescent field of the counterclockwise mode is
σ+ polarized outside the cavity wall, while that for the clockwise
mode is σ− polarized. The transition of the two-level QE is σ+

polarized.

resonator-QE interactions can produce repulsion or attraction
between photons [27–31]. Thus, photon blockade and photon-
induced tunneling are tunable in the right direction. In such
a system, strong photon blockade is achievable in addition
to the single-photon transmission at the resonance frequency,
enabling the capability to generate single photons on demand.
In contrast, since the cavity servers as a linear system in the
left direction, photon-photon interactions are impossible. The
photon statistics remains unchanged.

This paper is organized as follows. In Sec. II, the chiral
waveguide-cavity-QE system is introduced, and nonreciprocal
transmissions of single- and two-photon incident states are
analyzed in Secs. III and IV. In Sec. V, the nonreciprocal
photon blockade is discussed, and finally, the conclusions are
drawn in Sec. VI.

II. CHIRAL COUPLINGS IN THE
WAVEGUIDE-CAVITY-QE SYSTEM

We consider a waveguide-cavity-QE system in which a mi-
crocavity couples to both a nearby waveguide and a two-level
QE, as shown in Fig. 1. The right-propagating light in the
+x direction of the waveguide drives the counterclockwise
(CCW) mode in the microcavity, and the left-propagating
light in the −x direction drives the clockwise (CW) mode.
The polarization of the evanescent field of the CCW mode is
σ+ polarized outside the cavity wall, while that for the CW
mode is σ− polarized [21]. Here we suppose that the dipole
transition of a two-level QE is σ+ polarized. Thus, the CCW
mode couples to the emitter, whereas the CW mode decouples
from it. The system is described by the Hamiltonian (h̄ = 1)

Ĥ =
∫

dx[ĉ†
R(x)(ω0 − iνg∂x )ĉR(x) + ĉ†

L(x)(ω0 + iνg∂x )ĉL(x)]

+ (ωc − iκ/2)(â†â + b̂†b̂) + (ωeg − iγ /2)σ̂ee

+ V

2

∫
dxδ(x)[ĉ†

R(x)â + â†ĉR(x) + ĉ†
L(x)b̂ + b̂†ĉL(x)]

+ g

2
(â†σ̂ge + σ̂egâ), (1)

where ĉ†
R(x) and ĉ†

L(x) are the creation operators of right- and
left-propagating photons in real space and â† and b̂† are the

creation operators of CCW and CW cavity modes with the
same frequency ωc and damping rate κ . Here ω0 can be an
arbitrary frequency that is away from the cutoff frequency of
the photonic waveguide, and υg is the group velocity [32].
The atomic transition frequency and dissipation rate are ωeg

and γ , respectively, and the atomic operator is σ̂mn = |m〉〈n|
(m, n) = (e, g). The waveguide-cavity and cavity-QE cou-
pling strengths are V and g, respectively. Here we take the δ(x)
function to describe the form of the interaction between the
waveguide and the microcavity, as in previous works [32,33].
This model is valid under the assumption of the Markovian
approximation [34], in which the strength between the waveg-
uide and the cavity is independent of k. In experiment, it
requires the transversal scale of the cavity to be much nar-
rower than the wavelength of the guided light. In contrast,
non-δ coupling should be considered when the transversal
scale of the cavity is comparable with or larger than the
wavelength of the guided light [35]. Then we introduce a free
Hamiltonian

Ĥ0 = ω0

∫
dx[ĉ†

R(x)ĉR(x) + ĉ†
L(x)ĉL(x)]

+ ω0(σ̂ee + â†â + b̂†b̂) (2)

and an unitary operator Û (t ) = exp(−iĤ0t ), and the Hamilto-
nian is transformed into the interaction picture following the
relation

ĤI = Û †(t )ĤÛ (t ) + i[∂tÛ
†(t )]Û (t ). (3)

In the interaction picture, the Hamiltonian can be split into two
parts to describe right- and left-moving modes, respectively,

ĤI = ĤR + ĤL,

ĤR = 
̃câ†â − iνg

∫
dxĉ†

R(x)∂xĉR(x) + 
̃eσ̂ee

+ V

2

∫
dxδ(x)[ĉ†

R(x)â + â†ĉR(x)] + g

2
(â†σ̂ge + σ̂egâ),

ĤL = 
̃cb̂†b̂ + iνg

∫
dxĉ†

L(x)∂xĉL(x)

+ V

2

∫
dxδ(x)[ĉ†

L(x)b̂ + b̂†ĉL(x)]. (4)

Here 
̃c = 
c − iκ/2 and 
̃e = 
e − iγ /2 are the complex
detunings, with 
c = ωc − ω0 and 
e = ωeg − ω0. For sim-
plicity, we will take υg to be 1 hereafter.

III. NONRECIPROCAL TRANSMISSIONS OF THE
SINGLE-PHOTON INPUT STATES

We first consider the single-photon scattering processes,
where the incident states in the left- and right-propagating
channels are confined within one excitation. In the left-
propagating subspace, the scattering eigenstate is given by

|�1〉L =
∫

dx f (L)
k1

(x)ĉ†
L(x)|0L, 0b〉 + hb|0L, 1b〉, (5)

where |0L, 0b〉 is the vacuum state of left-propagating waveg-
uide and cavity modes and |0L, 1b〉 is the vacuum state of the
waveguide mode with one excitation in the cavity mode. From
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the equation ĤL|�1〉L = E1|�1〉L, with eigenvalue E1 = k1,
we can obtain

(i∂x − k1) f (L)
k1

(x) + V

2
hbδ(x) = 0,

(
̃c − k1)hb + V

2
f (L)
k1

(0) = 0. (6)

Here the function f (L)
k1

(x) is piecewise continuous because

of the singularity of the δ function [36], and f (L)
k1

(0) ≡
[ f (L)

k1
(0+) + f (L)

k1
(0−)]/2. By eliminating hb and employing

the continuity condition at x = 0, where the interaction oc-
curs, we have

f (L)
k1

(0−) = t (L)
k1

f (L)
k1

(0+),

t (L)
k1

= 
̃c − k1 + i�/2


̃c − k1 − i�/2
, (7)

where � = V 2/4 indicates the coupling rate between the
cavity and the one-dimensional (1D) continuum and t (L)

k1
is

the transmission amplitude of the left-propagating incident
photon. For x > 0, the incident state is a plane wave before
interaction,

|k1〉L =
∫

dxh(L)
k1

(x)ĉ†
L(x)|0L, 0b〉, (8)

with h(L)
k1

(x) = 〈x|k1〉 = e−ik1x/
√

2π . Thus, f (L)
k1

(0+) =
h(L)

k1
(0) = 1/

√
2π , and according to the continuity condition,

the wave function becomes f (L)
k1

(x) = t (L)
k1

h(L)
k1

(x) for x < 0.
In reality, the far-field approximation should be satisfied, i.e.,
x much larger than the size of the cavity mode. In total, the
wave function can be written as

f (L)
k1

(x) = h(L)
k1

(x)
[
θ (x) + t (L)

k1
θ (−x)

]
(9)

with the use of the Heaviside step function θ (x).
Similarly, the scattering eigenstate in the right-propagating

subspace is given by

|�1〉R =
∫

dx f (R)
k1

(x)ĉ†
R(x)|0R, 0a, g〉

+ ha|0R, 1a, g〉 + he|0R, 0a, e〉, (10)

where |0R, 0a, g〉 is the vacuum state of the right-propagating
waveguide and cavity modes with the QE in its ground state,
|0R, 1a, g〉 is one excitation in the cavity mode, and |0R, 0a, e〉
is one excitation in the QE. From the equation ĤR|�1〉R =
E1|�1〉R, with eigenvalue E1 = k1, we can obtain

(−i∂x − k1) f (R)
k1

(x) + V

2
haδ(x) = 0,

(
̃c − k1)ha + V

2
f (R)
k1

(0) + g

2
he = 0, (11)

(
̃e − k1)he + g

2
ha = 0.

Here f (R)
k1

(x) is also piecewise continuous, with f (R)
k1

(0) ≡
[ f (R)

k1
(0+) + f (R)

k1
(0−)]/2. By eliminating ha and he, the

continuity condition becomes

f (R)
k1

(0+) = t (R)
k1

f (R)
k1

(0−),

t (R)
k1

= (
̃c − k1 + i�/2)(
̃e − k1) − g2/4

(
̃c − k1 − i�/2)(
̃e − k1) − g2/4
, (12)

where t (R)
k1

is the transmission amplitude for the right-
propagating mode. For x < 0, with the incident plane-wave
state

|k1〉R =
∫

dxh(R)
k1

(x)ĉ†
R(x)|0R, 0a, g〉 (13)

and h(R)
k1

(x) = eik1x/
√

2π , the wave function becomes

f (R)
k1

(x) = t (R)
k1

h(R)
k1

(x) for x > 0. Thus, the total wave function
can be written as

f (R)
k1

(x) = h(R)
k1

(x)
[
θ (−x) + t (R)

k1
θ (x)

]
. (14)

We suppose that the incident single-photon pulses are de-
scribed by wave packets

∣∣ψ (1)
j

〉 =
∫

dkα(k)|k〉 j ( j = R, L), (15)

with the Gaussian-type spectral amplitude

α(k) = 1

(2πσ 2)1/4
exp

[
− (k − k0)2

4σ 2

]
. (16)

Here σ is the width, and k0 corresponds to the central fre-
quency. The single-photon transmitted states are |ϕ(1)

j 〉 =∫
dkα(k)t ( j)

k |k〉 j , and the transmission probabilities are given
by

TL =
∫

dk1

∣∣
L
〈
k1

∣∣ϕ(1)
L

〉∣∣2 =
∫

dk1α
2(k1)

∣∣t (L)
k1

∣∣2
,

TR =
∫

dk1

∣∣
R
〈
k1

∣∣ϕ(1)
R

〉∣∣2 =
∫

dk1α
2(k1)

∣∣t (R)
k1

∣∣2
. (17)

To evaluate the nonreciprocal single-photon transmission
properties, we numerically calculate transmission probabil-
ities of left- and right-propagating lights as a function of
detuning 
k = k0 − ω0 in Fig. 2. We follow the parameters
taken in the experimental platforms composed of a single
85Rb atom strongly coupled to a WGM bottle microresonator
[19,21]. Meanwhile, the microresonator couples to a tapered
fiber with near-lossless in- and out-coupling of light. The
atom-light coupling strength is about g/2π = 20 MHz, and
the cavity decay rate κ/2π = 10 MHz, with the decay rate of
the atomic transition being on the scale of megahertz. In cal-
culations, we take 
c = 0, 
e = 0, g = 2κ , � = 4κ , and γ =
0.1κ . In the right direction, the cavity-QE interaction produces
the vacuum-Rabi splitting at resonance frequency with 
k =
±g/2. When the central frequency k0 is positioned between
the splittings, the transmission probability shows a sharp
peak at 
k = 0, originating from the destructive interference
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FIG. 2. Single-photon transmission probabilities in the chiral
waveguide-cavity-QE system as a function of 
k (in units of κ) with
the spectral widths (a) σ = 0.02κ and (b) σ = 0.4κ . Dashed lines
indicate probabilities of left-propagating light, and solid lines indi-
cate probabilities of right-propagating light. The other parameters are

c = 0, 
e = 0, g = 2κ , γ = 0.1κ , and � = 4κ .

between two dressed states [21]. This electromagnetically-
induced-transparency-like effect has been investigated in the
system that consists of a flying optical photon interacting with
Fabry-Pérot optical cavities in the presence or absence of
a resonant two-level medium to realize photonic controlled-
phase gates [37–41]. In Fig. 2, the height of the central peak
is | γ (κ−�)+g2

γ (κ+�)+g2 |2 in the narrow-bandwidth limit, whereas the
height begins to get suppressed when σ becomes compara-
ble with the width of the window [∼g2/(� + κ )], as seen
from Eq. (12). In comparison, left-propagating photons are
absorbed by the cavity at 
k = 0, and the absorption width
is ∼κ + �, as seen from Eq. (7). Therefore, the shape of
transmission lines is insensitive to a spectral width σ from
0.02 to 0.4, which is much smaller than κ + �.

IV. TRANSMISSIONS OF THE TWO-PHOTON PULSES

A. Scattering eigenstates within the left-propagating
two-excitation subspace

We further consider two-photon scattering processes. In
the left direction, the scattering eigenstate within the two-
excitation subspace is

|�2〉L =
∫∫

dx1dx2 f2(x1, x2)ĉ†
L(x1)ĉ†

L(x2)|0L, 0b〉

+
∫

dx1 fb(x1)ĉ†
L(x1)|0L, 1b〉 + hb|0L, 2b〉. (18)

The function f2(x1, x2) is the probability amplitude of two
photons in the waveguide mode, which is symmetric due to
the bosonic statistics, i.e., f2(x1, x2) = f2(x2, x1). Moreover,
fb(x1) is the probability amplitude of having one photon in the
waveguide mode with the other excitation in the cavity mode,
and hb is the probability amplitude of both excitations being in
the cavity mode. From the equation ĤL|�2〉L = E2|�2〉L, with

FIG. 3. The x2 > x1 region is dissected into three subregions, (I)
x2 > x1 > 0, (II) x2 > 0 > x1, and (III) 0 > x2 > x1, due to interac-
tions at the coordinate axes x1 = 0 and x2 = 0.

the eigenvalue E2 = k1 + k2, we can obtain[
i
(
∂x1 + ∂x2

) − E2
]

f2(x1, x2)

+ V

4
[δ(x1) fb(x2) + δ(x2) fb(x1)] = 0,

(
i∂x1 − E2 + 
̃c

)
fb(x1) + V√

2
hbδ(x1) (19)

+ V

2
[ f2(0, x1) + f2(x1, 0)] = 0,

(2
̃c − E2)hb + V√
2

fb(0) = 0.

Here both functions f2(x1, x2) and fb(x1) are piece-
wise continuous because of the singularity of the δ

function, and f2(0, x1) ≡ [ f2(0+, x1) + f2(0−, x1)]/2,
f2(x1, 0) ≡ [ f2(x1, 0+) + f2(x1, 0−)]/2, and fb(0) ≡
[ fb(0+) + fb(0−)]/2. Since waveguide-cavity interactions
occur at the coordinate axes x1 = 0 and x2 = 0 in real
space, for the region of x1 �= 0 and x2 �= 0 in the absence of
interactions, f2(x1, x2) yields[

i
(
∂x1 + ∂x2

) − E2
]

f2(x1, x2) = 0. (20)

The continuity conditions are necessary to calculate
f2(x1, x2) and fb(x1). For fb(x1), the continuity condi-
tion becomes fb(0−) = ηL(E2) fb(0+) after eliminating hb in
Eqs. (19), where

ηL(E2) = 2
̃c − E2 + i�

2
̃c − E2 − i�
. (21)

For f2(x1, x2), it is convenient to consider the half-space x2 >

x1 and then extend it to the full space through bosonic symme-
try. In this case, the x2 > x1 region is dissected by the x1 and x2

axes into three subregions: (I) x2 > x1 > 0, (II) x2 > 0 > x1,
and (III) 0 > x2 > x1, as shown in Fig. 3. In subregion I, it
corresponds to an incident plane-wave state before interac-
tions, which is described by f (I)

2 (x1, x2) = [h(L)
k1

(x1)h(L)
k2

(x2) +
h(L)

k1
(x2)h(L)

k2
(x1)]/2.
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Through the integration of Eqs. (19) around the boundary
between subregions I and II at x1 = 0, we have

i
[

f (I)
2 (0+, x2) − f (II)

2 (0−, x2)
] + V

4
fb(x2) = 0,

(
i∂x2 − E2 + 
̃c

)
fb(x2) + V

2

[
f (I)
2 (0+, x2) (22)

+ f (II)
2 (0−, x2)

] = 0.

Then by further eliminating fb(x2), it becomes(
i∂x2 − E2 + 
̃c − i�/2

)
f (II)
2 (0−, x2)

= (
i∂x2 − E2 + 
̃c + i�/2

)
f (I)
2 (0+, x2). (23)

Because f (I)
2 (0+, x2) = (e−ik2x2 + e−ik1x2 )/4π on the boundary

of subregion I, on the boundary of subregion II

f (II)
2 (0−, x2) = 1

4π

(
t (L)
k2

e−ik1x2 + t (L)
k1

e−ik2x2
)

+ Ae(i
̃c−iE2+�/2)x2 . (24)

We should take the coefficient A to be zero due to the diver-
gence of the e�x2/2 term in the limit x2 → ∞. With the use of
the equation [i(∂x1 + ∂x2 ) − E2] f (II)

2 (x1, x2) = 0 in subregion
II, f (II)

2 (x1, x2) becomes

f (II)
2 (x1, x2) = 1

4π

(
t (L)
k2

e−ik1x2−ik2x1 + t (L)
k1

e−ik1x1−ik2x2
)
. (25)

Following the same procedure through the integration of
Eqs. (19) around the boundary between subregion II and sub-
region III (x2 = 0), we have(

i∂x1 − E2 + 
̃c − i�/2
)

f (III)
2 (x1, 0−)

= (
i∂x1 − E2 + 
̃c + i�/2

)
f (II)
2 (x1, 0+). (26)

Since f (II)
2 (x1, 0+) = (t (L)

k2
e−ik2x1 + t (L)

k1
e−ik1x1 )/4π , we have

f (III)
2 (x1, 0−) = 1

4π
t (L)
k1

t (L)
k2

(e−ik1x1 + e−ik2x1 )

+ Be(i
̃c−iE2+�/2)x1 . (27)

The coefficient B is determined by the continuity condition
fb(0−) = ηL(E2) fb(0+), with

fb(0+) = −2i

V

[
f (I)
2 (0+, 0+) − f (II)

2 (0−, 0+)
]
,

fb(0−) = −2i

V

[
f (II)
2 (0−, 0+) − f (III)

2 (0−, 0−)
]
. (28)

After some calculations it is found that B = 0. With the use of
the equation [i(∂x1 + ∂x2 ) − E2] f (III)

2 (x1, x2) = 0 in subregion
III, f (III)

2 (x1, x2) becomes

f (III)
2 (x1, x2) = 1

4π
t (L)
k1

t (L)
k2

(e−ik1x1−ik2x2 + e−ik2x1−ik1x2 ). (29)

Finally, extending the result from the half-space to the full
space using bosonic symmetry gives rise to the two-photon
scattering eigenstate

f2(x1, x2) = 1

2

∑
Q

f (L)
k1

(
xQ1

)
f (L)
k2

(
xQ2

)
. (30)

Here Q = (Q1, Q2) indicates the permutation of (1,2). It cor-
responds to the transmission of two photons as independent
particles, with the momentum of each photon conserved indi-
vidually. This is because the cavity constitutes a linear system,
while photon-photon interactions rely on the optical nonlin-
earity [24].

B. Scattering eigenstates within the right-propagating
two-excitation subspace

Next, we consider the two-photon scattering eigenstates
for the right-propagating incident state, where the scattering
eigenstate within the two-excitation subspace is

|�2〉R =
∫∫

dx1dx2 f2(x1, x2)ĉ†
R(x1)ĉ†

R(x2)|0R, 0a, g〉

+
∫

dx1 fa(x1)ĉ†
R(x1)|0R, 1a, g〉 + ha|0R, 2a, g〉

+
∫

dx1 fe(x1)ĉ†
R(x1)|0R, 0a, e〉 + hae|0R, 1a, e〉.

(31)

The function f2(x1, x2) is the probability amplitude of having
two photons in the waveguide mode, fa(x1) is the probability
amplitude of one photon being in the waveguide mode with
the other in the cavity mode, ha is the probability amplitude
of both excitations being in the cavity mode, fe(x1) is the
probability amplitude of having one photon in the waveguide
mode and the other in the atomic excitation, and hae is the
probability amplitude of having one excitation in the cavity
mode and the other in the atomic excitation. From the equation
ĤR|�2〉R = E2|�2〉R, with the eigenvalue E2 = k1 + k2, we
can obtain[ − i

(
∂x1 + ∂x2

) − E2
]

f2(x1, x2)

+ V

4
[δ(x1) fa(x2) + δ(x2) fa(x1)] = 0,

( − i∂x1 − E2 + 
̃c
)

fa(x1) + g

2
fe(x1) + V√

2
haδ(x1)

+ V

2
[ f2(0, x1) + f2(x1, 0)] = 0, (32)

( − i∂x1 − E2 + 
̃e
)

fe(x1) + V

2
haeδ(x1) + g

2
fa(x1) = 0,

(2
̃c − E2)ha + V

2
fa(0) + g√

2
hae = 0,

(
̃c + 
̃e − E2)hae + V

2
fe(0) + g√

2
ha = 0.

Also, f2(x1, x2), fa(x), and fe(x) are piecewise con-
tinuous because of the singularity of the δ function,
and f2(0, x1) ≡ [ f2(0+, x1) + f2(0−, x1)]/2, f2(x1, 0) ≡
[ f2(x1, 0+) + f2(x1, 0−)]/2, fa(0) ≡ [ fa(0+) + fa(0−)]/2,
and fe(0) ≡ [ fe(0+) + fe(0−)]/2. Waveguide-cavity-QE
interactions occur at the coordinate axes x1 = 0 and x2 = 0 in
real space, and for the region with x1 �= 0 and x2 �= 0 in the
absence of interactions, f2(x1, x2) yields[

i
(
∂x1 + ∂x2

) + E2
]

f2(x1, x2) = 0. (33)
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FIG. 4. The x2 > x1 region is dissected into three subregions, (I)
x2 > x1 > 0, (II) x2 > 0 > x1, and (III) 0 > x2 > x1, due to interac-
tions at the coordinate axes x1 = 0 and x2 = 0.

The continuity conditions are necessary to calculate
f2(x1, x2), fa(x1), and fe(x1). For fa(x1) and fe(x1), by elimi-
nating ha and hae, the continuity conditions become

fa(0+) − fa(0−) − i
√

2M11[ fa(0+) + fa(0−)]

− i
√

2M12[ fe(0+) + fe(0−)] = 0,

fe(0+) − fe(0−) − iM12[ fa(0+) + fa(0−)]

− iM22[ fe(0+) + fe(0−)] = 0, (34)

where the coefficients are

M11 = �(
̃c + 
̃e − E2)/2�,

M12 = −
√

2�g/4�,

M22 = �(2
̃c − E2)/2�,

� = (2
̃c − E2)(
̃c + 
̃e − E2) − g2/2. (35)

To obtain f2(x1, x2), we first consider the half-space x2 >

x1, which can be extended to the full space with the use of
bosonic symmetry. In this case, the x2 > x1 region is dissected
by x1 = 0 and x2 = 0 axes into three subregions: (I) 0 > x2 >

x1, (II) x2 > 0 > x1, and (III) x2 > x1 > 0, as shown in Fig. 4.
In subregion I, it corresponds to the incident plane-wave field
before interactions and is described by the wave function
f (I)
2 (x1, x2) = [h(R)

k1
(x1)h(R)

k2
(x2) + h(R)

k1
(x2)h(R)

k2
(x1)]/2.

Through the integration of Eqs. (32) around the boundary
between subregions I and II at x2 = 0, we have

− i
[

f̃ (II)
2 (x1, 0+) − f̃ (I)

2 (x1, 0−)
] + V

4
f̃a(x1) = 0,

( − i∂x1 + 
̃c
)

f̃a(x1) + g

2
f̃e(x1)

+ V

2

[
f̃ (II)
2 (x1, 0+) + f̃ (I)

2 (x1, 0−)
] = 0,

( − i∂x1 + 
̃e
)

f̃e(x1) + g

2
f̃a(x1) = 0, (36)

where F̃ = Fe−iE2x1 and F = { f (II)
2 (x1, 0+), f (I)

2 (x1,

0−), fa(x1), fe(x1)}, are expressed in the rotating frame.

By eliminating f̃a(x1) and f̃e(x1), we have[(
i∂x1 − 
̃e

)(
i∂x1 − 
̃c + i

�

2

)
− g2

4

]
f̃ (II)
2 (x1, 0+)

=
[(

i∂x1 − 
̃e
)(

i∂x1 − 
̃c − i
�

2

)
− g2

4

]
f̃ (I)
2 (x1, 0−).

(37)

Because f̃ (I)
2 (x1, 0−) = (e−ik2x1 + e−ik1x1 )/4π on the boundary

of subregion I, on the boundary of subregion II,

f̃ (II)
2 (x1, 0+) = 1

4π

[(
t (R)
k1

e−ik1x1 + t (R)
k2

e−ik2x1
)

+ c+eλ+x1 + c−eλ−x1

]
, (38)

with

λ± = 1

2i

⎡
⎣
̃e + 
̃c − i

�

2
±

√(

̃e − 
̃c + i

�

2

)2

+ g2

⎤
⎦.

(39)

We should take coefficients c± to be zero due to the divergence
in the limit x1 → −∞. Hence, f (II)(x1, 0+) = (t (R)

k1
eik2x1 +

t (R)
k2

eik1x1 )/4π . Under the constraint equation [i(∂x1 + ∂x2 ) +
E2] f (II)

2 (x1, x2) = 0 in subregion II, f (II)
2 (x1, x2) takes the form

f (II)
2 (x1, x2) = 1

4π

(
t (R)
k1

eik2x1+ik1x2 + t (R)
k2

eik1x1+ik2x2
)
. (40)

Following the same procedure through the integra-
tion around the boundary of subregions II and III
(x1 = 0) and also introducing �̃ = �e−iE2x2 and � =
{ f (III)

2 (0+, x2), f (II)
2 (0−, x2)}, we have[

(i∂x2 − 
̃e)

(
i∂x2 − 
̃c + i

�

2

)
− g2

4

]
f̃ (III)
2 (0+, x2)

=
[

(i∂x2 − 
̃e)

(
i∂x2 − 
̃c − i

�

2

)
− g2

4

]
f̃ (II)
2 (0−, x2).

(41)

With the use of f̃ (II)
2 (0−, x2) = (t (R)

k1
e−ik2x2 + t (R)

k2
e−ik1x2 )/4π ,

the solution on the boundary of subregion III is

f̃ (III)
2 (0+, x2) = 1

4π

[
t (R)
k1

t (R)
k2

(e−ik2x2 + e−ik1x2 )

+ C+eλ+x2 + C−eλ−x2

]
. (42)

The coefficients C± are determined by continuity relations in
Eqs. (34) with

fa(0−) = 4i

V

[
f̃ (II)
2 (0−, 0+) − f̃ (I)

2 (0−, 0−)
]
,

fa(0+) = 4i

V

[
f̃ (III)
2 (0+, 0+) − f̃ (II)

2 (0−, 0+)
]
,

fe(0−) = 8i

gV

[(
i∂x1 − 
̃c + i�/2

)
f̃ (II)
2 (x1, 0+)

− (
i∂x1 − 
̃c − i�/2

)
f̃ (I)
2 (x1, 0−)

] |x1→0− ,
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fe(0+) = 8i

gV

[(
i∂x2 − 
̃c + i�/2

)
f̃ (III)
2 (0+, x2)

− (
i∂x2 − 
̃c − i�/2

)
f̃ (II)
2 (0−, x2)

] |x2→0+ . (43)

Then out of the rotating frame in Eq. (42) we have

f (III)
2 (0+, x2) = 1

4π

[
t (R)
k1

t (R)
k2

(eik1x2 + eik2x2 )

+ C+e(λ++iE2 )x2 + C−e(λ−+iE2 )x2
]
. (44)

With the use of the equation [i(∂x1 + ∂x2 ) + E2] f (III)
2 (x1, x2) =

0 in subregion III, f (III)
2 (x1, x2) becomes

f (III)
2 (x1, x2) = 1

4π
t (R)
k1

t (R)
k2

(eik1x2+ik2x1 + eik1x1+ik2x2 )

+ eiE2x2

4π
[C+eλ+(x2−x1 ) + C−eλ−(x2−x1 )]. (45)

Finally, according to bosonic symmetry, the result can be
extended from the half-space to the full space, where the
two-photon scattering eigenstate becomes

f2(x1, x2) = 1

2

[∑
Q

f (R)
k1

(
xQ1

)
f (R)
k2

(
xQ2

)

+
∑
PQ

C(2)
kP1 ,kP2

(
xQ1 , xQ2

)
θ
(
xQ1

)]
, (46)

where

C(2)
kP1 ,kP2

(xQ1 , xQ2 ) = eiE2xQ2

4π
[C+eλ+|xQ2 −xQ1 |

+ C−eλ−|xQ2 −xQ1 |]θ
(
xQ2 − xQ1

)
. (47)

Here P = (P1, P2) and Q = (Q1, Q2) indicate the permuta-
tions of (1,2) to account for the bosonic symmetry of the
wave function. The first term of f2(x1, x2) corresponds to the
transmission of two photons as independent particles, with
the momentum of each photon conserved individually. The
second term indicates the formation of a two-body bound
state, which is induced by the nonlinear cavity-QE interac-
tions. The momentum of each photon in the bound state is not
conserved, while the total momentum is conserved [29]. The
bound-state term shows an exponential decay in the relative
coordinate |x2 − x1|, with two characteristic binding strengths
λ±. Because the interaction is spatially confined, energy and
momentum can be exchanged and redistributed between the
photons (with the constraint of fixed total energy), enabling
the formation of photon-photon correlations.

To manifest the effective spatial interaction between pho-
tons, we consider the asymptotic behavior (away from the
cavity and with x1 > 0, x2 > 0) of the two-photon scattering
eigenstate in the central and relative coordinates, i.e., xc ≡
(x1 + x2)/2, x ≡ x1 − x2, which is

f2(xc, x) = eiE2xc

2π

[
t (R)
k1

t (R)
k2

cos 
1x

+ 1

2
eiE2|x|/2(C+eλ+|x| + C−eλ−|x|)

]
, (48)

with 
1 ≡ k1 − E2/2 = (k1 − k2)/2. Here the relative coor-
dinate x is equivalent to a time delay τ between the two

FIG. 5. (a) Plot of | f2(xc, 0)|2/| f̃2(xc, 0)|2 as a function of E2

and 
1 (in units of κ). (b)–(d) Plots of | f2(xc, x)|2 as a function
of x (in units of κ−1) for different detunings: (b) 
1 = 0, (c) 
1 =
−0.5κ , and (d) 
1 = −1.25κ . Dashed lines indicate the interaction-
free case, while solid lines indicate interactions of right-propagating
photons in the system. The other parameters are 
c = 0, 
e = 0,
g = 2κ , γ = 0.1κ , and � = 4κ .

scattered photons [42]. In order to study the two-photon bunch
or antibunch after scattering, we present comparisons between
| f2(xc, x)|2 and the case without cavity-QE interaction, which
is denoted by f̃2(xc, x) = eiE2xc

2π
t (R)
k1

t (R)
k2

cos 
1x, in Fig. 5. For
x = 0, the ratio between the two cases reaches the maximum
around E2 = 0 and 
1 = 0, as shown in Fig. 5(a). The max-
imum is larger than 1, which implies that the eigenstate is
not a product state but the bound state forms after scattering.
Moreover, we plot | f2(xc, x)|2 as a function of x under the
condition E2 = 
1 = 0 in Fig. 5(b). It shows a cusp at x = 0,
indicating bunched photons, and an exponentially decaying
feature in x with a half-width of 2/(κ + �) in space. There-
fore, when 
1 is gradually increased from zero to (κ + �)/4,
the peak at x = 0 decreases from its maximum to zero. The
transmitted photons will change from bunching to antibunch-
ing. For example, in the case of 
1 = −0.5κ in Fig. 5(c), the
peak is larger than that in the case without interaction, while in
the case of 
1 = −1.25κ in Fig. 5(d), the peak is completely
depleted.

V. NONRECIPROCAL PHOTON BLOCKADE

Photon blockade, a purely quantum effect, has been uti-
lized to achieve tunable nonclassical signals [43,44]. Thus,
nonreciprocal photon blockade devices, together with other
quantum one-way devices, are important elements in quantum
metrology [45], quantum simulations [46], and QIP [47–49].
Nonreciprocal photon blockade has been investigated in the
nonlinear cavity system based on the anharmonicity of the
spectrum in the spinning system [50–53]. Here we focus on
the nonreciprocal photon blockade in the chiral waveguide
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system for incident optical pulses since in optical devices and
QIP the signals are typically pulses. In this chiral system,
for the left-propagating photons, the cavity serves as a linear
absorber, and only the classical features of light appear; that is,
the transmission is blocked at the resonance frequency. How-
ever, the quantum nonlinearity for right-propagating photons
can induce photon-photon interactions, i.e., the formation of
a bound state. Then, the quantum features, such as photon
blockade, can emerge. The pulsed two-photon incident states
are described by the wave packets [54]

∣∣ψ (2)
j

〉 = 1√
2

[∫
dkα(k)|k〉 j

]2

( j = R, L), (49)

which are the direct generalization of the single-photon wave
packet in Eq. (15). Then, the two-photon output states can be
derived as∣∣ϕ(2)

j

〉 =
∫∫

dk1dk2
1√
2
α(k1)α(k2)

∣∣φ(2)
j (k1, k2)

〉
,

∣∣φ(2)
j (k1, k2)

〉 = 1

2

∫∫
dx1dx2t ( j)

k1,k2
(x1, x2)ĉ†

j (x1)ĉ†
j (x2)|0〉,

(50)

where the coefficients are

t (L)
k1,k2

(x1, x2) = t (L)
k1

t (L)
k2

h(L)
k1

(x1)h(L)
k2

(x2) + k1 ↔ k2,

t (R)
k1,k2

(x1, x2) = t (R)
k1

t (R)
k2

h(R)
k1

(x1)h(R)
k2

(x2)

+ B(2)
k1,k2

(x1, x2) + k1 ↔ k2,

B(2)
k1,k2

(x1, x2) = C(2)
k1,k2

(x1, x2) + C(2)
k1,k2

(x2, x1). (51)

The two-photon transmission probabilities are defined as

P(2)
j =

∫∫
dk1dk2

1

2!

∣∣
j
〈
k1k2

∣∣ϕ(2)
j

〉∣∣2
. (52)

For left-propagating photons, due to the absence of photon-
photon interactions, the photons transmit independently, and
the probability is

P(2)
L =

∫∫
dk1dk2

∣∣t (2)
L (k1, k2)

∣∣2
,

t (2)
L (k1, k2) = α(k1)α(k2)t (L)

k1
t (L)
k2

. (53)

However, for right-propagating photons, the transmission
probability becomes

P(2)
R =

∫∫
dk1dk2

∣∣t (2)
R (k1, k2) + B(k1, k2)

∣∣2
,

t (2)
R (k1, k2) = α(k1)α(k2)t (R)

k1
t (R)
k2

,

B(k1, k2) = − 1

4π

∑
m=+,−

(
1

λm + ik1
+ 1

λm + ik2

)

×
∫

dkα(k)α(k1 + k2 − k)Cm(k, k1 + k2 − k),

(54)

which is determined by the interference between the plane-
wave term t (2)

R (k1, k2) and the bound-state term B(k1, k2).

FIG. 6. (a) Photon blockade strength P(21)
R in the right direction

as a function of 
k (in units of κ), where a clear photon blockade
is exhibited on resonance, i.e., 
k = 0. (b) The integrand function
T B(k1, k2) of the interference term as a function of k1 and k2 (in units
of κ). The other parameters are 
c = 0, 
e = 0, g = 2κ , γ = 0.1κ ,
and � = 4κ .

To quantify strengths of photon blockade in two directions,
we follow the definition given in Refs. [27,28],

P(21)
i = P(2)

i /T 2
i , (55)

which indicates the conditional probability for transmitting a
second photon given that the first photon has already been
transmitted P(2)

i /Ti, normalized by the single-photon trans-
mission probability Ti. The left-propagating photons transmit
independently. There is no photon blockade, and P(21)

L = 1.
Hence, the statistics of incident photons cannot be altered in
the left direction. In contrast, photons in the right-propagating
direction can exhibit the photon blockade at 
k = 0, as
shown in Fig. 6(a). In combination with the single-photon
transparency at 
k = 0, this means that the single-photon
transparency does not carry over to the two-photon case. Such
a photon blockade regulates the flow of photons in an ordered
manner, enabling the capability to generate a unidirectional
single-photon source on demand by sending coherent states
into such a system.

To understand the origin of photon blockade, the interfer-
ence between plane-wave and bound-state terms plays a key
role. From the two-photon transmission probability P(2)

R in
Eq. (54), the integrand function of interference term can be
written as

T B(k1, k2) = t (2)
R (k1, k2)B∗(k1, k2) + c.c. (56)

Figure 6(b) shows that when the center frequency of inci-
dent photons is resonant with cavity frequency, T B(k1, k2) is
always negative, suppressing the overall two-photon transmis-
sion. The cause of the observed photon blockade is thus the
destructive interference between two transmission pathways:
passing as independent particles or as a composite particle
in the form of a bound state. In addition, the bound-state
effect in photonic transport relies on the width of incident
wave packet because photons should coincide at the site of the
cavity-QE system. In the limit of σ → 0, which is the ideal
condition of single-photon transmission, as shown in Fig. 2,
the system becomes transparent to the incoming photons due
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FIG. 7. Photon blockade strength P(21)
R in the right direction

as a function of spectral width σ (in units of κ). The other
parameters are 
c = 0, 
e = 0, g = 2κ , γ = 0.1κ , 
k = 0, and
� = 4κ .

to the electromagnetically-induced-transparency-like effect.
However, the probability of coincidence approaches zero, and
the system-mediated photon-photon interactions tend to van-
ish, inhibiting the effective formation of the bound state. Thus,
in the σ → 0 limit, P(21)

R → 1, as shown in Fig. 7.

VI. CONCLUSIONS

To conclude, we have studied the nonreciprocal properties
of single-photon and two-photon transmissions in the chiral
waveguide-cavity-QE system. Due to the chiral interactions
between the cavity and QE, photons in the left direction cou-
ple to only the cavity, which serves as a linear absorber, while
photons in the right direction couple to the cavity-QE system
that forms a nonlinear optical system. In the single-photon
dynamics, when the center frequency of the incident wave
packet is resonant with cavity frequency, the left-propagating
photon is absorbed by the cavity, and transmission is blocked.
In comparison, in the right direction when the center fre-
quency is on resonance, which is right positioned between the
Rabi splittings induced by cavity-QE interactions, the single-
photon transmission shows a sharp peak. In the two-photon
dynamics, photon-photon interactions depend on optical non-
linearities. Hence in the left direction, the coupling to a linear
cavity does not alter the statistics of incident photons, but
the photon blockade is achieved in the right direction at the
single-photon transparency window, opening up a new route
to achieve a one-way single-photon source. Moreover, the
strength of photon-photon interactions depends on the width
of the incident wave packet because of the coincidence. In the
narrow-width limit, interactions are significantly decreased,
suppressing the effects of photon blockade.
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