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Non-Hermitian systems have recently attracted broad interest and exhibited intriguing physical phenomena,
including the non-Hermitian skin effect, which have been widely studied in various fermionic and bosonic
systems. Here we propose a non-Hermitian atom-waveguide system composed of a tilted one-dimensional atomic
array coupled with two identical waveguides with opposite chiralities. Such system creates an effective lattice
model including nonreciprocal long-range hoppings through the chiral-waveguide photon-mediated interactions.
We find the excitations of the collective atomic states concentrate in the middle interface associated with
subradiant modes, while, on the contrary, superradiant modes exhibit extended features. Such a unique feature
in our proposed system is linked to the non-Hermitian skin effect. Simulation results present a subradiant
funneling effect, with robustness against small atomic position disorders. Our work underpins the fundamental
comprehension towards the non-Hermitian skin effect in open quantum systems and also provides prospective
paths to study non-Hermitian systems in the area of quantum optics.
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I. INTRODUCTION

The non-Hermitian Hamiltonian has recently attracted
great interest due to its describing the interactions between
a physical system and the environment that are ubiquitous
in nature. It has been extensively studied in versatile fields,
including the measurement of dissipation in open quantum
systems [1,2], the dynamics of the nonlinear instabilities in
soft matter and quantum fluids [3,4], theoretical and experi-
mental implementations in nonreciprocal coupling strengths
[5–12], and many others [13–24]. The non-Hermitian skin
effect (NHSE), in which the eigenstates are found to be con-
centrated near the interface [20,25–30], is one of the most
remarkable phenomena in non-Hermitian systems in the past
decade, and leads to many appealing physics in quantum
systems [11,19–24,28–37]. For example, the non-Hermitian
photonics mesh lattice with anisotropic couplings has been
studied towards building up the light-harvesting platforms
and optical sensors with enhanced sensitivity [30]. Moreover,
NHSE is a key component in active arguments on the collapse
of the conventional bulk-boundary correspondence, indicating
the new perspective of exotic properties in non-Hermitian
systems [31–35].

Exploring light-matter interactions and hence manipulating
quantum states are critically fundamental in quantum optics,
which have been profoundly studied in various systems [38].
Optical waveguides provide achievable platforms to control
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efficient light-atom interactions, including providing single
atom-photon couplings towards the photon transport process
[39–45], and long-range atom-atom interactions in atomic
arrays through mediating waveguide-guided propagating pho-
tons [46–50]. In particular, an ensemble of atoms coupled with
one-dimensional (1D) waveguide systems has been studied to
show fruitful properties such as sub- and superradiant states
[51–54], the topologically enhanced photons absorption [55],
nonlocal optical nonlinearities [56], and the electromagneti-
cally induced transparency [57,58], which exhibit significant
applications potentially in quantum state storage and quantum
information processing. As a natural non-Hermitian system,
the atom-waveguide system presents an interesting platform
to explore the NHSE, which, however, has not been studied
to the best of our knowledge. Fortunately, by virtue of recent
developments in chiral quantum optics fields [5,59–65], it
is possible to implement promising nonreciprocal control of
light-atom interactions by employing the chiral waveguides
[5,62,66–68], which provides the possibility to explore the
NHSE in atom-waveguide systems.

In this work, we study a tilted one-dimensional atomic
array coupled with two chiral waveguides, which exhibits sub-
radiant states concentrated at the middle interface. By placing
the atomic array in-between waveguides with a small angle,
position-dependent dipole-dipole interactions have been built
through mediating photons that propagate at opposite direc-
tions in two waveguides. Such system gives a non-Hermitian
lattice model including long-range couplings. Opposite asym-
metric hoppings between two atomic dipoles are supported in
the lattice model, while the middle atom holds same decays
into both waveguides and hence provides an artificial interface
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FIG. 1. (a) Schematic of a one-dimensional atomic array cou-
pled with two chiral waveguides, with atoms uniformly arranged
with a tilted small angle in-between the waveguides. Atoms emit
photons into the right- (left-)propagating chiral waveguide, and the
corresponding spontaneous decay rate is γR (γL), which depends
on the distance r − a (or D − r + a) from the atom to the top (or
bottom) waveguide surface. (b) The complex eigenenergies E of the
non-Hermitian lattice model including 41 atoms. The mode number
m is arranged in descending order by the imaginary part of E . Blue
(red) dot refers to the eigenvalue at m = 2 (m = 40).

at the center of the atomic array. Our system exhibits concen-
trated states with subradiant decays, but extended states with
superradiant decays. Similar to the funneling effect of light in
a photonic system that refers to any light field traveling toward
an interface [30], we find that excitations at various positions
in the atomic array evolve towards the center interface but
hold the subradiant feature. During these processes, the super-
radiant states of the system dissipate fast. Such concentrated
subradiant states show robust property against atomic posi-
tion disorders. Our study therefore points towards the NHSE
in the atom-waveguide system with possible applications in
quantum-state harvesting and robust photon storage in the
sense of quantum optics.

II. MODEL

We study a one-dimensional atomic array coupled with
two chiral waveguides, as schematically shown in Fig. 1(a).
In particular, N two-level atoms are aligned along the x axis
with equal spacing d , each of which is labeled by j [for
j = −(N − 1)/2, . . . , 0, . . . ,+(N − 1)/2, for odd N] at po-
sitions x j . Two chiral waveguides with spacing D, placed at a
small angle to the x axis in xy plane, are identical except that
photons are allowed in propagating in opposite directions, i.e.,
the top one is a right-propagating waveguide while the bottom
one is left propagating [see Fig. 1(a)]. Here we only consider
the spontaneous decay rate of guided modes, but ignore the
effect caused by the environment since the loss to the envi-
ronment leads to a background dissipation, and do not change
the main feature of the findings in our proposed system (see
Appendix A for details). The spontaneous decay rate γR j (or
γL j) is dependent on the distance r − a (or D − r + a) from
the jth atom to the top (or bottom) waveguide surface, where
r denotes the distance from each atom to the top waveguide
cylinder axis and a is the radius of each waveguide. We take
r > a throughout this paper.

We next discuss the effective model that supports dipole-
dipole interactions from the mediated waveguide photon. To
this purpose, we take N = 41 atoms into consideration, and
the term γ used as a normalization factor throughout this
paper refers to the average spontaneous decay rate of this spe-

cific N = 41 system, i.e., γ = ∑+20
j=−20(γR j + γL j )/(2N ). We

set a = 250 nm, D = 1000 nm, and d = 9073.8 nm (d � λ

for eliminating the effect caused by the environment in the
interatomic interactions). λ = 852 nm is the wavelength of
the waveguide photons. Atoms are uniformly arranged with a
tilted angle θ ∼ 0.002 rad in-between the waveguides (i.e., the
zeroth atom is placed in the middle of two waveguides). γR j

(γL j) are calculated accordingly [69]. We notice that the atom
experiences larger decay if it is close to one waveguide and
gives relatively very small decay rates into both waveguides
if it is near the middle between two waveguides [69–71].
Moreover, there emerges a generalized interface in the cen-
ter of the atomic array, which is critically important to the
later demonstrations of the non-Hermitian skin effect and the
funnel-like behavior.

By taking the Born-Markov approximation and neglecting
the retardation caused by the finite propagation velocity of
photons, one can write the chiral master equation for the
evolution of the system density operator [72],

˙̂ρ(t ) = −i[Ĥsys, ρ̂(t )] +
∑

λ=R,L

∑
j

γλ j

2
{[σ̂ j, ρ̂(t )σ̂ †

j ]

− [σ̂ †
j , σ̂ j ρ̂(t )]}

+
∑

λ=R,L
kλx j>kλxl

∑
j,l

√
γλ jγλl{e−ikλ(x j−xl )[σ̂ j, ρ̂(t )σ̂ †

l ]

− eikλ(x j−xl )[σ̂ †
j , σ̂l ρ̂(t )]}, (1)

where ρ̂(t ) is the time-dependent system density operator.
Here, h̄ = 1 for simplicity. The Hamiltonian of the two-level
atoms system Hamiltonian reads Ĥsys = ∑

j � j σ̂
†
j σ̂ j , with j

being the index of the jth atom and the operator σ̂
†
j = |e j〉〈g j |

being the operator representing the transition from the ground
state |gj〉 to the excited state |e j〉. kR = −kL = k, where k
is the wave vector of the photon. Ĥeff denotes the effective
Hamiltonian.

To derive the effective Hamiltonian of our proposed system
in Fig. 1(a), we rewrite the chiral master equation in explicit
Lindblad form as [66,72]

˙̂ρ(t ) = −i[Ĥsys, ρ̂(t )] − i[Ĥeff ρ̂(t ) − ρ̂(t )Ĥ†
eff ] + ĉLρ̂(t )ĉ†

L

+ ĉRρ̂(t )ĉ†
R, (2)

where ĉL = ∑
j
√

γL jeikx j σ̂ j and ĉR j = ∑
j
√

γR je−ikx j σ̂ j . By
comparing Eqs. (1) and (2), we obtain the long-range effective
Hamiltonian of our model as

Ĥeff = − i

2

∑
j

(γL j + γR j )σ̂
†
j σ̂ j − i

∑
j>l

√
γLlγL j σ̂

†
l σ̂ je

ik(x j−xl )

− i
∑
j>l

√
γRlγR j σ̂

†
j σ̂l e

ik(x j−xl ). (3)

The effective Hamiltonian in Eq. (3) is non-Hermitian,
which is consistent with the Hamiltonians in Refs. [20,27–
36,72,73], but includes nonuniform long-range dipole-dipole
interactions where on-site decays in the first term and hopping
coefficients in the second and third terms are dependent on
the positions of the two atoms. In the following, we use the
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FIG. 2. (a) Intensity distributions vs atom site j for all eigen-
states with m = 1, 2, . . . , 41. Colors for each eigenstate indicate
the collective decay rates. (b),(c) The intensity distributions for the
eigenstate with m = 2 and the eigenstate with m = 40, respectively.

Hamiltonian (3) to explore the NHSE phenomena in the model
of Fig. 1(a).

III. RESULTS

The effective Hamiltonian in Eq. (3) includes N = 41
atoms at different positions between waveguides, and hence
has no translational symmetry. We therefore diagonalize
Eq. (3) with the open boundary directly in the spatial space.
The resulting band structure is plotted in Fig. 1(b), which
has 41 eigenenergies E at complex values. We use m =
1, 2, . . . , 41 to label the index of eigenenergies by increas-
ingly sorting [−Im(E )], the collective decay rate of the mode,
from a slow decay rate to a fast decay rate. One can see
that most of the modes exhibit a collective decay rate that is
smaller than the average spontaneous decay rate of the system,
i.e., [−Im(E )] < γ , referring to subradiant modes, while the
others have [−Im(E )] > γ , giving the superradiant modes of
the system. Notably, there are two modes having [−Im(E )]
∼ 10−3γ (m = 1, 2). The real parts of the eigenenergies are
around zero for most subradiant modes, but diverge towards
∼±γ for larger m (larger collective decay rate).

We further plot the intensity distribution versus atom site j
for all the eigenstates with m = 1, 2, . . . , 41, in Fig. 2(a). The
remarkable feature is that the modes with very small collective
decay rate (subradiant modes) exhibit concentrated intensity
in the middle interface around the zeroth atom. When the
collective decay rate of the modes increases, the concentration
of intensity at the middle interface becomes weaker. Further
increase of the collective decay rate to the superradiant regime
results in the fact that the concentration disappears and the
intensities of the modes extend gradually towards two ends
of the atomic array. We show two examples of very opposite
cases in Fig. 2(b) for the eigenstate at m = 2 and Fig. 2(c)
for the eigenstate at m = 40. One can see that for the mode at
m = 2 in Fig. 2(b), the intensity distribution is concentrated
mostly at the middle of the atomic array, with exponentially
decaying into both sides. The corresponding collective decay
rate is ∼1.4 × 10−3γ , which is a subradiant mode. However,
for the mode at m = 40 in Fig. 2(c), the collective decay rate
gives a superradiant decay with ∼8γ , where the eigenstate
exhibits the extended distributions with highest intensities at
the ( j = ±17)-th atoms.

Next we conduct numerical simulations to study the evo-
lutions of the system under different conditions. We consider

(a) (b) (c)
–

FIG. 3. Simulation results of the excited wave-packet evolutions
with time, with three different initial excitation positions at (a) js =
−11, (b) js = 0, and (c) js = +11, respectively.

the wave function of the excited wave packet as

|φ(t )〉 =
∑

j

v j (t )σ̂ †
j |0〉, (4)

where v j (t ) is the amplitude of the wave-packet state at
the jth atom. By inserting Eq. (4) into the Schrödinger
equation H |φ(t )〉 = i d

dt |φ(t )〉, where H is defined in Eq. (3),
we obtain the coupled time evolution equations at the position
of the jth atom when exciting the jsth atom (−20 < j <

+20):

v̇ j (t ) = −γL j + γR j

2
v j (t ) −

j−1∑
l=−20

√
γRlγR j eik·( j−l )d vl (t )

−
+20∑

l= j+1

√
γL jγLl eik·(l− j)d vl (t ) + s(t )δ js, j . (5)

The jsth atom is excited by a temporal Gaussian-shape
excitation source s(t ),

s(t ) = e− (t−ts )2

2τ2 e−iωst , (6)

where ts and τ give the temporal center and the width of
the Gaussian excitation, respectively, and ωs represents the
excitation frequency.

In simulations, we are aiming to excite the subradiant
modes, which exhibits the concentration at the middle in-
terface with a relatively long decay time [such as the mode
at m = 2 in Fig. 2(b)]. We therefore set ωs = −0.0032γ ,
ts = γ −1, and τ = 2 γ −1. Note that the excitation frequency
ωs is chosen to be resonant with the eigenfrequency of the
mode at m = 2. However, as shown in Fig. 1(b), the real
parts of the eigenstates are around 0, so the excitation source
here may excite many modes. Fortunately, the subradiant
modes not only share the same features of concentration at
the middle interface, but also exhibit long decay time, which
makes it possible to observe the corresponding phenomena
in simulations. We also take three different excited positions
at js = −11, 0, and +11, respectively, where the simulation
results showing the excited wave-packet evolutions with time
are plotted in Fig. 3. One can see that for all three cases,
the normalized intensity of the excitation gradually focuses
at the middle interface during evolutions, while the energy
of the excitation decays exponentially. Such phenomena are
consistent with the eigenstate distributions in Fig. 2(a). After
all superradiant modes quickly decay, the subradiant modes
exhibit a slower decay with the funnel-like behavior that the
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FIG. 4. Atomic positions with disorders at (a) δ = 2θd and (d) δ = 6θd . The blue dots are the position arrangement of 41 atoms, the
red dashed line denotes the original atomic positions without disorders, and the solid green lines indicate the two chiral-waveguide surfaces.
(b),(e) The corresponding intensity distributions of all eigenstates, respectively. (c),(f) The corresponding simulation results of the excited
wave-packet evolutions with time, with the initial excitation position at js = −11.

wave packet propagates to the middle interface. Moreover,
compared with excitations near two sides of the atomic ar-
ray, the initial excitation at the middle [see Fig. 3(b)] shows
the confined wave packet with stronger intensities because
the initial excitation largely overlaps with the eigenstates of
subradiant modes and hence more such states are excited.

Different from Ref. [30], our model supports not only sub-
radiant modes that concentrate the excited quantum states into
the middle interface, but also includes superradiant modes that
hold extended distributions but decay much faster. Therefore,
in the funneling process in our proposed model, the total
energy of the excitation decreases due to the energy loss not
only from the background dissipation, but also mainly from
these superradiant modes. Nevertheless, the concentrations of
the wave packet at the middle interface associated with sub-
radiant modes reveal the manifestation of the non-Hermitian
skin effect in this atom-waveguide system.

To further explore the robustness of such funnel-like be-
havior in this non-Hermitian atom-waveguide system, we
consider disorders of atomic positions, where each atom is
deviated vertically from its original position by a factor of
δR. Here, R is a random number chosen in a regime of
(−0.5, 0.5) and δ is a constant reflecting the disorder of
the system. In simulations, we take δ = 2θd ≈ 36 nm and
δ = 6θd ≈ 108 nm, which results in the disordered atomic
positions shown in Figs. 4(a) and 4(d). The corresponding
intensity distributions of all the eigenstates are presented in
Figs. 4(b) and 4(e), respectively. One can see that in both
cases, the subradiant modes are still concentrated near the
interface, while the superradiant modes expand towards both
sides of the atomic array. We also perform simulations at
conditions similar as those in Fig. 3(a) with the excitation
source applied on the −11th atom. As seen in both Figs. 4(c)
and 4(f), although larger disorders lead to faster decay of the
collective excitation, excitations of the system are localized

into the middle interface of the atomic array. Simulations with
disorders presented here therefore demonstrate robust NHSE
associated with the subradiant modes.

The concentrated subradiant states in our proposed model
are of a different nature from the localization effects under
the topological protection [29,74–83], where only a few topo-
logical modes are selected to show the concentration. The
subradiant states here are found to be associated with the
NHSE, while the extended states are the results from the
competition between fast single-atom losses and the NHSE
(see Appendix C for details). Moreover, the interesting
phenomena shown in our work mainly result from the nonre-
ciprocal couplings but not the loss profile, while the losses are
indeed crucial for the extended states. We further explore our
proposed model over a broad range of parameters in Appen-
dices C and E, and conclude that the existence that is found
of concentrated states with subradiant features persists for
the scale of the system, N → ∞, which provides further evi-
dence of connecting to NHSE [84]. Lastly, the occurrence of
the interesting phenomena that are found mainly depends on
the varying rate of γR(L) j on the atomic positions, which is
a result of the geometry of the atomic array. In other words,
if γR(L) j varies largely, the distributions of eigenstates show
the phenomena of concentrated subradiant states and extended
superradiant states. However, when the varying rate of γR(L) j

decreases, a transition occurs and the system exhibits all bulk
states (refer to Appendix E).

IV. DISCUSSION AND CONCLUSION

Our proposal is potentially feasible for experimental
realizations on optical platforms including nanofibers or
nanophotonic waveguides coupled with atoms [53,54,85–89]
and superconducting transmission lines with artificial atoms
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[90–94]. Previous experiments have demonstrated that the
nanofiber can effectively trap ∼2000 atoms localized about
200 nm around the nanofiber surface [95], where the ratio be-
tween the guided mode decay rate (γ ) and the vacuum decay
rate of a single atom (γ0) can reach γ / γ0 ∼ 0.9 ± 0.1 [53].
Moreover, it has been shown that one can further reduce the
impact from the losses emitted into the environment [90,96–
99]. For example, recent developments in experiments have
greatly strengthened the guided mode coupling coefficients
γ /γ0 ∼ 50 for transmon qubits coupled to a 1D coplanar
microwave transmission line [90]. On the other hand, chiral
waveguides have been engineered in photonic nanostructures,
where unidirectional transport of photons have been real-
ized for chiral quantum optics [5,60–65,100]. All of these
start-of-art technologies make the proposal of atoms localized
in-between two chiral waveguides feasible in future experi-
ments.

In summary, we have investigated a tilted one-dimensional
atomic array coupled with two chiral waveguides, which
supports a non-Hermitian lattice model with asymmetric
long-range hoppings. Features of concentrated states with
subradiant decays but extended states with superradiant de-
cays are exhibited. By exciting the system at different atoms,
we numerically show the atomic funnel-like behavior where
the energy of the excitation is guided to the middle interface,
with the robustness against small disorders. Our results reveal
distinctive physics in a chiral atom-waveguide system, point-
ing to the NHSE associated with the subradiant modes, which
paves a promising path to study intriguing non-Hermitian
properties via quantum optics platforms. This theoretical
proposal also shows potential applications towards the ma-
nipulation of quantum states, which is of great significance
in the fields of quantum storage and quantum information
processing.
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APPENDIX A: THE EFFECT OF THE ENVIRONMENT

The total spontaneous decay rate for a single atom placed
near a waveguide can be written as

γ (total) = γ (g) + γ (r), (A1)

where γ (g) and γ (r) refer to guided modes and radiation
modes, respectively. The numerical results of γ (g) can be
obtained by the approach in Appendix B.

From many well-known works in Refs. [69–71], we know
that as the distance increases, the decay rate of the guided
modes exponentially decreases to zero, while the decay rate
of the radiation modes exponentially decreases to the free-
space decay γ0. In our main text, we take all parameters in
Ref. [69], numerically calculate γ (g) for a single waveguide,
and exhibit our result in Fig. 7, which is consistent with
Fig. 2(a) in Ref. [69]. Since we take the same parameters and
refer to their calculation methods, there is a comparability of
radiation modes in our work. We notice that the decay rate
of the radiation modes stably reaches to free-space decay γ0

at about r − a = 125 nm. Therefore, we can take the decay
to the environment as γ0 throughout the main text as long as
we make sure the nearest distance between an atom and the
surface of the waveguide is bigger than 125 nm. After making
this approximation, the total spontaneous decay for a single
atom is

γ (total) = γ (g) + γ0. (A2)

Furthermore, we make our second reasonable approxi-
mation: the emission into the environment only provides
independent single-atom decay, but does not contribute to
dipole-dipole interactions. The same approximation is used
in Ref. [101] when dealing with the effect caused by the en-
vironment. This approximation is valid when the interatomic
distance (labeled as d in the main text) is much larger than
the wavelength (calculated as 2π/k in the main text), i.e.,
d � λ = 2π/k = 852 nm. The reason is as follows: The
waveguide mediates long-range interactions by photons, and
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FIG. 5. (a) The complex eigenenergies E of the non-Hermitian lattice model including 41 atoms in the main text. (b) The complex
eigenenergies E of the non-Hermitian lattice model including 41 atoms which takes into account the environment. The order of the mode
number m is arranged in descending order by the imaginary part of E .
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FIG. 6. The localization without taking into account the environ-
ment (upper panel) vs the localization that takes into account the
environment (lower panel). (a), (d) Intensity distributions vs atom
site j for all eigenstates with m = 1, 2, . . . , 41. Colors for each
eigenstate indicate the collective decay rates. (b), (e) The intensity
distributions for the eigenstate with m = 2. (c), (f) The intensity
distributions for the eigenstate with m = 40.

thus the atoms interact with each other via the guided mode
no matter what the atoms’ spacing is. In contrast, the field
decays depending on distance as a series of power laws in free
space. Therefore, if the spacing of two atoms is too far, the
cross-atom decay can be seen as zero.

From what has been discussed above, we obtain a new
effective Hamiltonian including the effect by the environment
which describes this non-Hermitian system written as

Ĥeff = − i

2

∑
j

(
γ

(total)
L j + γ

(total)
R j

)
σ̂

†
j σ̂ j

− i
∑
j>l

√
γ

(g)
Ll γ

(g)
L j σ̂

†
l σ̂ je

ik(x j−xl )

− i
∑
j>l

√
γ

(g)
Rl γ

(g)
R j σ̂

†
j σ̂l e

ik(x j−xl ). (A3)

We set the same parameters as the main text. Fig. 5 shows
the energy spectra for this new Hamiltonian in Eq. (A3).

According to Fig. 5, one can see that the real part of the
energies does not change, which indicates that adding the
impact from the environment will not influence the excit-
ing frequency in the later numerical simulation. In contrast,
the imaginary part of the energies changes as one can ex-
pect. The losses of subradiant states inevitably increase.
Fortunately, the number of sub- and superradiant states stays
the same. However, the minimal loss is over 10−2γ (total)

(γ (total) = γ (g) + γ0 due to linear algebra), where γ (total) and
γ (g) refer to the average total and guided spontaneous decay
rate of this specific N = 41 system, respectively.

As illustrated in Fig. 6, the intensity distributions still ex-
hibit similar patterns after the environment is included. We

can come to the similar conclusion as we have claimed in the
main text: our system exhibits concentrated states with subra-
diant decays, but extended states with superradiant decays.

In summary, by making two reasonable approximations,
we find the environment critically important to exert an im-
pact on the energy spectra, especially the imaginary part, i.e.,
the losses. Nevertheless, the effect of environment does not
change the main feature of our proposed system, i.e., the
system has subradiant modes concentrated in the middle inter-
face but also includes superradiant modes that hold extended
distributions but decay much faster.

APPENDIX B: THE CALCULATION OF THE
SPONTANEOUS DECAY RATE OF GUIDED MODES

FOR A SINGLE WAVEGUIDE IN THE
ATOM-WAVEGUIDE SYSTEM

In the main text, we use the spontaneous decay rate γ

of guided modes in the atom-waveguide system. Here we
provide details. We take the refractive index of the waveguide
n1 and the surrounding environment has the refractive index
n2. The position-dependent rate of an atom decaying into the
waveguide can be obtained by solving the time-dependent
Schrödinger equation and then performing a standard Wigner-
Weisskopf treatment, which has been attentively discussed in
Ref. [71], and the resulting decay rate is

γ (r) = � j

2ε0h̄
|d̂ j · ê(r)|2, (B1)

where � j denotes the atomic transition frequency; d̂ j refers
to the dipole moment for an atom, and ê(r) is the profile
function for photon modes that propagate at the z axis along
the waveguide direction, which reads [69]

er = iC[(1 − s)K0(qr) + (1 + s)K2(qr)],

eϕ = −C[(1 − s)K0(qr) − (1 + s)K2(qr)],

ez = C
2q

k
K1(qr), (B2)

-20 0 20
0

0.05

0.1

0.15

0.2

0.25

0.3

–

FIG. 7. The numerical results of the spontaneous decay rate de-
termined by the distance r − a (or D − r + a) from the atom to
the top (or bottom) waveguide surface at the position of each atom
j = −20, −19, . . . , +19, +20.
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where Kp (p = 0, 1, 2) represents the modified Bessel func-
tions of the second kind; C satisfies the normalization
condition that

∫ 2π

0 dϕ
∫ ∞

0 n2
2|ê|2rdr = 1. The parameters

q =
√

k2 − n2
2k2

0 and h =
√

n2
1k2

0 − k2, and the propagation
constant k is the solution of the waveguide eigenvalue equa-
tion that reads [102,103]

J0(ha)

haJ1(ha)
= −n2

1 + n2
2

2n2
1

K ′
1(qa)

qaK1(qa)
+ 1

h2a2

−
[(

n2
1 − n2

2

2n2
1

K ′
1(qa)

qaK1(qa)

)2

+ k2

n2
1k2

0

(
1

q2a2
+ 1

h2a2

)2]1/2

. (B3)

Here, in Eqs. (B2) and (B3), the parameter s takes the form

s = 1/h2a2 + 1/q2a2

J ′
1(ha)/haJ1(ha) + K ′

1(qa)/qaK1(qa)
, (B4)

where J1 is the Bessel functions of the first kind.

Once we have all the information above, we can plot the
decay rate by taking Eqs. (B1)–(B4) with parameters of the ce-
sium atom and a silica cylinder nanofiber from Refs. [69,71],
as illustrated in Fig. 7.

APPENDIX C: EXPLORE THE PHYSICAL CONNECTION
BETWEEN CONCENTRATED SUBRADIANT STATES

AND THE NON-HERMITIAN SKIN EFFECT

Let us further discuss the physical connection between
the phenomena of the concentrated subradiant states and
the extended superradiant states in our system and the non-
Hermitian skin effect. In our proposed model, the extended
modes are mainly the results of the losses profile, without
which our system is supposed to exhibit the exact non-
Hermitian skin effect. To be specific, the exact non-Hermitian
skin effect which is supposed to emerge in our system will
be destroyed by the quantity and the position of the losses;
therefore, superradiant states behave to be extended on both
sides of the array, while the states in the middle of the array,
the subradiant modes, still behave like the skin effect.

To illustrate our argument, let us refer to the one-
dimensional ring resonator system (see Fig. 1(e) in Ref. [104])
and consider our model by ignoring the loss profile and
long-range couplings, but only taking the position-dependent
nearest-neighbor couplings with real values, with the corre-
sponding Hamiltonian as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√

γL−20γL−19 0 0 0 0√
γR−20γR−19 0

√
γL−19γL−18 0 0 0

0
√

γR−19γR−18 0 . . . 0 0

0 0 . . . 0
√

γL+18γL+19 0
0 0 0

√
γR+18γR+19 0

√
γL+19γL+20

0 0 0 0
√

γR+19γR+20 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)

By diagonalizing the Hamiltonian (C1), we can plot the distribution of all eigenstates, as shown in Fig. 8. One can find that
here all modes are localized at the middle interface, which is similar to the results in Ref. [104].

We further add single-atom loss terms into the toy in Eq. (C1), and the new Hamiltonian is written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− i
2 (γL−20 + γR−20 )

√
γL−20γL−19 0 0 0 0√

γR−20γR−19 − i
2 (γL−19 + γR−19 )

√
γL−19γL−18 0 0 0

0
√

γR−19γR−18

. . .
. . . 0 0

0 0 . . .
. . .

√
γL+18γL+19 0

0 0 0
√

γR+18γR+19 − i
2 (γL+19 + γR+19 )

√
γL+19γL+20

0 0 0 0
√

γR+19γR+20 − i
2 (γL+20 + γR+20 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

The resulting intensity distribution of the eigenstates is
shown in Fig. 9. One can notice that only when we add
the single-atom losses, the extended states emerge while the
subradiant states remain concentrated in the vicinity of the
middle interface, as those in Fig. 8. By further adding back
long-range terms towards the realistic model in Eq. (3) in the
main text, one can obtain the result shown in Fig. 2 in the main
text. From this perspective, we then conclude that the subra-
diant states are indeed associated with the non-Hermitian skin
effect, and the extended states are results from the competition

between fast single-atom losses and the non-Hermitian skin
effect.

Last but not the least, it is worth noting that the non-
Hermitian effect does not mean all eigenstates have to localize
near the interface. In fact, it only requires that partial eigen-
states are localized near the interface. More specifically, it
requires that the proportion of skin modes tends to be nonzero
when the scale of the system L → ∞ (see Fig. 2(b3) in
Ref. [84]). We explore the impact from the system size, i.e.,
the atom number N , in Appendix E, and we find that with
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FIG. 8. Intensity distributions vs atom site j for all eigenstates
with m = 1, 2, . . . , 41 from Eq. (C1).

the size of the system being enlarged, the main feature of
the concentrated subradiant states and the extended superra-
diant states found in the main text persists, as illustrated in
Fig. 20.

APPENDIX D: EXCLUSION OF THE EFFECT CAUSED BY
THE LOSS PROFILE

Here we conduct more numerical simulations on an ar-
tificial reciprocal model, pointing out that the interesting
phenomena shown in the main text mainly result from the
nonreciprocal couplings but not the loss profile, while the
losses are crucial for the extended states.

The Hamiltonian of our model is written as

Ĥeff = − i

2

∑
j

(γL j + γR j )σ̂
†
j σ̂ j − i

∑
j>l

√
γLlγL j σ̂

†
l σ̂ je

ik(x j−xl )

− i
∑
j>l

√
γRlγR j σ̂

†
j σ̂l e

ik(x j−xl ). (D1)

To make a comparison, we devise a toy model which has
the same local loss profile as our proposed model and the

FIG. 9. Intensity distributions vs atom site j for all eigenstates
with m = 1, 2, . . . , 41 from Eq. (C2).

FIG. 10. Intensity distributions vs atom site j for all eigenstates
with m = 1, 2, . . . , 41 of the toy model from Eq. (D2). Colors for
each eigenstate indicate the collective decay rates.

corresponding Hamiltonian is written as

ˆ̃Heff = − i

2

∑
j

(γL j + γR j )σ̂
†
j σ̂ j − i

∑
j �=l

t jl σ̂
†
l σ̂ je

ik|x j−xl |,

(D2)
where t jl = (

√
γLlγL j + √

γRlγR j )/2 is the reciprocal long-
range coupling between the jth and lth atoms.

According to Eq. (D2), we plot the localization of the
reciprocal lattice in Fig. 10. One can see that the reciprocal
toy model exhibits mostly bulk modes, while it is noticeable
that the eigenstates with the biggest losses have very strong
intensities localized on both sides of the array. By comparing
Fig. 2(a) in the main text and Fig. 10, one can exclude the
possibility that the subradiant states solely reflect the loss
profile, but have a strong connection with the nonreciprocal
couplings, while the high losses are crucial for the extended
states.

APPENDIX E: STUDY OF THE NON-HERMITIAN MODEL
OVER A BROAD RANGE OF PARAMETERS

Here we conduct more numerical calculations over a range
of parameters, which are summarized in the following.

As labeled in Fig. 1(a), we consider four variables in our
proposed model, i.e., y0, H = D − 2y0, d, N , where d is the
atoms’ spacing. H represents the width of the space that the
atomic array takes. y0 refers to the nearest distance from an
atom to the vertical surface of the waveguide, namely, the
distance from the [ j = − (N−1)

2 ]-th ([ j = + (N−1)
2 ]-th) atom to

the top (bottom) waveguide. N is the atom number.
At the very first, let us introduce three important factors,

which quantify the proposed system and thus make it more
convenient to study over a range of parameters.

(i) The average lifetime of all subradiant states, which
reflects the average level of decay rate of all subradiant states,
is labeled as 〈τ 〉.

(ii) The FWHM of the most concentrated state, which
confers the quantity of the concentration of the most localized
state, is labeled as FWHMmin. The bigger the FWHMmin is,
the lower concentration the state is. We obtain this quantity by
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FIG. 11. The numerical results of the spontaneous decay rate of guided modes for a single waveguide at the position of each atom. Each
decay is normalized by the spontaneous decay rate in free space. (a)–(c) The decay rate with varying H/a = 1, 2, 3, 4, and 5, and constant
(a) y0/a = 0.5, (b) y0/a = 1, and (c) y0/a = 2, as labeled in yellow, cyan, green, blue, and red dots, respectively. (d)–(f) The decay rate with
varying y0/a = 0.5, 0.75, 1, 1.25, and 1.5, and constant (d) H/a = 1, (e) H/a = 3, and (f) H/a = 5, as labeled in yellow, cyan, green, blue,
and red dots, respectively.

first calculating eigenstates, and then conducting the Gaussian
fitting. The unit is the atom site number.

(iii) The average FWHM of all subradiant states, which
provides the relevant information of the concentration of

all subradiant states, is labeled as 〈FWHM〉. This quantity
describes the average level of concentration for this system.
We obtain the 〈FWHM〉 by the following steps: We first nu-
merically calculate the eigenstates, then conduct the Gaussian

FIG. 12. (a) FWHMmin and 〈FWHM〉 vs y0/a when H/a = 5. (b) FWHMmin and 〈FWHM〉 vs H/a when y0 = 0.5.
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FIG. 13. The heat map of FWHMmin. The colors indicate the
amplitude of FWHMmin.

fitting on all subradiant states to get the FWHM for each
subradiant state. At last, we do the average operation. The unit
is the atom site number.

We then study the effects of y0, H, d , and N on our pro-
posed system, with details as follows:

1. Effects of parameters H and y0

In our system, H and y0 reflect how quickly the single-
and cross-atom couplings vary and how strong they are. We
plot the numerical results of the spontaneous decay rate de-
termined by the distance r − a from the atom to the top
waveguide surface in Fig. 11. When y0 is a constant, larger
H indicates that the decrease rate of coupling strengths γ is
faster, as exhibited in Figs. 11(a)–11(c). Similarly, when H
is constant, larger y0 means lower couplings, as exhibited in
Figs. 11(d)–11(f). One can notice that y0 determines where
the value of γ starts at j = −20. H/a and y0/a together
determine the varying rate of γ on the atomic positions,
while here we find the varying rate of H/a matters more
than y0/a’s, as exhibited in Figs. 11(d)–11(f). Here we choose
d/λ = 10.65, N = 41 in the simulations.

We also calculate the FWHM with varying y0/a and H/a,
as illustrated in Fig. 12. According to Fig. 12(a), as y0/a in-
creases, the FWHM roughly stays constant until y0/a reaches
2. As to Fig. 12(b), as H/a increases, FWHMmin decreases,
which means the concentration increases and roughly stays
constant after H/a = 4.6, whereas 〈FWHM〉 increase at first
and then decreases after H/a reaches 4.6.

Moreover, we make a heat map on FWHMmin, as exhibited
in Fig. 13. The cool colors in Fig. 13 indicate better con-
centrations than the warm colors. One can explicitly see the
transition in Fig. 13. For example, when H/a � 2, it shows
that eigenstates are not concentrated, while for H/a > 2,
it indicates that the eigenstates exhibit smaller FWHMmin,
meaning the concentration. Therefore, we find that the de-
crease of the vertical width of the atomic array, H , brings the
transition from concentrated states to nonconcentrated states.

We further plot 〈τ 〉, as exhibited in Fig. 14. As one can
see in Fig. 14, 〈τ 〉 gets longer as y0/a increases, and 〈τ 〉 gets
longer as well when H/a increases.

Here we select parameters (y0/a = 0.5, H/a = 1),
(y0/a = 0.5, H/a = 5), (y0/a = 2.2, H/a = 1), and (y0/a =
2.2, H/a = 5) to show the corresponding localization, which
are demonstrated in Fig. 15. From Figs. 15(a) and 15(c), one
can clearly see that when H/a = 1, these eigenstates exhibit
properties as bulk states. Though the minimal loss states, i.e.,
mode m = 1, is still concentrated, FWHMmin is very big so
the concentration feature disappears. In Figs. 15(b) and 15(d),
one can see that the models exhibit suggested phenomena,
including well-concentrated states. One can clearly see from
Figs. 11(a)–11(c), no matter what y0/a is, the shape of the
γ curve for the same H/a is roughly the same, and this is
why Figs. 15(a) and 15(c) behave similarly in terms of the
localization, while the lifetime of these states is different.
Similar arguments also work for Figs. 15(b) and 15(d).

To better illustrate the effect caused by H/a, we further
plot Fig. 16. Here we take y0/a = 0.5 as a constant since y0/a
does not change the tendencies of couplings, but only changes
the amplitudes. As shown in Fig. 16, the localization grad-
ually changes from bulk states to the suggested phenomena
including well-concentrated states as H/a increases.

From what has been discussed above, we come to the fol-
lowing conclusion: there is no phase transition in our system
as H/a and y0/a change. The occurrence of the suggested phe-
nomena including well-concentrated states mainly depends
on the decrease rate of γ , which is closely related to H/a.
Specifically, if γ decreases too slowly, the eigenstates behave
as bulk states; on the other hand, the phenomena of the con-
centrated states will emerge. y0/a mainly tunes the lifetime of
the eigenstates.

2. Effects of parameter d

We set d > 10λ = 8520 nm such that d � λ = 852 nm to
reduce the impact from the environment as much as possible.
Here we choose H/a = 3, y0/a = 0.5, N = 41 in the calcula-
tions.

We plot 〈τ 〉, shown in Fig. 17(a), and also make plots of
FWHMmin and 〈FWHM〉, exhibited in Fig. 17(b). We find the
periodicity to be roughly 0.5d/λ. In our proposed model, the
Hamiltonian is written as

Ĥeff = − i

2

∑
j

(γL j + γR j )σ̂
†
j σ̂ j − i

∑
j>l

√
γLlγL j σ̂

†
l σ̂ je

ik(x j−xl )

− i
∑
j>l

√
γRlγR j σ̂

†
j σ̂l e

ik(x j−xl ), (E1)

where k(x j − xl ) = 2π ( j − l )d/λ, so d/λ is the phase factor
of the cross-atom couplings.

According to Fig. 17(b), 〈FWHM〉 and FWHMmin are in
the range of [9,14] and [1,7], respectively, which indicates a
good concentration when varying d . We further choose two
spacings d/λ = 10.25, d/λ = 10.72 and d/λ = 10.73, which
correspond to the widest 〈FWHM〉 = 13.98 and FWHMmin =
7.06, and the narrowest FWHMmin = 1.83, respectively, as
plotted in Fig. 18. In Fig. 18, we find that the main feature
of the concentrated subradiant states and extended super-
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FIG. 14. (a) The lifetime 〈τ 〉 vs y0/a, when H/a = 5. (b) The lifetime 〈τ 〉 vs H/a, when y0/a = 0.5.

radiant states persists, but the details of the distributions’
localization inevitably changes due to the varying phase of
the interactions. In Figs. 18(b) and 18(c), the corresponding
atoms’ spacing, which are d/λ = 10.72 and d/λ = 10.73,
respectively, are very close, while both of their FWHMmin and
localizations are so different and hence indicate a transition
at d/λ ∼ 10.72–10.73. Additionally, we can find this kind of
transition periodically.

3. Effects of parameter N

Here we choose H/a = 3, y0/a = 0.5, and d/λ = 10.65
and perform simulations with different N . 〈FWHM〉 and
FWHMmin and their corresponding linearly fitted curves are

plotted in Fig. 19. One can see the goodness of linear fitting,
i.e., R2 = 0.9461 and 0.9989 → 1, indicating that the change
of N does not change the main features of our system. In
particular, we further plot localizations of eigenstates for four
different N , including N = 41, 101, 151, and 201, as illus-
trated in Fig. 20.

Additionally, in our system, we have (N − 1)θd = H in
geometry. When N is too large, the tilted angle θ will be
extremely small, which is potentially beyond the experimental
limit. Therefore, we choose N = 41 to show the main feature
of the system in our paper.

In summary, we study the model over a broad range of
parameters. We find that the existence that is found of con-

FIG. 15. Intensity distributions vs atom site j for all eigenstates with m = 1, 2, . . . , 41 at (a) y0/a = 0.5, H/a = 1, (b) y0/a = 0.5, H/a =
5, (c) y0/a = 2.2, H/a = 1, and (d) y0/a = 2.2, H/a = 5. Colors for each eigenstate indicate the collective decay rates.
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FIG. 16. Intensity distributions vs atom site j for all eigenstates with m = 1, 2, . . . , 41 at y0/a = 0.5 and (a) H/a = 0.5, (b) H/a = 1,
(c) H/a = 1.5, and (d) H/a = 3. Colors for each eigenstate indicate the collective decay rates.

FIG. 17. (a) 〈τ 〉 vs d/λ. (b) FWHMmin and 〈FWHM〉 vs d/λ, as indicated by blue dots and red dots, respectively.

FIG. 18. Intensity distributions vs atom site j for all eigenstates with m = 1, 2, . . . , 41 at (a) d/λ = 10.25, 〈FWHM〉= 13.98, (b) d/λ =
10.72, FWHMmin = 7.06, and (c) d/λ = 10.73, FWHMmin = 1.83. Colors for each eigenstate indicate the collective decay rates.
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FIG. 19. (a) FWHMmin and the corresponding linearly fitted curves, as labeled by the blue dotted line and red line, respectively. The
R-square of the linear fitting is 0.9461. (b) 〈FWHM〉 and the corresponding linearly fitted curves, as labeled by the blue dotted line and red
line, respectively. The R-square of the linear fitting is 0.9989.

centrated states with subradiant features persists for the scale
of the system, N → ∞, which provides further evidence of
connecting to NHSE [84]. Moreover, the occurrence of the
interesting phenomena that are found mainly depends on the
varying rate of γR(L) j on the atomic positions, which is a result
of the geometry of the atomic array. In other words, if γR(L) j

varies largely [such as the yellow dotted lines in Figs. 11(e)
and 11(f)], then the distributions of eigenstates show the

phenomena of concentrated subradiant states and extended
superradiant states [see Figs. 15(b) and 15(d), and Fig. 16(d)].
However, when the varying rate of γR(L) j decreases [such
as the yellow dotted lines in Figs. 11(a)–11(d)], a transition
occurs and the system exhibits bulk states [see Figs. 15(a)
and 15(c), and Figs. 16(a) and 16(b)]. In addition, the faster
the decrease is, the better the concentration of the system will
perform.

FIG. 20. Intensity distributions vs atom site j for all eigenstates at (a) N = 41, (b) N = 101, (c) N = 151 and (d) N = 201. Colors for each
eigenstate indicate the collective decay rates.
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