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All-optical generation of deterministic squeezed Schrödinger-cat states
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Quantum states are important resources and their preparations are essential prerequisites to all quantum tech-
nologies. However, they are extremely fragile due to the inevitable dissipations. Here the all-optical generation
of a deterministic squeezed Schrödinger-cat state based on dissipation is proposed. Our system is based on the
Fredkin-type interaction between three optical modes, one of which is subject to coherent two-photon driving
and the others are coherent driving. We show that an effective degenerate three-wave-mixing process can be
engineered in our system, which can cause the simultaneous loss of two photons, resulting in the generation of a
deterministic squeezed Schrödinger-cat state. More importantly, by controlling the driving fields in our system,
the two-photon loss can be adjustable, which can accelerate the generation of squeezed Schrödinger-cat states. In
addition, we exploit the squeezed Schrödinger-cat states to estimate the phase in the optical interferometer and
show that the quantum Fisher information about the phase can reach the Heisenberg limit in the limit of a large
photon number. Meanwhile, it can have an order of magnitude factor improvement over the Heisenberg limit in
the low-photon-number regime, which is very valuable for fragile systems that cannot withstand large photon
fluxes. This work proposes an all-optical scheme to deterministically prepare the squeezed Schrödinger-cat state
with high speed and can also be generalized to other physical platforms.
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I. INTRODUCTION

The Schrödinger cat originally referred to a cat in a super-
position of being dead versus alive, which was first introduced
by Schrödinger to question the Copenhagen interpretation of
quantum mechanics [1]. The cat being alive is macroscopi-
cally distinguishable from the cat being dead. In deference
to Schrödinger’s paradox of the cat, the superposition of the
two coherent states with large and the same amplitude but
a phase shift of π is called the Schrödinger-cat state [2,3].
According to the difference of the photon-number distribu-
tions, the Schrödinger-cat state can generally be divided into
three cases [2,3]: An even coherent state (ECS) with an even
number distribution, an odd coherent state (OCS) with an
odd number distribution, and a Yurke-Stoler coherent state
(YSCS) with a Poisson number distribution. Since the YSCS
has a Poisson number distribution, it can be generated by a
unitary time evolution with a Kerr-type nonlinearity [2,4–6].
The ECS and the OCS, however, cannot be prepared by a uni-
tary time evolution. To generate the ECS and the OCS, one can
exploit the interaction with other systems, such as an atom,
followed by selective quantum measurements [2,7–12]. In
addition, in stark contrast to dynamically transient preparation
of the YSCS, the stable ECS and OCS can be deterministically
generated by engineering a two-photon loss [13–23], which
is very important for realistic applications. Schrödinger-cat
states are not only fundamental studies of quantum me-
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chanics, but also led to a boom in quantum information
science.

Schrödinger-cat states have moved from basic research
to actual quantum technologies, such as quantum computa-
tion [24–27] and quantum metrology [28–30]. It has been
shown that Schrödinger-cat states have remarkable appli-
cations in error correction codes [31–34] and geometric
quantum computation [35]. For quantum metrology based on
optical interferometer, path-entangled Schrödinger-cat states
can reach estimation precision with the Heisenberg limit
(HL) for the linear phase and the super-Heisenberg limit
for the nonlinear phase in the limit of a large photon num-
ber [29]. Unfortunately, for the phase estimation in the optical
interferometer, it has been proved that the estimation pre-
cision depends mainly on the Mandel Q parameter of the
quantum states and the correlations between the paths, i.e.,
path-entangled quantum states, can contribute at most a factor
of 2 enhancement [36]. Meanwhile, in a practical situation,
we must consider the capacity of the sample to withstand
the photon fluxes, that is, we should focus on the mea-
surements of the fragile systems in the low-photon-number
regime.

To improve the estimation precision in the low-photon-
number regime, many quantum states (including NOON
states [37], squeezed entangled states [38], entangled even
squeezed states [39], etc.) have been considered. However,
the particularly promising approach is to squeeze a non-
Gaussian state, and the squeezed Schrödinger-cat state is the
one that has a large Mandel Q parameter, which can have
a threefold improvement in the estimation over the optimal
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Gaussian state [38]. In addition, the squeezed Schrödinger-
cat states also have been shown to have a significant role
in quantum error correction [40]. For quantum technolo-
gies with squeezed Schrödinger-cat states, the preparation
fidelity is crucial for realizing quantum advantage. There
are some schemes to prepare the squeezed Schrödinger-cat
states [41–44], but most of them rely on additional quantum
measurements. Meanwhile, the preparation fidelities are only
over 60% in experiments. There is still a lack of research
to deterministically prepare the squeezed Schrödinger-cat
states.

In this paper we propose an all-optical scheme to deter-
ministically prepare the squeezed Schrödinger-cat states. In
our scheme, based on the Fredkin-type interaction [45–47]
between three optical modes, an effective degenerate three-
wave-mixing process is engineered, which results in the
generation of the two-photon loss in our system. Then the
squeezed Schrödinger-cat states can be generated determin-
istically. The sizes of the squeezed Schrödinger-cat states and
their squeezing amplitudes are well controllable by adjusting
the driving fields of the optical modes. Moreover, the gener-
ation time of the squeezed Schrödinger-cat states can also be
greatly shortened. With the generated squeezed Schrödinger-
cat states in our scheme, we also estimate the linear phase in
the optical interferometer. We find that the quantum Fisher
information (QFI) about the phase can reach the HL in the
limit of the large photon number; meanwhile, it can have
an order of magnitude factor enhancement to the HL in the
low-photon-number regime, which is valuable for the fragile
systems to be measured.

This paper is organized as follows. In Sec. II we intro-
duce the system model, discuss experimental feasibility, and
then analyze the dynamic evolution. In Sec. III, by adjusting
the driving fields of the optical modes in our system, we
obtain squeezed Schrödinger-cat states with different sizes
and squeezing amplitudes and analyze the robustness of the
generated squeezed Schrödinger-cat states to the system loss.
In Sec. IV we exploit the generated squeezed Schrödinger-cat
states to estimate the phase of the optical interferometer and
compare the QFI about the phase with the perfect squeezed
Schrödinger-cat states. We summarize our conclusions in
Sec. V.

II. MODEL AND HAMILTONIAN

As shown in Fig. 1(a), we consider an all-optical scheme
to prepare squeezed Schrödinger-cat states based on the
Fredkin-type interaction between three optical modes [45–47]
represented by annihilation (creation) operators a (a†), b (b†),
and c (c†) and their corresponding resonance frequencies ωa,
ωb, and ωc. The Fredkin-type interaction describes a condi-
tional two-mode exchange interaction (here modes b and c)
that depends on the number of photons in another mode (here
mode a). Based on the Fredkin-type interaction, an all-optical
platform to simulate an ultrastrong optomechanical coupling
has been proposed [48]. In our scheme, the optical mode
a is subject to a coherent two-photon driving and modes b
and c are driven by a coherent driving field, with amplitudes
�i, frequencies ωi, and phases φi (i = 1, 2, 3). In a rotating
frame with respect to U1 = exp{i[ω1a†a + ω3(b†b + c†c)]t},

FIG. 1. (a) All-optical platform to prepare the squeezed
Schrödinger-cat states based on the Fredkin-type interaction [45–47]
between three optical modes (i.e., a, b, and c; g is the coupling
strength). With the beam-splitter and the cross-Kerr interactions
among these three optical modes, the Fredkin-type interaction
can be constructed [45–48]. (b) Wigner function of the squeezed
Schrödinger-cat states (here as squeezed even coherent states) in
the position-momentum space (q, p). Here q0 = (α + α∗)/

√
2 and

p0 = (α − α∗)/i
√

2 with the amplitude α = 2 and the squeezing
amplitude r = 0 for the left and r = 1.1 for the right. The two peaks
in the Wigner function correspond to the dead cat and the alive cat in
Schrödinger’s paradox of the cat.

the system Hamiltonian can be written as (h̄ = 1)

H = �aa†a + �bb†b + �cc†c + ga†a(b†c + c†b)

+ �1(a2e−iφ1 + a†2eiφ1 )

+ �2[bei(ω2−ω3 )t e−iφ2 + b†e−i(ω2−ω3 )t eiφ2 ]

+ �3(ce−iφ3 + c†eiφ3 ), (1)

with detunings �a = ωa − ω1, �b = ωb − ω3, and �c =
ωc − ω3. Here g describes the strength of the Fredkin-type
interaction.

In our system, it is assumed that the three optical modes
are coupled to the Markovian reservoir. Specifically, mode a is
coupled to a squeezed-vacuum reservoir with a squeezing am-
plitude re and phase φe, and modes b and c are coupled to an
individual thermal reservoir. The squeezed-vacuum reservoir
can generally be realized by introducing an auxiliary mode
generated by an optical parametric amplification [3,49]. For
an optical mode, the thermal photon number in the thermal
reservoir can be ignored safely and then the thermal reservoir
can be viewed as a vacuum reservoir. Thus, the evolution of
our system in an open environment can be governed by the
master equation

d

dt
ρ = −i[H, ρ] + κaL(a, ρ) + κbL′(b, ρ) + κcL′(c, ρ),

(2)
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with the dissipations caused by the system-environment cou-
pling

L(o, ρ) = (Ne + 1)D[o]ρ + NeD[o†]ρ

− MeG[o]ρ − M∗
e G[o†]ρ,

o = a, (3)

L′(o, ρ) = D[o]ρ, o = b, c, (4)

where Ne = sinh2(re) and Me = sinh(re) cosh(re)eiφe are
the mean photon number and the two-photon corre-
lation strength in the squeezing-vacuum reservoir, re-
spectively. Here D[o]ρ = oρo† − (o†oρ + ρo†o)/2, G[o]ρ =
oρo − (ooρ + ρoo)/2, and κo are the decay rates of the three
optical modes.

There is a linear term of mode c in the Hamiltonian, i.e.,
�3(ce−iφ3 + c†eiφ3 ), which can be removed by performing a
displacement transformation on mode c with the displacement
operator D(η) = exp(ηc† − η∗c). Then the master equation in
the displacement representation can be derived as (see Ap-
pendix A for details)

d

dt
ρdis = −i[Hdis, ρdis] + κaL(a, ρdis ) + κbL′(b, ρdis)

+ κcL′(c, ρdis ), (5)

where the density operator in the displacement representation
is ρdis = D(η)ρD†(η) and the Hamiltonian in the displace-
ment representation becomes

Hdis = �aa†a + �bb†b + �cc†c − ga†a(b†η + bη∗)

+ ga†a(b†c + c†b) + �1(a2e−iφ1 + a†2eiφ1 )

+ �2[bei(ω2−ω3 )t e−iφ2 + b†e−i(ω2−ω3 )t eiφ2 ], (6)

with the amplitude of the displacement operator η̇ = −(i�c +
κc/2)η + i�3eiφ3 and its steady value ηs = �3eiφ3/(�c −
iκc/2). Herein we focus on the steady-state region and ηs can
be a real number by adjusting the phase φ3 of the driving field.
From Eq. (6) we can find that there is an optomechanical-like
interaction gηsa†a(b† + b) with an adjustable coupling gηs.
By controlling the amplitude �3 of the driving field, an ultra-
strong optomechanical-like interaction can be obtained [48],
which can be equivalent to a Kerr-like interaction and help
to dynamically produce the YSCS [4,5]. However, we focus
on preparing other types of (squeezed) Schrödinger-cat states,
which will be shown in the following sections to have better
applications than (squeezed) YSCS.

In our system, mode a is subject to a coherent two-
photon driving and then we can remove the quadratic term
in the Hamiltonian of Eq. (6) by carrying out a squeezing
transformation on mode a with the squeeze operator S(ζ ) =
exp[(ζa†2 − ζ ∗a2)/2]. The squeeze parameter ζ = r exp(iφ1)
with amplitude r and phase φ1. The master equation in the
squeezing representation can be derived as (see Appendix B
for details)

d

dt
ρsq = −i[Hsq, ρsq] + κaL(a, ρsq) + κbL′(b, ρsq)

+ κcL′(c, ρsq), (7)

with

L(o, ρsq) = (Neff + 1)D[o]ρsq + NeffD[o†]ρsq

− MeffG[o]ρsq − M∗
effG[o†]ρsq,

o = a, (8)

L′(o, ρsq) = D[o]ρsq, o = b, c, (9)

where the density operator in the squeezing representation
is ρsq = S(ζ )D(η)ρD†(η)S†(ζ ) and the mean photon num-
ber and the two-photon correlation strength become (setting
φ1 = 0)

Neff = sinh2(r) cosh2(re) + cosh2(r) sinh2(re)

+ 1
2 cos(φe) sinh(2r) sinh(2re), (10)

Meff = [cosh(r) cosh(re) + e−iφe sinh(r) sinh(re)]

× [sinh(r) cosh(re) + eiφe cosh(r) sinh(re)], (11)

from which one can see that the mean photon number and the
two-photon correlation strength can be suppressed completely
(i.e., Neff , Meff = 0) when we reasonably adjust the amplitude
and phase of the squeezed-vacuum reservoir under the param-
eter conditions [49]: re = r and φe = ±nπ (n = 1, 3, 5, . . .).
In this case, the squeezed-vacuum reservoir with the same
squeezing amplitude as mode a becomes a vacuum reservoir
under phase matching, which plays a very important role in
suppressing the influence of noise on the system, such as en-
hanced nonlinear interaction [49], optical nonreciprocity [50],
and state preparation [12,51–53]. In addition, the Hamiltonian
in the squeezing representation can be derived as (dropping
constant terms)

Hsq = ωsaa†a + �bb†b + �cc†c + gpηs

2
(a2b† + a†2b)

+ �2[bei(ω2−ω3 )t e−iφ2 + b†e−i(ω2−ω3 )t eiφ2 ] + Hnr, (12)

Hnr =
[gpηs

2
a2b − gp

2
(a2b†c + a2c†b)

−(gsa
†a + g sinh2 r)(bηs − bc†)

]
+ H.c., (13)

with the transformed frequency of mode a, ωsa =
�a/ cosh(2r), the couplings gs = gcosh(2r) and gp =
g sinh(2r), and the squeeze amplitude r = 1

4 ln[(�a +
2�1)/(�a − 2�1)]. The value of the squeeze amplitude
r can be adjustable by controlling the amplitude and
detuning of the driving field. In the interaction picture with
U2 = exp[i(ωsaa†a + �bb†b + �cc†c)t], the Hamiltonian can
be rewritten as

HI = gpηs

2
(a2b† + a†2b) + �2(be−iφ2 + b†eiφ2 ) + H ′

nr, (14)

H ′
nr =

[gpηs

2
a2be−2i�bt − gp

2
(a2b†ce−i�ct

+ a2c†be−i(2�b−�c )t ) − (gsa
†a + g sinh2 r)(bηse

−i�bt

−bc†e−i(�b−�c )t )
]

+ H.c., (15)

where we have assumed that 2ωsa = �b and ω2 −
ω3 = �b. Under the parameter conditions 2�b �
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(gpηsna
√

nb/2, 2gsηsna
√

nb, 2gηs sinh2 r
√

nb), |�b − �c| �
(gsna

√
nbnc, g sinh2 r

√
nbnc), and |�b − �c ± 2ωsa| �

gpna
√

nbnc/2, with no(o = a, b, c) the dominant excitation
numbers in mode o, the Hamiltonian in Eq. (15) becomes the
term that oscillates with high frequency and can be safely
ignored under the rotating-wave approximation (RWA). Then
the total Hamiltonian in the interaction picture can be reduced
to

HI = G(a2b† + a†2b) + �2(be−iφ2 + b†eiφ2 ), (16)

with the coupling strength G = gpηs/2 between modes a and
b. From Eq. (16) one can see that it is a Hamiltonian that
describes the degenerate three-wave-mixing process of modes
a and b, where a photon of mode b is absorbed from (emitted
into) the driving field with amplitude �2 and two photons of
mode a are created (annihilated) simultaneously.

The Fredkin-type interaction is an optical process, which
was mainly used to design logic gates [45,46]. In our work,
we obtain the degenerate three-wave-mixing process from the
driven all-optical system with the Fredkin-type interaction
under the RWA. Realizing the Fredkin-type interaction is the
key to the experimental realization of our all-optical scheme
for obtaining the degenerate three-wave-mixing process. It has
been suggested and analyzed that with the beam-splitter and
cross-Kerr interactions among these three optical modes, the
Fredkin-type interaction can be obtained and has been realized
in experiments [45–48]. In addition, the validity of the RWA
is manifested in our numerical simulation. As shown in the
following sections, we will focus on the total Hamiltonian in
Eq. (14) and the reduced Hamiltonian in Eq. (16) for analyt-
ical solution and numerical simulation [54,55] and we will
show that a deterministic squeezed Schrödinger-cat state can
be prepared based on the Fredkin-type interaction.

III. DETERMINISTIC GENERATION OF SQUEEZED
SCHRÖDINGER-CAT STATES

A. Squeezed Schrödinger-cat states without single-photon loss

First, we assume that the decay rate of mode b is large
enough, i.e., κb � κa, so that the decay rate of mode a can
be neglected safely. In this case, mode b can be eliminated
adiabatically and then the master equation of the system with
the Hamiltonian in Eq. (16) becomes [13,14]

d

dt
ρa = −i[Heff, ρa] + �aL′(a2, ρa), (17)

where the effective Hamiltonian is Heff = iJ (a2 − a†2) with
the effective coupling J = 2�2eiφ2 G/κb describing the rates
of simultaneous decay and excitation of two photons, respec-
tively, ρa is the reduced density operator of mode a, and
�a = 4G2/κb is the effective two-photon decay rate. It has
been proved analytically that the master equation (17) has a
steady state for mode a, while, the steady state only depends
on its initial excited number [13,14]. Specifically, for mode a
initially in an even Fock state, its steady state is an ECS with
even number distribution, i.e.,

|ψa〉 = N−1/2
e (|α〉 + | − α〉), (18)

with the normalization coefficient Ne = 2[1 + exp(−2|α|2)]
and the amplitude α =

√
−�2eiφ2/G. For mode a initially in

an odd Fock state, it is an OCS with odd number distribution,
i.e.,

|ψa〉 = N−1/2
o (|α〉 − | − α〉), (19)

with the normalization coefficient No = 2[1 − exp(−2|α|2)].
For a generic initial state of mode a, its steady state will be a
mixture of the ECS and the OCS.

In the derivation of the Hamiltonian above, one can find
that four unitary transformations (with operators U2, S, D, and
U1) have been made, so the state of mode a in the laboratory
framework should be

|ψa〉la = U †
1 D†(η)S†(ζ )U †

2 |ψa〉
= exp(−iω1a†at )S†(ζ )|ψa(α′)〉, (20)

where |ψa(α′)〉 is still a Schrödinger-cat state with a mod-
ified amplitude α′ = α exp(−iωsat ). Meanwhile, the term
exp(−iω1a†at ) only causes the state to rotate in the phase
space and does not influence the properties of the state, such
as the photon-number distribution and the average value of
an observable. That is to say, in the laboratory framework,
the state of mode a is a steady squeezed Schrödinger-cat state
in our system. Note that this is different from the squeezing
of mode a. In the following sections, for the sake of conve-
nience, we will consider the state of mode a in the laboratory
framework as |ψa〉la = S†(ζ )|ψa(α)〉 and α as a real number.

In addition, according to Eqs. (16) and (17), one can also
find that both the two-photon decay rate �a and the coupling
J are closely related to the coupling G that depends on the
strength g of the Fredkin-type interaction. That is to say,
the Fredkin-type interaction leads to the two-photon loss of
mode a in our system, which makes mode a in the squeezed
Schrödinger-cat state in the laboratory framework.

To see the quantum features of the generated squeezed
Schrödinger-cat states, we now calculate the Wigner function
analytically. The Wigner function is a phase-space quasiprob-
ability distribution [3,56], which is defined in the position and
momentum space (q, p) as

W (q, p) = 1

2π

∫ +∞

−∞
dx

〈
q − x

2

∣∣∣ρla

∣∣∣q + x

2

〉
eipx, (21)

where ρla = |ψa〉la〈ψa|. For the squeezed even coherent state
(SECS), the Wigner function is derived as

W (q, p) = W1 + W2 + Win, (22)

where

W1 = exp[−(e−r p − p0)2 − (erq − q0)2]

2π (1 + e−p2
0−q2

0 )
, (23)

W2 = exp[−(e−r p + p0)2 − (erq + q0)2]

2π (1 + e−p2
0−q2

0 )
, (24)

Win = exp(−e−2r p2 − e2rq2)

π (1 + e−p2
0−q2

0 )
cos[2(e−r pq0 − er p0q)], (25)

with q0 = (α + α∗)/
√

2 and p0 = (α − α∗)/i
√

2. Similarly,
one can calculate the Wigner function of the squeezed odd
coherent state (SOCS) according to its definition. From
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FIG. 2. (a) and (c) Time evolution of the fidelity F between the actual state ρapp generated by our system and the exact squeezed
Schrödinger-cat state ρexa, with different cat sizes α and squeezed amplitudes r. (b) and (d) Plots of Wigner function at steady state with
(b) fixed squeezed amplitude r = 1.1 and different cat sizes α and with (d) fixed cat size α = 2 and different squeezed amplitudes r. In
the laboratory framework, modes a, b, and c are initially in the squeezed vacuum state, vacuum state, and coherent state, respectively. The
parameters are set as �a = 100κb, g = 10−5�a, �c = 11�b, G = 0.1κb, κc = κb, and κa = 0. Other parameters can be obtained from their
relations in the text.

Eqs. (23)–(25) one can see that the Wigner function exhibits
two squeezed peaks at the position-momentum space (q =
±e−rq0, p = ±er p0). Meanwhile, there are quantum interfer-
ence and coherence effects between the two peaks, displaying
the superposition of both amplitudes and showing rapid oscil-
lations. As shown in Fig. 1(b), we plot the Wigner function
of the SECS with squeeze amplitudes r = 0 and 1.1 based on
Eq. (22). Similar to Schrödinger’s paradox of the cat, the two
peaks in the Wigner function correspond to the “dead cat” and
the “alive cat.”. One can see that the Wigner functions show
negative values, indicating the nonclassical feature of the
squeezed Schrödinger-cat state. Moreover, the optical mode
a is squeezed on the position q at the expense of expanding in
its momentum p.

Above we analyzed the deterministic generation of
Schrödinger-cat states (i.e., squeezed Schrödinger-cat states in
the laboratory framework) with the Hamiltonian in Eq. (16).
We now use the total Hamiltonian in Eq. (14) to confirm
the effectiveness of our all-optical platform to generate the
squeezed Schrödinger-cat states. We define the fidelity F be-
tween the actual state ρapp generated by our system and the
exact, i.e., perfect, squeezed Schrödinger-cat state ρexa as

F = Tr
(√√

ρexaρapp
√

ρexa

)
. (26)

When the fidelity F approaches 1, it means that the state
generated by our system is the same as the perfect state. As
shown in Fig. 2, we plot the time evolution of the fidelity F
with different cat sizes α and squeezed amplitudes r, as well as
the corresponding Wigner functions at steady state. One can
see that the optical mode a is steered into a stable squeezed
cat state with high fidelity even though there is a term H ′

nr
that makes the Wigner functions in these plots look tilted.
Meanwhile, the cat size and the squeezed amplitude have good
adjustability by controlling the driving fields in our system.
In an actual experimental system, however, the decay rate of

mode a should be considered. In other words, the lifetime of
the generated squeezed Schrödinger-cat states will be limited
by the single-photon loss, so the effective two-photon decay
rate �a should be enhanced to make mode a able to reach its
target state with high speed and high fidelity. From Eq. (17)
we can see that the two-photon decay rate �a is parabola
dependent on the coupling G. That is to say, the coupling G
should be large. Unlike the general schemes, our system has
the advantage of enhancing the coupling G by adjusting the
parameters of the driving field, i.e., the steady-state value ηs.
As shown in Fig. 3(a), by adjusting the steady-state value ηs,
the coupling G is linearly enhanced so that the two-photon
decay rate �a can be increased parabolically. Meanwhile,
from Fig. 3(b) we can see that with a larger value of ηs (or
coupling G), the optical mode a can reach the steady squeezed
Schrödinger-cat state with higher speed (see the solid curve).
Otherwise it will take a longer time to evolve to the steady
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κbt
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G = 0.20κb
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G = 0.05κb
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Γ
a
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b
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0 50 100
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G
/κ
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(a)

FIG. 3. (a) Effective two-photon decay rate �a plotted as a func-
tion of coupling G. The inset shows the change of the coupling G
with the parameter ηs of the driving field. (b) Evolution of the fidelity
F with cat size α = 2, squeeze amplitude r = 1.1, and different
couplings G(0.20κb, 0.10κb, 0.05κb). The other parameters are the
same as those in Fig. 2.
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FIG. 4. (a) Evolution of the fidelity under the single-photon loss
with different phases φe of the squeezed vacuum reservoir. (b) Fi-
delity at time t ≈ 30/κb as a function of the phase of the squeezed
vacuum reservoir. The cat size α = 2, squeeze amplitude r = 1.1,
decay rate κa = 10−3κb, and other parameters are the same as those
in Fig. 2.

state (see the dot-dashed curve), which is undoubtedly detri-
mental to practical applications. Thus, with our all-optical
system, parameter adjustable steady squeezed Schrödinger-
cat states with high fidelity and speed can be obtained, which
is advantageous in an actual situation.

B. Squeezed Schrödinger-cat states with single-photon loss

So far, we have not considered the decay rate κa, i.e., the
single-photon loss, of the optical mode a and assumed the per-
fect phase matching of its squeezed-vacuum reservoir. The
decay rate of the optical mode a will limit the lifetime of
the generated squeezed Schrödinger-cat states. Meanwhile,
the noise induced by the deviation of the phase φe in the
squeezed-vacuum reservoir will also destroy the fidelity of the
state. In this section we analyze the evolution of mode a under
these imperfect factors.

As shown in Fig. 4, we plot the dependence of the fidelity
F on the deviation of the phase φe under the single-photon
loss, using the Hamiltonian (16). From Fig. 4(a) we can see
that under the single-photon loss, the value of fidelity has a
maximum value (about 0.958) at time t ≈ 30/κb when the
phase matching is met. When there is a deviation of the phase,
this maximum value at time t ≈ 30/κb decreases. Specifically,
we plot the dependence of the fidelity F (t ≈ 30/κb) on the
phase φe, as shown in Fig. 4(b). One can clearly see that the
best fidelity occurs in the vicinity of the phase matching, i.e.,
φe = π , and the deviation of the phase will decrease the value
of fidelity. In experiments, light with a squeezing bandwidth
up to GHz (MHz) in the optical (microwave) domain has
been realized [57,58]. Thus, the squeezed-vacuum reservoir
with this phase matching will have a very important role in
suppressing the influence of noise on the system.

Then we simulate the long-time evolution of mode a under
its single-photon loss with the total Hamiltonian. As shown
in Fig. 5(a) (see the solid curve), we plot the time evolution
of the fidelity F in the system under the single-photon loss of
mode a. From the curve one can see that in an open system
with a modest single-photon loss, mode a can be prepared to
the squeezed Schrödinger-cat state with good fidelity. Then
the fidelity decreases gradually and stays at a stable value in
the end. We plot the Wigner function of mode a at different
times as shown in Fig. 5(b). One can clearly see that with

the time evolution, the quantum interference and coherence
effects between the two squeezed peaks disappear gradually.
Moreover, the negative values of the Wigner function also
disappear, which are in sharp contrast to Fig. 2. Finally, the
two squeezed peaks remain in the plot of the Wigner func-
tion. Actually, one can see that under the single-photon loss,
there will be an additional term, i.e., κaL′(a, ρa), in Eq. (17).
Then, due to the simultaneous existence of single-photon and
two-photon losses of mode a, mode a will be in a mixture of
(approximately) two squeezed coherent states in the end after
decaying out the coherence [13,14].

We also analyze the evolution of mode a with the two-
photon loss turned off [i.e., G = 0 by adjusting the driving
field; see Fig. 3(a)] after it evolves to a squeezed Schrödinger-
cat state with good fidelity. In this case, mode a is only
subjected to single-photon loss. Under single-photon loss, the
density operator (here the SECS) of mode a will decay during
the evolution and can be written as [59]

ρdoc = N−1
e S†{|αe−κat/2〉〈αe−κat/2|+ | − αe−κat/2〉〈−αe−κat/2|

+ exp[−2α2(1 − e−κat )][|αe−κat/2〉〈−αe−κat/2|
+ | − αe−κat/2〉〈αe−κat/2|]}S, (27)

where the decay of the diagonal term is accompanied by
energy loss, while the decay of the nondiagonal term is
accompanied by the attenuation of coherence (i.e., decoher-
ence). After a long time evolution with single-photon loss, the
coherence of the generated squeezed Schrödinger-cat states
and the energy of the system will disappear, so mode a will
evolve into a squeezed vacuum state in the end. The lifetime
of the squeezed Schrödinger-cat state can be approximated
as τ = 1/2|α|2κa according to the above equation [59]. As
shown in Fig. 5(a) (see the dashed curve), we plot the evo-
lution of the fidelity F in the system with only single-photon
loss of mode a when it is evolved to the squeezed Schrödinger-
cat state with good fidelity. From the curve one can see that
the value of fidelity decreases monotonically and approaches
its initial value, that is, mode a evolves to a squeezed vacuum
state. Moreover, we also plot the Wigner function at the same
times as in Fig. 5(b), as shown in Fig. 5(c). One can see that
the difference between them is that the two squeezed peaks of
the Wigner function decay into one squeezed peak in the end.

In the experiment, in order to quickly prepare squeezed
Schrödinger-cat states and significantly prolong their life-
times, we must enhance the effective two-photon loss �a of
mode a and choose a small decay rate κa of mode a. For
a modest decay rate of the optical mode κa ∼ 105 Hz [60],
the lifetime of the state will be the order of microseconds.
However, with a smaller decay rate, the lifetime of the state
will be further increased. For example, with an extreme cavity
decay rate (∼0.2 Hz), Schrödinger-cat states of the order of
milliseconds have been prepared in an experiment [9]. In
addition, due to the extremely weak spin relaxation, long-lived
atomic Schrödinger-cat states of about 3 s have also been
predicted in theory by engineering the two-atom decay [23].
That is to say, reducing the corresponding decay rate as much
as possible will be the key to generate the quantum states in
experiments.
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FIG. 5. (a) Time evolution of the fidelity F in the system with simultaneous single-photon and two-photon losses of mode a, i.e., solid
curve, and with only the single-photon loss of mode a, i.e., dashed cure. (b) and (c) Plots of the Wigner function of mode a at different times
(t ≈ 30/κb, 200/κb, 800/κb, 5000/κb), corresponding to the solid and dashed curves in (a), respectively. The other parameters are the same as
those in Fig. 2 except for α = 2, r = 1.1, and κa = 10−3κb.

IV. PHASE ESTIMATION WITH SQUEEZED
SCHRÖDINGER-CAT STATES

Above we have shown that deterministic squeezed
Schrödinger-cat states (i.e., SECSs, SOCSs, and their mix-
ture) with high fidelity can be prepared in our all-optical
platform by engineering two-photon loss. The light field in
a squeezed Schrödinger-cat state can be applied to a variety
of quantum technologies, such as quantum computation and
quantum metrology. As an example, in this section, we ex-
ploit the squeezed Schrödinger-cat states generated by our
system to estimate the phase in the optical interferometer
and compare the QFI with those using the perfect squeezed
Schrödinger-cat states. First, we estimate the phase based
on the perfect squeezed Schrödinger-cat states. As shown in
Fig. 6, there are two linear phase shifters that contain an
unknown relative phase ϕ1-ϕ2 between the arms of the in-
terferometer. The phase information will be imprinted on the
initial quantum state in the input of the interferometer by the
unitary evolution, i.e.,

|�〉 = U |�0〉, (28)

where the unitary operator U = exp[i(ϕ1a†
1a1 + ϕ2a†

2a2)],
with a1,2 (a†

1,2) representing annihilation (creation) operators
in arms 1 and 2, and |�0〉 = |ψ1〉 ⊗ |ψ2〉 is the input state of
the interferometer, with |ψi〉 (i = 1, 2) the perfect squeezed
Schrödinger-cat states. Here we focus on the relative phase
between the two arms and then for a path-symmetric initial
state, the evolution operator U can be reduced to [61] U =
exp(iφ−O−), with ϕ− = ϕ1 − ϕ2 and O− = (a†

1a1 − a†
2a2)/2.

For the unitary evolution of the initial state |�0〉, the QFI can
be defined as [62–64]

F = 4〈�0|�2H|�0〉, (29)

where H = i(∂φ−U †)U and �2H = (H − 〈H〉)2. For the
unbiased estimation, the bound of uncertainty of phase esti-
mation is given by the quantum Cramér-Rao inequality, i.e.,
δφ− � 1/

√
F . When the QFI value is larger, it means that the

phase can be evaluated more accurately. With the expression
of the operator U , one can calculate the QFI as

F = 2[Var�0 (a†
i ai ) − Cov�0 (a†

1a1, a†
2a2)], i = 1 or 2,

(30)
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FIG. 6. Optical interferometer model used for the estimation of
the phase. A prepared quantum state is sent into the interferometer,
which contains an unknown relative phase ϕ1-ϕ2 generated by two
linear phase shifters between its two arms. The phase information
will be imprinted on the initial quantum state and be measured at the
output ports.

where Var�0 (•) and Cov�0 (•) are the variance and the covari-
ance in the state |�0〉, respectively. From Eq. (30) one can
find that the value of the QFI only depends on the properties
of the initial input state. As the initial state considered here
is separable, we have Cov�0 (a†

1a1, a†
2a2) = 0 and the QFI is

reduced to the variance of the photon-number operator a†
i ai.

Based on Eq. (30), we can calculate the expression of
the QFI analytically for the perfect squeezed Schrödinger-
cat states. Specifically, for the SECS, the QFI and the total
average photon number N of the two arms are

F = sinh2(2r) − 2α2sech(α2) sinh(4r − α2)

+ 2α4 cosh2(2r)sech2(α2), (31)

N = 2[sinh2(r) − α2sech(α2) sinh(2r − α2)], (32)

respectively. If the squeeze amplitude r = 0 (i.e., the
ECS), they are reduced to F = 2α4sech2(α2) + N and N =
2α2 tanh(α2), respectively. One can find that even if in the
low-photon-number regime the QFI can beat the value of the
standard quantum limit (SQL), i.e., F ∼ N , but its scaling can
only reach the SQL in the limit of the large photon number.
For the SOCS one has

F = sinh2(2r) + 2α2csch(α2) cosh(4r − α2)

− 2α4 cosh2(2r)csch2(α2), (33)

N = 2[sinh2(r) + α2csch(α2)cosh(2r − α2)]. (34)

If the squeeze amplitude r = 0, i.e., the OCS, they are reduced
to F = −2α4csch2(α2) + N and N = 2α2 coth2(α2), respec-
tively. One can also find that in the limit of the large photon
number the scaling of the QFI can reach the SQL, but it is
inferior to the SQL in the low-photon-number regime. For
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FIG. 7. (a) and (c) Quantum Fisher information (QFI) F plotted
as a function of the average photon number N with different initial
states, i.e., (a) squeezed even coherent state, squeezed odd coherent
state, and squeezed Yurke-Stoler coherent state and (c) even coherent
state, odd coherent state, and Yurke-Stoler coherent state. (b) and
(d) Mandel parameter Q of the Schrödinger-cat states with and
without squeezing plotted as a function of the average photon number
N . Here HL represents the Heisenberg limit N2. Note that the average
photon numbers of the SOCS and the OCS are greater than or equal
to 2, i.e., N � 2, due to their photon-number distributions.

comparison, we also calculate the case of the squeezed Yurke-
Stoler coherent state (SYSCS), i.e, |ψ〉 =† (r)[( 1+i

2 )|α〉 +
( 1−i

2 )|−α〉]. The QFI and the average photon number become

F = sinh2(2r) + 2e−4rα2, (35)

N = 2[sinh2(r) + α2e−2r]. (36)

Similarly, when the squeeze amplitude r = 0 (i.e., YSCS),
they are reduced to F = N and N = 2α2, respectively. One
can clearly find that with the YSCS, the scaling of the QFI
is only the SQL. From the expressions of the QFI using the
squeezed Schrödinger-cat states, one can see that, compared
with the one without squeezing, there are two parameters,
i.e., r and α, that can be chosen to increase the value of the
QFI. To see the scaling of this QFI, one can optimize the two
parameters to maximize the QFI for a fixed average photon
number. As shown in Fig. 7(a), we plot the QFI using the
above three squeezed Schrödinger-cat states by numerically
optimizing r and α with each fixed average photon number.
From the curves one can see that the value of the QFI using
the SECS is better than those using the SOCS and the SYSCS.
Specifically, in the case of the large photon number, the values
of the QFI using these three states are all higher than the value
of the HL (corresponding to N2), especially the SECS. In the
case of the low photon number, however, the SOCS is lower
than the HL [see the inset of Fig. 7(a)]. To see the scaling of
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the QFI using these three types of squeezed Schrödinger-cat
states in the limit of a large photon number, we numerically fit
the relation of the QFI with the average photon number. For
the SECS,

F ≈ 6.42N + 3.24N2; (37)

for the SOCS,

F ≈ −4.40 − 3.01N1/2 + 2.28N + N2; (38)

and for the SYSCS,

F ≈ 2N + N2. (39)

From the above equations, one can find that in the limit of
a large photon number, the scaling of the QFI with these
states is all the HL. Moreover, in the case of a low photon
number, the QFI using the SECS has significant advantages
in estimating the phase of the optical interferometer due to an
order of magnitude factor improvement over the value of the
HL, which is very important for fragile systems that cannot
withstand large photon fluxes, such as spin ensembles [65],
atoms [66], molecules [67], and biological systems [68]. In
Fig. 7(c) we also plot the QFI for the ECS, the OCS, and the
YSCS with different average photon numbers. Compared with
Fig. 6(a), the scaling of the QFI with these states is only the
SQL in the limit of a large number of photons. Thus, one can
see the importance of squeezing the Schrödinger-cat states.

One can understand this squeezing-enhanced phase estima-
tion as follows. As pointed out in Ref. [36], the QFI of Eq. (30)
can be rewritten as

F = N (1 + Q)(1 − J ), (40)

where the Mandel parameter of mode ai has the
form Q = [Var�0 (a†

i ai ) − 〈a†
i ai〉]/〈a†

i ai〉 and J =
Cov�0 (a†

1a1, a†
2a2)/Var�0 (a†

i ai ) ranges from −1 to 1. For
the input states considered here, the value of J is zero. So the
Mandel parameter for the pure and separable initial states can
be written as

Q = F
N

− 1. (41)

Then we can get the expressions of the above squeezed
Schrödinger-cat states according to the fitting formulas (37)–
(39). Specifically, for the SECS

Q ≈ 5.42 + 3.24N, (42)

for the SOCS

Q ≈ −4.40N−1 − 3.01N−1/2 + 1.28 + N, (43)

and for the SYSCS

Q ≈ 1 + N. (44)

In addition, one can also get the versions without squeezing.
As shown in Figs. 7(b) and 7(d), the Mandel parameter of the
Schrödinger-cat states with and without squeezing is plotted
as a function of the average photon number. One can find that
the Mandel parameters of the squeezed Schrödinger-cat states
are proportional to the average photon number, except for the
SOCS with the low photon number [see Fig. 7(b)], which can
contribute to bringing their QFI values to the HL in the limit of
a large photon number. However, for the Mandel parameter of
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FIG. 8. Quantum Fisher information F plotted as a function of
the average photon number N with the perfect squeezed even coher-
ent state and the SECS generated by our system. Meanwhile, for the
SECS generated by our system, we also consider the effect of the
single-photon loss on the QFI. The other parameters are the same as
those in Fig. 2.

the Schrödinger-cat states without squeezing [see Fig. 7(d)],
one can clearly find that with the increase of the average
photon number, the Mandel parameters all go to zero, whereas
the YSCS remains zero. This causes their QFI values only to
approach the SQL, which is in stark contrast to those of the
corresponding squeezing Schrödinger-cat states.

From the above discussion we can conclude that the phase
evaluation precision using the SECS is the best among the
three squeezed Schrödinger-cat states. Now we estimate the
phase based on the SECS generated by our all-optical system.
For the case without the single-photon loss, i.e., κa = 0, we
have shown that the squeezed Schrödinger-cat states with high
fidelity can be prepared in our system (see Fig. 2). Then,
according to Eq. (30), we numerically simulate the QFI in the
low-photon-number regime, as shown in Fig. 8. We can see
that due to the high fidelity of the squeezed Schrödinger-cat
state generated by our system, the QFI values are in good
agreement with the perfect one in the low-photon-number
regime. When considering the effect of the single-photon
loss, we also numerically calculate the QFI for the squeezed
Schrödinger-cat states. In this case, the squeezed Schrödinger-
cat states generated by our system will be a mixed state (see
Fig. 5). For the mixed state, the QFI can be defined as [62–64]

F =
M∑

i=1

(∂θ pin,i )2

pin,i
+

M∑
i=1

4pin,i〈ψin,i|H2|ψin,i〉

−
M∑

i, j=1

8pin,i pin, j

pin,i + pin, j
|〈ψin,i|H|ψin, j〉|2, (45)

where pin,i and |ψin,i〉 are the ith eigenvalue and eigenstate of
the density matrix ρ0 of the input mixed state, respectively.
Based on the QFI of the mixed state, we obtain its evolution
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with the average photon number, as shown in Fig. 8. Due to
the effect of the single-photon loss, we can see that compared
with the case without the single-photon loss, the QFI values
decrease for each fixed photon number, but they are far more
than the value of the HL (N2) in the low-photon-number
regime.

V. CONCLUSION

We have proposed an all-optical platform based on the
Fredkin-type interaction to deterministically generate the
squeezed Schrödinger-cat states with high speed and high
fidelity. We obtained the analytical expression of the Wigner
function of the squeezed Schrödinger-cat state and showed the
evolution of the Wigner function in an open system in detail.
We estimated the phase in an optical interferometer with the
squeezed Schrödinger-cat states (including the squeezed even
coherent state, squeezed odd coherent state, and squeezed
Yurke-Stoler coherent state). We found that in the limit of
a large photon number, the quantum Fisher information can
all reach the Heisenberg limit. In particular, the QFI for the
SECS can have an order of magnitude factor improvement
over the HL in the low-photon-number regime, which is im-
portant for fragile systems that cannot withstand large photon
fluxes.
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APPENDIX A: MASTER EQUATION IN THE
DISPLACEMENT REPRESENTATION

To remove the linear term of mode c, i.e., �3(ce−iφ3 +
c†eiφ3 ), of Eq. (1), we perform a displacement transformation
on mode c, i.e., D(η)ρD†(η) = ρdis, with the displacement
operator D(η) = exp(ηc† − η∗c). Then we have

ρ̇ = d

dt
[D†(η)ρdisD(η)]

= Ḋ†(η)ρdisD(η) + D†(η)ρ̇disD(η) + D†(η)ρdisḊ(η)

= −i[H, D†(η)ρdisD(η)] + κaL[a, D†(η)ρdisD(η)]

+ κbL′[b, D†(η)ρdisD(η)] + κcL′[c, D†(η)ρdisD(η)],
(A1)

so

D†(η)ρ̇disD(η) = −[Ḋ†(η)ρdisD(η) + D†(η)ρdisḊ(η)]

− i[H, D†(η)ρdisD(η)]

+ κaL[a, D†(η)ρdisD(η)]

+ κbL′[b, D†(η)ρdisD(η)]

+ κcL′[c, D†(η)ρdisD(η)]. (A2)

After some tedious calculations, one can get the master equa-
tion in the displacement representation, i.e., Eq. (6),

d

dt
ρdis = −i[Hdis, ρdis] + κaL(a, ρdis ) + κbL′(b, ρdis )

+ κcL′(c, ρdis ), (A3)

by multiplying D(η) on the left-hand side and D†(η) on the
right-hand side of Eq. (A2) and eliminating the linear terms
in the transformed Liouvillian. This process leads to the equa-
tion for the amplitude η,

η̇ = −(i�c + κc/2)η + i�3eiφ3 . (A4)

Then its steady value is ηs = �3eiφ3/(�c − iκc/2).

APPENDIX B: MASTER EQUATION IN THE SQUEEZED
REPRESENTATION

To remove the quadratic term of mode a, i.e., �1(a2e−iφ1 +
a†2eiφ1 ), of Eq. (6), we perform a squeezing transformation on
mode a, i.e., S(ζ )ρdisS†(ζ ) = ρsq, with the squeeze operator
S(ζ ) = exp[(ζa†2 − ζ ∗a2)/2]. Similar to the above displace-
ment transformation, one can get the master equation in the
squeezed representation, i.e., Eq. (7),

d

dt
ρsq = −i[Hsq, ρsq] + κaL(a, ρsq) + κbL′(b, ρsq)

+ κcL′(c, ρsq) (B1)

by eliminating the nondiagonal term of the transformed
Hamiltonian, which leads to the equation for the amplitude
r,

�a sinh(2r)/2 − cosh(2r)�1 = 0. (B2)

Then we have r = 1
4 ln[(�a + 2�1)/(�a − 2�1)].
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